International Journal of Computer Architecture Education (IJCAE)

2316-9915

Abordagem para Ensino de Programacao Paralela
em Ambientes Heterogéneos Usando OpenCL

Lucas Henrique Silva Valentim, Henrique Cota de Freitas
Departamento de Ciéncia da Computacéo
Pontificia Universidade Catolica de Minas Gerais (PUC Minas)
Belo Horizonte, Brasil
lucas.h.valentim@gmail.com, cota@pucminas.br

Resumo—Este artigo apresenta uma abordagem para
ensino de programacio paralela em ambientes heterogéneos
a ser utilizada nos cursos de graduacio de computacio. O
principal objetivo dessa abordagem é possibilitar uma
transicio suave entre o paradigma de programacgio
sequencial para a programacio paralela em ambientes
heterogéneos, capacitando os alunos de graduaciio a extrair
melhor desempenho das arquiteturas atuais. A linguagem de
programacio utilizada é OpenCL, devido a sua alta
portabilidade, ser um padrido de linguagem livre de
programaciio e por ser uma linguagem de programacio
paralela que possibilita utilizar todos os recursos de uma
arquitetura heterogénea. A abordagem de ensino é divida em
dois componentes, onde o componente introdutério aborda
as principais caracteristicas da linguagem de programacio
OpenCL, a identificacio de hardware com suporte a
OpenCL em um ambiente heterogéneo e a configuracio do
ambiente de desenvolvimento. O Componente de transicio é
composto por aplicacbes com nivel de complexidade
crescente, afim de possibilitar o ensino pratico da
programacio paralela em ambientes heterogéneos.

Palavras-chave— OpenCL, programacido paralela,
arquiteturas paralelas, computagdo heterogénea, ensino

I. INTRODUCAO

Grande parte dos estudos cientificos em arquiteturas na
década de 1980, até meados da década de 1990, estavam
focados em viabilizar o aumento de frequéncia dos
processadores. Esse periodo ficou conhecido como a
corrida pelo aumento da frequéncia. A estratégia de
aumento da frequéncia ndo vem sendo mais utilizada nos
moldes anteriores devido a limita¢des tais como: aumento
do consumo de energia para que haja ganho de
desempenho, dificuldade para conter dissipagdo de calor e
pelo hiato criado entre a velocidade em que o processador
processa as informagdes e a velocidade em que a memoria
consegue entregar essas informagdes ao processador [3, 4].
Essa diferenca de desempenho ¢ conhecida como Gargalo
de von Neumann [5].

Para continuar atendendo a demanda por desempenho,
que ¢ crescente e continua, contornando as limita¢des
encontradas pelo grande aumento de frequéncia dos
processadores, surge a estratégia de fabricar chips com
mais de um processador. Essa estratégia tem como
resultado os processadores de propdsito geral multi-core e
consequentemente os many-core. Qs computadores
atualmente sdo compostos por uma arquitetura heterogénea
contendo tanto processador de proposito especifico, e.g.,
nucleos de processamento de imagens, quanto de proposito

geral, o que torna possivel extrair de cada aplicagdo o
melhor desempenho.

Essa classificacdo abrange quatro diferentes classes.
Para as arquiteturas sequenciais onde um unico fluxo de
instru¢des € executado sobre um tunico fluxo de dados, a
classe ¢ Single Instruction Single Data (SISD). Para
classificar os processadores vetoriais, onde um mesmo
fluxo de instrugdes é executado de forma paralela sobre
varios dados, a classe ¢ Single Instruction Multiple Data
(SIMD). Os processadores com multiplos fluxos de
instru¢des sobre um mesmo fluxo de dados, a classe €
Multiple Instruction Single Data (MISD) e para os
processadores onde multiplos fluxos de instrugdes sdo
executados sobre multiplos fluxos de dados, a classe ¢é
chamada de Multiple Instruction Multiple Data (MIMD)
[19]. Das quatro classes disponibilizadas por Flynn,
somente trés sdo encontradas nos processadores atuais,
haja vista que a classe MISD ndo ¢ funcional para a
demanda das aplicagdes existentes. Neste trabalho, a
arquitetura heterogénea utilizada para simulagdo dos
resultados € composta por processadores que podem ser
classificados como MIMD e SIMD.

A mudanca do cendrio onde os processadores eram
sequenciais e sua arquitetura homogénea para
computadores paralelos e compostos por processadores de
propdsito especifico e geral, modifica o ensino de
programagdo e de arquitetura de computadores. No cenario
atual, para extrair o desempenho maximo das arquiteturas
€ necessario saber programar de forma paralela [16] e ter
conhecimento sobre as diferentes propostas de arquiteturas
e suas caracteristicas [6, 9]. Sendo assim, este trabalho tem
como objetivo discutir uma abordagem desenvolvida na
linguagem OpenCL, assim como apresentar um conjunto
de aplicagdes para iniciar o ensino de programacio
paralela heterogénea nos cursos de computagao.

O ensino de programagdo sequencial é ainda muito
forte nos cursos de computa¢do. Quebrar esse paradigma
no cendrio atual, onde a tendéncia de arquiteturas paralelas
e heterogé€neas vem se confirmando, ¢ necessario, uma vez
que a programacao sequencial desperdica um enorme
potencial de hardware [2, 6]. Alguns cursos de graduacdo
possuem ainda uma programacdo voltada para o modelo
sequencial onde o ensino de programagdo paralela e
também heterogénea se faz necessario visto a evolugao das
arquiteturas de computadores, inclusive pessoais [8]. Uma
caracteristica que dificulta o ensino de programagdo
paralela em ambientes heterogéneos é que além dos
conhecimentos necessarios intrinsecos a programagao,
existe também a necessidade de compreensdo de conceitos

v.7,n.1, December 2018 - p.11

International Journal of Computer Architecture Education (IJCAE)

de arquitetura como: distribuicdo de cargas de trabalho,
analise de comportamento da aplicagdo em diferentes
arquiteturas, utilizagdo eficiente dos nucleos de
processamento, atencdo as dependéncias de dados [16, 17],
entre outras diversas caracteristicas que influenciam no
desempenho e bom funcionamento da aplicacdo. Neste
cenario podemos concluir que ¢ necessario que sejam
desenvolvidas pesquisas que disponibilizem técnicas e
ferramentas que cubram todas as especificidades deste tipo
de programacao.

