

E. C. Pedrino

Universidade Federal de São Carlos,

São Carlos, SP, Brazil

e-mail: emerson@ufscar.br

M. C. Nicoletti

Universidade Federal de São Carlos &

UNIFACCAMP, SP, Brazil

e-mail: carmo@ufscar.br

Abstract— This work reports the detailed process of adapting

an undergraduate discipline about High-Performance Computer

Architecture, traditionally face-to-face taught, to be taught in a

remote mode. The discipline is part of the curricula of two

Computer Science undergraduate courses. The adaptation was

carried out to comply with precaution measures to avoid the

dissemination of the covid-19 disease, caused by the new

coronavirus. The article describes the reorganizational and

methodological processes to adapt a face-to-face discipline into a

remote mode, discusses ways to implement the guidelines

established by the Department of Computing and presents the

new structure adopted for theoretical and practical classes, as

well as the results of the assessment of the new teaching approach

adopted for dealing with the pandemic. The process of adapting a

face-to-face discipline to a remote mode was quite successful,

considering the short period of time the adaptation needed to be

implemented, as well as the many decisions involved in the

processes detailed in the paper. The teaching-learning process

throughout the remote course was considered satisfactory by the

students, with a 95% confidence interval.

Index Terms  Teaching high-performance computer

architecture, Curriculum guidelines, Teaching methodology,

Remote teaching.

I. INTRODUCTION

The Department of Computing (DC) of the Federal

University of S. Carlos (UFSCar), campus S. Carlos, offers

undergraduate courses that cover knowledge in different areas

of computing, namely: Computer Theory [1], Computer

Mathematics [2,3], Methodology and Computer Techniques

[4], and Computer Systems[5]. The subjects cover theoretical

and practical aspects of Computer Science (CS) and are taught

in classrooms as well as using several DC´s laboratories and,

eventually, other spaces at the UFSCar.

The DC offers two undergraduate courses, namely the

Bachelor in Computer Science (BCS) and the Bachelor in

Computer Engineering (BCE). Students in both courses have

some flexibility to tailor some modules of their course to their

talents and aptitudes. Both degrees can be considered suitable

for the many available employment opportunities in CS-

related areas, and both are among the most sought courses

offered by UFSCar.).

Most disciplines taught by the academic staff of the DC are

for the BCS and BCE courses. However, the DC also offers

CS-related courses for students pursuing degrees in other areas

such as the many specialties of Engineering, Statistics and

Mathematics.

For the Bachelor's Degree in Computer Science, the DC

offers basic subjects as well as those requiring specific

training. The four-year course is divided into seven nuclei of

knowledge: (1) Fundamentals of Mathematics and Statistics,

(2) Fundamentals of Computer Science, (3) Algorithms and

Programming, (4) Methodology and Computer Techniques,

(5) Computer Systems, (6) Multidisciplinary and Humanistic

Training and (7) Orientations. The BCS Pedagogical Project

presents, among other information, the course curriculum, its

detailed contents and the course bibliography associated.

For the Bachelor´s Degree in Computer Engineering the DC

also offers basic subjects and those with specific knowledge.

The BCE offers an academic program that integrates the field

of Computer Engineering and Computer Science. The course

contents are distributed in five basic and technological cores:

(1) Fundamentals of Mathematics and Statistics, (2)

Algorithms and Programming, (3) Computer Architectures,

(4) Methodology and Computer Techniques, and (5)

Humanities. The BCE Pedagogical Project presents, among

other information, the course curriculum, its detailed contents

and the associated bibliography.

Since 2007 the DC has also been offering distance learning

disciplines to students in the Bachelor of Information Systems

(BIS) course, as part of the Open University of Brazil -

UFSCar project [6]. The Bachelor of Information Systems has

computing as a medium activity, as it brings together

technologies in the areas of Computing, Information Systems

and Administration.

Aiming at constant updating of UFSCar's computer-focused

courses and the better preparation/formation of students to

face future challenges, the DC is preparing Study Certificates,

which will give students the opportunity to obtain

qualification differentials throughout their undergraduate

studies certifying both, specialization and the deepening of

knowledge and experience, in subareas of CS.

The goal of this article is to present and describe in detail the

adaptation process conducted by the lecturer and part of the

academic staff for converting a face-to-face discipline on

high-performance computer architecture, into a remote

discipline, in a short period of time. The remainder of this

paper is organized into five sections where Section II presents

the main characteristics of the two CS-related undergraduate

courses where the subject of Computer Architecture is part of

Strategies for Adapting a Higher Education Traditional Discipline on

High-Performance Computer Architecture to Remote Learning

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 1

the curriculum and approached with different focuses in three

distinctive disciplines throughout the period of the courses.

Section III presents an academic literature review of previous

works involving the many adopted approaches for teaching

undergraduate disciplines on Computer Organization and

Architecture (COA), which usually is part of CS-related

curriculum.

Section IV has its focus on the teaching of a particular

branch of computer organization and architectures, which is

related to the development and implementation of techniques

that promote organization and architectures qualified as high

performance. The section has its emphasis on a particular

discipline, High-Performance Architectures (HPA), which due

to the pandemic, had to be reorganized, restructured and

adapted to be taught in remote mode.

Section V presents and analyses the results of a conducted

survey that happened at the end of the HPA discipline, where

students were asked to answer a group of questions about the

contents of the course, the theoretical and practical aspects of

it and, particularly, the way the discipline was taught i.e., in

remote mode. Section VI concludes the presentation of the

work done, by reviewing the major points of the several

processes conducted aiming at adapting, at relatively short

notice, a face-to-face taught discipline into a remote taught

mode. The section also presents comments about the work

done and about the future perspectives for the adapted

discipline.

