International Journal of Computer Architecture Education (IJCAE) 2316-9915

Ensino de Software Pipelining e Escalonamento em
GPUs com Python no Google Colab

Ricardo Ferreira , José Augusto M. Nacif
Universidade Federal de Vigosa, Brasil
ricardo@ufv.br

Resumo—O ensino de escalonamento estitico e dinamico de
instrucdes em processadores com pipeline é amplamente docu-
mentado em livros didaticos. No entanto, ha poucas informacoes
disponiveis sobre técnicas mais avancadas de escalonamento,
como o Software Pipelining e topicos mais recentes, como o
escalonamento de Warp em GPUs. Este artigo apresenta uma
experiéncia de ensino que utiliza o0 Google Colab e Python para
gerar exemplos e documentacio sobre o ensino de Software
Pipelining e escalonamento em GPUs. O trabalho foi desenvolvido
em conjunto com os alunos da disciplina de Arquitetura de
Computadores da UFYV, incluindo a resolucio de problemas e
a criacao de ferramentas de visualizacdo como resultados.

Index Terms—Google Colab, Software Pipelining, Escalona-
mento, GPU

I. INTRODUCAO

O desenvolvimento dos processadores com pipeline foi
fundamental na evolucdo das arquiteturas de computadores. A
técnica do pipeline permite a execugdo simultanea de multiplas
instrucdes, otimizando significativamente o desempenho e a
eficiéncia dos processadores. Nesse contexto, o escalonamento
de instrucdes desempenha um papel importante na mitigacao
dos atrasos no pipeline, reduzindo o tempo de espera devido
a dependéncias de dados e controle entre as instrugdes.

O escalonamento de instrugdes pode ser classificado em
duas principais categorias: escalonamento estitico e escalo-
namento dindmico. O primeiro envolve a reorganizacio das
instru¢des em tempo de compila¢do ou pelo programador. Em
geral é aplicado a trechos de lacos que dominam o tempo
de execugdo dos programas. O escalonamento dindmico, nido
requer que o programador ou o compilador tenham conhe-
cimento da arquitetura, pois o préprio pipeline incorpora
recursos em hardware para reordenar as instru¢cdes em tempo
de execugdo e resolver as dependéncias de dados. Ambas as
técnicas sdo amplamente estudadas e documentadas em livros
didéticos [18], [20], formando a base do conhecimento para a
maioria dos cursos de arquitetura de computadores.

No entanto, existe pouca literatura diddtica para o ensino
de técnicas de escalonamento estitico mais avancgadas, como
o software pipelining, e tOpicos emergentes, como O esca-
lonamento de Warp em GPUs (Graphics Processing Units).
O software pipelining é uma técnica que visa explorar ainda
mais o paralelismo a nivel do lago, permitindo a execucdo de
multiplos lagos em paralelo, resultando em maior utilizagdo do
pipeline e ganhos significativos de desempenho. Entretanto,
os alunos tem muita dificuldade em visualizar a execucao
sobreposta das iteracdes diferentes. Nao existem simuladores

didéticos para o ensino de software pipelining. Além disso,
modificar um lago para com escalonamento com software
pipelining € uma tarefa com um certo grau de dificuldade para
a maioria dos estudantes.

Além disso, temas mais recentes como o escalonamento de
Warp em GPUs ndo possuem literatura didatica disponivel.
Apesar de recentes na histéria da computacdo, as GPUs ja
podem ser consideradas uma arquitetura cldssica. O tema
comecou a fazer partes dos livros didéticos [18]. Mais re-
centemente, a demanda foi impulsionada pelo processamento
paralelo em aplicagdes de alto desempenho, como inteligéncia
artificial, processamento de imagens e simulacdes complexas.

A complexidade dessas abordagens e a rdpida evolucdo
das tecnologias de processamento muitas vezes resultam em
uma escassez de recursos educacionais detalhados e acessiveis.
Essa lacuna no ensino pode dificultar o desenvolvimento de
competéncias essenciais em arquitetura de computadores.

Neste contexto, este artigo propde uma abordagem inova-
dora para o ensino de software pipelining e escalonamento
de warp em GPUs. Utilizando a plataforma Google Colab
e a linguagem de programagdo Python para modelar os
codigos em assembly, buscamos oferecer exemplos praticos,
documentacido detalhada e ferramentas de visualizacdo que
tornam esses topicos mais acessiveis e compreensiveis para
estudantes e profissionais interessados em aprofundar seus
conhecimentos em arquitetura de computadores e técnicas
de otimizac¢do. Além disso, o material foi produzido com a
colaboragdo dos estudantes ao realizar trabalhos praticos na
disciplina de arquitetura de computadores da Universidade
Federal de Vigosa, UFV.

Os resultados desta pesquisa tém como objetivo ampliar
a disponibilidade de material educacional sobre esses temas.
Além de incentivar os estudantes a participarem como co-
laboradores, capacitando-os para enfrentar os novos desafios
da computagdo de alto desempenho. Ao compartilhar essa
experiéncia de ensino e oferecer recursos educacionais abertos,
esperamos contribuir para o avango do conhecimento em
arquitetura de computadores e promover a disseminacdo do
aprendizado na drea.

Ao longo das proximas se¢des, apresentaremos em detalhes
a abordagem utilizada para o ensino de software pipelining e
escalonamento de warp em GPUs, discutindo os desafios en-
frentados, os resultados obtidos e as perspectivas para futuras
pesquisas e aprimoramentos nessa rea.

v.12, n.2, December 2023 - p. 20

International Journal of Computer Architecture Education (IJCAE) 2316-9915

II. TRABALHOS RELACIONADOS

Apesar da disponibilidade de muitos simuladores e muitas
ferramentas online em navegadores de internet para ensino
de arquitetura de computadores [10], [16], ndo existem ferra-
mentas que dao suporte para o ensino de software pipelining
e escalonamento de instru¢des em GPUs.

