
Enhancing Supercomputing Education through a
Low-Cost Cluster: A Case Study at Insper

Lı́cia S. C. Lima1, Tiago A O Demay2, Leonardo N Rosa3, André Filipe M. Batista4, Luciano Silva5

dept. of Computer Engineering.1,2,4,5, dept. Fab.Lab.3

Emails: (liciascl1, tiagoaodc2, leonardonr3, andrefmb4, lucianos45)@insper.edu.br
Insper, São Paulo, Brazil.

Abstract—High-Performance Computing (HPC) and parallel
programming presents intricate challenges due to the sophisti-
cated interplay between advanced hardware and software com-
ponents. This paper delineates a case study of a cost-effective
cluster comprising 24 Upboards engineered to bolster a project-
based Supercomputing course. The project received the name of
UpCluster, and it serves as a pragmatic, cost-efficient solution for
experiential learning, mitigating the abstraction often associated
with theoretical constructs. The curriculum encompasses various
topics, including distributed computing, parallel computing, al-
gorithm analysis, and the Message Passing Interface (MPI). The
team meticulously documented the cluster infrastructure, provid-
ing a comprehensive guide for the configuration and utilization
of the Single Board Computer cluster with Kubernetes and
MPI operators. Students engaged in practical experimentation,
developing scalable algorithms, and gaining valuable insights
into the challenges and opportunities associated with distributed
computing. These experiences fostered a deeper appreciation for
the complexities and potential of distributed computing. The pri-
mary objective of this study is to demonstrate the efficacy of the
cost-effective cluster in augmenting high-performance computing
education. By providing a practical learning environment, the
UpCluster complements theoretical instruction and empowers
students to acquire practical skills in the design of large-
scale distributed systems with multi-core nodes. Furthermore,
the paper discusses this low-cost cluster’s potential impact and
applications in HPC education. The insights from the study may
benefit academic departments and institutions seeking to develop
analogous project-based courses focused on high-performance
computing for graduate students.

I. INTRODUCTION

HPC has emerged as an indispensable instrument for pro-
pelling research and innovation, spanning from academia to
industry. These sectors utilize HPC in both scientific and en-
gineering computing as seen in the work of Nengzhi et al. [1].
The pedagogical process of HPC and parallel programming
presents challenges, primarily due to the complex interaction
between advanced hardware and software components. This
situation highlights the growing need for educational methods
that provide students with hands-on experience in designing,
developing, and operating HPC systems.

HPC is centered around addressing computational problems
that surpass the capabilities of standard desktop computing.
To educate graduate students in this domain, it’s essential
to effectively convey the principles of parallel computing.
These principles enable the resolution of intricate issues using
machine clusters as in the work of Shamsi et al. [2] and Weems
et al. [3].

Fig. 1. UP Cluster at Insper. shows the operational Up cluster
in the networking and HPC laboratory. Documentation available at
https://insper.github.io/UpCluster/

In light of these needs, our study introduces a cost-effective
cluster tailored specifically for a project-centric Supercomput-
ing course. As depicted in Figure 1, this cluster, consisting
of 24 Upboards, offers an affordable solution for experiential
learning. It bridges the divide between theoretical knowledge
and practical application. Our primary aim is to showcase
how this cost-effective cluster can enhance high-performance
computing education. By establishing a tangible learning
environment, the cluster not only complements theoretical
teachings but also equips students with hands-on skills in HPC
system design and operation.

This paper offers a detailed overview of the cluster’s infras-
tructure, the course curriculum, and the techniques used to
promote hands-on learning. We also delve into the potential
applications and impact of this budget-friendly cluster in HPC
education. The findings from our research can aid academic

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 11



departments and institutions aiming to craft similar project-
based HPC courses for graduate students.

The subsequent sections of this paper are organized as
follows: Section 2 reviews related work in HPC education.
Section 3 describes the cluster’s hardware and software setup,
emphasizing its cost-effectiveness and scalability. Section 4
details the Supercomputing course content. Section 5 show-
cases an accelerated Monte Carlo-based pi calculation using
MPI on the affordable UpCluster. Section 6 evaluates the
cluster’s role in advancing HPC education, focusing on its
practicality and influence on student learning. Section 7 con-
cludes the paper, summarizing our study’s contributions.

