International Journal of Computer Architecture Education (IJCAE)

2316-9915 1

Circuitly: A visual and constructive framework for
teaching digital circuits

Lucas Castro

Institute of Computing - University of Campinas (UNICAMP)

Campinas, Sao Paulo - 13083-852

Email: Icbc.lucascastro@ gmail.com

Rodolfo Azevedo

Institute of Computing - University of Campinas (UNICAMP)f

Campinas, Sdo Paulo - 13083-852

Email: rodolfo@ic.unicamp.br

Abstract—This paper describes an interactive and student-
friendly framework for teaching digital circuits and computer
architecture topics. It aims to improve students learning pro-
cess by providing a visual drag-and-drop circuit design editor,
interactive simulation, signal monitoring and testbench tools -
all integrated in a widely accessible application that runs in
the browser. Circuitly does so in a programmatic way, to help
students better understand the Hardware Description Languages
they will encounter in the future.

I. INTRODUCTION

To create a computer based on abstraction layers, we need
to start in a very low level and design, layer by layer, new
capabilities and functionalities. As example, we can start with
a NAND gate - which abstracts a few transistors. It can be
used to build other logical gates, such as ANDs, NOTs and
ORs and all other combinatorial logic. After that, we need
to create the concept of memorization and sequential circuits
come into play. We keep evolving, developing larger blocks
of logic until we have a set of hardware which compose the
Von-Neumann architecture in which our computers are based
today.

The hardware interface with software starts with the instruc-
tion set, where programs are expressed. Then we can create
new functionalities with the lowest level drivers that configure
the hardware and ensure it is up and running, followed by
an operating system providing the essential resources to the
applications - which may be tools, libraries or frameworks to
allow higher level applications to do their jobs. This stack
keeps growing, raising the abstraction level that allows us
to solve the ever more complex problems we must face in
computing. Students must be able to understand and learn
how this stack is built over layers of abstractions, as well
discussed by Jeff Kramer in his work Is Abstraction the Key
to Computing? []1].

Shimon Schocken and Noam Nisan wrote a book proposing
a constructive approach for teaching computing. The student
starts with a NAND gate and iteratively builds larger com-
ponents up to the point it is possible to write a Tetris game
in a higher level language and run it in the custom processor
developed along the course [2], [3]. This approach provides a

wider vision for the student of how computing is built, how
each topic relates to others and why we need the abstraction
layers to solve complex problems.

Our work values and is inspired by Schocken and Nisan’s
“From Nand to Tetris” approach. We wanted to apply this
gradual learning concept in a new user friendly framework,
named Circuitly (www.circuitly.app) aiming to improve
some aspects in the students learning process when it comes
to digital circuits and computer architecture. Circuitly allows
students to visually design circuits with modular reusable
building blocks as circuit components, visualize and interact
with the circuit simulation, run automatic tests and create
larger logical blocks from smaller ones. We also took special
care so it could be widely accessible and platform independent,
ensuring that no restrictive tools or environments would be a
barrier for students or self learners who want to use it. Instead
of designing with circuit diagram blocks, we opted to use
a more text-like design, although based on blocks, to better
engage the student with Hardware Description Languages that
(s)he will use in the future.

This work aims to improve teaching digital circuits and
computer architecture related topics by developing a student
friendly framework which considers digital circuits as modular
building blocks, provides interactive visual simulation, is avail-
able across multiple platforms and allows constructive bottom-
up teaching approaches, such as the proposed by Schocken and
Nisan [2]. In order to achieve this goal we used other existent
tools, such as Blockly [6]] which is a Javascript framework for
developing visual programming languages and DigitallS [7]]
which is a visual and interactive digital circuits simulator that
supports SystemVerilog and runs on the browser.

II. RELATED WORK

Considering the aspect of using a constructive hands-on
approach for teaching digital circuits, “From Nand to Tetris”
[2], [3[1, [8] is a very relevant work in which we were inspired.
It is a consolidated course that guides the student’s path to
build an entire computing system starting with the NAND

ICircuitly is open source [4] and has a web page [5] with additional
information about the project.

v.9, n.1, December 2020 - p. 10

www.circuitly.app

International Journal of Computer Architecture Education (IJCAE)

logic gate, including a full textbook, laboratories material,
hardware simulator and other tools to be used by the student.