Dentre os trabalhos mais préximos, podemos destacar
técnicas para o ensino de escalonamento dindmico como
o Tomasulo com simuladores na web [2]1] ou versdes em
aplicativos para celulares [15]. Para o ensino de processadores
MIPS ou RISC-V, abordando temas genéricos como o ensino
de assembly e pipeline bédsico ou temas mais especificos como
predicdo de desvio e extensdes vetoriais, podemos destacar:

1) Simulador MARS para Assembly MIPS [
vido em Java para instalacdo local;

2) Projeto de um preditor de Desvio para o processador
MIPS [3], implementado em Java com instala¢do local;

3) Ensino da Extensdo Vetorial do MIPS com o simulador
MARS [1];

4) Ensino de projeto em Verilog do processador MIPS com
pipeline 5 estdgios [17], executa no navegador;

5) Simulador Web Risc-V [12] para ensino de Assembly e
Pipeline 5 estagios, executa no navegador;

6) Simulador Venus para Assembly Risc-V [
no navegador;

7) Extensdes Vetoriais com simulacdo no Gem5 do proces-
sador Risc-V [19], instalagdo local;

Para o ensino de GPU existem poucos trabalhos. O traba-
lho [14] apresenta uma avaliacdo com microbenchmarks de
diversos aspectos das arquiteturas de GPUs como memodrias,
escalonamento, laténcias das instru¢des dentre outros pontos
em detalhes. Sugestdes para o ensino e pesquisa das arqui-
teturas de GPU com foco nos vdrios tipos de memdrias, no
assembly PTX e na laténcias de instru¢des foram propostas

em [2], [8], [9].

], desenvol-

1, executa

III. SOFTWARE PIPELINING

A técnica de software pipelining evita que o cédigo do laco
seja replicado, ao intercalar a execucdo de muiltiplos lagos.
Entretanto, os alunos tém muita dificuldade em visualizar a
sobreposi¢do e entender o motivo para ’inverter o c6digo’.
O material produzido para o ensino do software pipelining
envolveu inicialmente trés problemas e dois exemplos como
base. Toda a tarefa foi executada dentro do Google Colab [4],
[51, [7], que, por ser um notebook computacional, permite a
integracdo de texto, codigo, figuras, entre outros, em um tnico
ambiente. O uso de Python também ¢ outro facilitador impor-
tante para a modelagem da técnica e simula¢do, permitindo o
desenvolvimento de exemplos simples e de facil compreensao
para verificar o escalonamento.

Primeiro, apresentaremos o exemplo de um lago simples,
seguido da sua versdo com lago desenrolado e, em seguida,
a implementacdo com software pipelining na se¢ao III-A.
Depois, apresentamos os trés problemas que foram resolvi-
dos como trabalho em grupo pelos alunos na secdo III-B.

Finalmente, a secdo III-C apresenta um visualizador de grafos
desenvolvido por um grupo de alunos para auxiliar no ensino
de escalonamento.

A. Exemplo de Software Pipelining

O primeiro exemplo € bastante simples e implementa um
laco em assembly RISC para executar a operacdo v, =
(vi + v;)? sobre o vetor v. A Figura 1 apresenta o cédigo
em assembly.

LOOP:
Ld £3,0(rl) # Elemento Vi - Registrador £3
add f3,f3,f3 # wvi + vi
mult £3,£3,£f3 # (vi+vi) "2
sd £3,0(rl) # vi = (vi+vi)“ 2
Addi rl,rl,4 # incrementa o indice i
Beqg rl,r2,LOOP # retorna ao inicio do laco

Figura 1. Cédigo em Assembly RISC para calcular v; = (v; + v;)?2

Em seguida, demonstramos como simular este cédigo em
Python, conforme ilustrado na Figura 2. A memodria é re-
presentada como uma lista ou array para leitura dos dados.
O cddigo é implementado com uma instrucdo por linha.
Para facilitar os testes, alimentamos o vetor ou lista com
valores facilmente verificdveis. Neste exemplo, utilizamos uma
sequéncia de inteiros 0,1,...,7,2 4+ 1,.... Além disso, para
simplificar ainda mais, o controle do lago é implicitamente tra-
tado usando o comando for. Ao final deste primeiro exemplo,
a lista ou vetor de saida é impressa para fins de visualizag@o.

1 =10,1,2,...,29,30]
for i in range (20):
f3 = 1[1i] # load
£f3 = £3+£3 # add
£f3 = £3xf3 # mult
1[(i] = £3 # store
print (1)
Saida esperada
[0, 4, 16, 36, 64, 100,...

Figura 2. Cddigo em Assembly RISC modelado em Python.

Este exemplo serve para ilustrar a sintaxe e ndo apresenta
dificuldades para os alunos compreenderem o mapeamento
entre o assembly e a linguagem Python.

Tabela I
EXECUCAO DO CODIGO PARA VISUALIZAR AS DEPENDENCIAS ENTRE AS
INSTRUGOES
Codigo F D E w F D E W
Ld £3,0(r1) 1 2 34 5 15 16 1718 19
add f3,f3,f3 2 34 5-7 8 16 | 1718 | 19-21 | 22
mult £3,f3,f3 34 567 | 812 | 13
sd £3,0(r1) 567 | 8-12 | 1314
Addi r1,r1,8 | 8-12 13 14 15
Beq rl,r2 13 14
LOOP

v.12, n.2, December 2023 - p. 21

International Journal of Computer Architecture Education (IJCAE) 2316-9915

Em seguida, usando a linguagem markdown [13], uma ta-
bela mostra a execugdo do codigo considerando 2, 3 e S ciclos
para execucgdo do load/store, add, e mult, respectivamente. Para
este rastreio de execug@o consideramos que o processador nao
possui escalonamento dindmico e os bloqueios sdo realizados
no estagio de decodificacdo do pipeline. A tabela I mostra o
rastreio para nosso exemplo.

O préximo passo € mostrar o grafo de dependéncia do
cdédigo. Usamos o graphviz [6] que jd estd integrado no
Python e Colab. A Figura 3 ilustra o cédigo graphviz e a
Figura 4 mostra a visualizag¢do gerada. O grafo de dependéncia
¢ um importante passo no ensino do software pipelining e o
escalonamento estitico de uma forma geral.

from graphviz import Digraph
codigo = Digraph ()
codigo.graph_attr[’ rankdir’] =
codigo.node (1’ ,’Ld F3’)
codigo.node (’2’,"add £3,£3,£3")
codigo.node (3", 'mult £3,£3,£3")
codigo.node ("4’ ,"sd £37)
codigo.edge (17,727, £3")
(
("3’

'R’

codigo.edge(’2’,"3","£3")
codigo.edge ("37,747,7£3")
codigo

Figura 3. Descricdo Textual do Grafo de dependéncia em Graphviz/Python.

D T T D
Figura 4. Grafo de Dependéncia de dados entre as instrugdes.

A definicdo e a técnica de software pipelining sdo apre-
sentadas na aula teérica. A Figura 5 ilustra a sobreposi¢do
de varias iteragdes. Neste exemplo, o grafo possui 4 niveis,
0 que requer a sobreposi¢do de 4 iteragdes do laco. Esse é
0 ponto mais importante no ensino da técnica, onde diversos
aspectos devem ser reforcados. A simulacdo quantitativa em
Python enfatiza a importancia de cada passo nesse processo.

