
Ensino de Software Pipelining e Escalonamento em
GPUs com Python no Google Colab

Ricardo Ferreira , José Augusto M. Nacif
Universidade Federal de Viçosa, Brasil

ricardo@ufv.br

Resumo—O ensino de escalonamento estático e dinâmico de
instruções em processadores com pipeline é amplamente docu-
mentado em livros didáticos. No entanto, há poucas informações
disponı́veis sobre técnicas mais avançadas de escalonamento,
como o Software Pipelining e tópicos mais recentes, como o
escalonamento de Warp em GPUs. Este artigo apresenta uma
experiência de ensino que utiliza o Google Colab e Python para
gerar exemplos e documentação sobre o ensino de Software
Pipelining e escalonamento em GPUs. O trabalho foi desenvolvido
em conjunto com os alunos da disciplina de Arquitetura de
Computadores da UFV, incluindo a resolução de problemas e
a criação de ferramentas de visualização como resultados.

Index Terms—Google Colab, Software Pipelining, Escalona-
mento, GPU

I. INTRODUÇÃO

O desenvolvimento dos processadores com pipeline foi
fundamental na evolução das arquiteturas de computadores. A
técnica do pipeline permite a execução simultânea de múltiplas
instruções, otimizando significativamente o desempenho e a
eficiência dos processadores. Nesse contexto, o escalonamento
de instruções desempenha um papel importante na mitigação
dos atrasos no pipeline, reduzindo o tempo de espera devido
a dependências de dados e controle entre as instruções.

O escalonamento de instruções pode ser classificado em
duas principais categorias: escalonamento estático e escalo-
namento dinâmico. O primeiro envolve a reorganização das
instruções em tempo de compilação ou pelo programador. Em
geral é aplicado a trechos de laços que dominam o tempo
de execução dos programas. O escalonamento dinâmico, não
requer que o programador ou o compilador tenham conhe-
cimento da arquitetura, pois o próprio pipeline incorpora
recursos em hardware para reordenar as instruções em tempo
de execução e resolver as dependências de dados. Ambas as
técnicas são amplamente estudadas e documentadas em livros
didáticos [18], [20], formando a base do conhecimento para a
maioria dos cursos de arquitetura de computadores.

No entanto, existe pouca literatura didática para o ensino
de técnicas de escalonamento estático mais avançadas, como
o software pipelining, e tópicos emergentes, como o esca-
lonamento de Warp em GPUs (Graphics Processing Units).
O software pipelining é uma técnica que visa explorar ainda
mais o paralelismo a nı́vel do laço, permitindo a execução de
múltiplos laços em paralelo, resultando em maior utilização do
pipeline e ganhos significativos de desempenho. Entretanto,
os alunos tem muita dificuldade em visualizar a execução
sobreposta das iterações diferentes. Não existem simuladores

didáticos para o ensino de software pipelining. Além disso,
modificar um laço para com escalonamento com software
pipelining é uma tarefa com um certo grau de dificuldade para
a maioria dos estudantes.

Além disso, temas mais recentes como o escalonamento de
Warp em GPUs não possuem literatura didática disponı́vel.
Apesar de recentes na história da computação, as GPUs já
podem ser consideradas uma arquitetura clássica. O tema
começou a fazer partes dos livros didáticos [18]. Mais re-
centemente, a demanda foi impulsionada pelo processamento
paralelo em aplicações de alto desempenho, como inteligência
artificial, processamento de imagens e simulações complexas.

A complexidade dessas abordagens e a rápida evolução
das tecnologias de processamento muitas vezes resultam em
uma escassez de recursos educacionais detalhados e acessı́veis.
Essa lacuna no ensino pode dificultar o desenvolvimento de
competências essenciais em arquitetura de computadores.

Neste contexto, este artigo propõe uma abordagem inova-
dora para o ensino de software pipelining e escalonamento
de warp em GPUs. Utilizando a plataforma Google Colab
e a linguagem de programação Python para modelar os
códigos em assembly, buscamos oferecer exemplos práticos,
documentação detalhada e ferramentas de visualização que
tornam esses tópicos mais acessı́veis e compreensı́veis para
estudantes e profissionais interessados em aprofundar seus
conhecimentos em arquitetura de computadores e técnicas
de otimização. Além disso, o material foi produzido com a
colaboração dos estudantes ao realizar trabalhos práticos na
disciplina de arquitetura de computadores da Universidade
Federal de Viçosa, UFV.

Os resultados desta pesquisa têm como objetivo ampliar
a disponibilidade de material educacional sobre esses temas.
Além de incentivar os estudantes a participarem como co-
laboradores, capacitando-os para enfrentar os novos desafios
da computação de alto desempenho. Ao compartilhar essa
experiência de ensino e oferecer recursos educacionais abertos,
esperamos contribuir para o avanço do conhecimento em
arquitetura de computadores e promover a disseminação do
aprendizado na área.

Ao longo das próximas seções, apresentaremos em detalhes
a abordagem utilizada para o ensino de software pipelining e
escalonamento de warp em GPUs, discutindo os desafios en-
frentados, os resultados obtidos e as perspectivas para futuras
pesquisas e aprimoramentos nessa área.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 20

II. TRABALHOS RELACIONADOS

Apesar da disponibilidade de muitos simuladores e muitas
ferramentas online em navegadores de internet para ensino
de arquitetura de computadores [10], [16], não existem ferra-
mentas que dão suporte para o ensino de software pipelining
e escalonamento de instruções em GPUs.