As proximas se¢des deste artigo estdo organizadas da
seguinte maneira: na Se¢do II serd exibida uma visdo geral
da linguagem OpenCL, na Segdo III serdo discutidos os
trabalhos relacionados, na Secao IV serdo identificados os
desafios no ensino da programagdo paralela em ambientes
heterogéneos, a Seg¢do V demonstra a abordagem proposta
neste artigo, ¢ na Secdo VI sdo feitas andlises de
desempenho acerca de algumas das aplicagdes usadas na
abordagem. Por fim, na Secdo VII ¢ apresentada a
conclusdo e os trabalhos futuros.

II. VISAO GERAL DE OPENCL

A linguagem de programagdo OpenCL disponibilizada
pelo consoércio Khronos Group, surge com o proposito de
unificar o cendrio de programacdo paralela e heterogénea,
por meio de uma linguagem livre, tendo como objetivo o
aumento de produtividade dos programadores, evitando
que os mesmos tenham que se adaptar aos diferentes
fabricantes de hardware [8]. Para possibilitar a
portabilidade do coédigo OpenCL entre os diferentes
fabricantes de hardware, que fazem parte do consoércio
Khronos Group, entre outros requisitos que viabilizam o
bom funcionamento do codigo, ¢ necessario que estes
implementem o suporte a abstracdo arquitetural exigida
pela linguagem [8].

Um dos propdsitos do conteudo dessa secdo ¢
introduzir as principais caracteristicas da linguagem
OpenCL de forma reduzida e simplificada, o que ndo
substitui a necessidade de leitura da especificagdo
OpenCL. Esta secdo se restringe a explicar as principais
caracteristicas da versdo OpenCL 1.2, pois nem todos os
fabricantes suportam as versoes superiores. Vale ressaltar
que restringir a explicagdo a versdo 1.2 ndo torna o
documento desatualizado, pois as caracteristicas
exemplificadas aqui se mantém na versao 2.0.

Essa explicagdo ¢ dividida da seguinte forma: Na
primeira subsecdo € apresentada uma visdo macro acerca
dos elementos que compdem o desenvolvimento a fim de
tornar claro o cendrio de programagdo em OpenCL. Na
segunda subsegdo ¢ apresentada uma representacdo grafica
da abstracdo arquitetural que ndo necessariamente ¢ fiel a
especificagdo em sua totalidade, pois o principal objetivo &
destacar as principais caracteristicas dessa abstragdo, que
tem forte influéncia no desenvolvimento das aplicagdes.
Sendo assim, ndo sera dada énfase a explicagdo dos
detalhes arquiteturais. Na terceira subse¢do ¢ apresentada
uma explicag@o a cerca do mapeamento do processamento
paralelo para os elementos de processamento (PE).

A. Primeira parte

Nesta subse¢do ¢ apresentada uma visdo macro do
cenario, onde os principais componentes OpenCL sdo

2316-9915

explicados. O entendimento desta etapa ¢ de grande
importancia para a continuidade do aprendizado. A Figura
1 ilustra os principais componentes.

FIGURA 1 — PRINCIPAIS COMPONENTES OPENCL

1) Visdo Geral: Como ilustrado na Figura 1, a
proposta da programacgdo em OpenCL ¢ extrair de maneira
eficiente desempenho de uma arquitetura heterogénea.
Isso & possivel, pois diferentes hardwares como CPU,
GPU, Xeon PHI e FPGA s@o programaveis através da
linguagem de programagdo OpenCL C e possibilitam que
sejam coordenados pelo controlador através de uma API
[7]. Portanto, ¢ possivel que trechos dos cédigos sejam
executados em hardwares diferentes. Como exemplo um
trecho com baixo potencial paralelo é executado no
proprio Host sequencialmente e outro trecho com alto
potencial paralelo ¢ escrito em OpenCL C e enviado para
ser executado na GPU (Graphics Processing Unif)
possibilitando, assim, extrair as qualidades de diferentes
propostas arquiteturais.

A programacdo em OpenCL ¢é composta por duas
linguagens de programacdo semelhantes, sdo elas: API
Controladora que ¢ desenvolvida em C e a linguagem de
programac¢do OpenCL C que herdou grande parte das
caracteristicas da linguagem C99 porém, com restricdes
tais como ndo permitir o uso de recursividade [7].

A API controladora ¢ utilizada para coordenar o
funcionamento de todos os dispositivos. Sendo assim, o
programador utiliza a API para informar aos dispositivos o
que eles devem fazer, por exemplo: quantas vezes devem
repetir a execugdo de um trecho de codigo, quais regides
de memodria estdo disponiveis para os dispositivos, se um
comando enviado deve esperar pela finalizagdo de outro,
entre outras diversas formas disponiveis para realizar a
coordenacao dos dispositivos.