Primeiramente, a técnica de software pipelining sobrepde as
iteracdes. Notamos que o novo laco comega com a instrucao
de store da primeira iteragdo (em azul), seguida pela instrucio
de multiplicacdo da segunda iteracdo (em verde), depois a
instru¢do de adi¢do da terceira iteragdo (em roxo) e, final-
mente, o load da quarta iteracdo (em negrito). Em outras
palavras, o codigo € escrito de “trds para frente”, comecando
pela dltima instrugdo da primeira iteragcdo e terminando com
a primeira instru¢do da quarta iteragao.

Outros pontos importantes que devem ser destacados aqui
sdo os seguintes: antes do laco do software pipelining, €
necessario executar o cdigo de preambulo que, neste exemplo,
inclui 3 instrugdes da primeira iteragdo, duas instru¢des da se-
gunda iteracdo e uma instrugdo da terceira iteragdo (destacadas
com uma linha pontilhada na Figura 5). A simulagdo permite
adicionar e remover o trecho do preambulo e verificar os erros
introduzidos sem o predmbulo. O mesmo ocorre para o epilogo

que ndo estd ilustrado no exemplo, mas deve ser adicionado
para gerar a execugdo corretas das ultimas iteragdes.

Além disso, os registradores precisam ser renomeados,
também destacados em vermelho na Figura 5. Embora nosso
exemplo use apenas o registrador f3, para repassar as
informagdes entre as iteracdes, serdo necessarios mais 2 regis-
tradores. Utilizaremos f4 para repassar o valor do add para o
mult e f5 para repassar o valor do load para o add. O trecho
de cddigo pode ser executado com ou sem a renomeagdo de
registradores, como forma de demonstrar a sua necessidade.

Finalmente, a Figura 6 apresenta o cédigo do laco com
o software pipelining e também o trecho do preAmbulo. E
importante observar que o load da quarta iteracdo trabalha
com o elemento ¢ 4 3, pois estd 3 iteragdes a frente no lago.
A impressdo da lista mostrard a execug@o correta.

Outro aspecto € usar a verificagdo automdtica com o c6digo
em alto nivel comparado com a execu¢do com o software
pipelining ilustrado na Figura 7.

O segundo exemplo ja envolve um aspecto de temporizacio
entre a sobreposi¢do das iteracdes que pode passar desperce-
bido. Usamos a mesma ideia de um célculo com vetor onde
v[i] = (v[i] xv[i] +v[i]). A Figura 8 ilustra o c6digo assembly
inicial, sem aplicar a técnica de software pipelining.

Seguindo o fluxo, o préximo passo é construir o grafo
de dependéncia, onde fica claro que existem duas arestas
para o registrador f3 que carregam o valor inicial do vetor
gerado pelo comando load. O detalhe é que uma das arestas
atravessa dois niveis. Portanto ao sobrepor iteracdes para fazer
o software pipelining ird gerar resultados inconsistentes se o
grafo nao for balanceado. A Figura 9 mostra em destaque com
a cor vermelha que a aresta de f3 que liga o load no add passa
por dois lacos”. Para resolver o problema, neste exemplo,
além da renomeacdo de f4, precisamos de um registrador
tempordrio para f3. Apesar de termos 4 iteragdes sobrepostas,
5 instrugdes serdo necessdrias com a adi¢cdo de um “move”para
preservar o valor de f3 de duas iteragGes anteriores.

A Figura 10 mostra o cédigo final para o software pipeli-
ning do segundo exemplo que ja inclui o balanceamento de
registradores. Neste exemplo, usamos o registrador f6 para
propagar o valor de f3 entre duas iteracdes.

B. Problemas

As tarefas atribuidas aos estudantes foram trés trechos de
cddigo. Para cada cdédigo em alto nivel, uma versdo em
assembly “python”deve ser gerada. Para depois, construir o
grafo de dependéncia e posteriormente aplicar a técnica de
software pipelining.

O primeiro problema apresenta um c6digo em alto nivel
para ser mapeado em assembly. O cddigo é bem simples
pois envolve apenas uma atribui¢do de vetor v[i] = ((2 *
v[i] + v[i]) % v[i]). Ao fazer o grafo, o primeiro desafio é o
balanceamento dos registradores, para depois implementar a
técnica de software pipelining como ilustrado na Figura 11(a).
Podemos observar que o registrador f3, que também ¢ usado
para receber o load do vetor, tem trés arestas repassando o
valor para o préoximo nivel, o nivel seguinte e um terceiro

v.12, n.2, December 2023 - p. 22

International Journal of Computer Architecture Education (IJCAE) 2316-9915

S

: 3 H:e_m.;a mult £3,3,13 f‘@
B ‘Ereombdc i
3 13 3
4 tteragko @ ! add 363,63 mult £3,£3,3 —@
i
]
renomear os registros / | h /
Figura 5. Técnica de Software Pipelining com a sobreposi¢do das iteragdes.
1 =10,1,2,...] 1 =10,1,2,...]
preambulo copia = 1[:]
£f5= 1[0] # load 1 it for i in range(15): # alto nivel
f4 = f£5+f5 # add 1 it copial[i] = (copial[i]+copiali])**x2
f3= f4+«f4 # mul 1 it # preambulo
£5= 1[1] # load 2 it £f5= 1[0]
f4 = £5+£f5 # add 2 it
f5= 1[2] # load 3 it for i in range(15): #laco
for i in range(l5): # laco 1[i] = £3 # sd £3
1[i] = £3 # sd f3
f3 = f4+xf4 # mul £3,f4,f4 £f5 = 1[i+3] # 1d £5,"12"(rl)
f4 = f5+f5 # add f4,f5,f5
f5 = 1[1+3] # 1d £5,"12" (rl) #verificacao
for i in range(15):
print (1) if copiafli] != 1[i]:
print ("Erro na execugao !")
Figura 6. Implementacdo em Python do lagco com software pipelining que

inclui o predmbulo.

nivel apds. Serdo necessdrios pelo menos dois registradores,
pois um registrador pode ser reusado.