Regarding other tools and frameworks for digital circuits
that run on the browser, an important example is EDA Play-
ground [9]] which has many prototyping features and supports
many simulation backends, but it is not specifically designed
for teaching. Falstad [10] is also a relevant tool, supporting
interactive circuit simulation on browser, however it is focused
on electronic circuits and has restrict support for logical
circuits. Another relevant work is Digital]S [7] which is a
promising digital circuits simulation tool for teaching purposes
that allows students to live interact with their simulated circuits
and watch their behaviors. DigitalJS is one of the base tools
used in this work, as detailed along the article.

Another main topic in this work is using visual pro-
gramming languages for teaching. Although this is not (yet,
hopefully) a common topic for digital circuits, there are many
successful projects implementing this concept for software
teaching, such as Scratch [11] and Snap! [12]. An important
project in this regard is Blockly [6] which is a consolidated
and extensible framework for preparing custom visual block
based programming languages. “Blockly OpenCL” [13]] is one
example of a teaching software built upon Blockly framework,
focusing on parallel programming concepts and architectures.
Blockly is also an important framework used in this work as
will be detailed in the following sections.

III. CIRCUITLY DESIGN AND IMPLEMENTATION

A. Overview

@ b s @ e win @
(M0 s e=D @0 [inb_ €5 @ oute oD @

Fig. 1: Circuitly user interface Overview

Figure [T] shows an overview of Circuitly user interface. The
framework has the following main features to help students
design their circuits:

« Multi-platform available: This was a project require-
ment, we wanted it to be as much available and easy
to run as possible. We describe how it was addressed in
development in section [[TI-B}

o Blockly editor (In Figure |l| as “Block it up!”) The
editor where students can design their circuits as modular
blocks. We prefer a language-like style to better introduce
Hardware Description Languages in a next stage. This is
discussed at section [[II=C1

2316-9915 2

o Circuit Simulation and Monitoring: Visual simulation
and signals monitoring for the designed circuit. This is
presented at section [lII-D

« Testbench: This is a utility that allows teachers to provide
a series of test cases to validate the circuit implementa-
tion. Testbenches allow students to self-check their work
and also instructors to autograde students’ solutions. The
testbench functionality is described at section |l1I-E]

Figure [2] shows an overview of how Circuitly combines

these features internally. This flow is better explained in the
following sections.

Blockly design }T

Translation to
SystemVerilog

o Testbench run
Yosys Synthesis (optional)

T s

Fig. 2: Circuitly internal flow diagram.

DigitalJS Live
Simulation

B. Ensure wide and easy access in all platforms

The objective which most affects development is ensuring
the framework is widely accessible and platform independent
since it limits the tools we are allowed to use. Native ap-
plications would be a poor choice, it would not be easy to
support the most used operating systems. We could make a
Java based application since it would run in every machine
which supports a JVM or a Web based application which is an
application that runs on the browser. We decided for the latter
(Web) to be really able to run everywhere and tried to remove
the requirement to install software. It also runs on cellphones,
although the visual interface would require improvements for
better user experience in this platform.

We selected libraries and frameworks available for Web as
the base infrastructure for this project. It is nodeJS based [[14]]
and has many small dependencies, however the main features
which are detailed in the following sections are built upon
Blockly [6] and digital]S [7].

C. Designing digital circuits as modular building blocks

The next requirement is to allow students to see circuits as
building blocks. It should be natural that smaller blocks of
logic could be used to build larger blocks. We also wanted
that students could skip the process of learning a Hardware
Description Language (HDL) in the first moment for two main
reasons (we kept in mind that they will have to learn HDL in
the future if they want to be hardware designers):

« Hardware description languages have some different pro-
gramming concepts when compared to software program-
ming languages since circuits are different from machine
instructions which may confuse beginner students;

« Allowing students to design hardware as building blocks
permit them to visually see and experiment with the
circuit components instead of trusting a synthesis tool that
transforms their code into a logical circuit. We believe
that this closer contact will be very beneficial for learning;

v.9, n.1, December 2020 - p. 11

International Journal of Computer Architecture Education (IJCAE)