II. RELATED WORK IN HPC EDUCATION

HPC and MPI have been active research areas, with multiple
implementations and evaluations discussed in the literature.
The application of HPC in scientific advancement is essen-
tial for performing high-performance simulations, analyses,
and modeling in fields such as physics, chemistry, biology,
environmental sciences, and engineering as observed in the
works [4]–[10]. The teaching of HPC holds promise due to
its wide application and real-world relevance. HPC involves
the use of advanced computing techniques to solve complex
problems and perform computationally intensive calculations
in a reasonable amount of time as in the articles [11]–[13].

This section divides the content into three main topics:
Implementations and Evaluations of MPI and HPC, Parallel
Programming Models and Tools, and Education and Training
in HPC.

A. Implementations and Evaluations of MPI and HPC

Several works have explored different implementations of
MPI and HPC and their performance evaluations. For instance,
in work of Huang et al. [14] proposes a message-balanced
forwarding system along with middleware-level throttling to
reduce I/O variability in QoS-less HPC storage systems. They
conducted a series of experiments to evaluate the effectiveness
of their proposal and found that it could reduce I/O variability.

Similarly, the article of Li et al. [15] presents solutions
for the efficient execution of programs written in the hybrid
MPI/OpenMP programming model targeting large-scale
distributed systems with multicore nodes. The proposed
algorithm achieves substantial energy savings with either
negligible performance loss or even performance gain.
Among the contributions, the article proposes solutions to
make parallel programs more energy-efficient in large-scale
distributed systems with multicore nodes. The authors
introduce a novel algorithm that can save significant energy
while maintaining good performance. They also provide a
study on energy-saving opportunities in strong and weak
scaling of hybrid applications at unprecedented system scales
of up to 1024 cores.

The significant power footprint of edge computing systems
motivates holistic approaches to energy management that
integrate hardware and software solutions.

Container utilization is increasingly prevalent in the cloud
computing era due to its lightweight and portable nature,
enabling efficient resource utilization and rapid application
deployment, the work of Zhou et al. [10] discuss the use
of containers in HPC environments. The article examines the
utilization of containers in HPC environments. Containers en-
capsulate complex applications and their dependencies within
isolated environments, enhancing compatibility and portability.
The article emphasizes the distinctions between containeriza-
tion and its orchestration strategies in HPC systems compared
to cloud systems. They propose a novel container implemen-
tation approach that can reduce the performance overhead
associated with traditional containers. They evaluated their
approach on a computer cluster and found it could improve
application performance.

B. Parallel Programming Models and Tools

Parallel programming models and tools, such as the MPI and
OpenMP, are vital for effectively harnessing the computational
power of modern systems. MPI facilitates communication and
synchronization among distributed processes, while OpenMP
simplifies shared memory parallelization through compiler
directives and runtime libraries. These models, along with
various tools and libraries, provide abstractions and frame-
works that enable developers to express and exploit parallelism
efficiently, enabling scalable and efficient parallelization of ap-
plications across distributed and shared memory architectures.
Tools like Kubernetes are an advanced container orchestration
platform that excels at managing clusters and distributed
computing environments with its robust autoscaling, load
balancing, and service discovery features. By abstracting away
the underlying complexities of the infrastructure, it enables
seamless scalability and distribution of workloads, improving
resource utilization and fault tolerance. Overall, parallel pro-
gramming models and tools are essential for harnessing the
power of parallel computing systems. They enable develop-
ers to express parallelism effectively, abstract away system
complexities, and optimize performance. The literature also
explores several parallel programming models and tools. For
example, Hui et al. [16] discusses the implementation of a
microservices-based distributed cluster scheduler for Kuber-
netes called Epsilon.

In the article of Mart et al. [17], discussed the automatic de-
tection of anomalies in Kubernetes clusters using Prometheus.
Kubernetes is an open-source container management platform
with features like automatic scaling, service discovery, load
balancing, and fault tolerance. The authors propose a new
solution to capture and predict anomalies earlier, leveraging
the monitoring system’s metrics. The concept of observability,
originating from control theory, refers to the ability to infer
the internal states of a system based on its external outputs. In
distributed systems, observability is often composed of three
main components: logs, metrics, and traces.

The work by Zhou et al. [10] proposes a floating-point (FP)
processing element as the basic unit of accelerators necessary
to meet the requirements of multiple precisions with energy-

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 12



efficient operations. They implemented their processing ele-
ment on an FPGA chip and found it could improve application
performance.