O segundo problema envolve a manipulacdo de dois ele-
mentos do vetor por vez, como ilustrado pelo cédigo em alto
nivel:

For 1=0; 1 < N; 1i+=2
v[ii] = v[1]+2
v[i+l] = v[i+1l]*2 + v[i+1]

As atribui¢des dos elementos pares e impares sdo diferentes
e independentes. O ponto a ser trabalhado aqui é qual serad
o numero de iteracdes que serdo sobrepostas. Pois para os
elementos pares, apenas uma adigio é executada v[i] = v[i]+2.
Ja para os elementos impares, sdo executadas duas operagoes,
uma adi¢do e uma multiplicacdo. Figura 11(b) mostra que o
grafo de dependéncia é composto por dois subgrafos descone-
xo0s. Um subgrafo com trés niveis para os elementos pares e
outro com quatro niveis para os elementos impares. O software
pipelining tem que ser realizado com a sobreposi¢cdo de 4

Figura 7. Verifica a versdao com Software Pipelining com o cédigo em alto
nivel.

1 =10,1,2,...]
for 1 in range (20):
£f3 = 1[1]
f4 = £3%£f3
f4 = £f4+£3
1[i] = f4

Figura 8. Segundo Exemplo: Cédigo Assembly sem software pipelining

iteracoes.

O terceiro problema também trabalha com 2 elementos do
vetor por vez, mas existe uma dependéncia entre eles. O cédigo
em alto nivel é:

For i=0; i < N; i+=2
v[i] = (v[1i]+2)*v[i+1]
v[i+l] = v[i+1]*2 + vI[i]

A Figura 12 mostra o grafo de dependéncia de uma
implementagdo em assembly. Podemos observar que existem

v.12, n.2, December 2023 - p. 23

International Journal of Computer Architecture Education (IJCAE) 2316-9915

JE] L
D=l X mnur)
— - —

mul f4,f3,13
3 4
Ld wﬁ_@ ?aﬂd Ty Ml @
_ — _

mul f4,£3,13

3 4
LdF3 N s D i)
- — i ‘")

Adicionar um novo registrador A
paro. corrigic o Lemporizagdo -

mul f4,f3,f3

3 1 14
@ | n ?’m fain o ara)
— — -

mul £4,£3,f3
£3 4
Ldl—D:_;_ Q s e)
_ — _

Figura 9. Técnica de Software Pipelining com a sobreposi¢do das iteragdes.e balanceamento do registrador f3 para o segundo exemplo de cédigo.

1 =10,1,2,...]

preambulo

f3 = 1[0]

£f5 = £3%x£3

f4 = f£5+£f3 # 1

£f3 = 1[1]

f5 = £3%£3

f6 = f£3 #2

£f3 = 1[2] # 3

for i in range(20): # laco
1[1] = £4 # SD
f4 = £5+f6 # add f4,f5,f3
£f5 = £3x£f3 # mul £5,£3,£3
f6 = £f3 # balanceamento
f3 = 1[1+3] # 1d £3

Figura 10. Segundo Exemplo: Cédigo Assembly com software pipelining e
balanceamento

(b)

Figura 11. (a) Grafo de Dependéncia para problema 1; (b) Grafo de
Dependéncia para o problema 2.

dois fluxos que estdo interligados. A sobreposi¢do deve consi-
derar 5 iteracdes consecutivas observando a profundidade do
grafo.

Figura 12. Grafo de Dependéncia para problema 3

C. Ferramenta de Geracdo do Grafo

Além da resolu¢do dos problemas, os alunos foram incen-
tivados a criar outras ferramentas para auxiliar no ensino de
software pipelining dentro do ambiente Google Colab. Um dos
grupos implementou um parser de um pseudo assembly para
geracdo do grafo de dependéncia. A entrada deve respeitar a
seguinte sintaxe:

instructions = (

r1d f1, 0(x1)’,
"addf f1, f1, f2',
r1d £3, 4(x1)’,
'mul £1, £1, £37,
rsd f£f1, 0(x1)’,
'mul £3, £3, f27,
"addf £3, f£3, f1’,
"sd £3, 4(x1)’

A entrada ¢ uma definicdo de um tupla em Python. Cada
elemento da tupla € uma instru¢do no formato de um string.
O cdédigo do parser foi feito em Python. A versdo proposta
inclui as instrucdes de load, store, multiplicagdo, adicdo com e
sem imediato e desvios. Mais especificamente os mnemdnicos:
1d, sd, adi, beq, bne. Qualquer outro mnemonico que nao
esteja incluido nesta lista como add, mul, dentre outros,
¢ considerado um operador bindrio com um registrador de
destino seguido de dois registradores fonte, como add f1,f2,f3,
por exemplo.

v.12, n.2, December 2023 - p. 24

International Journal of Computer Architecture Education (IJCAE) 2316-9915

D. Consideracoes Finais

As solugdes dos estudantes estdo disponiveis para con-
sulta no Colab Indice (clique aqui) de acesso publico. O
desempenho dos estudantes ndo foi aferido na prova em
relagdo aos anos anteriores de forma quantitativa, mas de
forma qualitativa, o desempenho foi bem superior e auxiliou
a compreensdo de temas correlatos como outras técnicas de
escalonamento. O uso da linguagem Python foi uninime em
uma consulta informal aos estudantes, nenhum deles sugeriu
outra linguagem para solu¢do dos problemas.

O tema software pipelining mesmo sem balanceamento e
c6digos mais complexos ja € um desafio por si s6. Porém
com o auxilio da implementacdo e da verificagdo, foi possivel
avancgar e ilustrar varios outros detalhes. Este pontos nao sio
discutidos nos materiais didaticos disponiveis para o assunto.

Para o préximo oferecimento da disciplina de arquitetura
de computadores na UFV, além dos 2 exemplos e dos 3 pro-
blemas ja resolvidos, serdo disponibilizados novos problemas
e os alunos serdo estimulados ao desenvolvimento de novas
ferramentas para o ensino de software pipelining. Apesar dos
resultados promissores, alguns alunos ainda tem dificuldades
no entendimento da técnica.

IV. ESCALONAMENTO EM GPU

O conhecimento da microarquitetura auxilia os desenvol-
vedores de GPU na otimizacdo do desempenho de suas
aplicagdes. Como o tempo de execucgdo de cada niucleo influ-
encia o desempenho global, o programador deve se preocupar
com a eficiéncia de cada instrucdo ao escrever cédigo de alto
desempenho.