Dentre os trabalhos mais próximos, podemos destacar
técnicas para o ensino de escalonamento dinâmico como
o Tomasulo com simuladores na web [21] ou versões em
aplicativos para celulares [15]. Para o ensino de processadores
MIPS ou RISC-V, abordando temas genéricos como o ensino
de assembly e pipeline básico ou temas mais especı́ficos como
predição de desvio e extensões vetoriais, podemos destacar:

1) Simulador MARS para Assembly MIPS [23], desenvol-
vido em Java para instalação local;

2) Projeto de um preditor de Desvio para o processador
MIPS [3], implementado em Java com instalação local;

3) Ensino da Extensão Vetorial do MIPS com o simulador
MARS [1];

4) Ensino de projeto em Verilog do processador MIPS com
pipeline 5 estágios [17], executa no navegador;

5) Simulador Web Risc-V [12] para ensino de Assembly e
Pipeline 5 estágios, executa no navegador;

6) Simulador Venus para Assembly Risc-V [22], executa
no navegador;

7) Extensões Vetoriais com simulação no Gem5 do proces-
sador Risc-V [19], instalação local;

Para o ensino de GPU existem poucos trabalhos. O traba-
lho [14] apresenta uma avaliação com microbenchmarks de
diversos aspectos das arquiteturas de GPUs como memórias,
escalonamento, latências das instruções dentre outros pontos
em detalhes. Sugestões para o ensino e pesquisa das arqui-
teturas de GPU com foco nos vários tipos de memórias, no
assembly PTX e na latências de instruções foram propostas
em [2], [8], [9].

III. SOFTWARE PIPELINING

A técnica de software pipelining evita que o código do laço
seja replicado, ao intercalar a execução de múltiplos laços.
Entretanto, os alunos têm muita dificuldade em visualizar a
sobreposição e entender o motivo para ’inverter o código’.
O material produzido para o ensino do software pipelining
envolveu inicialmente três problemas e dois exemplos como
base. Toda a tarefa foi executada dentro do Google Colab [4],
[5], [7], que, por ser um notebook computacional, permite a
integração de texto, código, figuras, entre outros, em um único
ambiente. O uso de Python também é outro facilitador impor-
tante para a modelagem da técnica e simulação, permitindo o
desenvolvimento de exemplos simples e de fácil compreensão
para verificar o escalonamento.

Primeiro, apresentaremos o exemplo de um laço simples,
seguido da sua versão com laço desenrolado e, em seguida,
a implementação com software pipelining na seção III-A.
Depois, apresentamos os três problemas que foram resolvi-
dos como trabalho em grupo pelos alunos na seção III-B.

Finalmente, a seção III-C apresenta um visualizador de grafos
desenvolvido por um grupo de alunos para auxiliar no ensino
de escalonamento.

A. Exemplo de Software Pipelining

O primeiro exemplo é bastante simples e implementa um
laço em assembly RISC para executar a operação vi =
(vi + vi)

2 sobre o vetor v. A Figura 1 apresenta o código
em assembly.

LOOP:
Ld f3,0(r1) # Elemento Vi - Registrador f3
add f3,f3,f3 # vi + vi
mult f3,f3,f3 # (vi+vi)ˆ2
sd f3,0(r1) # vi = (vi+vi)ˆ2
Addi r1,r1,4 # incrementa o indice i
Beq r1,r2,LOOP # retorna ao inicio do laco

Figura 1. Código em Assembly RISC para calcular vi = (vi + vi)
2

Em seguida, demonstramos como simular este código em
Python, conforme ilustrado na Figura 2. A memória é re-
presentada como uma lista ou array para leitura dos dados.
O código é implementado com uma instrução por linha.
Para facilitar os testes, alimentamos o vetor ou lista com
valores facilmente verificáveis. Neste exemplo, utilizamos uma
sequência de inteiros 0, 1, . . . , i, i + 1, Além disso, para
simplificar ainda mais, o controle do laço é implicitamente tra-
tado usando o comando for. Ao final deste primeiro exemplo,
a lista ou vetor de saı́da é impressa para fins de visualização.

l = [0,1,2,...,29,30]
for i in range(20):

f3 = l[i] # load
f3 = f3+f3 # add
f3 = f3*f3 # mult
l[i] = f3 # store

print(l)
Saida esperada
[0, 4, 16, 36, 64, 100,...

Figura 2. Código em Assembly RISC modelado em Python.

Este exemplo serve para ilustrar a sintaxe e não apresenta
dificuldades para os alunos compreenderem o mapeamento
entre o assembly e a linguagem Python.

Tabela I
EXECUÇÃO DO CÓDIGO PARA VISUALIZAR AS DEPENDÊNCIAS ENTRE AS

INSTRUÇÕES

Código F D E W F D E W
Ld f3,0(r1) 1 2 34 5 15 16 1718 19
add f3,f3,f3 2 34 5-7 8 16 1718 19-21 22
mult f3,f3,f3 34 567 8-12 13
sd f3,0(r1) 567 8-12 1314

Addi r1,r1,8 8-12 13 14 15
Beq r1,r2 13 14

LOOP

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 21

Em seguida, usando a linguagem markdown [13], uma ta-
bela mostra a execução do código considerando 2, 3 e 5 ciclos
para execução do load/store, add, e mult, respectivamente. Para
este rastreio de execução consideramos que o processador não
possui escalonamento dinâmico e os bloqueios são realizados
no estágio de decodificação do pipeline. A tabela I mostra o
rastreio para nosso exemplo.

O próximo passo é mostrar o grafo de dependência do
código. Usamos o graphviz [6] que já está integrado no
Python e Colab. A Figura 3 ilustra o código graphviz e a
Figura 4 mostra a visualização gerada. O grafo de dependência
é um importante passo no ensino do software pipelining e o
escalonamento estático de uma forma geral.

from graphviz import Digraph
codigo = Digraph()
codigo.graph_attr[’rankdir’] = ’LR’
codigo.node(’1’,’Ld F3’)
codigo.node(’2’,’add f3,f3,f3’)
codigo.node(’3’,’mult f3,f3,f3’)
codigo.node(’4’,’sd f3’)
codigo.edge(’1’,’2’,’f3’)
codigo.edge(’2’,’3’,’f3’)
codigo.edge(’3’,’4’,’f3’)
codigo

Figura 3. Descrição Textual do Grafo de dependência em Graphviz/Python.