Additionally, the work of Mullen et al. [12] discusses the
application of high-performance computing in radar modeling.
They implemented a radar model on a computer cluster and
found it could improve radar prediction accuracy.

The article conducted by Hasan et al. [18] introduces the
Kube-Monitor framework, designed for real-time resource
monitoring in heterogeneous Kubernetes clusters. This frame-
work enables monitoring resources in a diverse range of
devices, including traditional data center infrastructure and
Raspberry Pi devices. Kube-Monitor collects and updates 15
different resource metrics at a five-second interval, providing
Kubernetes operators with up-to-date and comprehensive in-
sights into resource utilization. The article also emphasizes
the importance of enhancing computer science and engineer-
ing undergraduate education by incorporating HPC courses
into the curriculum. It discusses the implementation of MPI-
enabled grids using widely adopted software systems such as
MPICH and Globus. Furthermore, the article addresses the
evolution of HPC courses and the challenges faced. It high-
lights the research achievements of students in HPC, providing
valuable insights for academic institutions and educators in the
field.

C. Education and Training in HPC

Education and training in HPC have been a focus area in
the literature. The work by Mullen et al. [12] proposes using
severe games in informal HPC courses to provide students
with tangible, hands-on experiences with HPC concepts. They
implemented their game in an HPC course and found that it
could improve students’ understanding of HPC concepts.

Similarly, the work by Catalán et al. [13] discusses the
need to teach HPC to undergraduate students and proposes a
non-mandatory course titled ”Build Your Own Cluster Using
Raspberry Pi” to provide students with HPC skills. They
implemented their course at a university and found that it could
improve students’ understanding of HPC concepts.

The research conducted by Gschwandtner et al. [11] dis-
cusses the challenges of teaching HPC due to the complex
hardware and software components involved. It explores the
difficulties in understanding and managing different levels
of the HPC hardware architecture hierarchy and highlights
the various software tools available for interacting with these
aspects. The article presents Cluster Coffer, a miniature cluster
computer, as a solution to make HPC more accessible in
education and public outreach. It provides insights into its
design goals, implementation, and use cases. Finally, the
article presents two use cases where Cluster Coffer has been
used multiple times and will continue to be used in the coming
years.

In the work of B. Neelima [19], the author address the
successful introduction of HPC courses to undergraduate stu-
dents at a private engineering institution in India. It highlights

the institution’s background, curriculum enhancements, infras-
tructure development, academic achievements, and challenges.
The article is a reference for educators and students interested
in implementing similar HPC courses based on the institution’s
best practices.

In this paper, we shall delve into the concepts of the
articles mentioned above, explicitly emphasizing tackling the
challenges associated with instructing HPC and Distributed
Computing. However, our main contribution is to demonstrate
how we successfully abstracted the complexity of these issues
using an efficient and low-cost cluster we designed. This
cluster has proven effective in enhancing classroom dynamics
and providing students with hands-on experiences in HPC and
distributed computing.

III. CLUSTER CHARACTERISTICS

The team established the conception of the UpCluster with a
specific challenge in mind. They aimed to enhance the student
experience in HPC and parallel programming classes using a
project-based learning method.

Additionally, there was a scenario where materials were
readily available for the project’s construction. These mate-
rials were initially acquired for other projects. However, they
were eventually replaced with more up-to-date hardware. This
situation allowed for the system’s development at a minimal
cost.

The UpCluster’s quality underscores the feasibility of cre-
ating a functional and cost-effective computing environment
by repurposing existing resources.

This section will describe the hardware, physical structure,
and software used to build the UpCluster, along with the design
choices made since the team intends to use this project in an
educational environment to facilitate the student’s understand-
ing and bring physicality to the concepts of the subject. Details
about the design, building, installation guides, configurations,
and applications are available in the project documentation1.

A. Hardware

The system consists of 24 UpBoards as shown in Figure 2,
each equipped with an Intel Atom X5-Z8350 ”Cherry Trail”
quad-core processor running at 1.44GHz (with a burst fre-
quency of 1.92GHz) and integrating Intel Gen8 HD graphics.
The set of boards has 21 units used as compute nodes and
three unities used as head nodes.

A Tp-Link Tl-SG3428 switch is responsible for the system
data transmission interconnecting the nodes, and an Asus
AC750 Dual Band router establishes the external connectivity.
Each board holds one Pimoroni LED strip, used as visual
feedback from the operations of the system, and a bootable
USB drive for storing the operating system.