Para ensino das arquiteturas de GPU, poucos livros [18]
abordam o assunto. O foco é centrado no modelo SIMT (Sin-
gle Instruction, Multiple Threads) ¢ uma arquitetura permite a
execucdo de mdltiplas threads simultaneamente, seguindo uma
Unica instrucdo (mesmo c6digo), mas em diferentes conjuntos
de dados. Os conceitos bésicos sdo:

SMX : (Streaming Multiprocessor) é uma unidade mul-
tiprocessada da arquitetura das GPUs da Nvidia.
Também € conhecido como Streaming Processor ou
Multiprocessador. Cada SMX pode executar 1 ou
mais bloco de threads. O SMX ¢é composto por
um ndmero especifico de nicleos CUDA (Compute
Unified Device Architecture), ou nicleos sdo equi-
valentes a unidade légica aritmética sendo capazes
de executar uma operagdo simples como uma soma,
multiplicacdo ou leitura/escrita em memoria. O SMX
possui memoria compartilhada, que é usada para
armazenar dados intermedidrios, permitindo uma
comunicagdo ripida entre os threads de um mesmo
bloco. Além disso, o SMX possui um banco de
registradores que chega a ser 4 vezes maior que a
memoria compartilhada e a cache L1.

Warps : O SMX executa instru¢cdes em sub-grupos cha-
madas “Warps”. Um Warp é um grupo de threads
(normalmente 32 threads) que sdo executadas ao

mesmo tempo em um SMX. Todas as threads em
um Warp executam a mesma instru¢do, mas podem
operar em diferentes dados. Cada thread tem seu
conjunto de registradores privados.

Thread: representa um fluxo independente de instrugdes,
que é executado paralelamente em um nucleo de
processamento da GPU;

Bloco : As threads sdo organizadas em blocos (ou grupos
de threads). Existe um limite mdximo para o nimero
de threads em um bloco. Para GPU da Nvidia, pode-
se ter no maximo 1024 threads por bloco. Os blocos
s30 a unidade bésica para associar as threads aos
multiprocessadores.

: Os blocos sdo organizados em um grid. Quando é

realizada uma chamada de fung¢io ou kernel em uma

GPU, o mesmo cédigo é disparado para executar em

multiplos blocos com miuiltiplas threads. A chamada

de kernel <<< n,m >>> ird disparar n blocos
com m threads cada. O valor de n pode ser bem

alto. Nas GPU da Nvidia € possivel disparar até 2

bilhdes de blocos. Como cada bloco pode ter até

1024 threads, é possivel disparar até 2 trilhdes de

threads.

O SMX ¢ encarregado de gerenciar a execugdo das threads
em uma unidade multiprocessada na GPU. Sua organizacio
facilita o gerenciamento da execu¢do e o compartilhamento
de recursos. As GPUs possuem varios SMXs que trabalham
em conjunto para processar tarefas em escala massivamente
paralela. Por exemplo, a GPU T4, disponivel gratuitamente no
Google Colab, possui 40 SMXs, cada um contendo 64 nicleos
CUDA, totalizando 2560 ntcleos de processamento.

Ao contrdrio de um processador, o multiprocessador GPU
opera com a execugdo e escalonamento de Warp, relacionado
ao modelo SIMT. Se algumas threads em um Warp seguem
caminhos diferentes (por exemplo, devido a um desvio con-
dicional), ocorre a “divergéncia de Warp”. Isso faz com que
as threads em caminhos diferentes sejam executadas sequen-
cialmente em vez de simultaneamente, o que pode reduzir o
desempenho.

A laténcia das instru¢des em GPUs € pouco documentada.
Alguns estudos recentes [2], [14] realizaram experimentos para
coletar dados em diversas arquiteturas de GPU da Nvidia. Em
média, uma operacdo de soma ou multiplicacdo de inteiros
ou ponto flutuante de precisdo simples tem uma laténcia de
4 a 10 ciclos. No entanto, diferentemente dos processadores,
se houver dependéncia de dados entre duas instru¢des de
um Warp (j4 que todas as suas threads executam juntas),
o Warp serd interrompido no pipeline. Em um processador,
ele ficaria parado no estagio de decodificagio. Uma GPU
¢ mais parecida com uma arquitetura VLIW [11], onde o
compilador é responsdvel pelo escalonamento e a instrucio
vai para execucdo somente quando suas dependéncias foram
resolvidas.

O segredo da GPU ¢ ter varios Warps no multiprocessador.
Se algum deles tem uma dependéncia de dados, este warp
ird sair do pipeline até que o resultado esteja disponivel.

Grid

v.12, n.2, December 2023 - p. 25

https://colab.research.google.com/drive/1zpyc25cTdNnPoqY07MVJd6Cpcpm7_L9e?usp=sharing

International Journal of Computer Architecture Education (IJCAE) 2316-9915

Enquanto isto, um ou mais Warps entram em execucdo, se
estiverem prontos para executar. Se o cddigo possuir muitas
dependéncias e o nimero de Warp em execucdo for baixo, a
GPU ficard inativa com perda de desempenho. Devido a grande
varia¢do nas laténcias das instrugdes e da memoria, € dificil
prever qual serd o tempo de execucdo para um determinado
codigo [2].

Outra caracteristica pouco conhecida das GPUs é o formato
das instrugdes. As GPU Turing e Volta utilizam 128 bits
para codificar tanto uma instrucdo quanto suas informacdes
de escalonamento associadas. As arquiteturas anteriores das
GPUs da NVIDIA utilizavam uma palavra de 64 bits para
instrucdio e outra separada para o escalonamento [14].

Codificar o escalonamento nas instru¢cdes apareceu pela
primeira vez na arquitetura Kepler, que substituiu substancial-
mente o escalonamento dindmico de hardware por escalona-
mento estdtico de software. As decisdes de escalonamento de
instrucdes sdo tomadas pelo compilador [24]. O escalonamento
por software substituiu um escalonador de hardware complexo
das geracdes anteriores a GPU Kepler por um mais simples
e eficiente, reduzindo a area de silicio € consumindo menos
energia. As GPUs mais novas melhoraram o escalonador com
campos especificos para controle do hardware. Por exemplo,
existe um campo de ciclos de espera. Este campo tem 4 bits
e indica por quanto tempo o escalonador deve aguardar antes
de emitir a préxima instrucdo, variando de 0 a 15 ciclos.

A. GPU diddtica

Devido a alta complexidade e a escassez de informacdes
disponiveis sobre a microarquitetura da GPU, somente dis-
pomos de informacdes superficiais ou indiretas obtidas a
partir de experimentos com microbenchmarks [!4]. Portanto,
apresentaremos um modelo de GPU bastante simplificado
com fins didéticos, visando transmitir ao estudante o papel
do compilador e possibilitar a compreensdo dos problemas e
desafios enfrentados pelo compilador de GPU.