A linguagem de programagcdo OpenCL C ¢ a
linguagem utilizada para escrever o codigo que sera
executado pelos dispositivos. Essa linguagem utiliza o
marcador Kernel para identificar as fungdes que serdo
executadas pelos nés de processamento dos dispositivos.
Um Kernel ¢ a menor instincia de execu¢do em um
processo paralelo e, para se atingir o resultado final, na
maioria das vezes, uma mesma fun¢do Kernel ¢ chamada
repetidas vezes de forma similar a uma estrutura de
repeticdo for comumente utilizada nas linguagens
sequenciais.

B. Segunda parte

Ap6s entender que a programagdo em OpenCL ¢ uma
forma de se extrair desempenho através da paralelizagao
dos codigos, ¢ da utilizagdo eficiente das diferentes
caracteristicas de um ambiente heterogéneo, ¢ necessario
aprender como OpenCL viabiliza a paralelizagdo desses

v.7,n.1, December 2018 - p.12

International Journal of Computer Architecture Education (IJCAE)

codigos e como ele possibilita que se gerencie os
dispositivos de diferentes fabricantes, afim de extrair deles
suas melhores caracteristicas. Por fim, torna-se necessario
realizar ambas as tarefas mencionadas para evitar o enorme
desperdicio de potencial de hardware como atualmente
grande parte das aplica¢des o fazem.

Sendo assim, nesta subsegdo sera apresentada de forma
resumida alguns elementos que possibilitam e influenciam
a programagao utilizando a linguagem OpenCL. O foco
ndo sera na sintaxe de criacdo de codigo e sim, nos
conceitos arquiteturais que influenciam na portabilidade e
bom funcionamento das aplicagdes desenvolvidas nesse
cenario.

1) Dispositivo: A abstragdio OpenCL, citada
anteriormente ¢ ilustrada na Figura 2, esta fortemente
relacionada com os dispositivos, pois sdo eles que
implementam essa abstracdo tornando possivel que os
programadores se preocupem com um Unico modelo
arquitetural sem se preocupar com as caracteristicas
arquiteturais de cada fabricante.

a) Elemento de processamento (PE).: Os elementos
de processamento (PE) sdo os responsaveis por executar
todas as linhas de codigo desenvolvidas em OpenCL C, ou
seja, sdo eles os responsaveis por executar todas as
instrugdes [7]. Se ha 128 elementos de processamento na
sua placa de video aceleradora, entdo, ¢ possivel executar
128 threads em paralelo. Outra opg¢éo ¢ dividir o trabalho
entre as unidades de computagdo (CU). Sendo assim, os
elementos de processamento trabalham em conjunto ao
processar uma thread e compartilham informagéo entre si.
A escolha acerca da forma de execugdo ¢ altamente
dependente das caracteristicas da aplicagao.

I

\.

FIGURA 2 — ABSTRAGCAO OPENCL

b) Unidade de Computagcdo (CU): A unidade de
computagdo ¢ um aglomerado de elementos de
processamento (PE) [7]. A unidade de computagdo em si
nio executa nenhuma instru¢do. O seu papel € criar um
conjunto que pode dividir a carga de trabalho, se assim
desejar o programador, e se comunicar através de uma
memoria compartilhada entre todos os PE's de um mesmo
CU.

2) Memoria: A abstragio OpenCL especifica
quatro diferentes regides de memoria, a saber: memoria
global, privada, constante e local [7], que podem ser

2316-9915

visualizadas na Figura 3. A utilizagdo correta das
memorias resulta em aumento de desempenho, pois pode
melhorar a comunicagdo e diminuir a laténcia.

'S 1

- Memoéria Privada
Memoéria Local cu

EE EE
> w
o] (o] ==

. Meméiaclbal re
© Memetaconstme

FIGURA 3 — REGIOES DE MEMORIA

\

a) Memoria Privada: cada elemento de
processamento (PE) tem sua propria memoria privada e
nenhum outro elemento de processamento ou mesmo o
controlador tem acesso a essa regido de memoria.

b) Memoria Local: Toda unidade de computagio
(CU) tem sua memoria local. Essa memoria ¢
compartilhada exclusivamente entre os elementos de
processamento (PE) que estdo contidos nessa CU.

¢) Memoria Global: A memoéria Global é acessada
tanto pelo controlador, quanto por todos os elementos de
processamento (PE). Existe a diferenca de persisténcia dos
dados entre a memoria Global e as demais.

d) Memoria Constante: A memoria Constante ¢
acessivel a todos os elementos de processamento (PE)
porém somente para leitura.

C. Terceira parte

Essa subsecao apresenta os conceitos necessarios para
o entendimento da estrutura de repeti¢do paralela utilizada
na linguagem OpenCL, e como balancear sua carga entre
os diversos nucleos de forma a evitar que nicleos fiquem
0Ci0S0s.

1) ND-Range: Para quebrar o paradigma
sequencial e iniciar a programagdo paralela, a linguagem
OpenCL utiliza o conceito ND-Range. Este conceito
consiste em disponibilizar um conjunto de indices onde
cada indice representa uma instdncia da fungdo Kernel,
que deve ser executada. A melhor forma para entender
este conceito ¢ pensar que o conjunto de indices ¢ uma
estrutura de repetigdo for, onde cada indice ¢ uma iteracdo
¢ a quantidade de indices gerados ¢ igual ao limite de
repeti¢des definidos no for, este conjunto de indices ¢
denomidado como WorkSize (WS). Lembrando que essa
comparagdo ¢ somente uma técnica para facilitar o
entendimento, pois os indices diferentemente do for sdo
executados de forma paralela, ndo precisando que a
iteragdo anterior tenha acontecido para que a proxima
aconteca. Para facilitar o entendimento a Figura 4 ilustra
essa comparacao.