1More details can be found on the official course website at
Github Insper, “Supercomp - high-performance computing course,” GitHub,
https://insper.github.io/supercomp/

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 13



Fig. 2. UP Board Series is a credit-card-sized board with high performance
and low power consumption features.

B. Physical Structure

The UpCluster structure consists of 3mm transparent acrylic
sheets. The team obtained the material by reusing a protective
barrier initially used in the COVID-19 pandemic in customer
service areas. The material transparency allows for the obser-
vation of the internal assembly of the hardware.

The structure of the project has 24 drawers containing the
UpBoards, designed with specific cutouts to enable access to
connections for network cables, power cables, and bootable
USB drives. The drawers’ mechanism allows for isolated
UpBoards repairs in the event of a defect, eliminating the need
to disassemble the entire system. This design expedites main-
tenance processes while reducing the possibility of disruption
to the system.

Two stacks of 12 drawers arrange the compartments, with a
space between them that accommodates the switch device. A
compartment is dedicated to house the router, positioned on
the top of the structure. Finally, the bottom of the UpCluster
holds the power supply of the system.

C. Software

The UpCluster uses Ubuntu 20.04.04 as an operating system
(OS). The team chose this specific OS due to the compatibility
with the hardware from Up, mainly for making available the
use of the I/O ports from the board. The current versions of
this distribution were not compatible with the hardware. The
system also uses Kubernetes, an open-source platform that
automates, scales, and manages containerized applications.

In order to ensure continuous service operation, even dur-
ing server failures or network problems, the system uses
KeepAlived and HAProxy. KeepAlived is an open-source
implementation of high availability for network services that
run in the operating system. The implementation allows the
three head nodes of the cluster to share the same virtual
IP address, establishing communication with each other to
monitor the services they maintain. If the system detects a
failure in a head node, another takes over the virtual IP address

to maintain service continuity. HAProxy acts as a load balancer
running in the Kubernetes environment. It will guarantee
high availability when running critical workloads avoiding
downtime, allowing scalability through workload distribution,
and providing features like replication and fault tolerances
ensuring that applications and services keep functioning even
if some node or component fails. While KeepAlived maintains
the availability of the head node, HAProxy will optimize the
workload distribution and maintain the high availability of the
applications.

To allow students in the course to visualize real-time
activities on the UpCluster, we also implemented a moni-
toring stack using the open-source software Prometheus and
Grafana, open-source tools for collecting, storing, and visualiz-
ing time-series data. Prometheus adopts a pull-based approach
to periodically scrape metrics from target endpoints, while
Grafana, as shown in 3, offers a user-friendly interface to
create customizable dashboards and graphs. This combination
empowers students to gain real-time insights into the cluster’s
performance and behavior, enhancing their understanding of
distributed computing and practical challenges in managing
high-performance systems.

Fig. 3. Global CPU usage, global Memory usage, and Kubernetes Resource
count - Grafana graph showing cluster utilization over time.

IV. PROJECT-BASED HPC COURSE DESIGN

The course takes place over six months, with two classes
per week, each lasting 2 hours, for a group of approximately
30 students from the 7th semester of the undergraduate com-
puter engineering program. The course design prioritized a
practical and hands-on approach to overcome the abstraction
of theoretical concepts. The curriculum integrates theoretical
understanding with real-world application. Evaluation includes
practical exams and a multifaceted project covering differ-
ent high-performance computing topics. The project provides

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 14



students with hands-on experience, reinforcing the practical
application of learned concepts.

A. Course Details:

• An introductory definition of HPC: An overview of ba-
sic and historical concepts and how the high-performance
computing area is today in the world.

• C++ contextualization: Addressing important language
topics with hardware resources for program optimization,
heuristics, and computationally complex problems.

• Profiling: In this module, students will learn about pro-
filing techniques to analyze the performance of their
programs. They will explore tools and methodologies to
identify bottlenecks and optimize code efficiency, gaining
insights into program behavior and resource utilization.

• Heuristics: This module introduces students to heuristic
algorithms, which are problem-solving techniques that
prioritize finding good solutions rather than guaranteed
optimal solutions. Students will study heuristic algo-
rithms, such as greedy algorithms and metaheuristics, and
apply them to solve real-world computational problems.

• Randomization: Students will delve into the power of
randomization in algorithm design. They will learn to use
randomization techniques to enhance problem-solving ap-
proaches, including randomized algorithms, Monte Carlo
simulations, and optimization methods.

