
The World Teaching of Parallel and Distributed Programming

Naylor G. Bachiega
University of São Paulo

ICMC-USP
São Carlos, Brazil

naylor@usp.br

Paulo S. L. Souza
University of São Paulo

ICMC-USP
São Carlos, Brazil

pssouza@icmc.usp.br

Simone do R. S. de Souza
University of São Paulo

ICMC-USP
São Carlos, Brazil

srocio@icmc.usp.br

Abstract

The parallel and distributed programming is widely used
in cloud computing. This is due to factors such as the pop-
ularization of multicore and heterogeneous CPU, which al-
low significant performance gains over sequential process-
ing. ACM and IEEE recommend to teach the parallel and
distributed programming and also provide details on how
this topic should be studied in computing courses. How-
ever, the teaching of parallel programming is not trivial and
differs in various undergraduate courses throughout coun-
tries. The differences include teaching approaches, theo-
retical and practical classes, instructional materials, em-
bedded topics, number of hours, required and elective top-
ics, prerequisites, among others. This article presents how
the main institutions of higher education in the world ap-
proach the teaching of parallel programming, with the pur-
pose of evaluating its adherence to the syllabus proposed
by ACM and IEEE. The universities considered in this study
were chosen according to a specific ranking and geograph-
ically separated by continent. After that, we compared with
the ACM and IEEE-Computer Society reference curricula,
highlighting the main differences. Our results show that
there are still significantly differences regarding teaching
HPC, mainly in relation to syllabus and topics covered, and
that is hard to find available documents that show clearly
how such subjects are conducted.

1 Introduction

Parallel and Distributed Computing (PDC) is an essential
tool for the development of diverse knowledge areas which
require high computational power to run their particular ap-
plications [8].

The PDC is an area widely used in Cloud Comput-
ing [23], and it allows the use of the processing power avail-
able in parallel architectures for the solution of problems
that require their own programming models with a higher

degree of complexity for the execution of one or more tasks
simultaneously [41].

The movement known as ”parallel thinking”, proposed
by [3], has been emphasizing for almost a decade that pro-
grams must be developed with some level of parallelism.
The aim is to reach more expressive performance gains,
when compared to a sequential code that runs on CPUs with
higher frequencies and/or parallelism with pipelines or mul-
tiple functional units [14]

PDC teaching, unlikely sequential teaching, addresses
particular challenges. A few examples of such particular-
ities are: the use of different primitive communication and
synchronization; process abstractions or different interact-
ing threads; parallel programming models; load balancing
problems; and a more significant impact on the develop-
ment and performance of applications regarding the com-
puting platform used [12].

These questions need to be learned by students who must
develop the skills and competences in order to work effi-
ciently with these computing environments, which are more
common in companies and universities nowadays [24].

Parallel Programming, a part of PDC, has become ac-
tive and intrinsic for the technologies currently available,
especially considering the different programming models
related to these different parallel architectures.

This type of education can be splited in two parts, theo-
retical and practical, and it can be very challengeable. In the
theoretical approach, it is necessary to verify if the teaching
method is adequate for the students to acquire competences
in a specific topic. In the practical approach, it is essential
to define the work environment and the basic architecture
to perform the practical exercises in order to develop the
expected skills.

Because of the importance of PDC teaching in a global
context, international institutions such as the Association
for Computing Machinery (ACM) and the Institute of Elec-
trical and Electronics Engineers (IEEE) recommend that
PDC should be considered as one of the great knowledge
areas in computing [1].

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.1

Regarding parallel programming teaching, three choices
can be considered: (1) teaching parallel computing to a
small group that will develop libraries, which will be made
available to other groups; (2) adding advanced parallelism
subjects or lectures to course grids; or (3) incorporating par-
allelism in course grids for freshmen, encouraging students
to naturally think about parallelism and to use sequential
computing only for exceptions [3].

For this reason, high education courses in computing
need to incorporate these guidelines on PDC teaching into
their course grids, so that they prepare students for an in-
creasingly parallel and distributed world.

The goal of this paper is to present a survey of the com-
puting pedagogical projects, focusing on the teaching of
parallel programming in some of the most important uni-
versities around different continents.