II. CONTEXTUALIZING TWO UNDERGRADUATE COURSES

Taking into account the 8-semester curriculum (workload of

3,240 hours) of the BCS (Bachelor in Computer Science)

course, three disciplines related to Computer Architecture are

offered in the 2
nd

, 6
th

 and 7
th

 semester and named respectively

Computer Organization and Architecture I (ArcI), Computer

Organization and Architecture II (ArcII) and High-

Performance Architecture (ArcIII), where ArcI is mandatory

and both, ArcII and ArcIII, are elective disciplines.

In the first semester of BCS the following disciplines are

mandatory: (1) Differential and Integral Calculus I (2)

Introduction to Algorithmic Thinking, (3) Algorithm

Development and Programming, (4) Digital Logic. Discipline

(1) is offered by the Mathematics Department and the other

three by the Department of Computing. So BCS students are

introduced to the main concepts related to computer

organization and architectures only after they have been taught

and have learned concepts related to disciplines (1), (2), (3)

and (4). Later in the course students have the opportunity to

attend to ArcII and ArcIII, as elective disciplines. For BCS

students to enroll in the two elective disciplines, the ArcI is a

prerequisite.

Taking into account the 10-semester curriculum (workload

of 3,660 hours) of a BCE (Bachelor in Computer

Engineering), three disciplines related to Computer

Architecture are offered in the 3
rd

, 4
th

 and 7
th

 semesters and

named respectively Computer Organization and Architecture I

(ArcI), Computer Organization and Architecture II (ArcII) and

High-Performance Architecture (ArcIII), where ArcI, ArcII

and ArcIII are mandatory.

In the first semester of the BCE all the following disciplines

are mandatory: (1) Differential and Integral Calculus I (2)

Analytic Geometry (3) Introduction to Algorithmic Thinking,

(4) Algorithm Development and Programming, (5) Digital

Logic. Disciplines (1) and (2) are offered by the Mathematics

Department and the other three by the DC. In the second

semester of BCE all the following seven disciplines are

mandatory: (1) Calculus II (2) Linear Algebra I (3) Physics I

(4) Experimental Physics A (5) Algorithms and Data

Structures I (6) Object-Oriented Programming and (7) Digital

Systems. Disciplines (1) and (2) are offered by the

Mathematics Department, disciplines (3) and (4) are offered

by the Physics Department and the remaining four are offered

by the DC. Five among the seven disciplines require

prerequisites from the first semester. Discipline (1) requires

Differential and Integral Calculus I as prerequisite discipline

(2) requires Analytic Geometry as prerequisite and discipline

(5) and (6) require Algorithm Development and Programming.

So, BCE students are introduced to the main concepts

related to computer architectures only after they have been

taught and became familiar with concepts related to

disciplines (1), (2), (3), (4) from the first semester and (1), (2),

(3), (4), (5), (6) and (7) from the second semester. They still

have ahead of them two computer architecture-related

mandatory disciplines, the Computer Organization and

Architecture II (ArcII) in the 4
th

 semester, which have, as

prerequisite, Computer Organization and Architecture I from

the 3
rd.

 semester and High-Performance Architectures (HPA),

in the 7
th

 semester, which also have Computer Organization

and Architecture I as prerequisite.

III. LITERATURE REVIEW FOCUSING ON THE TEACHING OF

COMPUTER ORGANIZATION AND ARCHITECTURE

Disciplines usually named as Computer Organization and

Architecture (COA), or similar names, are an intrinsic part of

Computer Science or Computer Engineering university

courses. The teaching of these disciplines is usually planed in

such a way that students can acquire the many theoretical

Mathematics and CS-related concepts, as well as practical

experiences related to those concepts and techniques.

This section presents a literature review on published

academic works which have their main focus on the teaching

of undergraduate disciplines related to computer organization

and architectures and, also, the many variables involved in the

process. The motivation for this section was to collect and

briefly review different views on the subject of teaching

academic material related to computer architecture, aiming at

presenting a panorama of the diversified ways disciplines with

focus on the subject have been implemented, and their

different emphasis on the many concepts involved considering

both, the theoretical and practical aspects of such disciplines

as well as the use of software tools for supporting the learning

process.

Taking into consideration all the works presented in the

many articles that have been collected, read and considered for

composing this section, it can be stated that a common view

shared by most authors is that (1) concepts and formalisms

related to Computer Organization and Architecture are not a

trivial knowledge to be easily/quickly absorbed and mastered

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 2

(2) a solid background in Mathematics helps the mastering of

most concepts used in these disciplines and (3) software tools

can help promoting and ease the understanding of many

theoretical concepts.

The work in [7] describes a 150-hour course on Advanced

Computer Structure, part of the degree in Computer

Engineering at the University of Murcia. The course was

divided into theoretical and practical classes, where students

were evaluated throughout the whole course period via

individual work. The paper has its focus mainly on the

analysis of the teaching methodology employed, the

distribution of different subjects over the 150 hours and the

synchronization between theoretical and practical classes.

The contents and planning of the course aimed at promoting

and developing students´ competencies in: (1) analysis of the

functioning of a simple computer; (2) ability to write simple

programs using a low-level programming language (assembly

language) (3) linking programs written in assembly language

to high-level language programs and translating high level

language code into assembly language; (4) acquire the concept

of the memory hierarchy, different types of storage and basic

principles related to the input/output system; (5) ability to

evaluate and compare different versions of a small program,

while running in different computer configurations.