C OpenCL C

For(inti=0;i<3;i++) indices gerados: 0,1 e 2

{1

FIGURA 4 — COMPARAGCAO FOR / ND-RANGE

v.7,n.1, December 2018 - p.13

International Journal of Computer Architecture Education (IJCAE)

2) Mapeamento ND-Range: Para facilitar o
entendimento do mapeamento dos Kernels aos elementos
de processamento (PE) imagine que uma placa de video
que tem suporte a OpenCL, contenha uma unica unidade
de computacdo (CU) e somente quatro elementos de
processamento (PE). A aplicacdo necessita que quatro
posicdes de um vetor sejam multiplicadas por uma
constante de valor 2. A Figura 5 ilustra o mapeamento da
funcdo Kernel Y * 2 e quais as posi¢cdes do vetor cada
elemento de processamento irda multiplicar. O mddulo de
transicdo contém esse cddigo implementado e pode ser
utilizado como ponto de partida para iniciar a
programacao em OpenCL.

= | EE >

FIGURA 5 — MAPEAMENTO DA FUNCAO KERNEL Y * 2

3) WorkGroup: Como explicado anteriormente, a
paralelizagdo em OpenCL utiliza o conceito ND-Range.
Este conceito possibilita a paralelizagdo através de
indices. Quem determina a quantidade de indices é o
tamanho do trabalho (WS). O WS deve ser informado
pelo programador ao escrever o codigo através da API C.
Os indices gerados devem ser divididos e distribuidos nas
unidades de computagdo (CU's) para serem executados
pelos elementos de processamento (PE's). E recomendado
que o proprio programador realize essa divisdo pois,
assim, ele garante que nenhuma CU ficara ociosa. A
divisdo do trabalho ¢ realizada criando grupos de trabalho
(WG). A Figura 6 ilustra a divisdo para fins didaticos,
deixando nucleos ociosos propositalmente afim de
demonstrar possiveis desperdicios de potencial de
hardware. O tamanho definido para 0 WG tem impacto no
desempenho final do trecho paralelo, pois tem influéncia
direta na utilizagdo dos elementos de processamento e das
regides de memoria.

FIGURA 6 — MAPEAMENTO DA FUNCAO KERNEL COM WORK GROUP

Todo hardware que suporta OpenCL disponibiliza o
tamanho maximo de WG suportado, porém, apesar de
evitar que nucleos fiquem ociosos, nem sempre a
quantidade maxima ¢ a que tera melhor desempenho. Este

2316-9915

artigo ndo ird entrar neste nivel de detalhamento por se
tratar de algo que exige maior proximidade com os
conceitos de OpenCL ¢ de arquitetura. Recomenda-se que
inicialmente seja utilizada a quantidade maxima
disponibilizada pelo fabricante.

III. TRABALHOS RELACIONADOS

A. WebGPU

Dakkak et al. [1] desenvolveram uma plataforma
escalavel de desenvolvimento online para cursos de
programac¢do em GPU. Os usuérios da plataforma tém
acesso a um ambiente onde podem desenvolver e executar
codigos paralelos em OpenCL, OpenACC, CUDA e MPL.
O desenvolvimento dessa plataforma resolve alguns
problemas inerentes aos cursos gratuitos e online de
programacdo que sdo: reduz a exigéncia de que todos os
alunos tenham um computador pessoal semelhante aos
comercializados atualmente, ambiente de programacao
com diversos fabricantes e diferentes configuragdes para
iniciar o desenvolvimento, capacidade de armazenar os
exercicios executados pelos alunos e as modifica¢des
realizadas ao longo do tempo, entre outros inumeros
beneficios disponibilizados por essa pesquisa. Porém,
nenhum desses beneficios cobre a proposta deste artigo,
que ¢ disponibilizar um conjunto de aplicagdes que
auxiliem no inicio da programacdo paralela em ambientes
heterogéneos ¢ no entendimento de suas caracteristicas
arquiteturais, pois a plataforma WebGPU disponibiliza
somente o ambiente que viabiliza esse aprendizado e ndo o
material didatico a ser utilizado nos cursos.

B. Tetra

Finlayson et al. [2] acreditam que os principais
obstaculos para o ensino de programacdo paralela na
graduacdo sdo as linguagens de alto desempenho tais
como: C, C++, Fortran, OpenCL ¢ CUDA, classificando-as
como linguagens de dificil utilizagdo. Outro obstaculo,
segundo os autores, ¢ que os ambientes de
desenvolvimento integrados (IDEs) e as ferramentas de
depurag@o de codigo existentes para programacdo paralela
disponiveis atualmente, sdo dificeis de usar, proprietarias
ou contém poucos recursos de depuracdo de coédigo. Para
solucionar os obstaculos identificados anteriormente
Finlayson et al. propdem a linguagem de programacao
Tetra, através de um ambiente de desenvolvimento
integrado. A linguagem Tetra vem para facilitar o
aprendizado de programagdo paralela, abrindo mao do
desempenho, mas com foco na simplicidade, contendo
caracteristicas de linguagem de alto nivel e realizando a
paralelizagdo por trechos através de marcadores, nao
exigindo inicialmente grandes mudangas no codigo
sequencial, diferentemente de OpenCL e CUDA. O
ambiente de desenvolvimento proposto vem com o
objetivo de facilitar a execugdo e depuracdo do codigo
paralelo, caracteristica relevante para entendimento da
execucao dos diversos trechos paralelos.