Figura 4. Grafo de Dependência de dados entre as instruções.

A definição e a técnica de software pipelining são apre-
sentadas na aula teórica. A Figura 5 ilustra a sobreposição
de várias iterações. Neste exemplo, o grafo possui 4 nı́veis,
o que requer a sobreposição de 4 iterações do laço. Esse é
o ponto mais importante no ensino da técnica, onde diversos
aspectos devem ser reforçados. A simulação quantitativa em
Python enfatiza a importância de cada passo nesse processo.

Primeiramente, a técnica de software pipelining sobrepõe as
iterações. Notamos que o novo laço começa com a instrução
de store da primeira iteração (em azul), seguida pela instrução
de multiplicação da segunda iteração (em verde), depois a
instrução de adição da terceira iteração (em roxo) e, final-
mente, o load da quarta iteração (em negrito). Em outras
palavras, o código é escrito de ”trás para frente”, começando
pela última instrução da primeira iteração e terminando com
a primeira instrução da quarta iteração.

Outros pontos importantes que devem ser destacados aqui
são os seguintes: antes do laço do software pipelining, é
necessário executar o código de preâmbulo que, neste exemplo,
inclui 3 instruções da primeira iteração, duas instruções da se-
gunda iteração e uma instrução da terceira iteração (destacadas
com uma linha pontilhada na Figura 5). A simulação permite
adicionar e remover o trecho do preâmbulo e verificar os erros
introduzidos sem o preâmbulo. O mesmo ocorre para o epı́logo

que não está ilustrado no exemplo, mas deve ser adicionado
para gerar a execução corretas das últimas iterações.

Além disso, os registradores precisam ser renomeados,
também destacados em vermelho na Figura 5. Embora nosso
exemplo use apenas o registrador f3, para repassar as
informações entre as iterações, serão necessários mais 2 regis-
tradores. Utilizaremos f4 para repassar o valor do add para o
mult e f5 para repassar o valor do load para o add. O trecho
de código pode ser executado com ou sem a renomeação de
registradores, como forma de demonstrar a sua necessidade.

Finalmente, a Figura 6 apresenta o código do laço com
o software pipelining e também o trecho do preâmbulo. É
importante observar que o load da quarta iteração trabalha
com o elemento i+ 3, pois está 3 iterações à frente no laço.
A impressão da lista mostrará a execução correta.

Outro aspecto é usar a verificação automática com o código
em alto nı́vel comparado com a execução com o software
pipelining ilustrado na Figura 7.

O segundo exemplo já envolve um aspecto de temporização
entre a sobreposição das iterações que pode passar desperce-
bido. Usamos a mesma ideia de um cálculo com vetor onde
v[i] = (v[i]∗v[i]+v[i]). A Figura 8 ilustra o código assembly
inicial, sem aplicar a técnica de software pipelining.

Seguindo o fluxo, o próximo passo é construir o grafo
de dependência, onde fica claro que existem duas arestas
para o registrador f3 que carregam o valor inicial do vetor
gerado pelo comando load. O detalhe é que uma das arestas
atravessa dois nı́veis. Portanto ao sobrepor iterações para fazer
o software pipelining irá gerar resultados inconsistentes se o
grafo não for balanceado. A Figura 9 mostra em destaque com
a cor vermelha que a aresta de f3 que liga o load no add passa
por dois ”laços”. Para resolver o problema, neste exemplo,
além da renomeação de f4, precisamos de um registrador
temporário para f3. Apesar de termos 4 iterações sobrepostas,
5 instruções serão necessárias com a adição de um ”move”para
preservar o valor de f3 de duas iterações anteriores.

A Figura 10 mostra o código final para o software pipeli-
ning do segundo exemplo que já inclui o balanceamento de
registradores. Neste exemplo, usamos o registrador f6 para
propagar o valor de f3 entre duas iterações.

B. Problemas

As tarefas atribuı́das aos estudantes foram três trechos de
código. Para cada código em alto nı́vel, uma versão em
assembly ”python”deve ser gerada. Para depois, construir o
grafo de dependência e posteriormente aplicar a técnica de
software pipelining.

O primeiro problema apresenta um código em alto nı́vel
para ser mapeado em assembly. O código é bem simples
pois envolve apenas uma atribuição de vetor v[i] = ((2 ∗
v[i] + v[i]) ∗ v[i]). Ao fazer o grafo, o primeiro desafio é o
balanceamento dos registradores, para depois implementar a
técnica de software pipelining como ilustrado na Figura 11(a).
Podemos observar que o registrador f3, que também é usado
para receber o load do vetor, tem três arestas repassando o
valor para o próximo nı́vel, o nı́vel seguinte e um terceiro

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 22

Figura 5. Técnica de Software Pipelining com a sobreposição das iterações.

l = [0,1,2,...]
preambulo
f5= l[0] # load 1 it
f4 = f5+f5 # add 1 it
f3= f4*f4 # mul 1 it
f5= l[1] # load 2 it
f4 = f5+f5 # add 2 it
f5= l[2] # load 3 it
for i in range(15): # laco

l[i] = f3 # sd f3
f3 = f4*f4 # mul f3,f4,f4
f4 = f5+f5 # add f4,f5,f5
f5 = l[i+3] # ld f5,"12"(r1)

print(l)

Figura 6. Implementação em Python do laço com software pipelining que
inclui o preâmbulo.

nı́vel após. Serão necessários pelo menos dois registradores,
pois um registrador pode ser reusado.