Discipline units related to CS theoretical aspects

emphasized: computer architecture performance analysis,

pipeline processors, advanced pipelining and branch

prediction, static allocation of instructions and high-

performance memory system. The practical side of the

discipline focused on: measuring and evaluating architecture

performance, pipeline data path and control, allocation

instructions in pipeline processors and evaluation of the cache

memory. The contents of the discipline were assessed divided

into two parts: theoretical and practical, graded independently,

where the grade associated with the theoretical aspects was

weighted by 0.7, and that of the practical aspects by 0.3, when

assigning students’ final grades. According to the author, the

employed methodology and the scheduling and

synchronization of the theoretical and practical units were the

key aspect for achieving good learning results.

As pointed out in [8], the prestige enjoyed by computer

architecture related topics as one of the main research areas in

CS and a core topic in computing curricula, has been declining

over the last years, perhaps due to a shift of interest to new CS

areas. Considering that computer architecture is a very

important topic to be taught in CS degrees, the author

proposes a way of improving the interest in learning about

computer architectures, by merging it with ubiquitous

computing, an area that has been highly promoted by the CS

research community. The author´s work-in-progress proposal

combines parts of the existing computer architecture

curriculum with the structure, organization and design of

ubiquitous systems in an attempt to promote the visibility of

computer architectures as a relevant issue in CS.

The work in [9] describes the use of the CTPracticals [10], a

module of the Moodle (Modular Object-Oriented Dynamic

Learning Environment) system [6,7] designed to support the

teaching of practical contents related to basic computer

architecture disciplines. The module provides an automatic

verification engine capable to automatically process VHDL

designs as they are submitted. Students can then follow the

progress of their work by accessing the results of the

automatic assessment, and lecturers can have a continuous

global view on the developing status of their students. The

paper reports on the authors´ experiences when using the

CTPracticals module for teaching the contents of a Computer

Technology laboratory. The CTPracticals was installed on a

server having the Moodle 1.9.

The work described in [13] relates to a computer architecture

course and has, as the main focus, the development, by

students, of a pipelined CPU design project with a field-

programmable gate array (FPGA) system. The intent of the

project assignment was to teach students, via practical

approaches, about several components involved in CPU

design projects. Authors point out that the work required the

implementation of a real CPU instead of using simulators or

ready-made complete CPU models. The prerequisite

disciplines required for taking the computer architecture

course were C-programming and Computer Logic Design, the

latter covering digital logic design and Verilog-HDL. Authors

agree that students who have fulfilled the prerequisites were

prepared to design any digital logic, including CPU, if

properly guided.

Authors in [14] agree that the use of simulators can be a

useful resource for helping the acquisition of concepts by

students. Specifically, the article presents a teaching simulator,

SICOME 2.0, which was used in practices related to the task

of learning computer architecture. The simulator allows an

interactive simulation on simple computer architecture.

According to the authors the experiences with the simulator

were very satisfactory and the results obtained showed that it

helped to improve the students’ comprehension of the subject.

The work described in [15] has its focus on the Computer

Organization and Architecture discipline, part of the curricula

of both undergraduate courses: Computer Engineering (CE)

and Computer Science (CS) offered by the Faculty of CS of

the Brawijaya University. According to the authors, for both

courses it is important that students, besides learning the

theoretical aspects of the course, also conduct practical

experiments related to organization and architecture of

computers and learn from them. Authors emphasize that the

practical side of the teaching process can be approached using

simulators, considering that the manufacture of CPUs, RAM

memories and other devices is usually expensive and takes

time. Currently there are many freely available simulators that

can be downloaded from the Web and used straight away.

However, the authors alert about choosing the proper

simulator to use - the choice should be done taking into

account the theoretical development of the discipline and the

set of planned skills to be developed.

An important issue related to teaching Computer

Organization and Architecture pointed out by the authors in

[16] relates to reaching a balance between the acquisition of

the necessary theoretical concepts and practical experiences.

According to the authors the visualization of diverse computer

architectures with the help of simulators can enhance students´

learning process. In their article the authors carried out an

assessment by reviewing 12 simulators on how they fulfilled

two different sets of requirements. The paper describes the use

of simulation tools for teaching CS architecture to students

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 3

and produce evidence that the use of such tools usually

promotes the comprehension of the involved concepts.

The academic literature available related to teaching

computer organization and architecture is very rich and has a

large and increasing number of interesting proposals;

unfortunately a more extensive and refined literature review

goes beyond the goals of this article. Table I summarizes the

main characteristics of works just presented.

TABLE I

SUMMARY OF THE LITERATURE REVIEW.

Ref. Main Characteristics

[7]

Describes a 150-hour traditional discipline on

Advanced Computer Structure, part of the degree in

Computer Engineering at the University of Murcia. It

focusses on the analysis of the teaching methodology

employed, the distribution of different subjects over

the 150 hours and the synchronization between

theoretical and practical classes.

[8]

Has its focus on motivational issues to promote

students´ interests in learning computer architecture

related topics. Suggests teaching approaches that

combine computer architectures with structure,

organization and design of ubiquitous systems.

[9]

Describes the use of CTPracticals, a module of

Moodle, for teaching practical contents related to

basic computer architecture disciplines.

[13]

It is about a computer architecture course that

emphasizes the practical side through the

development, by the students, of a pipelined CPU

design project with a field-programmable gate array

(FPGA) system.

[14]

Presents a teaching simulator, SICOME 2.0, which

was used in practices, related to learning computer

architecture; the simulator allows an interactive

simulation on simple computer architecture.

[15]

The article focuses on the importance of practical

experiments when teaching organization and

architecture of computers, and emphasizes the use of

simulators for the experiments.

[16]

The paper describes the use of simulation tools for

teaching CS architecture to students and produces

evidence that the use of such tools promotes the

comprehension of the involved concepts.