Apesar de muito relevante, o esfor¢o realizado pelos
autores ao desenvolver a linguagem Tetra e o ambiente que
possibilite principalmente depurar a execucdo de codigos
paralelos, ndo foca no aprendizado de programagdo
paralela para alto desempenho como a pesquisa realizada
nesse artigo. Entretanto, mesmo ndo tendo o mesmo foco,

v.7,n.1, December 2018 - p.14

International Journal of Computer Architecture Education (IJCAE)

a linguagem Tetra e o conjunto de aplicagdes apresentadas
nesse artigo desenvolvido em OpenCL, podem ser
utilizados em conjunto para o ensino de programacao
paralela. Sendo a linguagem Tetra responsavel por
apresentar o universo paralelo, e o conjunto de aplicagoes
proposto nesse artigo responsavel por realizar uma
transicdo suave entre a programagdo sequencial para a
programagao de alto desempenho paralela e heterogénea.

C. Ensino de programagdo paralela usando Java

Shafi et al. [10] desenvolveram as etapas e conteudos
de um curso para ensino de programagdo paralela, com o
intuito de possibilitar que engenheiros de software
tivessem contato com o novo paradigma de programagio
ao cursar o bacharelado em Engenharia de Software na
National University of Sciences and Technology - (NUST)
no Paquistdo. O curso no primeiro momento introduz os
conceitos de programagdo paralela, hardwares
aceleradores, métricas para analise de desempenho e
sistemas de memoria distribuida e compartilhada. Apos a
introducdo, o curso ¢ dividido em trés se¢des. A primeira
secdo cobre técnicas de programacdo paralela em sistemas
de memoria compartilhada, utilizando as linguagens de
programagdo OpenMP [12], Intel Cilk Plus [13] e Java
threads [11]. A segunda segdo apresenta ferramentas de
programag¢do e APIs para programacdo paralela, em
sistemas com memoria distribuida, tendo como foco a
utilizagdo do software MPJ Express [14] para atividades
praticas de desenvolvimento das aplicacdes paralelas. A
terceira e ultima se¢@o introduz a programagdo paralela
avancada através da utilizacdo de aceleradores de proposito
geral GPU e o modelo de programagdo MapReduce
através da utilizagdo do Hadoop [15].

O trabalho desenvolvido por Shafi et al. ¢ de grande
valia para o meio académico, pois aborda temas atuais que
se relacionam com a programacao paralela e disponibiliza
uma metodologia para ensino destes conceitos. Porém,
diferentemente da proposta desse artigo, a utilizacdo de
aceleradores ¢ superficial segundo os proprios autores [10].

IV. DESAFIOS DE ENSINO

Diferente da estratégia para extrair maior desempenho
dos processadores por meio do grande aumento de
frequéncia, a estratégia em arquiteturas multi/many-core
exige modificagdo do software para atingir o potencial do
hardware disponivel [6]. Sendo assim, os programas
sequenciais que aumentavam de desempenho
simplesmente trocando o processador para um com maior
frequéncia, agora precisam ser reprogramados de forma a
tornar possivel a utilizagdo de todos os nticleos. Além da
necessidade de alteragdo do codigo sequencial para o
codigo paralelo, com a introducdo das arquiteturas
heterogéneas, ¢ necessario também identificar quais
propostas de arquitetura executam melhor um trecho de
codigo da aplicagdo. Como por exemplo, trechos onde a
execu¢do em aceleradores como GPU tém ganho de
desempenho sobre a execugdo em CPU.

Neste novo contexto, aumenta-se a exigéncia acerca
dos conhecimentos necessarios para o desenvolvimento de
aplicagdes que ndo desperdicem potencial de hardware.
Portanto, um dos obstaculos para o ensino de programagao
nesse contexto estd relacionado com a diminui¢do da
abstracdo da arquitetura para aplicagdes de alto nivel.

2316-9915

Outro obstaculo para o ensino € a quebra de paradigma
de programacao sequencial, sendo necessario introduzir as
boas praticas de programacdo, a andlise de trechos com
potencial paralelo e analise de dependéncia de dados. Esse
conjunto de exigéncias cria um conjunto de barreiras para
o ensino em cursos de graduacdo, sendo necessario o
desenvolvimento de técnicas e ferramentas que auxiliem
na realiza¢do de uma transicao suave entre a programagao
sequencial e a programagdo paralela de alto desempenho.

V. ABORDAGEM PROPOSTA

A abordagem proposta ¢ composta por dois
componentes. O primeiro ¢ o Componente Introdutorio,
que ¢ composto por uma aplicagdo que auxilia o
programador a identificar os elementos de hardware que
compdem a sua arquitetura, um resumo que auxilia a
entender conceitualmente os modelos da linguagem
OpenCL e como programar esses modelos para extragdo de
maior desempenho da arquitetura alvo e, por fim, por
instrugdes que possibilitam a reproducdo de todos os
resultados obtidos ao executar as aplicagdes do
componente de transicdo, para fins de analise ou
preparagdo de ambiente para iniciar a programagdo
paralela. J4 o Componente de Transigdo ¢ composto por
quatro aplica¢des com niveis de complexidade diferentes,
iniciando com uma aplicagdo bem simples até uma
aplicacdo de média complexidade. Todas as aplicacdes
desenvolvidas que integram o componente de transigdo,
implementam os conceitos de otimizagdo de codigo com
foco nas arquiteturas disponiveis no componente
introdutério. A linguagem de programagdo OpenCL foi
escolhida por ser uma linguagem de codigo aberto e ter
alta portabilidade entre diferentes fabricantes de hardware,
evitando assim, restringir o ambiente de desenvolvimento
dos usuarios da abordagem proposta.

A. Componente Introdutorio

Identificacio do ambiente: A identificagdo do
ambiente ¢ feita através da execucdo da aplicagdo
desenvolvida para tal. Essa aplicagdo identifica as
plataformas OpenCL, os dispositivos disponiveis e seus
fabricantes. E utilizada por todas as outras para viabilizar a
criagdo do contexto solicitado ao se programar em
OpenCL.