The 30 universities analyzed in this paper were chosen
according to the scoring systems available in two world
rankings: The World University Rankings [28] and QS
World University Rankings [21]. We have selected five uni-
versities from each region: North America, Europe, Asia,
South America, Africa, and Oceania.

Our survey shows how adherent the course grids ana-
lyzed are concerning the PDC teaching suggested by ACM
and IEEE, and highlights similarities and differences among
these guidelines, topics uncovered and difficulties in finding
official information on websites.

This paper is divided into six sections:

• Section 2 discusses how PDC should be studied ac-
cording to the ACM and IEEE guidelines.

• Section 3 presents the methodology used to obtain the
data presented in this article.

• Section 4 presents the overview of computing courses
in the world and their characteristics.

• Section 5 presents the conclusions of this paper and the
future work.

2 PARALLEL AND DISTRIBUTED COM-
PUTING IN COMPUTER SCIENCE
COURSE GRIDS

To help standardize PDC teaching, ACM and IEEE-
Computer Society have teamed up to establish international
curriculum guidelines for undergraduate courses in com-
puter science and related fields [1].

The guidelines proposed by the 2013 ACM present eigh-
teen knowledge areas, which represent relevant fields of
study in computing. PDC is one of these areas, due to its
current importance in the development of computational so-
lutions.

Before the review of the 2013 curriculum, PDC content,
including parallel/distributed programming, was spread
among other knowledge areas. In this curriculum proposal,
due to PDC’s current importance, it was categorized into
a new area including specific topics such as: fundamentals
of parallelism, parallel decomposition, parallel algorithms,
analysis and programming, and parallel architectures [1], as
shown in Table 1.

Table 1. Teaching PDC in 2013 curriculum
guidelines for computer courses, according
to ACM/IEEE

Total Instructional
Hours

Topics Essential Additional
Includes
Elec-
tives

Parallelism Funda-
mentals

2 No

Parallel Decompo-
sition

1 3 No

Communication
and Coordination

1 3 Yes

Parallel Algo-
rithms, Analysis,
and Programming

3 Yes

Parallel Architec-
ture

1 1 Yes

Parallel Perfor-
mance

Yes

Distributed Sys-
tems

Yes

Cloud Computing Yes

Formal Models and
Semantics

Yes

Teaching PDC in the computing curriculum proposed by
ACM/IEEE is quantified in hours. This unit is defined as
the time needed to present a traditional reading material.
This time does not include extra work, practical classes in
laboratories, lectures, among others.

The essential hours, pointed out in the Table, should be
a required part of any Computer Science curriculum, i.e.,
the topics need to be embedded within the curriculum as a
specific subject or addressed in other syllabus [1].

The additional hours are usually essential for an un-
dergraduate course in computer science. However, some
courses may allow the student to specialize in a distinct
topic from the third year on, and do not need to cover the

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.2

other topics. Another problem that may influence the ap-
plication of additional hours concerns administrative issues
such as teacher shortage and physical and budgetary con-
straints.

Further, according to the ACM/IEEE guidelines, a com-
puter science curriculum should aim to cover 90 to 100% of
the additional topics, with 80% as minimum.

According to the ACM/IEEE, a curriculum must include
elective material for its courses, since the essential topics
are insufficient for a complete curriculum. Also, a syllabus
can consist of elective material, as required in those specific
courses, specializations, masters, and doctorates.

In addition to the necessary hours, the ACM/IEEE guide-
lines point out essential topics to be addressed in computer
science curricula. Table 2 contains the subjects that should
be covered in these undergraduate programs.

Considering these restructurings in PDC teaching by
ACM and IEEE, and the importance of parallel/distributed
programming in the training of future computer profession-
als, it is important to determine how parallel programming
is being addressed by universities. The next sections show
this scenario.

3 METHODOLOGY FOR DATA COLLEC-
TION

In one of the steps used to carry out the survey proposed,
30 universities were chosen from two world rankings: The
World University Rankings (WUR) [28] and QS World Uni-
versity Rankings (QS) [21].

These rankings use indicators such as: academic repu-
tation, employer reputation, college/student ratio, college
citations, international college index, global student index,
among others.

In order to avoid too many results, we chose five univer-
sities in the six continents: North America, Europe, Asia,
South America, Africa and Oceania.

For each score of each university, we created an index
that sums the positions of both rankings. Each ranking was
filtered by the best universities that offer computer science
courses. For example, Stanford University (USA) is in po-
sition 1 in WUR and in position 2 in QS, so we set its score
to 3.