A GPU proposta tem as seguintes especificacdes:

o Warps com 4 threads

« Banco de Registradores com 64 registradores

e Miximo de 32 threads por Multiprocessador

e Miximo de 4 blocos por Multiprocessador

e Miximo de 16 threads por bloco

o Instrucdes: Load e Store com 4 ciclos quando o dado
estiver na cache e 20 ciclos memoéria, Add e Mul com 3
ciclos

e Ordem de swap dos Warps é aleatdria

B. Exemplo de execucdo

A proposta dos exemplos e problemas € fazer tabelas de
rastreio de execu¢do considerando um escalonamento feito
pelo “compilador’e a alternidncia de Warp para esconder a
laténcia de espera devido a dependéncia de dados.

Primeiro apresentamos um exemplo bem simples para defi-
nir uma tabela de execucdo e mostrar a ideia bdsica da troca de
Warp para garantir a execucio com alto desempenho. Suponha
apenas 2 Warps para executar uma simples atribui¢ao a = b+-c.

Duas instrucdes de load irdo ler os dados de b e c para
os registradores. Depois a soma é realizada e finalmente o
resultado € armazenado em a usando uma instrucdo de store.
O cédigo em assembly sera:

1d rl; b

1d r2; c

add rl,rl,r2; b+c
sd rl; a = b+c

Como a linguagem markdown nio oferece muitos recursos
para edicdo de tabelas, optamos por usar o formato csv de
planilhas no formato texto com ;’para ser o delimitador de
colunas, uma vez que a ”,’faz parte da especificacio das
instru¢des. Usando uma célula de codigo onde é possivel
gravar arquivos no disco virtual do Google Colab como

ilustrado na Figura 13.

PC; Inst; Warp; Fetch; Decode; Exec; W
0; Ld rl; wl; 1; 2; 3-6; 7;

1; Ld r2; wl; 2; 3; 4-7; 8;

0; Ld rl; w2; 3; 4; 5-8; 9;

1; Ld r2; w2; 4; 5; 6-9; 10;

X; nop; ; 5

X; nop; ; 6

2; add rl,rl,r2; wl; 7; 8; 9-11; 12
X; nop; ; 8

2; add rl,rl,r2; wl; 9; 10; 11-13; 14
x; nop; ; 10

3; sd rl; 11; 12; 13-17

x; nop; ; 12

3; sd rl; 13; 14; 15-19

Figura 13. Exemplo de trecho em CSV com o rastreio de execucdo do cédigo
a = b+ c com 2 Warps na GPU diddtica.

Este exemplo ilustrativo mostra que o mesmo cédigo é
executado por vdrios Warps. Cada Warp tem seu préprio
apontador de instrugdes ou “contador de programa’(PC). A
primeira coluna da tabela de rastreio mostra o PC. O PC
comega com o valor O que corresponde a primeira linha do
c6digo. A segunda coluna mostra a instrugio que estd sendo
executada e a terceira coluna mostra o ID do Warp. A notacao
é w;, onde 7 € o nimero do Warp. Para melhorar a visualizacio,
o CSV ¢é lido e usando a biblioteca Pandas, a tabela de
rastreio é exibida com formatacdo como ilustrado na Figura 14.

A GPU didética tem 4 estdgios de pipeline. O primeiro
estdgio é de busca ou fetch, seguido do estagio de decode para
decodificac@o. A instrugdo ndo ird parar no estigio de decode,
portanto se a instrucdo entra no pipeline, ela serd executada. A
responsabilidade é do compilador que faz o escalonamento. No
estagio de execugdo, o tempo depende do tipo de instrugdo. No
exemplo adotamos 3 ciclos para instrugdes de aritmética e 4
ciclos para instrucdo de leitura e escrita em memoria, supondo
que o dado estd na cache.

Podemos observar que o Warp w; executa as duas primeiras
instrucdes para ler os valores de r; e ro. Como a terceira
instru¢do é um add que precisa dos valores dos registradores,
0 add do Warp w; sé serd escalonamento na linha 6. Sera

v.12, n.2, December 2023 - p. 26

International Journal of Computer Architecture Education (IJCAE) 2316-9915

PC Inst Warp Fetch Decode Exec W
0 0 Ldrl wl 1 2 36 7.0
1 1 Ldr2 wl 2 3 4-7 8.0
2 0 Ldrl w2 3 4 58 9.0
3 1 Ldr2 w2 4 5 6-9 10.0
4 X nop 5
5 X nop 6
6 2 addrlrlr2 wl 7 8 911 120
7 X nop 8
8 2 addrlrlr2 wl 9 10 11-13 140
9 X nop 10
10 3 sdrl n 12 13-17
I x nop 12
12 3 sdrl 13 14 15-19

Figura 14. Tabela de rastreio gerada com Pandas a partir do CSV

buscada no ciclo 7 e no ciclo 8 realiza a decodificacdo e
leitura dos registradores 71 e 75. Portanto, apds executar
as duas primeiras instrugdes, o Warp w; € retirado pelo
escalonamento e um outro Warp entra em execuc¢do. Como
neste primeiro exemplo temos somente dois Warp, o ws ird
entrar em execu¢do no ciclo 3 e também sé executa as duas
instrucdes de load.

Com apenas 2 Warps, este exemplo também ilustra que a
GPU ficard ociosa nos ciclos 5 e 6. Nestes ciclos, a GPU
ndo busca nenhuma instru¢cdo, usamos a instru¢do nop, pois
os warps wi € ws estdo aguardando os dados da cache e
nao podem continuar. Depois observamos novamente que a
instrucdo add de w; executa e volta a se retirar para aguardar
o escalonamento da instrug@o store. Neste momento ocorre a
inser¢do de mais um nop.

Feita a introdugdo, os alunos receberam alguns pequenos
desafios de elaborar c6digos modificando o nimero de Warps,
modificando a posi¢cdo do dado que passa da cache para
memoria global aumentando a laténcia de 4 ciclos para 20
ciclos, além de propor c6digos com reuso dos dados. O obje-
tivo é mostrar a importancia manter os dados nos registradores,
evitando a lat€ncia da meméria. Além disso, alternar Warps
e instrucdes com dependéncia irdo manter a GPU ocupada e
com alta vazdo na execugdo de instrucdes.

C. Visualizagdo e Exemplos gerados

Além de executar algumas variacdes de exemplos sim-
ples com poucas instrugdes, foi requisitado aos estudantes
a elaboracdo de uma visualizacdo do rastreio de execugdo
com cores diferentes para cada Warps. Cada grupo explo-
rou recursos diferentes das bibliotecas Python com Pandas,
Matplotlib e outras. A seguir iremos mostrar alguns resulta-
dos gerados pelos estudantes.