IV. ADAPTING A FACE-TO-FACE HIGH PERFORMANCE

ARCHITECTURE DISCIPLINE TO REMOTE MODE

As previously mentioned, the High-Performance

Architecture (HPA) discipline [16-21] is offered in the 7
th.

semester of the regular period of 5 years required for

completing the BCE degree. It is a mandatory discipline for

those majoring in BCE and an elective discipline for those

majoring in BCS. It is the last of the three disciplines related

to Computer Organization and Architecture taking into

account the curricula of both courses.

The main goal of HPA is to capacitate students to have a

good understanding of the main types of nonconventional

high-performance computer architectures, that prioritize low

energy consumption rates and also, being able to design them.

The course description has, among its main topics:

Heterogeneous System Architectures (HAS), Accelerators,

Application-Specific Instruction Set Processors (ASIP),

Graphics Processing Units (GPS), DSP (Digital Signal

Processors) and SoCs (System on a Chip).

A detailed description of the contents of theoretical classes is

presented in Table II and of the practical classes in Table III,

both in Section B. It is important to mention that much of the

knowledge/problems presented in these classes were based on

the contents of [19-21].

A. Strategies Adopted for Maintaining the Educational

System Active

Due to the pandemic and the subsequent quarantine scheme

installed to prevent contamination, by March 2020 the whole

Brazilian educational system needed to be completely

customized to the restrained social contact, and it went under a

complete re-structuring process so to be adapted to be

functional under the many imposed restrictions.

Thus, the first-time offered HPA discipline, which was

theoretically and practically structured to be traditionally

taught during a sixteen-week period, had to be completely

redesigned and reorganized for the new scenario of online

remote classes lasting eight weeks, that was adopted by

UFSCar. Therefore, all the previous carefully planning of the

discipline encompassing teaching strategies, programmed

distribution of its theoretical and practical contents throughout

the sixteen weeks period, the chosen simulation tools, the

equipment to be used for the practices, and many more

practical issues, had to be readjusted in relation to both, the

remote approach adopted by the university and the short

period of time available to implement the changes.

To implement the transition it was also necessary, in a short

period of time, to train the tutor and technical personnel, as

well as to motivate and guide the students' attitudes in face of

the new challenge. The whole process required a full and

intense engagement by the lecturer and the technical personnel

involved, mostly due to the short time notice for implementing

the change from traditional the remote mode of teaching.

B. Customizing the HPA Discipline for Remote Mode

The HPA discipline was planned and ready to be offered in a

face-to-face mode in the first semester of 2020, starting at the

beginning of Mach.

As already pointed out in the previous section, due to the

pandemic and the mandatory precautions adopted by the

university for dealing with it, the teaching of the HPA

discipline had to undergo several changes and adaptations so

that the program contents of the discipline, usually taught over

a period of sixteen weeks in a face-to-face mode, could be

remotely taught over a period of eight weeks.

Regarding the theoretical contents of the discipline, it was

decided to record a sequence of short videos specifically

focusing on a sequence of the many concepts and theoretical

results relevant to the discipline and upload them on the online

video platform YouTube [22], so that students could access

the theoretical contents, considering that the interaction among

teacher, tutor and students were required to happen

asynchronously.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 4

As part of the university planning for dealing with the

pandemic, the Moodle system [11,12] was adopted, which

helped to turn the adaptation process quicker, considering the

several facilities provided by the Moodle platform, when

organizing and storing all the necessary files and links related

to the discipline; on top of that, allowing the exchange of

messages among all the participants, via forums. Also, through

the Moodle platform students were able to access results and

grades of tests and tasks related to evaluation processes. In

addition to posting explanatory videos for each class, after one

week, students were asked to post via Moodle, solutions

related to issues regarding the topics covered in the previous

online class. Once such posts were uploaded to the Moodle

system, the tutor and teacher had a week to mark them and

give feedback to the students.

For implementing a computational environment for running

the practical tasks related to the discipline, computers were

installed in the CS Dept. laboratory, coupled with educational

kits, containing ARMs (Advanced RISC Machines, where

RISC is an acronym for reduced instruction set computing)

processors [23] and FPGAs (Field Programmable Gate Array

[24], as well as software for the development of parallel codes

(see Table II), prepared for remote access, using the AnyDesk

tool [25]. Figure 1 presents a diagram representing the

computational environment used for the remote teaching of

the HPA discipline.

Fig. 1. Computational environment used for remotely teaching the HPA

discipline. The four main tools used were: AnyDesk, installed in the students’

PC and the other three MPI, GnuOctave and Vivado, in the PCs at the CS
Dept. laboratory (diagram on the bottom right side of the figure, where both

rectangles at the very bottom represent FPGAs).

Basically, students logged on their PCs through the

AnyDesk tool and, by doing that, were able to access the PCs

at the CS Dept. laboratory and have access to all the

development tools and simulators to implement the practices

described in Table II. For example, the first practice demanded

only the use of software tools to run the experiments on the

multicore processors installed in the laboratory PCs. For that,

each student had an area on the hard disk of the laboratory

PCs to run and test their codes, in addition to being able to

store the results of their experiments for that given practice.

Some practices required the use of the processors in the

development kits coupled to the PCs. Thus, access was

allowed through the CAD tools described in Table II which,

together with the Anydesk tool, allowed students to check and

view the results of their experiments by emulating terminals

via the use of such tools, without the need to have cameras

capturing the behavior of LEDs and hardware kit keys, for

example, besides other peripherals that could be used,

otherwise, it would be necessary to have the presence of a

technician in the laboratory, which was not viable due to the

restriction rules.