Unfortunately, there was no WUR for Africa. In this
case, we decided to use another ranking called Center for
World University Rankings [6], which is equally important.
Thus, for this continent, we added the CWUR with the QS.

Table 3 shows the selected universities separated by con-
tinents and sorted by the score (S) of the rankings (R).

All the data collected were available on the official web-
sites of each university, such as syllabus, teaching plans,
lesson plans, and pedagogical projects. The data refer to
the year that the subjects were offered, the hours, required

or elective, bibliographic references, co-requisites, and pre-
requisites.

With the results obtained, in the next section, we show
the overview of the parallel and distributed programming
teaching in the universities selected.

4 THE SCENERY OF PARALLEL AND
DISTRIBUTED PROGRAMMING

To begin our discussion of the parallel programming teach-
ing overview in the world, in Table 4, we show the names of
PDC related subjects, which refer to parallel and distributed
programming teaching. It is possible to notice that there is
a large number of subjects titles related to PDC.

In addition, we highlight that the subjects are offered as
elective in 12 universities, as required in 7, in 5 of them it
was not possible to find if they are elective or required (N/S)
and 6 institutions did not offer the subject (post graduation
only) or did not disclose the syllabus of their computer sci-
ence course (N/A).

Figure 1 shows whether the subject is offered as elective
or required. For most of the universities, it is elective and
11 of them do not provide the information.

0

2

4

6

8

10

12

14

Required Elective N/A N/S

N
u
m

b
er

 o
f

u
n
iv

er
si

ti
es

Offered as

Subject type offered

Figure 1. Subject type offer related to PDC in
universities

Table 5 presents the prerequisites (subjects students need
to attend before the parallel programming course) mostly
used by the universities.

Operating Systems, Programming, and Architecture sub-
jects are the most common prerequisites. Out of the 30 in-
stitutions analyzed, 11 had no prerequisites or did not make
this information avaliable, and 6 of them offered no data on
PDC related courses. None of the universities presented the

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.3

Table 2. Topics covered in the guidelines proposed by ACM/IEEE

Topics
Subject Addressed
Essential Additional Electives

Parallelism Funda-
mentals

Multiple simultane-
ous computations,
goals of paral-
lelism, communica-
tion, coordination,
and programming
errors

Not specified Not specified

Parallel Decompo-
sition

Need for communi-
cation and coordi-
nation. Synchro-
nization, Indepen-
dence and partition-
ing

Parallel decomposition con-
cepts, task-based decomposi-
tion, data-parallel decompo-
sition and actors and reactive
processes

Not specified

Communication
and Coordination

Shared memory
and consistency

Message passing and atomicity Consensus and conditional
actions

Parallel Algo-
rithms, Analysis,
and Programming

Not specified Critical paths, work and span.
The relation to Amdahl’s law,
speed-up, scalability. Naturally
(embarrassingly) parallel algo-
rithms, and parallel algorithmic
patterns

Parallel graph algorithms,
matrix computations, producer-
consumer and pipelined algo-
rithms, and non-scalable parallel
algorithms

Parallel Architec-
ture

Multicore proces-
sors, shared, and
distributed memory

Symmetric multiprocessing
(SMP), SIMD, and vector
processing

GPU, co-processing, Flynn’s
taxonomy, instruction level sup-
port for parallel programming,
memory issues, and topologies

Parallel Perfor-
mance

Not specified Not specified Load balancing, performance
measurement, scheduling and
contention, evaluating commu-
nication overhead, data man-
agement, and power usage and
management

Distributed Sys-
tems

Not specified Not specified Faults, distributed message
sending, distributed system
design tradeoffs, distributed ser-
vice design, and core distributed
algorithms

Cloud Computing Not specified Not specified Internet-Scale computing, cloud
services, virtualization, and
cloud-based data storage

Formal Models
and Semantics

Not specified Not specified Formal models of processes and
message passing, parallel com-
putation, shared memory con-
sistency, algorithmic progress,
and computational dependen-
cies. Linearizability and tech-
niques for specifying and check-
ing correctness

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.4

Table 3. The universities selection according
to the rankings

Index University R

N
or

th
A

m
er

ic
a 1 Stanford University [25] W(1) Q(2)