O segundo problema envolve a manipulação de dois ele-
mentos do vetor por vez, como ilustrado pelo código em alto
nı́vel:

For i=0; i < N; i+=2
v[i] = v[i]+2
v[i+1] = v[i+1]*2 + v[i+1]

As atribuições dos elementos pares e ı́mpares são diferentes
e independentes. O ponto a ser trabalhado aqui é qual será
o número de iterações que serão sobrepostas. Pois para os
elementos pares, apenas uma adição é executada v[i] = v[i]+2.
Já para os elementos ı́mpares, são executadas duas operações,
uma adição e uma multiplicação. Figura 11(b) mostra que o
grafo de dependência é composto por dois subgrafos descone-
xos. Um subgrafo com três nı́veis para os elementos pares e
outro com quatro nı́veis para os elementos ı́mpares. O software
pipelining tem que ser realizado com a sobreposição de 4

l = [0,1,2,...]
copia = l[:]
for i in range(15): # alto nivel
copia[i] = (copia[i]+copia[i])**2

preambulo
f5= l[0]
....
for i in range(15): #laco

l[i] = f3 # sd f3
...

f5 = l[i+3] # ld f5,"12"(r1)

#verificacao
for i in range(15):
if copia[i] != l[i]:

print("Erro na execução !")

Figura 7. Verifica a versão com Software Pipelining com o código em alto
nı́vel.

l = [0,1,2,...]
for i in range(20):

f3 = l[i]
f4 = f3*f3
f4 = f4+f3
l[i] = f4

Figura 8. Segundo Exemplo: Código Assembly sem software pipelining

iterações.
O terceiro problema também trabalha com 2 elementos do

vetor por vez, mas existe uma dependência entre eles. O código
em alto nı́vel é:

For i=0; i < N; i+=2
v[i] = (v[i]+2)*v[i+1]
v[i+1] = v[i+1]*2 + v[i]

A Figura 12 mostra o grafo de dependência de uma
implementação em assembly. Podemos observar que existem

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 23

Figura 9. Técnica de Software Pipelining com a sobreposição das iterações.e balanceamento do registrador f3 para o segundo exemplo de código.

l = [0,1,2,...]
preambulo
f3 = l[0]
f5 = f3*f3
f4 = f5+f3 # 1
f3 = l[1]
f5 = f3*f3
f6 = f3 #2
f3 = l[2] # 3
for i in range(20): # laco

l[i] = f4 # SD
f4 = f5+f6 # add f4,f5,f3
f5 = f3*f3 # mul f5,f3,f3
f6 = f3 # balanceamento
f3 = l[i+3] # ld f3

Figura 10. Segundo Exemplo: Código Assembly com software pipelining e
balanceamento

Figura 11. (a) Grafo de Dependência para problema 1; (b) Grafo de
Dependência para o problema 2.

dois fluxos que estão interligados. A sobreposição deve consi-
derar 5 iterações consecutivas observando a profundidade do
grafo.

Figura 12. Grafo de Dependência para problema 3

C. Ferramenta de Geração do Grafo

Além da resolução dos problemas, os alunos foram incen-
tivados a criar outras ferramentas para auxiliar no ensino de
software pipelining dentro do ambiente Google Colab. Um dos
grupos implementou um parser de um pseudo assembly para
geração do grafo de dependência. A entrada deve respeitar a
seguinte sintaxe:

instructions = (
’ld f1, 0(x1)’,
’addf f1, f1, f2’,
’ld f3, 4(x1)’,
’mul f1, f1, f3’,
’sd f1, 0(x1)’,
’mul f3, f3, f2’,
’addf f3, f3, f1’,
’sd f3, 4(x1)’

)

A entrada é uma definição de um tupla em Python. Cada
elemento da tupla é uma instrução no formato de um string.
O código do parser foi feito em Python. A versão proposta
inclui as instruções de load, store, multiplicação, adição com e
sem imediato e desvios. Mais especificamente os mnemônicos:
ld, sd, adi, beq, bne. Qualquer outro mnemônico que não
esteja incluı́do nesta lista como add, mul, dentre outros,
é considerado um operador binário com um registrador de
destino seguido de dois registradores fonte, como add f1,f2,f3,
por exemplo.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 24

D. Considerações Finais

As soluções dos estudantes estão disponı́veis para con-
sulta no Colab Ìndice (clique aqui) de acesso público. O
desempenho dos estudantes não foi aferido na prova em
relação aos anos anteriores de forma quantitativa, mas de
forma qualitativa, o desempenho foi bem superior e auxiliou
a compreensão de temas correlatos como outras técnicas de
escalonamento. O uso da linguagem Python foi unânime em
uma consulta informal aos estudantes, nenhum deles sugeriu
outra linguagem para solução dos problemas.

O tema software pipelining mesmo sem balanceamento e
códigos mais complexos já é um desafio por si só. Porém
com o auxı́lio da implementação e da verificação, foi possı́vel
avançar e ilustrar vários outros detalhes. Este pontos não são
discutidos nos materiais didáticos disponı́veis para o assunto.

Para o próximo oferecimento da disciplina de arquitetura
de computadores na UFV, além dos 2 exemplos e dos 3 pro-
blemas já resolvidos, serão disponibilizados novos problemas
e os alunos serão estimulados ao desenvolvimento de novas
ferramentas para o ensino de software pipelining. Apesar dos
resultados promissores, alguns alunos ainda tem dificuldades
no entendimento da técnica.

IV. ESCALONAMENTO EM GPU

O conhecimento da microarquitetura auxilia os desenvol-
vedores de GPU na otimização do desempenho de suas
aplicações. Como o tempo de execução de cada núcleo influ-
encia o desempenho global, o programador deve se preocupar
com a eficiência de cada instrução ao escrever código de alto
desempenho.