• Local and Exhaustive Search: This module covers both
local search and exhaustive search algorithms. Local
search algorithms aim to improve solution quality by
iteratively exploring neighboring solutions. On the other
hand, an exhaustive search involves exploring all possible
solutions to find the optimal solution. Students will study
algorithms like brute-force search and backtracking, un-
derstanding their limitations and knowing when to apply
them effectively.

• Performance Comparison: This module emphasizes the
importance of performance comparison in evaluating and
selecting appropriate algorithms or implementations. Stu-
dents will learn techniques for benchmarking and ana-
lyzing the efficiency of different approaches, considering
factors like runtime, memory usage, and scalability.

• Parallelism and GPU Computing: This module ex-
plores parallel computing concepts and GPU program-
ming. Students learn the significance of parallelism in
high-performance computing and acquire practical skills
in parallel programming models, including shared mem-
ory (OpenMP) and distributed memory (MPI). They
tackle side effects, synchronization, and load-balancing
challenges in parallel applications. The module also in-
troduces Graphics Processing Units (GPUs) and their
role in accelerating computations. Students gain hands-
on experience in GPU programming, optimizing memory
access patterns, and leveraging data parallelism to process
large datasets efficiently. Advanced techniques, such as
memory management, thread synchronization, and kernel
optimization, are covered to achieve optimal performance

in GPU-based computations. This module equips students
with the necessary skills to harness parallelism and GPU
resources, enhancing computational speed and efficiency.

• MPI (Message Passing Interface) in Distributed Com-
puting: The module begins with an introduction to MPI,
a widely-used standard for interprocess communication
in distributed computing. Students learn to develop dis-
tributed programs using MPI, focusing on message pass-
ing, process coordination, and scalability. The module
integrates the UpCluster into the course to enhance prac-
tical learning. This cluster allows students to design, de-
velop, and test their distributed programs in a real-world,
commodity-based supercomputing system. By integrating
the UpCluster and covering MPI introduction, reductions,
and broadcasting, students acquire essential skills in de-
veloping distributed-memory distributed programs. They
leverage MPI operations for efficient communication and
data distribution in distributed computing environments.
This practical approach equips them to tackle complex
computational challenges and achieve optimal perfor-
mance.

V. ACCELERATING MONTE CARLO-BASED PI
CALCULATION USING MPI ON A LOW-COST UPCLUSTER

The activity involved the development of a distributed
algorithm using MPI for calculating Pi based on the Monte
Carlo method. Students began by implementing a sequential
version of the algorithm, generating random points within a
square and estimating Pi based on the number of points falling
within the inscribed circle. This sequential implementation
served as a reference for performance evaluation. To enhance
the computational speed and explore the benefits of distributed
computing, the MPI distributes the algorithm on the UpCluster.
Figure 4 represents the calculation of Pi using the Monte Carlo
approximation, which consists of a random sampling of points
within a square of side 2(in blue). If the distance from the
sampled point to the center of the square is less than or equal
to 1, the point falls inside the inscribed circle (in red). The
number of points falling inside the circle is proportional to
Pi. By repeating this process with many points, the estimated
value of Pi approaches the actual value. Simulations and
numerical optimizations widely use the technique in science
and engineering.

Students ventured into distributed computation using the
cluster after initial implementation on individual machines.
The workload was apportioned among multiple workers, each
executing simulations with distinct point sets, enabling stu-
dents to observe the impact of task distribution on the precision
of the calculated Pi value. Each worker conducted a proba-
bilistic calculation with N points, yielding distinct values post-
N iterations. The mean of these outcomes across all workers
provided a more accurate approximation of Pi than achievable
with a single node.

Employment of the cluster enabled students to dispel the ab-
straction inherent in distributed computing, significantly aug-
menting comprehension of the practical task. They grappled

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 15



Fig. 4. Process of calculating the value of Pi using the Monte Carlo method.
Random points are generated within a square (in blue), and the number of
points falling within the inscribed circle (in red) is used to estimate the value
of Pi.

with challenges associated with efficient communication and
synchronization among workers. Reflecting upon the outcomes
of diverse simulations with varying numbers of workers and
point sets, students gained insights into the trade-offs between
computational precision and performance. This practical ex-
perience facilitated a deeper appreciation of the complexities
and potentialities inherent in distributed computing.