We also did not want the student to design circuits as
diagrams since:

« Designing larger circuits using only diagrams without the
assistance of HDL description logic is not very scalable;

« We believe that a higher level of abstraction would be
beneficial for learning the concepts behind larger circuits
and understanding what are the “smaller building blocks”
used to build it;

« We expect the student to have contact with diagrams and
HDL in more advanced courses, the goal is to pave the
way between their first contact and such courses;

Based on these constraints, we selected a block design
that has a good visual appeal, is easy to use, and provides a
clear path to future HDL. Blockly [6] has done a very good
work in designing a customizable block based programming
language and we decided to use it to build the Circuitly
design editor.

1) Using Blockly to create a digital circuits editor:

“«

Blockly [6] is, from Blockly developers own words: “a
library that adds a visual code editor to web and mobile apps.
The Blockly editor uses interlocking, graphical blocks to repre-
sent code concepts like variables, logical expressions, loops,
and more. It allows users to apply programming principles
without having to worry about syntax or the intimidation of a
blinking cursor on the command line.” [15].

Blockly fits our purposes to create a block based code editor
for digital circuits. Although Blockly does not support any
HDL officially, it allows developers to create their own blocks
which generate custom code - in other words, we can generate
SystemVerilog from Blockly blocks. Blockly also provides
a great set of customization options for custom blocks such
as their shapes, colors, type restrictions and code generation
instructions.

Figure [3] shows a set of custom blocks developed for
Circuitly as example. These blocks are used in a drag-and-drop
fashion. In Figure 33 there are examples of logical gates that
the student can use in their designs and in [3b] there are blocks
related with the abstraction for “signals interconnection” cre-
ated in Circuitly that allows users to interconnect the blocks
in the design. This abstraction was based on the Verilog HDL
syntax and gives the students the flexibility to create signals;
attach them in the blocks inputs and outputs, thus connecting
these blocks; assign signals to other signals; split, concatenate
and partition signals.

The custom blocks developed for Circuitly, such as those
in Figure [3] generate valid SystemVerilog code. Users can use
the high level block description to build their circuits and their
work will be converted to SystemVerilog in the background.
This is important so we can still use existing synthesis and
simulation tools while providing the higher level design layer
for students.

Figure [] shows an example of a Blockly workspace with
custom blocks and the SystemVerilog code generated from it.

2) Constructive development of more complex circuits:

2316-9915 3

Basic Logic Gates

p | | NAND ina J inb | out c J
ignals " —

|_A;\|D ina J inb _ |outc J

| DiP. ina | inb J outc

|_XE)R ina inb _ |
(i0em [

| inb J outc . |

|_N_C)T ina J outb |

Basic Logic Gates
Signals

create [QEIIE with size

<invalid signal> v

|_aSS|gn _

| assign =

. | [D: @]
|_5|;I|t L | into J + J
|_c|;n|:at J + _| into J

(b)

Fig. 3: Example of custom Blockly blocks for logic circuits design.

As discussed in the introduction, this work values the “From
Nand to Tetris” 2], approach and wants Circuitly to be
compatible with it.

Blockly natively allows us to prepare workspaces - which
are prepared environments where we determine what blocks
students can use to do their work. It is straightforward to pre-
pare consecutive laboratories asking students to build blocks
that will be used in the next exercises using only the blocks
they have already prepared previously. Following are two
simple descriptions of laboratories to exemplify the concept:

« AND Laboratory: Develop AND using only NAND
gates;
It is a workspace where students only have access to
NAND blocks to implement the AND behavior. This
laboratory would not have any pre-requisites since NAND
is the most primitive logic block;

« DFF Laboratory: Develop Data Flip Flop (DFF) using
only NOT and NAND gates;
It is a workspace where students only have access to
NAND and NOT blocks to implement the DFF behavior.
Note that this laboratory should be held after the “NOT

v.9, n.1, December 2020 - p. 12

International Journal of Computer Architecture Education (IJCAE)

(
Connections
input v 3
b

Internal signals

create [@ with size

Implementation

D ina EEED €K Inb EETED (X |outc

_AND ina

inb

E2E) G0 outc EIED GO |

module AND(
input a,
input b,
output c

wire t;
nand nand_O(t, a
nand nand_1(c, t

,b);
,0) 3

endmodule

Fig. 4: Example of Blockly workspace with custom blocks and
generated SystemVerilog code.