Para ensino das arquiteturas de GPU, poucos livros [18]
abordam o assunto. O foco é centrado no modelo SIMT (Sin-
gle Instruction, Multiple Threads) é uma arquitetura permite a
execução de múltiplas threads simultaneamente, seguindo uma
única instrução (mesmo código), mas em diferentes conjuntos
de dados. Os conceitos básicos são:

SMX : (Streaming Multiprocessor) é uma unidade mul-
tiprocessada da arquitetura das GPUs da Nvidia.
Também é conhecido como Streaming Processor ou
Multiprocessador. Cada SMX pode executar 1 ou
mais bloco de threads. O SMX é composto por
um número especı́fico de núcleos CUDA (Compute
Unified Device Architecture), ou núcleos são equi-
valentes a unidade lógica aritmética sendo capazes
de executar uma operação simples como uma soma,
multiplicação ou leitura/escrita em memória. O SMX
possui memória compartilhada, que é usada para
armazenar dados intermediários, permitindo uma
comunicação rápida entre os threads de um mesmo
bloco. Além disso, o SMX possui um banco de
registradores que chega a ser 4 vezes maior que a
memória compartilhada e a cache L1.

Warps : O SMX executa instruções em sub-grupos cha-
madas ”Warps”. Um Warp é um grupo de threads
(normalmente 32 threads) que são executadas ao

mesmo tempo em um SMX. Todas as threads em
um Warp executam a mesma instrução, mas podem
operar em diferentes dados. Cada thread tem seu
conjunto de registradores privados.

Thread: representa um fluxo independente de instruções,
que é executado paralelamente em um núcleo de
processamento da GPU;

Bloco : As threads são organizadas em blocos (ou grupos
de threads). Existe um limite máximo para o número
de threads em um bloco. Para GPU da Nvidia, pode-
se ter no máximo 1024 threads por bloco. Os blocos
são a unidade básica para associar as threads aos
multiprocessadores.

Grid : Os blocos são organizados em um grid. Quando é
realizada uma chamada de função ou kernel em uma
GPU, o mesmo código é disparado para executar em
múltiplos blocos com múltiplas threads. A chamada
de kernel <<< n,m >>> irá disparar n blocos
com m threads cada. O valor de n pode ser bem
alto. Nas GPU da Nvidia é possı́vel disparar até 2
bilhões de blocos. Como cada bloco pode ter até
1024 threads, é possı́vel disparar até 2 trilhões de
threads.

O SMX é encarregado de gerenciar a execução das threads
em uma unidade multiprocessada na GPU. Sua organização
facilita o gerenciamento da execução e o compartilhamento
de recursos. As GPUs possuem vários SMXs que trabalham
em conjunto para processar tarefas em escala massivamente
paralela. Por exemplo, a GPU T4, disponı́vel gratuitamente no
Google Colab, possui 40 SMXs, cada um contendo 64 núcleos
CUDA, totalizando 2560 núcleos de processamento.

Ao contrário de um processador, o multiprocessador GPU
opera com a execução e escalonamento de Warp, relacionado
ao modelo SIMT. Se algumas threads em um Warp seguem
caminhos diferentes (por exemplo, devido a um desvio con-
dicional), ocorre a ”divergência de Warp”. Isso faz com que
as threads em caminhos diferentes sejam executadas sequen-
cialmente em vez de simultaneamente, o que pode reduzir o
desempenho.

A latência das instruções em GPUs é pouco documentada.
Alguns estudos recentes [2], [14] realizaram experimentos para
coletar dados em diversas arquiteturas de GPU da Nvidia. Em
média, uma operação de soma ou multiplicação de inteiros
ou ponto flutuante de precisão simples tem uma latência de
4 a 10 ciclos. No entanto, diferentemente dos processadores,
se houver dependência de dados entre duas instruções de
um Warp (já que todas as suas threads executam juntas),
o Warp será interrompido no pipeline. Em um processador,
ele ficaria parado no estágio de decodificação. Uma GPU
é mais parecida com uma arquitetura VLIW [11], onde o
compilador é responsável pelo escalonamento e a instrução
vai para execução somente quando suas dependências foram
resolvidas.

O segredo da GPU é ter vários Warps no multiprocessador.
Se algum deles tem uma dependência de dados, este warp
irá sair do pipeline até que o resultado esteja disponı́vel.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 25

https://colab.research.google.com/drive/1zpyc25cTdNnPoqY07MVJd6Cpcpm7_L9e?usp=sharing

Enquanto isto, um ou mais Warps entram em execução, se
estiverem prontos para executar. Se o código possuir muitas
dependências e o número de Warp em execução for baixo, a
GPU ficará inativa com perda de desempenho. Devido à grande
variação nas latências das instruções e da memória, é difı́cil
prever qual será o tempo de execução para um determinado
código [2].

Outra caracterı́stica pouco conhecida das GPUs é o formato
das instruções. As GPU Turing e Volta utilizam 128 bits
para codificar tanto uma instrução quanto suas informações
de escalonamento associadas. As arquiteturas anteriores das
GPUs da NVIDIA utilizavam uma palavra de 64 bits para
instrução e outra separada para o escalonamento [14].

Codificar o escalonamento nas instruções apareceu pela
primeira vez na arquitetura Kepler, que substituiu substancial-
mente o escalonamento dinâmico de hardware por escalona-
mento estático de software. As decisões de escalonamento de
instruções são tomadas pelo compilador [24]. O escalonamento
por software substituiu um escalonador de hardware complexo
das gerações anteriores a GPU Kepler por um mais simples
e eficiente, reduzindo a área de silı́cio e consumindo menos
energia. As GPUs mais novas melhoraram o escalonador com
campos especı́ficos para controle do hardware. Por exemplo,
existe um campo de ciclos de espera. Este campo tem 4 bits
e indica por quanto tempo o escalonador deve aguardar antes
de emitir a próxima instrução, variando de 0 a 15 ciclos.

A. GPU didática

Devido à alta complexidade e à escassez de informações
disponı́veis sobre a microarquitetura da GPU, somente dis-
pomos de informações superficiais ou indiretas obtidas a
partir de experimentos com microbenchmarks [14]. Portanto,
apresentaremos um modelo de GPU bastante simplificado
com fins didáticos, visando transmitir ao estudante o papel
do compilador e possibilitar a compreensão dos problemas e
desafios enfrentados pelo compilador de GPU.