2 Massachusetts Institute of Technology [13] W(2) Q(1)

3 Carnegie Mellon University [5] W(6) Q(3)

4 Harvard University [9] W(11) Q(6)

5 Princeton University [19] W(12) Q(8)

E
ur

op
e

6 University of Oxford [36] W(3) Q(7)

7 University of Cambridge [31] W(5) Q(5)

8 ETH Zurich [7] W(4) Q(9)

9 Imperial College London [11] W(9) Q(12)
10 École Polytechnique Fédérale de Lausanne

[42]
W(10)
Q(18)

A
si

a

11 National University of Singapore [16] W(13)
Q(10)

12 Tsinghua University [29] W(20)
Q(20)

13 Peking University [17] W(25)
Q(17)

14 Hong Kong University of Science and Tech-
nology [10]

W(28)
Q(14)

15 Nanyang Technological University [15] W(31)
Q(16)

So
ut

h
A

m
er

ic
a 16 University of São Paulo [38] W(?) Q(51)

17 University of Chile [33] W(?) Q(51)
18 State University of Campinas [26] W(?)

Q(101)
19 University of Buenos Aires [30] W(?)

Q(151)
20 Pontifical Catholic University of Chile [18] W(201)

Q(101)

O
ce

an
ia

21 University of Melbourne [34] W(39)
Q(14)

22 University of Technology, Sydney [39] W(83)
Q(36)

23 Australian National University [2] W(83)
Q(37)

24 University of New South Wales [35] W(101)
Q(41)

25 Queensland University of Technology [22] W(98)
Q(51)

A
fr

ic
a

26 University of Cape Town [32] CW(223)
Q(301)

27 University of the Witwatersrand [40] CW(230)
Q(?)

28 Stellenbosch University [27] CW(448)
Q(401)

29 University of Pretoria [37] CW(438)
Q(401)

30 Cairo University [4] CW(452)
Q(301)

Table 4. Subjects related to PDC

Index Course Title Offered as

1 Parallel Computing Elective

2 Multicore Programming Elective

3 Parallel Computer Architecture and Pro-
gramming

Elective

4 Introduction to Distributed Computing Elective

5 Distributed Systems Elective

6 Concurrent Programming Required

7 Concurrent and Distributed Systems Required

8 Parallel Programming Required

9 Distributed Algorithms Elective

10 Parallelism and Concurrency N/S

11 Parallel and Concurrent Programming Elective

12 Distributed Computing N/S

13 N/A N/A

14 Parallel Programming Elective

15 N/A N/A

16 Concurrent Programming Required

17 Parallel Computing and Applications Elective

18 Introduction to Parallel Programming Elective

19 Complex Systems in Parallel Machines Elective

20 N/A N/A

21 N/A N/A

22 N/A N/A

23 Parallel Systems Elective

24 Distributed Systems N/S

25 High Performance and Parallel Comput-
ing

N/S

26 N/A N/A

27 Parallel Computing III N/S

28 Concurrent Programming 1 and 2 Required

29 Concurrent Systems Required

30 Parallel Processing Required

(N/A) Not Available, (N/S) Not Specified

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.5

Table 5. Prerequisites for PDC subjects
Index Prerequisite

1 Compilers; Principles of Computer
Systems

2 Introduction to Algorithms

3 Intro to Computer Systems

4 Operating Systems
5 Introduction to Programming Systems;

Operating Systems; Advanced Program-
ming Techniques

6 Object Oriented Programming

7 Operating Systems

8 N/S

9 Concurrency, Maths
10 Functional programming; Algorithms;

Computer Architecture

11 N/S

12 N/S

13 N/A

14 N/S

15 N/A

16 N/S

17 Design and Analysis of Algorithms

18 N/S

19 N/S

20 N/A

21 N/A

22 N/A

23 N/S

24 N/S

25 N/S

26 N/A
27 Operating Systems II; Computer Networks

II; Analysis of Algorithms II

28 N/S
29 Operating Systems; Data Structures and

Algorithms

30 Computer Architecture and Organization

co-requisites (subjects that can be taken concurrently with
parallel computing courses).