The totally automatic new methodology devised contributed

for emphasizing the social isolation required throughout the

duration of the discipline. Finally, practices involving

implementations of hardware architectures used the Xilinx's

Vivado software [26] for the synthesis and analysis of HDL

designs, while those involving only the development of

parallel applications used the MPI (Message Passing

Interface), a standard for data communication processes in

parallel computing [27] and GnuOctave, a scientific

programming language [28].

TABLE II

CONTENTS OF THE EIGHT THEORETICAL MODULES OF HPA DISCIPLINE.

1

1

Performance Moore´s law, Architectural innovations

Energy consumption ISA extensions for performance

Parallelism at instruction level Classification of computing

systems Amdhal´s law.

2

2

Vector and array processor  Interleaved memory SIMD

MSIMD MIMD.

3

3

Multiprocessing with shared memory Interconnection

networks: Processor-Memory Butterfly and the related Beneš

network as examples of processor-to-memory interconnection

network in a multiprocessor Shared memory programming &

broadcasting Multiple caches and cache´s coherence Snoopy

cache protocol of coherence  Structure of a distributed shared-

memory multiprocessor Distributed shared-memory

multiprocessor with a cache directory and memory module

associated with each processor  Structure of a ring-based

distributed-memory multiprocessor.

4

4

Structure of distributed multicomputer and of a generic router

Send & receive message-passing primitives to synchronize

two processes Direct and indirect interconnection networks

Messages and their parts for message passing Wormhole

switching Routing algorithms Arbitration algorithms

Growing clusters via modular nodes Network of

workstations.

5
5

Moore´s law Factors affecting performance Problems with

CPUs Accelerators Graphic Processing Unit (GPU) 

Central Processing Unit (CPU) Examples of commercial

GPUs SMs (Streaming Multiprocessors) Programming

GPUs Supercomputers Kernels, Threads, Warps

Heterogeneous memory.

6

6

SoC (System on a Chip) Hardware architecture of a SoC

The Zynq®-7000 SoC family  Relation between software

and hardware in Zynq  Architecture of the hardware system of

an embedded SoC  Project flowchart for Zynq SoC  Zynq

processing system APU (Application Processing Unit) Neon

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 5

https://en.wikipedia.org/wiki/Reduced_instruction_set_computing

Engine (SIMD)  I/O Peripheral Interfaces  PL

(Programmable Logic)  DSP & Blocks of RAM  GPIO

Communication interfaces.

7
7

Embedded systems Applications  Generic architecture 

Processors, Co-processors and Cache DRAM  SRAM

Caches L1, L2 and L3 Execution cycles Fetching, decoding

and executing instructions Interruptions Bus, master, slaves 

DMA (Direct Access to Memory).

8
8

ARM architecture ARM cortex A9 PS components 

Interconnections among masters and slaves PS

interconnections Memory map Memory resources Boot 

Processor´s peripherals MIO (Multiplexed IO) Interfaces PS-

PL Zynq reset Interfaces AXI (Advanced Extensible

Interface).

TABLE III

CONTENTS OF THE EIGHT PRACTICAL MODULES OF HPA DISCIPLINE.

1
1

 Calculation of Pi () by Monte Carlo.

-Step 1: State the method. To do that use a circle of radius r

inscribed in a square of sides 2r. Do some research about

the method to understand its basic idea. Deduce all

equations involved.

-Step 2: Use the Octave Parallel Processing Toolbox [28] to

implement your code with a very large number (n) of

points, in addition to using 4 processors of its multicore

architecture. You must first get familiarized with the

toolbox and the facilities it offers.
-Step 3: Compare the previous result with the result of a

serial implementation. Inform the speedup found and

comment about it.

-Step 4: Describe all the steps in a document containing all

figures, equations and codes used. Comment about the type

of parallel architecture (as seen in theory) most suitable to

be used for the resolution of the problem.

-Step 5: Upload the tutorial and script.m to the

corresponding task (Practice 1) in the Moodle, with the title:

Practice_1_Pi_Octave.

2

 Calculation of Pi () by Monte Carlo.

-Step 1 & 3: The same as in Practice 1.

-Step 2: Use the MPI library for Python to implement your

code with a very large number of points (n), plus four

processors in its multicore architecture. At this point, you

must first understand the MPI library and its associated

functions [27].

-Step 4: Produce a tutorial with a description of all steps as

well as figures, equations and codes (functions) used.

Comment about the type of parallel architecture (as seen in

theory) most suitable to be used for the resolution of the

problem.

-Step 5: Upload the tutorial and the script.py to the

corresponding task in the Moodle, with the title:

Practice_2_Pi_MPI.

3

3-4

4

Calculation of PI () by Leibniz.

-Step 1: State the Method ([29]) and deduce all equations

involved. Tip: use the Taylor series expansion to simplify.

-Step 2: Use the Zybo kits from Xilinx. The idea is to build

a multicore shared memory architecture to implement Step

1. So you should specify, in the Vivado software (2017.4),

the Arm Processor (665 MHz dual-core Cortex - A9)

contained in the Zynq chip (PS side) of the board,

containing two cores and a BRAM memory (PL side -

FPGA Artix-7) connected to a controller that should

connect to the AXI bus of the present project. Note: tips on

how to use this card can be found in [30] and also in

Internet tutorials.

-Step 3: In this step, you must use the SDK environment

integrated with Vivado to develop the codes for each

processor. Obs: do not superimpose the memories of both

cores; try to figure out how to run both codes

simultaneously ([31]);

-Step 4: Produce a tutorial describing all the steps, with the

figures, equations and codes (functions) used;

-Step 5: Upload the tutorial and project for this practice task

on Moodle with title: Practice_3_Arq_Mem_Compart.