A GPU proposta tem as seguintes especificações:
• Warps com 4 threads
• Banco de Registradores com 64 registradores
• Máximo de 32 threads por Multiprocessador
• Máximo de 4 blocos por Multiprocessador
• Máximo de 16 threads por bloco
• Instruções: Load e Store com 4 ciclos quando o dado

estiver na cache e 20 ciclos memória, Add e Mul com 3
ciclos

• Ordem de swap dos Warps é aleatória

B. Exemplo de execução

A proposta dos exemplos e problemas é fazer tabelas de
rastreio de execução considerando um escalonamento feito
pelo ”compilador”e a alternância de Warp para esconder a
latência de espera devido a dependência de dados.

Primeiro apresentamos um exemplo bem simples para defi-
nir uma tabela de execução e mostrar a ideia básica da troca de
Warp para garantir a execução com alto desempenho. Suponha
apenas 2 Warps para executar uma simples atribuição a = b+c.

Duas instruções de load irão ler os dados de b e c para
os registradores. Depois a soma é realizada e finalmente o
resultado é armazenado em a usando uma instrução de store.
O código em assembly será:

ld r1; b
ld r2; c
add r1,r1,r2; b+c
sd r1; a = b+c

Como a linguagem markdown não oferece muitos recursos
para edição de tabelas, optamos por usar o formato csv de
planilhas no formato texto com ”;”para ser o delimitador de
colunas, uma vez que a ”,”faz parte da especificação das
instruções. Usando uma célula de código onde é possı́vel
gravar arquivos no disco virtual do Google Colab como
ilustrado na Figura 13.

PC; Inst; Warp; Fetch; Decode; Exec; W
0; Ld r1; w1; 1; 2; 3-6; 7;
1; Ld r2; w1; 2; 3; 4-7; 8;
0; Ld r1; w2; 3; 4; 5-8; 9;
1; Ld r2; w2; 4; 5; 6-9; 10;
x; nop; ; 5
x; nop; ; 6
2; add r1,r1,r2; w1; 7; 8; 9-11; 12
x; nop; ; 8
2; add r1,r1,r2; w1; 9; 10; 11-13; 14
x; nop; ; 10
3; sd r1; 11; 12; 13-17
x; nop; ; 12
3; sd r1; 13; 14; 15-19

Figura 13. Exemplo de trecho em CSV com o rastreio de execução do código
a = b+ c com 2 Warps na GPU didática.

Este exemplo ilustrativo mostra que o mesmo código é
executado por vários Warps. Cada Warp tem seu próprio
apontador de instruções ou ”contador de programa”(PC). A
primeira coluna da tabela de rastreio mostra o PC. O PC
começa com o valor 0 que corresponde a primeira linha do
código. A segunda coluna mostra a instrução que está sendo
executada e a terceira coluna mostra o ID do Warp. A notação
é wi, onde i é o número do Warp. Para melhorar a visualização,
o CSV é lido e usando a biblioteca Pandas, a tabela de
rastreio é exibida com formatação como ilustrado na Figura 14.

A GPU didática tem 4 estágios de pipeline. O primeiro
estágio é de busca ou fetch, seguido do estágio de decode para
decodificação. A instrução não irá parar no estágio de decode,
portanto se a instrução entra no pipeline, ela será executada. A
responsabilidade é do compilador que faz o escalonamento. No
estágio de execução, o tempo depende do tipo de instrução. No
exemplo adotamos 3 ciclos para instruções de aritmética e 4
ciclos para instrução de leitura e escrita em memória, supondo
que o dado está na cache.

Podemos observar que o Warp w1 executa as duas primeiras
instruções para ler os valores de r1 e r2. Como a terceira
instrução é um add que precisa dos valores dos registradores,
o add do Warp w1 só será escalonamento na linha 6. Será

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 26

Figura 14. Tabela de rastreio gerada com Pandas a partir do CSV

buscada no ciclo 7 e no ciclo 8 realiza a decodificação e
leitura dos registradores r1 e r2. Portanto, após executar
as duas primeiras instruções, o Warp w1 é retirado pelo
escalonamento e um outro Warp entra em execução. Como
neste primeiro exemplo temos somente dois Warp, o w2 irá
entrar em execução no ciclo 3 e também só executa as duas
instruções de load.

Com apenas 2 Warps, este exemplo também ilustra que a
GPU ficará ociosa nos ciclos 5 e 6. Nestes ciclos, a GPU
não busca nenhuma instrução, usamos a instrução nop, pois
os warps w1 e w2 estão aguardando os dados da cache e
não podem continuar. Depois observamos novamente que a
instrução add de w1 executa e volta a se retirar para aguardar
o escalonamento da instrução store. Neste momento ocorre a
inserção de mais um nop.

Feita a introdução, os alunos receberam alguns pequenos
desafios de elaborar códigos modificando o número de Warps,
modificando a posição do dado que passa da cache para
memória global aumentando a latência de 4 ciclos para 20
ciclos, além de propor códigos com reuso dos dados. O obje-
tivo é mostrar a importância manter os dados nos registradores,
evitando a latência da memória. Além disso, alternar Warps
e instruções com dependência irão manter a GPU ocupada e
com alta vazão na execução de instruções.

C. Visualização e Exemplos gerados

Além de executar algumas variações de exemplos sim-
ples com poucas instruções, foi requisitado aos estudantes
a elaboração de uma visualização do rastreio de execução
com cores diferentes para cada Warps. Cada grupo explo-
rou recursos diferentes das bibliotecas Python com Pandas,
Matplotlib e outras. A seguir iremos mostrar alguns resulta-
dos gerados pelos estudantes.