Primeiro, uma visualizagdo textual que mostra a evolucdo no
tempo por colunas. Para o exemplo anterior teremos a seguinte
entrada em C'SV:

Warp; 1;2;3;4;5;6;7;8;9;0;1;2;3
wl; 1d; 1d; ;7 ; ; ; add; ; ; ; sd

w2; ; ; 1d; 1d4; ; ; ; ; add; ; ; ; sd

que ird resultar na visualizacdo abaixo usando a funcdo
display da biblioteca pandas:

Warp 1 2 3 4 5 6 7 8 9 0
0 wl 1d 1d add
1 w2 1d 1d add

onde observamos o momento que cada instrucdo inicia a
sua execugdo e quais ciclos que a GPU fica ociosa por ndo ter
Warps ativos em fun¢do das dependéncias de dados.

3

¥

Warp 1 4 5 8 9

wl Ld

=
o

add

w2

Ld

wa

l‘
i
Ld {m
i
|

|
|
|
|
|

Figura 15. Tabela de rastreio gerada com tabulate a partir do CSV

Outra opgﬁo para melhorar a formatacao para exibir a tabela
de rastreio € o uso da biblioteca tabulate que pode formatar
e exibir dados tabulares de forma visualmente agradadvel. Ela
simplifica o processo de criar tabelas e apresentar dados em
varios formatos, como texto simples, HTML, LaTeX e outros.
O principal objetivo da biblioteca tabulate é converter uma
lista de listas ou outras estruturas de dados em um formato
de tabela com opcdes personalizaveis para cabecalhos, ali-
nhamento e outras configuragdes de formatacdo. A Figura 15
mostra a solu¢do apresentada por um grupo de estudantes
com o uso de uma tabela onde cada linha tem o rastreio da
execucdo de um Warp. As colunas mostram a evolu¢do no
tempo. Neste exemplo temos 4 Warps executando o codigo
inicial da atribui¢do a = b + c.

0 1 2 3 4 5 6 7 8 9 10
Owarp 1 2 3 4 5 6 7 8

1--------———
2 N Y NN AN

Ld r1 Ld r2 nop add rl rir2

Figura 16. Tabela de rastreio gerada com html a partir do CSV

Outra opcao apresentada fez uso da biblioteca pandas, das
funcionalidades da funcdo display do ipython junto com
facilidades para geragdo de html, uma vez que o Google Colab
pode processd-la. A Figura 16 mostra a solu¢io apresentada
com html onde cada linha tem o rastreio da execu¢do de um
Warp. As colunas mostram a evolug@o no tempo. Neste exem-
plo temos 3 Warps executando o cddigo inicial da atribuigcdo
a=b+c.

Outra opgdo € explorar as funcionalidades do display
do ¢python, usando cores. A Figura 17 mostra a solucio
apresentada com display onde cada linha tem o rastreio da
execuc¢do de um Warp marcando que qual unidade a instrucio
se encontra e usando cores diferentes para Warps diferentes.
As colunas mostram a evolu¢do no tempo. Neste exemplo

v.12, n.2, December 2023 - p. 27

International Journal of Computer Architecture Education (IJCAE) 2316-9915

Warp Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figura 17. Tabela de rastreio gerada com display a partir do CSV

temos 2 Warps executando o cdédigo inicial da atribuicdo
a = b+ c mas que tem uma longa lat€ncia pois os dados
estdo na memoria global.

Codigo:
Warp 1 2 3 4 5 6 7 8 9

parte_ 1
13 14

Legenda:

- wl: darkslategrey

- w2: indigo
- wW3: green
- wd: red

Figura 18. Tabela de rastreio gerada com display e pandas a partir do CSV

Outra op¢do com pandas e display € ilustrada na Figura 18
com 4 Warps e apenas o momento que a instrugdo ¢ disparada.

wl

Tempo

Figura 19. Tabela de rastreio gerada com matplotlib a partir do CSV

Uma opgao com matplotlib é ilustrada na Figura 19 que
apresenta a execugdo do mesmo cédigo da atribui¢do a = b+-c
com 4 Warps concorrentes. Os estudantes optaram por manter
ativos os Warps com instru¢des em execucdo no pipeline.
Podemos observar que os Warps 1 e 2 ficam fora do pipeline
por alguns instantes, mas que o pipeline estd sempre cheio
com a alternancia dos Warps.

V. CONCLUSAO

Python com Google Colab é uma combinacdo atrativa
para que os professores possam criar simuladores e mate-
rial didatico que pode envolver e engajar os estudantes em
diversas areas de aprendizado. Primeiro, o Google Colab é
uma plataforma baseada na nuvem, que permite aos alunos e

educadores acessar e trabalhar com o Python em qualquer dis-
positivo com acesso a internet, sem a necessidade de instalar
nada localmente. Isso torna o ambiente de aprendizado mais
acessivel e reduz as barreiras para os estudantes comecarem a
explorar e experimentar com Python. Ao aliar estas facilidades
com os desafios de arquitetura de computadores, podemos
motivar os estudantes para estudar as técnicas de arquitetura
de computadores como software pipelining e escalonamento de
GPUs, fazendo ao mesmo tempo, ferramentas para validacio
do aprendizado.

Além disso, o Google Colab suporta a execuc¢do de codigo
em células, o que possibilita um ambiente interativo onde
os estudantes podem executar cddigo, visualizar resultados
e receber feedback instantaneo sobre seus esforcos. Essa
interatividade ajuda os estudantes a aprenderem ao verem o
impacto das alteracdes em tempo real. Por exemplo, o ensino
de software pipelining tem detalhes como o balanceamento
da propagacdo de valores de registradores entre iteragdes nao
consecutivas. Com a iteratividade, o estudante pode incluir e
retirar o registrador para visualizar a insercdo e remocdo do
erro na execucdo do cédigo.

Python possui uma grande variedade de bibliotecas para
criagdo de graficos e visualizagdes. O Colab permite a
integracdo perfeita com bibliotecas como Matplotlib, Seaborn
e Plotly, que podem criar graficos interativos e visualmente
atraentes, além de tabelas. A atividade de escalonamento de
Warps em GPUs, mostrou que cada grupo de estudantes
explorou uma forma diferente de visualizag@o. Isso torna a
exploracdo de dados e a apresentagdo de informagdes muito
mais envolventes para os estudantes. Com o Colab, é facil
instalar e importar essas bibliotecas, o que oferece a possibili-
dade de explorar areas como ciéncia de dados, aprendizado de
madquina, andlise de texto, entre outras, ampliando as opg¢des
de criacdo de material didatico e simuladores.