Figure 2 shows the total, practical and theoretical course
loads. Despite we have selected 30 universities, 22 of them
did not detail their specific course loads and many only
show the total course load but do not specify the number
of hours reserved for practical and theoretical education.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
p

p
ro

x
im

at
e

am
o

u
n

t
in

 h
o

u
rs

Index

Course loads

Practical Theoretical Total

Figure 2. Course Loads of PDC subjects

Figure 3 provides the year in the course each subject was
offered, and 22 institutions did not provide this data.

0

2

4

6

8

10

12

14

16

18

1 2 3 N/A N/S

N
u

m
b

er
 o

f
u

n
iv

er
si

ti
es

Year

Year of the subject offer in the course

Figure 3. Year of offer of the topics related to
PDC.

Most universities do not specify the year because the
subject is elective and it depends on the offer period for the
course announcement. Also, many students must complete
the prerequisites for attending PDC-related courses.

Figure 4 brings together the years of the bibliographies

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.6

used in PDC-related courses in the universities that pro-
vided the data.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1990 1995 2000 2005 2010 2015 2020

N
u
m

b
er

 o
f

B
o
o
k
s

Years

Year of publications used in bibliographies

Figure 4. Year of bibliographic references
used in the topics related to PDC

Most institutions have bibliographies published between
1990 and 2017. Some of the literature is more than 20 years
old and, therefore, the information on the university official
website might be outdated.

Table 6 presents the adherence of PDC topics to the
ACM/IEEE guidelines. One can observe that most of the
courses reach the required hours of Table 2, but some of
them do not cover the total amount, like Parallel Architec-
ture, which is not always approached.

Another point is that most universities condense all the
topics that are essential in only one subject and perhaps do
not cover specific topics deeply.

It should also be noted that many courses (indexes 11,
16 and 25, i.e.) include all topics (essential, additional and
elective) in only one subject, making the course load really
intense and increases the number of hours exponentially.

Despite the importance of parallel programming in com-
puting courses, some universities have not yet included this
type of programming in their syllabus, such as indexes 7
and 12.

Another threat to the viability of parallel programming
teaching is related to 3-year courses. In this case, after fin-
ishing their course, the students may choose to study an-
other year and get another degree. Depending on the stu-
dent’s choice, there may be no contact with parallel pro-
gramming; an example is index 11.

However, the university (index 11) offers an area focused
entirely in Parallel Computing, which covers almost 100%
of the curriculum refereed by ACM/IEEE (Figure 5).

Index 9 offers two courses that have PDC-related top-
ics in their syllabus. In 4-year courses, the subject Scal-

Figure 5. Parallel Computing Course [16].

able Distributed Systems Design is offered and, in 3-year
courses, Distributed Algorithms.

We observed that in Oceania, two universities (indexes
21 and 22) do not offer PDC topics in undergraduate stud-
ies, only in postgraduation. Besides, the other universities
(indexes 23, 24 and 25) in Oceania provide more than two
PDC topics in undergraduate studies, encompassing more
than the ACM/IEEE curriculum guidelines suggest.

• Index 23: (2 topics) High Performance Scientific Com-
putation and Parallel Systems;

• Index 24: (3 topics) Foundations of Concurrency,
Modelling Concurrent Systems and Distributed Sys-
tems; and

• Index 25: (2 topics) High Performance and Parallel
Computing and Cloud Computing.

Apart from this, index 30 in Africa presented the learning
relationship regarding the classification of the Bloom Tax-
onomy, a differential that allows students and professors to
determine the knowledge level expected in the syllabus.

Another item that caught our attention was the university
(index 8) that made all the course material available online
and easily accessible. Materials such as classes, lectures,
commented classes, exercises, resolution of exercises, pro-
gram codes, among others.

Also, topics such as Parallel Performance, Cloud Com-
puting and Formal Models and Semantics have not been ex-
plored so much by the courses at these universities.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.7

Table 6. Relationship between the adherence
of the parallel and distributed programming
topics and the ACM/IEEE curriculum guide-
lines.