-Note: It will also be possible to access a shared card on the

Internet to conduct the tests. For that, you should contact

the tutor.

5
5

Develop two modules in FPGA, one in Verilog and the

other in HLS, for multiplication of two unsigned numbers

of 16 bits; After the development of both modules, they

should be interfaced with the Zynq/Zybo ARM processor

for testing [33].

5

6

Develop an FPGA module at Vivado HLS 2017.4, for

detecting edges of images in gray levels.

-Step 1: you should describe the theoretical edge detection

process, which can be found in [34];

-Step 2: detail all the steps taken in [35] regarding the

implementation of the process at Vivado HLS;

You must understand, simulate and implement the project

for verification.

V. SURVEY AND EVALUATION OF HPA

Once the HPA discipline was finished, the students were

asked to fill out an on-line survey contained 28 statements

about different aspects of the teaching/learning processes

experienced by the students, particularly those related to: (a)

its objectives, organization, methodology and contents, (b)

synchronization between the development of the course in

relation to theory and practices, (c) the necessary background

knowledge from previous disciplines, (d) the relevance of the

practical classes for helping to grasp theoretical concepts of

the discipline, (e) the remote teaching/learning processes

carried on, (f) evaluation of the use of software tools

throughout the discipline (g) interactions with the lecturer and

the tutor, (h) self-evaluation with respect to motivation and

acquired knowledge. The survey was conducted using the

Google Forms [32], software suitable for creating and

managing surveys.

Students were instructed to evaluate each statement

according to the category-value shown in Table IV. The 28

statements evaluated are described in Table V and Table VI

present the numbers related to the evaluation.

TABLE IV

CATEGORIES USED IN THE STUDENTS’ SURVEY.

Category Integer value associated

Strongly disagree 1

Disagree 2

Neutral 3

Agree 4

Strongly agree 5

In general, the marks assigned by the students to the 28

statements in the survey were satisfactory, as can confirmed

by the error values within the 95% confidence interval

associated with each of them. In particular, statements 13 and

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 6

18 which are bold faced in Table V, had higher values for

errors when compared with those by the others.

TABLE V
STATEMENTS IN STUDENTS’ SURVEY.

ID Statements
1 The objectives of the course were clearly described.

2 There was coherence between objectives and the content taught.

3 The evaluation criteria adopted was clear and fair.

4
The bibliography provided was easy to find and suitable for the
content of the course.

5
You were able to fully understand the mathematical concepts involved

in the course.

6
You were able to fully understand the mathematical concepts involved
in the course.

7
The practical experiments contributed to a better understanding of the

theoretical foundations presented by the lecturer.

8

The use of the Vivado-HLS tool for describing accelerator circuits

in some practical classes was more intuitive, practical and

motivating than the use of the Verilog-HDL for the same practical

classes.

9

The development of architectures (containing ARM cores) in

some practical classes, using Vivado-HLS was more intuitive,

practical and motivating than the use of the Verilog-HDL for the

same practical classes.

10

To be able to use high-level tools for practical classes related to

GPU and PC multicore processors helped you to enhance your

grasp of theoretical concepts taught.

11
Both, the use of tools and the practical classes were very satisfactory

for a better understanding of the discipline´s contents.

12
The adopted methodology was suitable for the 8-weeks emergency

remote discipline.

13 This discipline was the first you attended in remote mode.

14

The use of computers connected to FPGA integrated circuits was

an efficient solution for the distance learning you have

experienced.

15

The practical classes using Octave, MPI and GPU were effective for a

better understanding of the basic theoretical concepts presented and

discussed in theoretical classes.

16
You would recommend the use of the same methodology for a new
offering of the discipline.

17
There were substantial differences between both approaches of

teaching: the face-to-face and remote.

18

Taking into consideration your performance in the discipline, you

would have learnt much more if the discipline was taught in face-

to-face mode.

19 Your interaction with your colleagues was satisfactory.

20
The lecturer mastered the contents of the discipline and was available

for clarifying doubts related to the discipline´s contents.

21
The interaction with the tutor was satisfactory and always helped to

clarify doubts.

22
The programmed set of students’ activities was pertinent and

promoted/refined the acquired knowledge from the theoretical classes.

23 Theoretical and practical classes were synchronized.
24 Your commitment to the discipline was satisfactory.

25

You have done all the proposed activities, watched all video classes,

invested in complementary reading, exercise solving, requested
implementations, etc.

26 Grade your interaction with the lecturer and the tutor.

27

You were motivated by the experiments and theoretical verifications;

that helped to sustain your motivation in relation to the discipline as a
whole.

28 You would recommend this discipline to a colleague of yours.

In Table VI the answers related to the statement 13 revealed

that to some students attending the HPA discipline taught in

remote mode was their first experience with such mode of

teaching/learning. Based on results related to statement 18 it

can be inferred that the discipline, remotely or face-to-face

taught, would possibly reach the same results as far as learning

is concerned.

Also, the obtained results regarding the strategies adopted

mentioned in statements 8, 9, 10 and 14 (i.e., HLS for

describing accelerator circuits, development of architectures

containing ARM cores, use of high level tools related to GPUs

and multicore processors and, finally, the use of computers

connected to the FPGAs) proved to be promising for the

teaching/learning process of the HPA discipline, considering

that the proposed computational environment allowed the real

implementation of the architectures instead of just using

simulators for that purpose.