Primeiro, uma visualização textual que mostra a evolução no
tempo por colunas. Para o exemplo anterior teremos a seguinte
entrada em CSV :

Warp; 1;2;3;4;5;6;7;8;9;0;1;2;3
w1; ld; ld; ; ; ; ; add; ; ; ; sd

w2; ; ; ld; ld; ; ; ; ; add; ; ; ; sd

que irá resultar na visualização abaixo usando a função
display da biblioteca pandas:

Warp 1 2 3 4 5 6 7 8 9 0
0 w1 ld ld add
1 w2 ld ld add

onde observamos o momento que cada instrução inicia a
sua execução e quais ciclos que a GPU fica ociosa por não ter
Warps ativos em função das dependências de dados.

Figura 15. Tabela de rastreio gerada com tabulate a partir do CSV

Outra opção para melhorar a formatação para exibir a tabela
de rastreio é o uso da biblioteca tabulate que pode formatar
e exibir dados tabulares de forma visualmente agradável. Ela
simplifica o processo de criar tabelas e apresentar dados em
vários formatos, como texto simples, HTML, LaTeX e outros.
O principal objetivo da biblioteca tabulate é converter uma
lista de listas ou outras estruturas de dados em um formato
de tabela com opções personalizáveis para cabeçalhos, ali-
nhamento e outras configurações de formatação. A Figura 15
mostra a solução apresentada por um grupo de estudantes
com o uso de uma tabela onde cada linha tem o rastreio da
execução de um Warp. As colunas mostram a evolução no
tempo. Neste exemplo temos 4 Warps executando o código
inicial da atribuição a = b+ c.

Figura 16. Tabela de rastreio gerada com html a partir do CSV

Outra opção apresentada fez uso da biblioteca pandas, das
funcionalidades da função display do ipython junto com
facilidades para geração de html, uma vez que o Google Colab
pode processá-la. A Figura 16 mostra a solução apresentada
com html onde cada linha tem o rastreio da execução de um
Warp. As colunas mostram a evolução no tempo. Neste exem-
plo temos 3 Warps executando o código inicial da atribuição
a = b+ c.

Outra opção é explorar as funcionalidades do display
do ipython, usando cores. A Figura 17 mostra a solução
apresentada com display onde cada linha tem o rastreio da
execução de um Warp marcando que qual unidade a instrução
se encontra e usando cores diferentes para Warps diferentes.
As colunas mostram a evolução no tempo. Neste exemplo

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 27

Figura 17. Tabela de rastreio gerada com display a partir do CSV

temos 2 Warps executando o código inicial da atribuição
a = b + c mas que tem uma longa latência pois os dados
estão na memória global.

Figura 18. Tabela de rastreio gerada com display e pandas a partir do CSV

Outra opção com pandas e display é ilustrada na Figura 18
com 4 Warps e apenas o momento que a instrução é disparada.

Figura 19. Tabela de rastreio gerada com matplotlib a partir do CSV

Uma opção com matplotlib é ilustrada na Figura 19 que
apresenta a execução do mesmo código da atribuição a = b+c
com 4 Warps concorrentes. Os estudantes optaram por manter
ativos os Warps com instruções em execução no pipeline.
Podemos observar que os Warps 1 e 2 ficam fora do pipeline
por alguns instantes, mas que o pipeline está sempre cheio
com a alternância dos Warps.

V. CONCLUSÃO

Python com Google Colab é uma combinação atrativa
para que os professores possam criar simuladores e mate-
rial didático que pode envolver e engajar os estudantes em
diversas áreas de aprendizado. Primeiro, o Google Colab é
uma plataforma baseada na nuvem, que permite aos alunos e

educadores acessar e trabalhar com o Python em qualquer dis-
positivo com acesso à internet, sem a necessidade de instalar
nada localmente. Isso torna o ambiente de aprendizado mais
acessı́vel e reduz as barreiras para os estudantes começarem a
explorar e experimentar com Python. Ao aliar estas facilidades
com os desafios de arquitetura de computadores, podemos
motivar os estudantes para estudar as técnicas de arquitetura
de computadores como software pipelining e escalonamento de
GPUs, fazendo ao mesmo tempo, ferramentas para validação
do aprendizado.

Além disso, o Google Colab suporta a execução de código
em células, o que possibilita um ambiente interativo onde
os estudantes podem executar código, visualizar resultados
e receber feedback instantâneo sobre seus esforços. Essa
interatividade ajuda os estudantes a aprenderem ao verem o
impacto das alterações em tempo real. Por exemplo, o ensino
de software pipelining tem detalhes como o balanceamento
da propagação de valores de registradores entre iterações não
consecutivas. Com a iteratividade, o estudante pode incluir e
retirar o registrador para visualizar a inserção e remoção do
erro na execução do código.

Python possui uma grande variedade de bibliotecas para
criação de gráficos e visualizações. O Colab permite a
integração perfeita com bibliotecas como Matplotlib, Seaborn
e Plotly, que podem criar gráficos interativos e visualmente
atraentes, além de tabelas. A atividade de escalonamento de
Warps em GPUs, mostrou que cada grupo de estudantes
explorou uma forma diferente de visualização. Isso torna a
exploração de dados e a apresentação de informações muito
mais envolventes para os estudantes. Com o Colab, é fácil
instalar e importar essas bibliotecas, o que oferece a possibili-
dade de explorar áreas como ciência de dados, aprendizado de
máquina, análise de texto, entre outras, ampliando as opções
de criação de material didático e simuladores.

Além disso, o uso de recursos interativos usando Mark-
down e HTML permite que o material educacional seja mais
completo combinando elementos multimı́dia, como imagens,
vı́deos e gráficos. Finalmente, o Colab facilita a colaboração
entre estudantes e educadores, pois permite que múltiplas
pessoas editem o mesmo documento ao mesmo tempo. Além
disso, os notebooks do Colab podem ser facilmente compar-
tilhados com outras pessoas por meio de um link, tornando-o
um ótimo recurso para distribuir materiais educacionais.