Além disso, o uso de recursos interativos usando Mark-
down e HTML permite que o material educacional seja mais
completo combinando elementos multimidia, como imagens,
videos e gréficos. Finalmente, o Colab facilita a colaboracio
entre estudantes e educadores, pois permite que multiplas
pessoas editem o mesmo documento ao mesmo tempo. Além
disso, os notebooks do Colab podem ser facilmente compar-
tilhados com outras pessoas por meio de um link, tornando-o
um 6timo recurso para distribuir materiais educacionais.

O uso de python para ”simular’um assembly RISC foi
bem atrativo para os estudantes e pode ser mais explorado.
A geracdo de tragos de execucdo com C'SV permite também
gerar varios exemplos que podem ser continuados e modi-
ficados para criar novos enunciados de problemas a serem
resolvidos. Além disso, o uso de pandas ou tabulate gera
uma visualizacdo agraddvel dentro do ambiente do Colab.

VI. AGRADECIMENTOS

FAPEMIG (PIBIC, APQ — 01577 — 22), CNPq, NVIDIA,
Funarbe. O presente trabalho foi realizado com apoio da
Coordenagdo de Aperfeicoamento de Pessoal de Nivel Supe-
rior —— Brasil (CAPES)— Cdédigo de Financiamento 001.

v.12, n.2, December 2023 - p. 28

[1]

[2

—

[6]

[8

[t}

[9

—

[10]

(1]

[12]

International Journal of Computer Architecture Education (IJCAE) 2316-9915

REFERENCIAS

FA Alves, Danilo Almeida, Lucas Braganca, André BM Gomes, Ri-
cardo S Ferreira, and José Augusto M Nacif. Ensinando arquiteturas
vetoriais utilizando um simulador de instrugcdes mips. International
Journal of Computer Architecture Education (IJCAE), 4(1):9-12, 2015.
Yehia Arafa, Abdel-Hameed A Badawy, Gopinath Chennupati, Nan-
dakishore Santhi, and Stephan Eidenbenz. Low overhead instruction
latency characterization for nvidia gpgpus. In 2019 IEEE High Per-
formance Extreme Computing Conference (HPEC), pages 1-8. IEEE,
2019.

Hector Perez Baranda, Jeronimo Costa Penha, and Ricardo Ferreira.
Implementagdo de um preditor de desvio no mips 5 estagios. Interna-
tional Journal of Computer Architecture Education, 6, 2018.

Ekaba Bisong and Ekaba Bisong. Google colaboratory. Building
machine learning and deep learning models on google cloud platform:
a comprehensive guide for beginners, pages 59-64, 2019.

Michael Canesche, Lucas Braganca, Omar Paranaiba Vilela Neto, Jose A
Nacif, and Ricardo Ferreira. Google colab cad4u: Hands-on cloud
laboratories for digital design. In 2021 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1-5. IEEE, 2021.

John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North,
and Gordon Woodhull. Graphviz—open source graph drawing tools.
In Graph Drawing: 9th International Symposium, GD 2001 Vienna,
Austria, September 23-26, 2001 Revised Papers 9, pages 483-484.
Springer, 2002.

Ricardo Ferreira, Michael Canesche, and Jer6bnimo Penha. Google
colab para ensino de computacdo. In Anais Estendidos do III Simpdsio
Brasileiro de Educagcdo em Computagdo, pages 46—47. SBC, 2023.
Ricardo Ferreira, Salles Viana Gomes de Magalhaes, and José AM Nacif.
Métricas e nimeros: Desmistificando a programagao de alto desempenho
em gpu. Minicursos do WSCAD, Sociedade Brasileira de Computagdo,
DOI: https://doi.org/10.5753/sbc.46486.1, 2019.

Ricardo Ferreira and Geraldo Fontes. Ensino de organizacoes de
memoria em arquiteturas paralelas usando placas grificas aceleradoras.
International Journal of Computer Architecture Education (IJCAE), 2,
2013.

Ricardo Ferreira, Jose Nacif, Salles Magalhaes, Thales de Almeida, and
Racyus Pacifico. Be a simulator developer and go beyond in computing
engineering. In 2015 IEEE Frontiers in Education Conference (FIE),
pages 1-8. IEEE, 2015.

Joseph A Fisher, Paolo Faraboschi, and Cliff Young. Embedded com-
puting: a VLIW approach to architecture, compilers and tools. Elsevier,
2005.

Roberto Giorgi and Gianfranco Mariotti. Webrisc-v: A web-based
education-oriented risc-v pipeline simulation environment. In Proce-

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]
[21]

[22]
(23]

[24]

edings of the workshop on computer architecture education, pages 1-6,
2019.

John Gruber. Markdown: Syntax. URL http://daringfireball. net/pro-
Jjects/markdown/syntax. Retrieved on June, 24:640, 2012.

Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza.
Dissecting the nvidia turing t4 gpu via microbenchmarking. arXiv
preprint arXiv:1903.07486, 2019.

Dimitris Kehagias and V Douskas-Bertlviser. Android-based simulator
to support tomasulo algorithm teaching and learning. International
Journal of Computer Applications, 975:8887.

Matthias Koenig and Roin Rasch. Digital teaching an embedded systems
course by using simulators. In 2021 ACM/IEEE Workshop on Computer
Architecture Education (WCAE), pages 1-7. IEEE, 2021.

Fernando Passe, Michael Canesche, Omar Paranaiba Vilela Neto, Jose A
Nacif, and Ricardo Ferreira. Mind the gap: Bridging verilog and
computer architecture. In 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1-5. IEEE, 2020.

David A Patterson and John L Hennessy. Computer organization and
design: the hardware/software interface (the morgan kaufmann series
in computer architecture and design). Paperback, Morgan Kaufmann
Publishers, 2013.

Cristébal Ramirez, César Alejandro Hernandez, Oscar Palomar, Osman
Unsal, Marco Antonio Ramirez, and Adrian Cristal. A risc-v simulator
and benchmark suite for designing and evaluating vector architectures.
ACM Transactions on Architecture and Code Optimization (TACO),
17(4):1-30, 2020.

William Stallings. Arquitetura e organizag@o de computadores 8a edic@o,
2010.

Nathan D. Typanski. Tomasulo: floating-point MIPS-like instruction
pipeline. http://nathantypanski.github.io/tomasulo-simulator/.

Keyhan Vakil. Venus, risc-v simulator. https://venus.kvakil.me/.
Kenneth Vollmar and Pete Sanderson. Mars: an education-oriented
mips assembly language simulator. In Proceedings of the 37th SIGCSE
technical symposium on Computer science education, pages 239-243,
2006.

Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,
and Mingyu Chen. Understanding the gpu microarchitecture to achieve
bare-metal performance tuning. In Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
pages 31-43, 2017.

v.12, n.2, December 2023 - p. 29