Laboratory” since the NOT block is required here.

Following “From Nand to Tetris” roadmap, this sequence
of laboratories should constantly get more complex towards
the point the student is able to build a minimal processor and
run some code on it. This is better discussed at section [V]

D. Interactive circuit visualization and monitoring

Blockly provides a very good framework to develop the
editor students will use to build their logical circuits. The
next step is synthesizing the SystemVerilog code we will
generate from the custom blocks we developed for Circuitly
and simulate it with a visual and interactive tool.

1) Simulation and Monitoring with DigitalJS:

Marek Materzok worked on “a visual circuit simulator tool
designed for teaching students digital circuit design” named
DigitallS [7]]. It is a Javascript framework that uses Yosys
to synthesize Verilog/SystemVerilog code and simulate
the circuit on the browser. It has a friendly design, is easy for
the students to use and interact with. It also has a monitor to
watch signals and trigger event-based breakpoints what is very
useful for better understanding the circuit and debug it.

Figure [5] shows digital]S simulation for the automatically
generated SystemVerilog code shown in Figure [Users can
toggle the input buttons and dynamically see how the circuit
behaviors. Considering the circuit state in [5a toggling input
‘a’ will change the circuit to the state shown in [5b] Users can
also take a closer look in the signals transitions over time in
the monitor, as shown in

2316-9915 4

[Do— 1> —

and_input.sv:10$1 and_inputsv:1133 ¢

(a)

Simulation

W
D

Sand_input.sv:10$1 and_inputsv:11$3

(b)

Fig. 5: Simulation and monitoring example of the AND block shown
on figure [4]

E. Testbench

The possibility to run automatic tests is very useful for
students to check their work. Circuitly has a “Testbench”
section that accepts an input file describing a list of test cases
with input signals configuration and expected values for the
outputs. The test cases are run sequentially and indicates which
tests succeeded and which failed.

This utility is available both in the user interface and as
a runnable script, allowing teachers to automatically correct
assignments.

IV. USING CIRCUITLY

In section [[T] we presented Circuitly main features using
an AND block as example. Following is a more objective
demonstration of building a logic circuit in Circuitly focused
in how students would work with the platform.

A. Building Data Flip Flop (DFF) block demonstration

Firstly, it is expected that the laboratory specifies the desired
module and the allowed building blocks. For this example,
suppose our laboratory is:

Build a Data Flip Flop (DFF). The only blocks allowed
are: NOT and NAND. DFF should contain the following
connections:

o input: clk - Clock source;
e input: d - Data signal;
o output: q - Sampled data;

v.9, n.1, December 2020 - p. 13

International Journal of Computer Architecture Education (IJCAE)

o oulput: nq - Negated sampled data;

This specification can be reinforced in the editor’s
workspace and toolbar by placing only the allowed blocks in
the toolbar and preparing a ‘module shell’ with the expected
connections in the workspace, as shown in Figure [64] (this is a
feature built upon Blockly workspaces concept). Students can
use the drag-and-drop editor, as discussed in section [[II-C|
to implement DFF behavior. One possible result is shown in

Figure [6b]

Basic Logic Gates W
Signals =

Connections

[NanD ina b |ouc |

[NoT ma | omb |

Internal signals

Implementation

(a)

Basic Logic Gates
Signals
(=) €0
Connections
Linput v Lclk
Linput v d]
©
o
Internal signals
create [EFIE) with size
create [EFHID with size (B8
create (BT with size (B
create ([EREIED with size
create ([[ENEIOL) with size

Implementation

(b)
Fig. 6: Building a DFF using Circuitly Blockly based editor.

The user can “Compile” the design any time. If the design
is valid, it will generate SystemVerilog code and synthesize
it in the background, as shown in section {f] The interactive
simulation starts, allowing the user to experiment with his/her
work. Figure [7] shows possible states of the simulation for this
circuit.