Resumo da abstracio OpenCL: OpenCL ¢ uma
linguagem com alta portabilidade. Essa portabilidade ¢
possivel devido ao consorcio criado pelo Khronos Group
que ¢ integrado por empresas como AMD, Intel, Altera
(adquirida pela Intel) Nvidia, IBM, entre outros fabricantes
de hardware que concordaram em suportar a linguagem
OpenCL. Para que o programador ndo tenha que se
preocupar com as diferencas entre as arquiteturas de
diferentes fabricantes, OpenCL disponibiliza uma
abstracdo de arquitetura, onde todos os fabricantes devem
implementar essa abstragdo. Para que o programador inicie
a programacao em OpenCL ¢ necessario que ele tenha
compreendido os conceitos da mesma. Para auxiliar os
estudantes ¢ disponibilizado um resumo' que aborda as
principais caracteristicas dessa abstragdo, viabilizando
assim, o inicio da pratica de programagao.

Instrucées para reproducdo dos resultados: As
aplicacdes disponibilizadas no componente de transicao
foram executadas utilizando a ferramenta de

'https://github.com/cart-pucminas/OpenCL-freshmen V-7, n-l, December 2018 - p15

International Journal of Computer Architecture Education (IJCAE)

desenvolvimento Microsoft Visual Studio Comunnity
2017, uma placa aceleradora AMD Radeon R7 360 e um
processador Xeon E3-1240. Para que seja possivel
reproduzir os resultados obtidos, as configuragdes
necessarias foram disponibilizadas no arquivo
"Configuragdo do ambiente de desenvolvimento" que esta
contido no componente introdutério'. Instrugdes também
podem ser utilizadas para configuragdo do ambiente para
iniciar a programagao de outras aplicagdes.

Introducdo de conceitos essenciais: Para
compreensdo do ganho de desempenho, ¢ do modelo de
programacao, sdo apresentados conceitos de paralelismo,
dependéncia de dados, concorréncia, balanceamento de
carga, paralelismo de dados e de tarefas. Conceitos de
arquitetura também s@o apresentados, tais como:
hierarquia de memoria, memoria distribuida e centralizada
e arquitetura de von Neumann.

B. Componente de transi¢do

Multiplicacio de vetor simples: Esta aplicagdo
consiste na multiplicagdo de todos os elementos de um
vetor por uma constante de forma paralela, ou seja, cada
nicleo de processamento é responsavel por realizar a
multiplicacdo de um elemento do vetor. Esta aplicagao foi
escolhida com o objetivo de introduzir a programagdo
paralela, pois além de sua simplicidade, ¢ uma aplicagao
que facilmente se identifica a ndo existéncia de
dependéncia de dados, possibilitando a divisdo de trabalho
de forma paralela. A aplicagdo multiplicacdo de vetor
simples ¢ a aplicacdo de menor complexidade do conjunto
proposto nesse artigo, sendo a aplicacdo recomendada para
o primeiro contato do programador com a pratica de
programacao paralela.

Multiplica¢do de vetor x vetor: A multiplicagdo de
vetor por vetor contém todas as caracteristicas que a
multiplicacdo de vetor simples possui, porém com
pequenas diferencas que aumentam um pouco a
complexidade da aplicagdo. Nessa aplicagdo, cada
elemento de um vetor ¢ multiplicado pelo mesmo elemento
de outro vetor, tendo como saida um vetor com o resultado
da multiplicacdo. Essa aplicaggo foi escolhida para compor
0 conjunto proposto justamente para que o aumento de
complexidade fosse crescente e possibilitasse uma
transicdo suave entre os diferentes paradigmas de
programacao.

Multiplica¢do matriz x constante: Diferentemente da
aplicacdo multiplicacdo de vetores, a multiplicagdo de
matrizes utilizando a linguagem OpenCL exige que se
utilize um recurso disponibilizado pela linguagem que ¢ a
possibilidade de lidar com mais de uma dimensdo em um
trecho paralelo. Por conta dessa diferenga, essa aplicagdo
foi escolhida para fazer parte da abordagem.

Ordenagfo: A aplicagdo de ordenagdo ¢ um algoritmo
de forca bruta sem dependéncia de dados. Esse algoritmo
foi escolhido para demonstrar o enorme potencial de
hardware que pode ser desperdicado ao se programar de
forma sequencial.

Reducdo numeérica: A aplicagdo de reducdo numérica
consiste em retornar a soma de todos os elementos de um
vetor de forma paralela. Essa aplicagdo foi escolhida, pois
nela € possivel introduzir os conceitos de corrida e

'https://github.com/cart-pucminas/OpenCL-freshmen

2316-9915

dependéncia de dados, aumentando assim a complexidade
da aplicagdo e possibilitando o ensino de conceitos
importantes da programagdo paralela.

V1. ANALISE DE DESEMPENHO

Esta secdo ¢ dividida em duas partes, onde a primeira
detalha o ambiente utilizado para produgdo dos resultados,
e a segunda apresenta trés resultados obtidos utilizando
duas aplicagdes da proposta com o objetivo de
conscientizar, tanto a necessidade de desenvolvimento com
foco na arquitetura, quanto na necessidade de evitar o
desperdicio de hardware através da paralelizagdo dos
codigos sequenciais.

A. Materiais

Para que o controlador consiga enviar os comandos aos
dispositivos, foi necessario instalar a implementacdo
OpenCL da AMD e configurar a IDE Microsoft Visual
Studio Community 2017. O sistema operacional utilizado
foi o Windows 10 de 64 bits, a arquitetura foi composta
por um processador de propodsito geral Intel Xeon E3-
1240, uma placa aceleradora grafica AMD Radeon R7 360
e 64 Gigabytes de memoria principal.