ACM/IEEE Pa
ra

lle
lis

m
Fu

nd
am

en
ta

ls

Pa
ra

lle
lD

ec
om

po
si

tio
n

C
om

m
un

ic
at

io
n

an
d

C
oo

rd
in

at
io

n

Pa
ra

lle
lA

lg
or

ith
m

s,
A

na
ly

si
s,

an
d

Pr
og

ra
m

m
in

g

Pa
ra

lle
lA

rc
hi

te
ct

ur
e

Pa
ra

lle
lP

er
fo

rm
an

ce

D
is

tr
ib

ut
ed

Sy
st

em
s

C
lo

ud
C

om
pu

tin
g

Fo
rm

al
M

od
el

sa
nd

Se
m

an
tic

s

Index

1 X X X X X

2 X X X X

3 X X X X X

4 X X X X X

5 X X X X X

6 X X X X

7 X X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X X X X X

12 X X X X

13 - - - - - - - - -

14 X X X X

15 - - - - - - - - -

16 X X X X X X X X

17 X X X X X

18 X X X X X

19 X X X X X

20 - - - - - - - - -

21 - - - - - - - - -

22 - - - - - - - - -

23 X X X X X X

24 X X X X X X X

25 X X X X X X X

26 - - - - - - - - -

27 X X X X

28 X X X X

29 X X X X

30 X X X X X X

We found some difficulties to collect information on uni-
versity websites. Besides, many institutions do not add the
topics covered, teaching methodologies, syllabus, and other
relevant information. On some websites, only the name of
the course has been reported.

5 CONCLUSIONS

Parallel and distributed programming is still difficult in
contemporary programming environments [1]. However,
understanding parallel processing is vital for computer
courses, and learning these programming models as soon
as possible can strengthen student learning in this area.

Although many universities do not report the year of the
course offer, it is possible to note that most courses chose to
offer this subject in the following years because of their high
degree of complexity and to meet their prerequisites. Only
two universities (indexes 11 and 28) offer this subject in the
first year of the course. Index 11 is targeted specifically to
Parallel Computing, while at index 28, the bachelor’s course
is finished in one year.

Many universities use non-contemporary bibliographies,
consequently, they do not address relatively new topics,
such as Cloud Computing. This may happen because, un-
like the academic field (which deals with with fundamental
computing problems), cloud computing involves many real-
world applications and tools and this makes its teaching ex-
pensive and finding qualified personnel difficult [20].

Many courses cover topics related to the essential hours
within the subjects called Introduction to Distributed Com-
puting, Distributed Systems, Concurrent Systems; but in the
syllabus, it is not possible to find items related to the essen-
tial topic of Parallel Architecture.

Moreover, few institutions offer the subjects as required,
and others do not even offer them, which makes the adher-
ence to parallel programming later and, consequently, ham-
pers the dissemination of ”parallel thinking”.

Another critical factor for the success of the subject,
based on the knowledge acquired by the students, is the
course load. In this paper, a significant divergence was ob-
served concerning the number of hours required.

Noteworthy is the difficulty to convert different ways to
count the subject hours per week, which, in North America
for example, are named unit and may have different val-
ues for each university. In Europe, we found credits stip-
ulated in hours and ECTS (European Credit Transfer Sys-
tem). Credits defined as EFTSL (Equivalent Full-Time Stu-
dent Load) have also been found. This difference in termi-
nology makes the amount of hours needed to complete a
given subject a bit subjective.

About the adherence of the institutions to the ACM/IEEE
curriculum guidelines, some universities go beyond the
minimum proposal, covering current subjects. However,

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.8

many do not address essential topics, such as Parallel and
Distributed Programming, which is an extremely important
topic nowadays.

For future work, the positive and negative points aspects
of each subject will be analyzed concerning their support
materials, the tools used in the classroom, as well as their
methodologies of practical and theoretical education.

References

[1] ACM/IEEE-CS. Computer science curricula 2013. Techni-
cal report, ACM Press and IEEE Computer Society Press,
December 2013.

[2] Australian National University. Parallel Systems, Maio
2018.

[3] G. E. Blelloch. Parallel thinking. SIGPLAN Not., 44(4):1–2,
Feb. 2009.

[4] Cairo University. Course Specification, Maio 2018.
[5] Carnegie Mellon University. Bachelors Curriculum - Ad-

mitted 2014, 2015 & 2016, Maio 2018.
[6] Center for World University Rankings. Center for World

University Rankings, Abril 2018.
[7] ETH Zurich. 252-0029-00L Parallel Programming, Maio

2018.
[8] T. Franczak, A. Nkansah, T. Marrinan, and M. Papka. A path

from serial execution to hybrid parallelization for learning
hpc. In Proceedgins of the 2017 Workshop on Education for
High-Performance Computing, 2017.