Lastly, students have to check if the circuit is valid accord-
ingly to some predefined tests. Circuitly testbench supports
input files in CSV format describing the input signals con-
figurations and the expected output results. It runs each test
case and generates a table displaying the circuit behavior in

2316-9915 5

Dro—iD>
Pk Sancs inputsv1684 andSNaput. sv:
clk “—dx ‘SandS_input.sv:19810 na
nana_nd
[R —
d SandS_input 51756

Snots_input sv:1553

Tand.d D { _K;.s\g_q q
SandSNinput sv-1858 ° ™/
T L EC)
Sands_input 5v19510 ma
E iand_nd

Sands_inputsr:1756

$andS_input sv:1654

ik

Sig=nd
Snot$_input sv:1553

Fig. 7: Simulation examples for the module of figure |§|

the test. Figure [8a] shows a testbench input for this example
and Figure [8b] the corresponding testbench result.

Testbench

o= O a
S = O

=
’_‘O’_‘..O

(a)
(b)

Fig. 8: Automatic testbench validation of the DFF shown in figure |§|

During this process, students can save and load their work.
If desired, it is possible to setup a submission platform to
retrieve the generated modules and setup an environment to
automatically run the testbench from command line to validate
the students submissions - although this was not done yet and
is marked as future work.

V. FUTURE WORK
A. Build a RISC-V processor using Circuitly

As discussed along the article, this work was inspired by
Schocken and Nisan’s “From Nand to Tetris” constructive
teaching approach. We intend to create a similar set of
laboratories using Circuitly, starting with a NAND block and
creating new larger blocks until it is possible to build a RISC-
v processor - which is a significant change to Schocken
and Nisan’s work, since they decided to go for a custom
architecture.

We intend to use RISC-V for the following reasons:

¢ RISC-V is a RISC (Reduced Instruction Set Computer)
ISA, its smallest variant is RV32i which has a very
small set of instructions that can be easily implemented
in the scope we want for Circuitly laboratories;

« It is used for real world applications;

o There is a growing community involved in RISC-V
projects that can provide help or attract students to further
study this ISA;

v.9, n.1, December 2020 - p. 14

International Journal of Computer Architecture Education (IJCAE)

« It is an open architecture, there is no legal related restric-
tions preventing the development and usage of RISC-V
processors for academic courses, which could be a barrier
in proprietary ISAs;

B. Circuity Improvements

Although Circuitly already provides a working interface
with all features described in the previous sections, there is still
a lot of improvements to be made and features to be added.
Following is a list of what we consider the most important
improvements to be done:

« Study the possibility to use the Javascript build of Yosys,
YosysJS [18]], instead of the native Linux one. This would
allow Circuitly to be completely client-side, requiring no
server;

« Allow users to import SystemVerilog files and auto-
matically create their blocks, allowing Circuitly to be
compatible with existing SystemVerilog circuits;

o Allow users to import a “module” block and automati-
cally create the corresponding “instantiation” block. Cur-
rently, it is necessary to manually create the “instantia-
tion” block and insert it in the workspace toolbar through
code;

« Study the possibility to ship Circuitly with an integrated
submission platform or provide some API for external
tools;

« Better errors handling and notifications for users;

Finally, we also intend to present the framework to students
and listen to their feedback. The main goal of this work is
to improve their learning, consequently their opinions and
judgment is extremely valuable to improve Circuitly.

VI. CONCLUSION

We designed and implemented Circuitly, an interactive
and student-friendly framework for teaching digital circuits.
It manages to conciliate existing tools for synthesis and
simulation with teaching methods and frameworks that are
unexplored for digital circuits and computer architecture, such
as block based programming with Blockly. It also brings an
important feature of being openly available supporting many
platforms as a Web app.

We consider Circuitly a promising framework for teaching
digital circuits, although there are still many improvements
and functionalities to be added in follow-up projects in order
to make it truly student-friendly, easy to use for academic
courses and able to provide a set of laboratories guiding the
student’s path to build a RISC-V processor from the ground-

up.

VII. ACKNOWLEDGEMENT

This work is supported by the Sao Paulo Research Founda-
tion (FAPESP) (2013/08293-7), CAPES (2013/08293-7), and
CNPq (438445/2018-0, 309794/2017-0).

[1]

[2]
[3]

[4]
[5]
[6]

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

2316-9915 6
REFERENCES
J. Kramer, “Is abstraction the key to computing?’ Commun.