A GPGPU AMD Radeon R7 360 contém 768
elementos de processamento. O processo de fabricagdo do
chip ¢ de 28nm, o Clock dos elementos de processamento
¢ de 1050MHz, a largura de banda de comunicag¢do com a
memoria ¢ de 128-bit com capacidade maxima de
transferéncia de 104 GB/s e contém capacidade de
armazenamento de 2GB GDDRS5 em sua memoria.

O processador Intel Xeon E3-1240 contém 4 nucleos
de processamento com a tecnologia SMT - Simultaneous
Multithreading que possibilita a execucdo de 8 threads em
paralelo. O processo de fabricag@o do chip ¢ de 32 nm, a
frequéncia maxima dos nucleos ¢ de 3,7 GHz e tem
capacidade de armazenamento de 128 kB em sua cache
nivel 1, 1024 kB em sua cache nivel 2 ¢ 8§ MB em sua
memoria cache nivel 3.

As andlises de desempenho realizadas utilizando as
aplicacdes de ordenagdo e de multiplicagdo simples
tiveram carga de trabalho fixa e foram executadas vinte
vezes, a unidade de tempo estd em milissegundos para
todas as avaliagoes.

B. Resultados de desempenho

A primeira analise mostra o forte impacto ao se
programar em OpenCL sem se preocupar com a arquitetura
dos dispositivos que estdo sendo utilizados. A segunda
analise apresenta o impacto de uma caracteristica da
aplicacao multiplicacdo de vetor simples sobre seu
desempenho ao ser paralelizada em um ambiente
heterogéneo e a terceira analise mostra o enorme
desperdicio de hardware ao se programar de forma
sequencial.

Impacto do grupo de trabalho: Ao se programar em
OpenCL e ndo distribuir a carga de trabalho entre as
unidades de computagdo do dispostivo corretamente, ¢é
possivel que potencial de hardware seja desperdigado. A
Figura 7 ilustra o possivel desperdicio de hardware caso o
programador ndo distribua corretamente a carga de
trabalho para a aplicagdo “multiplicacdo de vetor

v.7,n.1, December 2018 - p.16

International Journal of Computer Architecture Education (IJCAE)

simples”, pois ao se dimensionar corretamente a carga de
trabalho para as unidades de computagdo evita-se que
alguma unidade de computagdo ou elemento de
processamento fique ocioso. No caso onde a carga ¢
dimensionada corretamente, ¢ possivel melhorar o
desempenho da aplicagdo “multiplicagdo de vetor

simples” em aproximadamente trés vezes.

1,400

1,200 4
g+
1,000 h
_ WorkGroupSize 1
é 0,800 WorkGroupSize 4
[=]
Q %
g 0,600 WorkGroupSize 16
B WorkGroupSize 64
0;200 - ——\WorkGroupSize 256
0,200
0,000 B e e e N A B
1 3 5 7 9 11 13 15 17 19
Execucdo da aplicagdo
FIGURA 7 — INFLUENCIA DO WORKGROUP SIZE
1) Andlise da aplicacdo multiplicacdo de vetor

simples: Para que uma aplicag@o tenha um bom ganho de
desempenho ao ser executada em um acelerador como a
arquitetura de GPU utilizada, uma das caracteristicas
necessarias da aplicagdo ¢ que a laténcia de acesso a
memoria seja ocultada pela carga de trabalho que sera
realizada sobre os dados.

A aplicagdo “multiplicacdo de vetor simples” realiza
poucas operacdes logicas apds transferir todo o vetor para
a memoria do dispositivo. Sendo assim, o seu ganho de
desempenho sobre a aplicagdo sequencial ¢ ocultado pelo
tempo de leitura e transferéncia de dados para a memoria
do dispositivo. Esse ganho de aproximadamente 1,5x pode
ser visualizado na Figura 8, onde as aplicagdes sequencial
e paralela realizaram a multiplicagdo de 196.777.216
posigdes de um vetor pela constante 8.

0,7

0,6 LN
0,5 ,M —Seqncial i
0,4 favAAv—ﬂv——-% ¢+

03 = Paralelo WGS 256

Tempo (ms)

0,2

0,1

0

1234567 891011121314151617181920
Execucgdo da aplicacdo

FIGURA 8 — MULTIPLICACAO DE VETOR POR CONSTANTE

2) Desperdicio de potencial de hardware: A
aplicagdo “ordenagdo por forga bruta” obtém enorme
ganho de desempenho quando programada em OpenCL de
forma paralela. Esse resultado ¢ obtido pois essa aplicagdo
contém caracteristicas que contribuem para um o6timo
ganho de desempenho ao ser executada em placas
aceleradoras com arquiteturas SIMD. A aplicag@o contém

2316-9915

carasteristicas como: i) mesma operagdo sobre diferentes
dados, ii) tempo de transferéncia dos dados muito inferior
ao tempo de processamento ¢ iii) ndo existéncia de
dependéncia de dados nem condigdo de corrida.
Aplicagdes com essas caracteristicas obtém bons
resultados ao serem paralelizadas. A Figura 9 ilustra o
ganho de desempenho da aplicagdo de “ordenagdo por
forca bruta” sobre a mesma aplicagdo sequencial ao
ordenar um vetor com cem mil posi¢des.