Figure 5 presents the simulation results of 20 runs for each
configuration. The values presented in the table correspond to
the average of these runs. The columns of the table represent
the number of iterations used for Pi calculation, the number
of allocated workers for performing the calculation, the time
taken for the network to stabilize and allow communication
between the main MPI node and each worker, the total time
for the calculation to complete across all nodes and the result
to be presented by the main node, the calculated value of the
Pi constant, and the absolute error with the ideal value of Pi.
The students conducted insightful analyses during the study,
identifying relevant findings regarding the performance and
efficiency of distributed Pi calculation. The students identified
that the additional overhead of network communication time
did not justify task distribution for small values of N, consid-
ering only the time and the marginal difference in the obtained
results. Furthermore, the wide availability of observability and
monitoring software, as shown in Figure 6, for clusters had
a detrimental impact on network communication, memory
space, and CPU utilization for Pi calculation. Additional anal-
ysis revealed that implementing a hybrid program combining
OpenMP and MPI could significantly reduce the calculation
time by leveraging the ability to divide and parallelize the task

Fig. 5. Results of Monte Carlo-based Pi Calculation Using MPI on a Low-
Cost UpCluster

simultaneously, as shown by Rabenseifner [20]. These student
analyses provided valuable insights and contributed to a com-
prehensive understanding of the challenges and opportunities
associated with distributed Pi calculation.

As depicted in Figure 6, the most significant memory
resource allocation of UpCluster is dedicated to its oper-
ation. Specifically the Kube-system namespace, consuming
approximately 5% of the total cluster capacity. Additionally,
the Grafana and Prometheus namespaces account consumes
2.5%. In contrast, the memory utilized for Pi calculation
constitutes less than 1% of the cluster’s memory potential. This
observation highlights the efficient allocation of resources,
ensuring that the Pi calculation task does not overly burden
the overall cluster performance, leaving substantial memory
headroom for other critical components.

This practical approach allowed students to engage in
practical experimentation actively, developing scalable algo-
rithms and acquiring a deeper understanding of the benefits
and challenges of utilizing distributed computing resources.
Through hands-on experience and reflective analysis, they
honed their skills in analyzing and interpreting results, en-
abling informed decisions about algorithm design and resource
allocation. These experiences fostered a deeper appreciation
for the complexities and potential of distributed computing,
equipping students for future challenges and opportunities in
this field.

VI. RESULTS

Project-Based Learning (PBL) is an educational approach
that promotes active and hands-on learning through real-world

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 16



Fig. 6. Memory utilization by namespace - Grafana graph showing cluster utilization over time.

projects. It encourages students to actively engage in problem-
solving, critical thinking, collaboration, and communication
skills. In HPC education, using the UpCluster as a practical
tool has proven highly effective in enhancing the learning
experience. The cluster’s practicality and impact on student
learning are evident in several ways.

Firstly, the hands-on nature of working with the clus-
ter allows students to apply theoretical concepts in a real-
world context directly. By designing, developing, and testing
commodity-based supercomputing systems on the cluster, stu-
dents gain practical experience in HPC system architecture,
deployment, and operation. Additionally, the UpCluster is an
accessible and cost-effective platform for student experimen-
tation and exploration. It provides a tangible and realistic
environment for students to explore the complexities of dis-
tributed computing, MPI programming, and optimization tech-
niques. Through active engagement with the cluster, students
understand the challenges and trade-offs of utilizing distributed
computing resources effectively.

Figure 7 illustrates how each namespace utilizes memory
resources in UpCluster. The machine with IP 192.168.50.102,
represented by the yellow curve with a peak consumption of
2.05GB, allocates the infrastructure service of the Kubernetes
cluster. The graph displays the applications responsible for
solving the Pi problem at the bottom, with a maximum
memory consumption of 875MB. These data indicate that
the cluster’s operating infrastructure consumes more memory
resources than the distributed application. Globally, the ”kube-
system” namespace accounts for 5% of the total Upcluster
capacity, whereas the application amounts to less than 1%.
Regarding CPU consumption by the application responsible
for the Pi problem, the average is 22%, with a maximum
consumption of 40% for workers and 50% for the leader. As
for the ”kube-system” namespace, the peak CPU consumption
reached 71%, with an average of 44%. Thus, the UpCluster’s
operating infrastructure has a more significant impact on the
system than the distributed application. These results present
students with a scenario where it is crucial to carefully evaluate
when it is genuinely appropriate to use distributed computing

resources. The problem must be computationally complex to
justify the trade-off.