ACM, vol. 50, no. 4, p. 3642, Apr. 2007. [Online]. Available:
https://doi.org/10.1145/1232743.1232745

S. Schocken and N. Nisan, The Elements of Computing Systems.
MIT Press, Mar. 2005.

S. Schocken, N. Nisan, and M. Armoni, “A synthesis course
in hardware architecture, compilers, and software engineering,” in
Proceedings of the 40th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE °09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 443-447. [Online].
Available: https://doi.org/10.1145/1508865.1509021

L. Castro, “Circuitly repository,” https://github.com/IcbcFoo/circuitly,
accessed July 12, 2020.

L. Castro, “Circuitly,” https://circuitly.app, accessed July 12, 2020.
The Blockly Team, “Blockly - A JavaScript library for building visual
programming editors.” https://developers.google.com/blockly, accessed
July 12, 2020.

M. Materzok, “Digitaljs: A visual verilog simulator for teaching,”
in Proceedings of the 8th Computer Science Education Research
Conference, ser. CSERC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 110-115. [Online]. Available:
https://doi.org/10.1145/3375258.3375272

Schocken, Shimon and Nisan, Noam, “From nand to tetris - building
a modern computer from first principles,” https://www.nand2tetris.org/,
accessed July 12, 2020.

Doulos, “Eda playground,” https://www.edaplayground.com, accessed
July 12, 2020.

P. Falstad, “Falstad circuit simulator applet,” https://www.falstad.com/
circuit/, accessed July 12, 2020.

MIT Scratch Team, “Scratch - create histories, games and animations.
share with others around the world,” https://scratch.mit.edu, accessed
July 12, 2020.

J. Monig and B. Harvey, “Snap!” https://snap.berkeley.edu/, accessed
July 12, 2020.

J. Gomes, M. Pereira, A. Brito, and J. Ramos, “Um ambiente
baseado em blocos para ensino de programagdo paralela com opencl,”
International Journal of Computer Architecture Education, vol. 5,
no. 1, Dec. 2016. [Online]. Available: http://www2.sbc.org.br/ceacpad/
ijcae/v5_nl_dec_2016/IJCAE_v5_nl_dez_2016_paper_7_vt.pdf
“Nodejs,” https://nodejs.org/en/, accessed July 12, 2020.

The Blockly Team, “Blockly Guides - Introduction to Blockly,” https://
developers.google.com/blockly/guides/overview, accessed July 12, 2020.
C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/,
accessed July 12, 2020.

“The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Document Version 2.2,” editors Andrew Waterman and Krste Asanovic,
RISC-V Foundation, May 2017.

C. Wolf, “Yosysjs,” http://www.clifford.at/yosys/, accessed July 12,
2020.

The

v.9, n.1, December 2020 - p. 15

https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/1508865.1509021
https://github.com/lcbcFoo/circuitly
https://circuitly.app
https://developers.google.com/blockly
https://doi.org/10.1145/3375258.3375272
https://www.nand2tetris.org/
https://www.edaplayground.com
https://www.falstad.com/circuit/
https://www.falstad.com/circuit/
https://scratch.mit.edu
https://snap.berkeley.edu/
http://www2.sbc.org.br/ceacpad/ijcae/v5_n1_dec_2016/IJCAE_v5_n1_dez_2016_paper_7_vf.pdf
http://www2.sbc.org.br/ceacpad/ijcae/v5_n1_dec_2016/IJCAE_v5_n1_dez_2016_paper_7_vf.pdf
https://nodejs.org/en/
https://developers.google.com/blockly/guides/overview
https://developers.google.com/blockly/guides/overview
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

	Introduction
	Related Work
	Circuitly design and implementation
	Overview
	Ensure wide and easy access in all platforms
	Designing digital circuits as modular building blocks
	Using Blockly to create a digital circuits editor
	Constructive development of more complex circuits

	Interactive circuit visualization and monitoring
	Simulation and Monitoring with DigitalJS

	Testbench

	Using Circuitly
	Building Data Flip Flop (DFF) block demonstration

	Future work
	Build a RISC-V processor using Circuitly
	Circuity Improvements

	Conclusion
	Acknowledgement
	References