Out of the total of 11 students enrolled in the discipline, 8

students answered the survey. The two students who failed to

answer the survey were the two students who failed the

discipline. The small number of students enrolled in the HPA

discipline in 2020 was unusual. It seems that one of the

reasons for such a low number was the fact that the discipline

changed mode, from face-to-face to remote. Due to the

reorganization of all the disciplines from face-to-face to

remote mode, there was a tendency among students of

enrolling in as many as allowed. Many of them, however,

were not able to cope with the load of work required and

several dropped out of some disciplines at their very

beginning.
TABLE VI

RESULTS ASSOCIATED WITH THE 28 STATEMENTS IN THE STUDENTS’ SURVEY,
WHERE AVG STANDS FOR AVERAGE, STD FOR STANDARD DEVIATION AND E-

CONF_INT FOR ERROR WITHIN CONFIDENCE INTERVAL.

ID Avg Std E-Conf_Int (95%)

1 3.88 0.93 0.64

2 4.13 0.60 0.42

3 4.25 0.83 0.57

4 3.50 1.22 0.85

5 3.25 1.20 0.83

6 3.50 0.71 0.49

7 4.00 0.87 0.60

8 4.25 0.83 0.57

9 4.00 0.71 0.49

10 4.38 0.70 0.48

11 3.88 0.60 0.42

12 3.63 0.86 0.59

13 3.63 1.80 1.25

14 3.00 1.32 0.92

15 4.38 0.48 0.34

16 3.50 1.12 0.77

17 4.50 0.71 0.49

18 3.00 1.50 1.04

19 4.00 1.12 0.77

20 5.00 0.00 0.00

21 4.75 0.43 0.30

22 4.25 0.43 0.30

23 4.25 0.43 0.30

24 4.38 0.48 0.34

25 4.00 0.87 0.60

26 4.50 0.50 0.35

27 3.50 0.87 0.60

28 4.00 1.00 0.69

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 7

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

This article has its focus on the work and the many tasks

involved in adapting, at short notice, a face-to-face CS-related

discipline into a discipline to be taught remotely, as a

consequence of the adopted sanitary precautions to avoid the

pandemic provoked by the covid-19. Initially, aiming at

contextualizing the academic environment the work took

place, the article gives general information about the Federal

University of S. Carlos, located in S. Carlos-SP, Brazil, and

also, about the CS Dept. and the two undergraduate CS-related

courses the department offers.

Next the two undergraduate courses are detailed in relation

to the disciplines that compose their curricula. Aiming at

contextualizing even deeper the HPA discipline focus of the

work, the article presents a short literature review of works

related to methodologies and teaching techniques employed

for teaching concepts, results, hardware, software, etc. related

to Computer Organization and Architecture, that have been

used in other academic institutions commonly taught in a face-

to-face mode.

Next, the High-Performance Architecture (HPA) discipline,

which can be considered the last stage of academically dealing

with computer organization and architecture, is approached in

detail, considering it is the main focus of the work done.

As previously mentioned, in a face-to-face mode where

theoretical classes are given in classrooms and practice classes

in the laboratory provided by the CS Dept., the teaching of

HPA spans over a period of 16 weeks. Taking into account the

emergency restrictions imposed by the university, to adapt and

condense the contents of HPA to eight weeks in remote mode

required a considerable effort from the team formed by the

lecturer, tutor and technicians involved in the process, to fully

re-adapt the discipline, both theoretically and practically, to

the new scenario prescribed by the university. In addition, it

was a consensus among the members of the team that by only

using simulators would not be very effective, taking into

account the advanced computer architectures that are

presented and discussed in the HPA discipline.

Thus, regarding the adaptations required in relation to the

topics versus time of remotely teaching HPA, the team

decided to innovate, by designing an online and automated

structure, where theoretical classes would be recorded offline

and their corresponding videos, together with the other related

files would be made available on UFSCar's Moodle system,

which was also used as a communication and evaluation tool

among the lecturer, tutor and students.

In relation to practical classes, laboratory kits containing

FPGAs and ARM processors, and their development tools,

were installed on the computers in the laboratory and, by using

a remote access tool, each student was able to carry out the

practices through the terminals emulated on their PCs. Thus,

all this adaptation allowed students to be evaluated in relation

to the theoretical and practical contents required by the

discipline. At the end of the discipline an evaluative

questionnaire was filled out by the students and marks were

given in relation to several methodological aspects,

particularly those involving theoretical and practical

teaching/learning processes. The results can be considered

satisfactory, with a 95% confidence interval, which supports

the viability of the adapted teaching/learning strategy for a

period of eight weeks during the pandemic.

This article presents and discusses several issues related to

implementing the adaptation in a short period of time and,

particularly, how laboratorial experiments were adapted for

being conducted remotely. The students’ feedback at the end

of the course, combined with their comments and their grades

in tasks done throughout the course emphasize that the

discipline met its purposes i.e., that of promoting the learning

of several issues related to high-performance computer

architecture.

Taking into account the literature review conducted for

contextualizing the work described in this article, although its

contribution was good in some aspects (such as the emphasis

in synchronizing theory and practices), the articles did not

contribute much (except [9]) for helping to plan the adaptation

of a face-to-face discipline to a remote mode, particularly

taking into consideration the short period of time for

accomplishing the adaptation task. It is a fact though that the

shortage of time due to the pandemic (or any other event of

such impact), has not been contemplated in any of the selected

literature works. So, under the perspective of ‘adaptation

under the pressure of time’, the work done was original and

successful.

Considering a non-pandemic scenario and in an attempt to

foresee the future use of the material and strategies produced

for the remote teaching of the high-performance computer

architecture discipline, the authors believe that all the efforts

and investments in producing the adaptation of the discipline

can be used and refined in educational environments where the

remote teaching is adopted i.e., on-line learning environments.

ACKNOWLEDGMENTS

Both authors thank the DC-UFSCar for its constant support.

The second author also thanks the CNPq.