[9] Harvard University. Introduction to Distributed Computing,
Maio 2018.

[10] Hong Kong University of Science and Technology. BEng in
Computer Science, Maio 2018.

[11] Imperial College London. CO347 Distributed Algorithms,
Maio 2018.

[12] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Intro-
duction to Parallel Computing: Design and Analysis of Al-
gorithms. Benjamin-Cummings Publishing Co., Inc., Red-
wood City, CA, USA, 1994.

[13] Massachusetts Institute of Technology. 6.816/6.836 Multi-
core Programming, Maio 2018.

[14] G. E. Moore. Cramming more components onto integrated
circuits, reprinted from electronics, vol 38, nr 8, 1965. IEEE
Solid-State Circuits Society Newsletter, 11(3):33–35, Sept
2006.

[15] Nanyang Technological University. Computer Science (CS)
Programme, Maio 2018.

[16] National University of Singapore. Computer Science Focus
Areas for BComp (CS), Maio 2018.

[17] Peking University. Undergraduate Programs, Maio 2018.
[18] Pontifical Catholic University of Chile. Bachelor: Major in

Computer Science, Maio 2018.
[19] Princeton University. COS-418, Fall 2016: Distributed Sys-

tems, Maio 2018.
[20] J. Qiu, S. Kamburugamuve, H. Lee, J. Mitchell, R. Cald-

well, G. Bullock, and L. Hayden. Teaching, learning and
collaborating through cloud computing online classes. In
Proceedgins of the 2017 Workshop on Education for High-
Performance Computing, 2017.

[21] QS World University Rankings. Computer Science & Infor-
mation Systems, Abril 2018.

[22] Queensland University of Technology. Bachelor of Informa-
tion Technology (Computer Science), Maio 2018.

[23] E. Roloff, M. Diener, L. P. Gaspary, and P. O. A. Navaux.
Exploiting load imbalance patterns for heterogeneous cloud
computing platforms. In Proceedings of the 8th Interna-
tional Conference on Cloud Computing and Services Sci-
ence - Volume 1: CLOSER,, pages 248–259. INSTICC,
SciTePress, 2018.

[24] J. A. Shamsi, N. M. Durrani, and N. Kafi. Novelties in teach-
ing high performance computing. In IEEE Int Par and Dist
Proc Sym Workshop, pages 772–778, May 2015.

[25] Stanford University. CS149 - Parallel Computing, Maio
2018.

[26] State University of Campinas. MC970/MO644 Parallel Pro-
gramming, Maio 2018.

[27] Stellenbosch University. Academic Programmes and Fac-
ulty Information, Maio 2018.

[28] The World University Ranking. Computer Science - Times
Higher Education, Abril 2018.

[29] Tsinghua University. The Undergraduate and Graduate
Courses Taught in English and Open to the International Vis-
iting/Exchange Students at Tsinghua University, Maio 2018.

[30] University of Buenos Aires. Faculty of Exact and Natural
Sciences, Maio 2018.

[31] University of Cambridge. Computer Science Tripos, Maio
2018.

[32] University of Cape Town. Undergraduate Courses, Maio
2018.

[33] University of Chile. Course Program, Maio 2018.
[34] University of Melbourne. Distributed Computing Project

(COMP90019), Maio 2018.
[35] University of New South Wales. Distributed Systems -

COMP9243, Maio 2018.
[36] University of Oxford. Concurrent Programming: 2017-

2018, Maio 2018.
[37] University of Pretoria. Concurrent systems 226 (COS 226),

Maio 2018.
[38] University of São Paulo. Concurrent Programming, Maio

2018.
[39] University of Technology Sydney. 42009 Parallel and Mul-

ticore Computing, Maio 2018.
[40] University of the Witwatersrand. 2018 ScI Rules Syllabuses,

Maio 2018.
[41] G. Zarza, D. Lugones, D. Franco, and E. Luque. An innova-

tive teaching strategy to understand high-performance sys-
tems through performance evaluation. Procedia Computer
Science, 9:1733 – 1742, 2012.

[42] École Polytechnique Fédérale de Lausanne. Parallelism and
concurrency, Maio 2018.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.8, n.1, December 2019 - p.9