Furthermore, the cluster’s use in HPC education fosters
collaborative learning and teamwork. Students have the op-
portunity to work together, sharing knowledge and insights
as they tackle complex computational challenges. Collabora-
tive projects on the cluster promote effective communication
and problem-solving skills, preparing students for real-world
scenarios where teamwork and collaboration are essential.
According to research conducted by Chaudhury [21], that
introduces a web-based platform named as Let’s HPC. The
platform serves as a valuable resource for enhancing peda-
gogical practices in the areas of High-Performance Computing
(HPC) and Parallel and Distributed Computing (PDC). Let’s
HPC allows students to gain a comprehensive understanding
of parallel algorithms and provides opportunities for assess-
ment, instruction, and system-level analysis. By harnessing the
dynamic capabilities of the platform, educators and students
can achieve a more profound comprehension of HPC and
PDC concepts with greater ease and efficiency. This study
corroborates with the results we analyzed from our work,
showing that students acquire practical skills by engaging with
real-world scenarios.

The practicality and impact of the UpCluster in HPC
education extend beyond the classroom. By gaining hands-
on experience with a low-cost cluster, students develop valu-
able, highly relevant skills in industry and research settings.
The ability to design, deploy, and optimize HPC systems
using commodity hardware and open-source software becomes
a valuable asset for students pursuing careers in scientific
research, engineering, and data-intensive fields. Using the
UpCluster as a practical tool in HPC education demonstrates
the effectiveness of project-based learning. It enables students
to bridge the gap between theoretical knowledge and real-
world application, enhancing their understanding of parallel
computing concepts and techniques. The hands-on experience
with the cluster cultivates critical thinking, problem-solving,
collaboration, and communication skills, preparing students
for the challenges and opportunities in high-performance com-

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 17



Fig. 7. CPU usage by instance, Memory usage by instance, and Memory utilization by namespace - Grafana graph showing cluster utilization over time.

puting.

VII. CONCLUSION

This study highlights the significant contributions of incor-
porating the UpCluster as a practical tool in HPC education.
By providing students with hands-on experience, the cluster
enhances their understanding of HPC concepts and techniques.
The practicality and impact of the cluster in student learning
are in the practical application of parallel, MPI programming,
and optimization techniques. The key contributions of this
study include:

• Practical Learning Experience: The UpCluster allows
students to apply theoretical concepts in a real-world
context directly. They gain practical skills in HPC system
design, deployment, and operation, preparing them for
real-world applications in industry and research.

• Bridging Theory and Practice: The cluster is a tangible
platform that bridges the gap between abstract HPC
concepts and their practical implementation. Students de-
velop a deeper understanding of the challenges and trade-
offs involved in utilizing distributed computing resources
effectively.

• Collaboration and Communication Skills: Collabo-
rative projects on the cluster promote effective team-
work, communication, and problem-solving skills. Stu-
dents learn to work together, share knowledge, and tackle

complex computational challenges, mirroring real-world
scenarios.

• Cost-Effective Solution: The UpCluster provides a cost-
effective alternative to traditional supercomputing sys-
tems. Its accessibility allows more students to engage
in hands-on HPC experiences, providing a practical ap-
proach to HPC education.

• Next Steps: Establish a queuing system (CI/CD) that em-
powers students to develop code, rigorously test algorithm
performance through automated validation, and seam-
lessly submit their code to the cluster via the integrated
queuing system. Provide the cluster for scientific and
technological initiation activities and as a computational
asset for academic research in the field of Astroinformat-
ics, spanning areas such as exoplanet classification, neu-
tron stars, and supernovae analysis, and create analogous
cluster setups with alternative hardware configurations to
facilitate comparative performance assessments.

Incorporating the UpCluster as a practical tool in HPC
education has significantly contributed to practical learning
experiences, bridging theory and practice, fostering collabora-
tion and communication skills, and providing a cost-effective
solution. It not only enhances the educational experience
but also has the potential to further expand its impact by
enabling students to work on scientific and technological
initiation activities and academic research in the field of

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 18



Astroinformatics. Additionally, looking ahead, there is the
aspiration to create analogous cluster setups with alternative
hardware configurations to facilitate comparative performance
assessments.

REFERENCES

[1] J. Nengzhi, Z. Jianwu, X. Haili, W. Xiaoning, and S. Yulin, “Compar-
ative research on high-speed networks of high performance computing
cluster based on mpigraph,” pp. 579–583, 2020.