O uso de python para ”simular”um assembly RISC foi
bem atrativo para os estudantes e pode ser mais explorado.
A geração de traços de execução com CSV permite também
gerar vários exemplos que podem ser continuados e modi-
ficados para criar novos enunciados de problemas a serem
resolvidos. Além disso, o uso de pandas ou tabulate gera
uma visualização agradável dentro do ambiente do Colab.

VI. AGRADECIMENTOS

FAPEMIG (PIBIC, APQ− 01577− 22), CNPq, NVIDIA,
Funarbe. O presente trabalho foi realizado com apoio da
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior −− Brasil (CAPES)− Código de Financiamento 001.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 28

REFERÊNCIAS

[1] FA Alves, Danilo Almeida, Lucas Bragança, André BM Gomes, Ri-
cardo S Ferreira, and José Augusto M Nacif. Ensinando arquiteturas
vetoriais utilizando um simulador de instruções mips. International
Journal of Computer Architecture Education (IJCAE), 4(1):9–12, 2015.

[2] Yehia Arafa, Abdel-Hameed A Badawy, Gopinath Chennupati, Nan-
dakishore Santhi, and Stephan Eidenbenz. Low overhead instruction
latency characterization for nvidia gpgpus. In 2019 IEEE High Per-
formance Extreme Computing Conference (HPEC), pages 1–8. IEEE,
2019.

[3] Hector Perez Baranda, Jeronimo Costa Penha, and Ricardo Ferreira.
Implementação de um preditor de desvio no mips 5 estágios. Interna-
tional Journal of Computer Architecture Education, 6, 2018.

[4] Ekaba Bisong and Ekaba Bisong. Google colaboratory. Building
machine learning and deep learning models on google cloud platform:
a comprehensive guide for beginners, pages 59–64, 2019.

[5] Michael Canesche, Lucas Bragança, Omar Paranaiba Vilela Neto, Jose A
Nacif, and Ricardo Ferreira. Google colab cad4u: Hands-on cloud
laboratories for digital design. In 2021 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021.

[6] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North,
and Gordon Woodhull. Graphviz—open source graph drawing tools.
In Graph Drawing: 9th International Symposium, GD 2001 Vienna,
Austria, September 23–26, 2001 Revised Papers 9, pages 483–484.
Springer, 2002.

[7] Ricardo Ferreira, Michael Canesche, and Jerônimo Penha. Google
colab para ensino de computação. In Anais Estendidos do III Simpósio
Brasileiro de Educação em Computação, pages 46–47. SBC, 2023.

[8] Ricardo Ferreira, Salles Viana Gomes de Magalhães, and José AM Nacif.
Métricas e números: Desmistificando a programação de alto desempenho
em gpu. Minicursos do WSCAD, Sociedade Brasileira de Computação,
DOI: https://doi.org/10.5753/sbc.46486.1, 2019.

[9] Ricardo Ferreira and Geraldo Fontes. Ensino de organizaçoes de
memória em arquiteturas paralelas usando placas gráficas aceleradoras.
International Journal of Computer Architecture Education (IJCAE), 2,
2013.

[10] Ricardo Ferreira, Jose Nacif, Salles Magalhaes, Thales de Almeida, and
Racyus Pacifico. Be a simulator developer and go beyond in computing
engineering. In 2015 IEEE Frontiers in Education Conference (FIE),
pages 1–8. IEEE, 2015.

[11] Joseph A Fisher, Paolo Faraboschi, and Cliff Young. Embedded com-
puting: a VLIW approach to architecture, compilers and tools. Elsevier,
2005.

[12] Roberto Giorgi and Gianfranco Mariotti. Webrisc-v: A web-based
education-oriented risc-v pipeline simulation environment. In Proce-

edings of the workshop on computer architecture education, pages 1–6,
2019.

[13] John Gruber. Markdown: Syntax. URL http://daringfireball. net/pro-
jects/markdown/syntax. Retrieved on June, 24:640, 2012.

[14] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza.
Dissecting the nvidia turing t4 gpu via microbenchmarking. arXiv
preprint arXiv:1903.07486, 2019.

[15] Dimitris Kehagias and V Douskas-Bertlviser. Android-based simulator
to support tomasulo algorithm teaching and learning. International
Journal of Computer Applications, 975:8887.

[16] Matthias Koenig and Roin Rasch. Digital teaching an embedded systems
course by using simulators. In 2021 ACM/IEEE Workshop on Computer
Architecture Education (WCAE), pages 1–7. IEEE, 2021.

[17] Fernando Passe, Michael Canesche, Omar Paranaiba Vilela Neto, Jose A
Nacif, and Ricardo Ferreira. Mind the gap: Bridging verilog and
computer architecture. In 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2020.

[18] David A Patterson and John L Hennessy. Computer organization and
design: the hardware/software interface (the morgan kaufmann series
in computer architecture and design). Paperback, Morgan Kaufmann
Publishers, 2013.

[19] Cristóbal Ramı́rez, César Alejandro Hernández, Oscar Palomar, Osman
Unsal, Marco Antonio Ramı́rez, and Adrián Cristal. A risc-v simulator
and benchmark suite for designing and evaluating vector architectures.
ACM Transactions on Architecture and Code Optimization (TACO),
17(4):1–30, 2020.

[20] William Stallings. Arquitetura e organização de computadores 8a edição,
2010.

[21] Nathan D. Typanski. Tomasulo: floating-point MIPS-like instruction
pipeline. http://nathantypanski.github.io/tomasulo-simulator/.

[22] Keyhan Vakil. Venus, risc-v simulator. https://venus.kvakil.me/.
[23] Kenneth Vollmar and Pete Sanderson. Mars: an education-oriented

mips assembly language simulator. In Proceedings of the 37th SIGCSE
technical symposium on Computer science education, pages 239–243,
2006.

[24] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,
and Mingyu Chen. Understanding the gpu microarchitecture to achieve
bare-metal performance tuning. In Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
pages 31–43, 2017.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.12, n.2, December 2023 - p. 29