20

18
16 L ———~ A
14 @
T N/
E 10 = Sequencial
§ 8
6 “»¢+ N/
4 = Paralelo
2,
0 T T " —

1234567 891011121314151617181920
Execucdo da aplicacdo

FIGURA 9 — ORDENACAO POR FORCA BRUTA

VII. CONCLUSAO

A tendéncia de processadores com mais de um nucleo
jé ¢ realidade e infelizmente os cursos de graduacdo na
area de computacdo, possuem dificuldade para introduzir a
computagdo paralela em ambientes heterogéneos na sua
grade curricular. Essa dificuldade resulta em producéo de
codigos sequenciais para serem executados em maquinas
paralelas tendo como consequéncia enorme desperdicio de
hardware. Diminuir os desafios do ensino de programacao
paralela ¢ essencial para modificar esse cenario. Sendo
assim, trabalhos de pesquisa precisam dar continuidade a
essa linha de trabalho disponibilizando ferramentas e
técnicas que viabilizem o ensino de programacdo paralela
em ambientes heterogéneos nos cursos de graduagao.

Iniciar a programacdo em linguagens paralelas ¢ um
desafio e exige a quebra do paradigma de programagdo
sequencial porém, no cenario atual onde a era many-core é
uma realidade, programar de forma sequencial ¢ um
enorme erro. OpenCL permite ir além, vocé ndo s6
programa de forma paralela, mas programa usufruindo de
todos os beneficios de uma arquitetura heterogénea com
alto nivel de portabilidade entre diferentes fabricantes. A
explicagdo acerca da abstragdo OpenCL disponibilizada
nesse artigo, possibilita que as proximas etapas de estudo a
cerca da linguagem sejam menos complexas, pois
dominando os conceitos basicos, os demais sdo adquiridos
de forma gradual.

O proximo passo € validar a curva de aprendizado ao se
utilizar a abordagem proposta em cursos de graduagdo em
Computacdo. Outro passo importante é o desenvolvimento
de dois novos componentes para a abordagem proposta,
chamados de intermediario e avangado com novas
aplicagdes para possibilitar a continuidade do estudo de
forma mais abrangente. O componente intermediario sera
composto por aplicagdes mais complexas que o
introdutério, como por exemplo a aplicagdo K-means. Ja o
componente avangado abordara a escolha de algoritmos
paralelos de acordo com o problema a ser solucionado,

v.7,n.1, December 2018 - p.17

International Journal of Computer Architecture Education (IJCAE) 2316-9915

levando em consideragdo as caracteristicas da arquitetura
paralela alvo.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da
Coordenagdo de Aperfeicoamento de Pessoal de Nivel
Superior — Brasil (CAPES) — Coédigo de Financiamento
001, além do apoio do CNPq, FAPEMIG e PUC Minas.

REFERENCIAS

[11 A. Dakkak, C. Pearson and W. M. Hwu, "WebGPU: A Scalable
Online Development Platform for GPU Programming Courses,"
2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), Chicago, IL, 2016, pp. 942-
949 .

[2] I Finlayson, J. Mueller, S. Rajapakse and D. Easterling,
"Introducing Tetra: An Educational Parallel Programming System,"
2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, Hyderabad, 2015, pp. 746-751.

[3] S. Borkar, 2007. Thousand core chips: a technology perspective.
Proceedings of Annual Design Automation Conference (DAC)
pp-746-749.

[4] R. W. Keyes, "Fundamental limits of silicon technology,"
in Proceedings of the IEEE, vol. 89, no. 3, pp. 227-239, Mar 2001.

[5] C. H. Lu, C. S. Lin, H. L. Chao, J. S. Shen and P. A. Hsiung,
"Reconfigurable Multi-core Architecture -- A Plausible Solution to
the Von Neumann Performance Bottleneck," 2013 IEEE 7th
International Symposium on Embedded Multicore Socs, Tokyo,
2013,pp.159-164. doi: 10.1109/MCSo0C.2013.32.

[6] R. Muresano, D. Rexachs, E. Luque, "Learning parallel
programming: a challenge for university students", Procedia
Computer Science, Volume 1, Issue 1, 2010, pp. 875-883.

[77 AMUNSHI, "The opencl specification". In: Hot Chips 21
Symposium (HCS). IEEE, 2009. p. 1-314.

[8] M. Paprzycki, "Education: Integrating Parallel and Distributed
Computing in Computer Science Curricula," in [EEE Distributed
Systems Online, vol. 7, no. 2, pp. 6-6, Feb. 2006

[91 A. Marowka, "Think Parallel: Teaching Parallel Programming
Today," in IEEE Distributed Systems Online, vol. 9, no. 8, pp. 1-1,
Aug. 2008

[10] A. Shafi, A. Akhtar, A. Javed and B. Carpenter, "Teaching Parallel
Programming Using Java," 2014 Workshop on Education for High
Performance Computing, New Orleans, LA, 2014, pp. 56-63

[11] S. Oaks and H. Wong, Java Threads, Third Edition, 3rd ed.
O’Reilly Media, Inc., 2004

[12] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R.
Menon, Parallel Programming in OpenMP.Morgan Kaufmann
Publishers Inc., 2001.

[13] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and
Implementation (PLDI),1998, pp. 212-223.

[14] A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for
multi-core HPC systems using Java,” Journal of Parallel and
Distributed Computing, vol. 69, no. 6, pp. 532 — 545, 2009.

[15] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media,
Inc., 2009

[16] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to
Parallel Computing: Design and Analysis of Algorithms.
Benjamin/ Cummings Publishing Company, 1994.

[17] W. Gropp, K. Kennedy, L. Torczon, A. White, J. Dongarra, L
Foster, and G. C. Fox. The Sourcebook of Parallel Computing (The
Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann, November 2002.

[18] HENNESSY, John L.; PATTERSON, David A. Computer
architecture: a quantitative approach. Elsevier, 2011.

[19] FLYNN, M. J.; RUDD, K. W. Parallel Architectures. ACM
Computing Surveys (CSUR), 1996,pp. 67-70 .

v.7,n.1, December 2018 - p.18