REFERENCES

[1] D Cohen, “Introduction to Computer Theory”, John Wiley & Sons, 1986.

[2] T Stuart, “Understanding Computation: From Simple Machines to

Impossible Programs”, O'Reilly Media, 2013.

[3] R Graham, D Knuth, O Patashnik, “Concrete Mathematics: A Foundation
for Computer Science”, Addison-Wesley Professional, 2nd. ed., 1994.

[4] Z Sen, “Innovative Trend Metodologies in Science and Engineering”,

Spring-Verlag, 1st. ed., 2017.
[5] R E Bryant and D R O’Hallaron, “Computer Systems: A Programmer´s

Perspective”, 3rd. ed., Pearson India Education Services Pvt. Ltd., 2016.

[6] M C Nicoletti, A M S Reali, S Abib, and V Neris, “Developing a new

course at an Open University,” Asian Journal of Distance Education, vol.

10, no. 2, pp. 36-45, 2012 Retrieved from

http://www.asianjde.org/ojs/index.php/AsianJDE/article/view/199
[7] G Bernabé, “Teaching experience in advanced computer structure,”2016

International Symposium on Computers in Education (SIIE), Salamanca,

2016, pp. 1-6, doi: 10.1109/SIIE.2016.7751817.
[8] A Clements, “Work in progress - computer architecture meets ubiquitous

computing,” 2009 39th IEEE Frontiers in Education Conference, San

Antonio, TX, 2009, pp. 1-2, doi: 10.1109/FIE.2009.5350715.
[9] M A Trenas, J Ramos, E D Gutierrez, S Romero, and F Corbera, “Use of a

New Moodle Module for Improving the Teaching of a Basic Course on

Computer Architecture,” in IEEE Transactions on Education, vol. 54, no.
2, pp. 222-228, May 2011, doi: 10.1109/TE.2010.2048570.

[10] E Gutiérrez, M A Trenas, J Ramos, F Corbera, and S Romero, “A new

Moodle module supporting automatic verification of VHDL-based
assignments”, Computational Education, v. 54, no. 2, 2010, pp. 562-577.

[11] “Moodle developer documentation,” [Online]. Available:

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 8

 http://docs.moodle.org/en/Development

[12] Moodle site, [Online]. Available: http://moodle.org

[13] J H Lee, S E Lee, H C Yu and, T Suh, “Pipelined CPU Design With
FPGA in Teaching Computer Architecture,” in IEEE Transactions on

Education, vol. 55, no. 3, pp. 341-348, Aug. 2012, doi:

10.1109/TE.2011.2175227.
[14] M Brox, A Gersnoviez, M A Montijano, E Herruzo and, C D Moreno,

“SICOME 2.0: A teaching simulator for Computer Architecture,” 2018

XIII Technologies Applied to Electronics Teaching Conference (TAEE),
La Laguna, 2018, pp. 1-7, doi: 10.1109/TAEE.2018.8476041.

[15] W Kurniawan and M H H Ichsan, “Teaching and learning support for

computer architecture and organization courses design on computer
engineering and computer science for undergraduate: A review,” 2017 4th

International Conference on Electrical Engineering, Computer Science

and Informatics (EECSI), Yogyakarta, 2017, pp. 1-6, doi:
10.1109/EECSI.2017.8239076.

[16] P W C Prasad, A Beg, A Chan, “Using simulators for teaching computer

organization and architecture,” Computer Applications in Engineering

Education, v. 24. no. 2, 2016, pp. 215-224,

https://doi.org/10.1002/cae.21699

[17] R Robey and Y Zamora, “Parallel and High Performance Computing”,
Manning Publisher, 2021.

[18] G Hager and G Wellein, “Introduction to High Performance Computing

for Scientists and Engineers”, Chapman & Hall/CRC Computational
Science, 2010.

[19] B Parhami, “Computer Architecture: From Microprocessors to

Supercomputers,” The Oxford Series in Electrical and Computer
Engineering, Oxford University Press, 2005.

[20] A Lastovetsky and J Dongarra, “High-performance Heterogeneous

Computing,” Wiley-Interscience, 1st ed., 2009.

[21] W Stallings, “Computer Organization and Architecture: Designing for
Performance,” 10th ed., Pearson, 2015.

[22] https://www.youtube.com

[23] https://www.arm.com/
[24] S M Trimberger (ed.) “Field Programmable Gate Array Technology,”

Springer Science+Business Media, LLC, 2013

[25] https://anydesk.com/en
[26] https://www.xilinx.com/products/design-tools/vivado.html

[27] https://www.open-mpi.org/

[28] https://octave.sourceforge.io/parallel/
[29] https://crypto.stanford.edu/pbc/notes/pi/glseries.html

[30] https://reference.digilentinc.com/learn/programmable-logic

/tutorials/zybo-getting-started-with-zynq/start
[31] https://www.youtube.com/watch?v=n0hbwp36hBs

[32]google.com/forms/about

[33]http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabs

RTLHLSIP

[34] R C Gonzalez and R E Woods, “Digital Image Processing”, 3rd ed.,

Pearson, 2007.
[35] https://www.hackster.io/adam-taylor/fpga-based-edge-detection-using-

hls-192ad2

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.10, n.1, December 2021 - p. 9

http://docs.moodle.org/en/Development
http://moodle.org/
https://doi.org/10.1002/cae.21699
https://www.arm.com/
https://anydesk.com/en
https://www.xilinx.com/products/design-tools/vivado.html
https://www.open-mpi.org/
https://reference.digilentinc.com/learn/programmable-logic%20/tutorials/
https://reference.digilentinc.com/learn/programmable-logic%20/tutorials/