[2] J. A. Shamsi, N. M. Durrani, and N. Kafi, “Novelties in teaching high
performance computing,” pp. 772–778, 2015.

[3] C. Weems, “Eduhipc 2021 keynote talk early parallel and distributed
computing education: Canary in the coal mine,” pp. 3–3, 2021.

[4] S. Diesburg, P. Gray, and D. Joiner, “High performance computing
environments without the fuss: the bootable cluster cd,” pp. 8 pp.–,
2005.

[5] V. W. Freeh, F. Pan, N. Kappiah, D. K. Lowenthal, and R. Springer,
“Exploring the energy-time tradeoff in mpi programs on a power-
scalable cluster,” 2005.

[6] N. Regola and J. C. Ducom, “Recommendations for virtualization
technologies in high performance computing,” 2010, pp. 409–416.

[7] W. Mao, K. Li, Q. Cheng, L. Dai, B. Li, X. Xie, H. Li, L. Lin, and H. Yu,
“A configurable floating-point multiple-precision processing element for
hpc and ai converged computing,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 30, pp. 213–226, 2 2022.

[8] C.-C. Chen, K. S. Khorassani, G. K. R. Kuncham, R. Vaidya,
M. Abduljabbar, A. Shafi, H. Subramoni, and D. K. Panda,
“Implementing and optimizing a gpu-aware mpi library for intel gpus:
Early experiences.” IEEE, 5 2023, pp. 131–140. [Online]. Available:
https://ieeexplore.ieee.org/document/10171511/

[9] M. S. Beni, L. Crisci, and B. Cosenza, “Empi: Enhanced message
passing interface in modern c++.” IEEE, 5 2023, pp. 141–153.
[Online]. Available: https://ieeexplore.ieee.org/document/10171546/

[10] N. Zhou, H. Zhou, and D. Hoppe, “Containerization for high perfor-
mance computing systems: Survey and prospects,” IEEE Transactions
on Software Engineering, vol. 49, pp. 2722–2740, 4 2023.

[11] P. Gschwandtner, A. Hirsch, P. Thoman, P. Zangerl, H. Jordan, and
T. Fahringer, “The cluster coffer: Teaching hpc on the road,” Journal of
Parallel and Distributed Computing, vol. 155, pp. 50–62, 9 2021.

[12] J. Mullen, L. Milechin, and D. Milechin, “Teaching and learning hpc
through serious games,” Journal of Parallel and Distributed Computing,
vol. 158, pp. 115–125, 12 2021.

[13] S. Catalán, R. Carratalá-Sáez, and S. Iserte, “Leveraging teaching on
demand: Approaching hpc to undergrads,” Journal of Parallel and
Distributed Computing, vol. 156, pp. 148–162, 10 2021.

[14] D. Huang, Q. Liu, J. Choi, N. Podhorszki, S. Klasky, J. Logan,
G. Ostrouchov, X. He, and M. Wolf, “Can i/o variability be reduced
on qos-less hpc storage systems?” IEEE Transactions on Computers,
vol. 68, pp. 631–645, 5 2019.

[15] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopou-
los, “Hybrid mpi/openmp power-aware computing,” pp. 1–12, 2010.

[16] A. N. Jing Hui and B. S. Lee, “Epsilon: A microservices based
distributed scheduler for kubernetes cluster,” pp. 1–6, 2021.

[17] O. Mart, C. Negru, F. Pop, and A. Castiglione, “Observability in
kubernetes cluster: Automatic anomalies detection using prometheus.”
Institute of Electrical and Electronics Engineers Inc., 12 2020, pp. 565–
570.

[18] B. T. Hasan and D. B. Abdullah, “Real-time resource monitoring
framework in a heterogeneous kubernetes cluster.” Institute of Electrical
and Electronics Engineers Inc., 2022, pp. 184–189.

[19] B. Neelima, “High performance computing education in an indian
engineering institute,” Journal of Parallel and Distributed Computing,
vol. 105, pp. 73–82, 7 2017.

[20] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes parallel, distributed
and network-based processing,” 2009.

[21] B. Chaudhury, A. Varma, Y. Keswani, Y. Bhatnagar, and S. Parikh,
“Let’s hpc: A web-based platform to aid parallel, distributed and high
performance computing education,” Journal of Parallel and Distributed
Computing, vol. 118, pp. 213–232, 8 2018.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 19


