

Abordagem para Ensino de Programação Paralela
em Ambientes Heterogêneos Usando OpenCL

Lucas Henrique Silva Valentim, Henrique Cota de Freitas
Departamento de Ciência da Computação

Pontifícia Universidade Católica de Minas Gerais (PUC Minas)
Belo Horizonte, Brasil

lucas.h.valentim@gmail.com, cota@pucminas.br

Resumo—Este artigo apresenta uma abordagem para
ensino de programação paralela em ambientes heterogêneos
a ser utilizada nos cursos de graduação de computação. O
principal objetivo dessa abordagem é possibilitar uma
transição suave entre o paradigma de programação
sequencial para a programação paralela em ambientes
heterogêneos, capacitando os alunos de graduação a extrair
melhor desempenho das arquiteturas atuais. A linguagem de
programação utilizada é OpenCL, devido a sua alta
portabilidade, ser um padrão de linguagem livre de
programação e por ser uma linguagem de programação
paralela que possibilita utilizar todos os recursos de uma
arquitetura heterogênea. A abordagem de ensino é divida em
dois componentes, onde o componente introdutório aborda
as principais características da linguagem de programação
OpenCL, a identificação de hardware com suporte a
OpenCL em um ambiente heterogêneo e a configuração do
ambiente de desenvolvimento. O Componente de transição é
composto por aplicações com nível de complexidade
crescente, afim de possibilitar o ensino prático da
programação paralela em ambientes heterogêneos.

Palavras-chave— OpenCL, programação paralela,
arquiteturas paralelas, computação heterogênea, ensino

I. INTRODUÇÃO

Grande parte dos estudos científicos em arquiteturas na
década de 1980, até meados da década de 1990, estavam
focados em viabilizar o aumento de frequência dos
processadores. Esse período ficou conhecido como a
corrida pelo aumento da frequência. A estratégia de
aumento da frequência não vem sendo mais utilizada nos
moldes anteriores devido a limitações tais como: aumento
do consumo de energia para que haja ganho de
desempenho, dificuldade para conter dissipação de calor e
pelo hiato criado entre a velocidade em que o processador
processa as informações e a velocidade em que a memória
consegue entregar essas informações ao processador [3, 4].
Essa diferença de desempenho é conhecida como Gargalo
de von Neumann [5].

Para continuar atendendo a demanda por desempenho,
que é crescente e contínua, contornando as limitações
encontradas pelo grande aumento de frequência dos
processadores, surge a estratégia de fabricar chips com
mais de um processador. Essa estratégia tem como
resultado os processadores de propósito geral multi-core e
consequentemente os many-core. Os computadores
atualmente são compostos por uma arquitetura heterogênea
contendo tanto processador de propósito específico, e.g.,
núcleos de processamento de imagens, quanto de propósito

geral, o que torna possível extrair de cada aplicação o
melhor desempenho.

Essa classificação abrange quatro diferentes classes.
Para as arquiteturas sequenciais onde um único fluxo de
instruções é executado sobre um único fluxo de dados, a
classe é Single Instruction Single Data (SISD). Para
classificar os processadores vetoriais, onde um mesmo
fluxo de instruções é executado de forma paralela sobre
vários dados, a classe é Single Instruction Multiple Data
(SIMD). Os processadores com múltiplos fluxos de
instruções sobre um mesmo fluxo de dados, a classe é
Multiple Instruction Single Data (MISD) e para os
processadores onde múltiplos fluxos de instruções são
executados sobre múltiplos fluxos de dados, a classe é
chamada de Multiple Instruction Multiple Data (MIMD)
[19]. Das quatro classes disponibilizadas por Flynn,
somente três são encontradas nos processadores atuais,
haja vista que a classe MISD não é funcional para a
demanda das aplicações existentes. Neste trabalho, a
arquitetura heterogênea utilizada para simulação dos
resultados é composta por processadores que podem ser
classificados como MIMD e SIMD.

A mudança do cenário onde os processadores eram
sequenciais e sua arquitetura homogênea para
computadores paralelos e compostos por processadores de
propósito específico e geral, modifica o ensino de
programação e de arquitetura de computadores. No cenário
atual, para extrair o desempenho máximo das arquiteturas
é necessário saber programar de forma paralela [16] e ter
conhecimento sobre as diferentes propostas de arquiteturas
e suas características [6, 9]. Sendo assim, este trabalho tem
como objetivo discutir uma abordagem desenvolvida na
linguagem OpenCL, assim como apresentar um conjunto
de aplicações para iniciar o ensino de programação
paralela heterogênea nos cursos de computação.

O ensino de programação sequencial é ainda muito
forte nos cursos de computação. Quebrar esse paradigma
no cenário atual, onde a tendência de arquiteturas paralelas
e heterogêneas vem se confirmando, é necessário, uma vez
que a programação sequencial desperdiça um enorme
potencial de hardware [2, 6]. Alguns cursos de graduação
possuem ainda uma programação voltada para o modelo
sequencial onde o ensino de programação paralela e
também heterogênea se faz necessário visto a evolução das
arquiteturas de computadores, inclusive pessoais [8]. Uma
característica que dificulta o ensino de programação
paralela em ambientes heterogêneos é que além dos
conhecimentos necessários intrínsecos a programação,
existe também a necessidade de compreensão de conceitos

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.11

de arquitetura como: distribuição de cargas de trabalho,
análise de comportamento da aplicação em diferentes
arquiteturas, utilização eficiente dos núcleos de
processamento, atenção às dependências de dados [16, 17],
entre outras diversas características que influenciam no
desempenho e bom funcionamento da aplicação. Neste
cenário podemos concluir que é necessário que sejam
desenvolvidas pesquisas que disponibilizem técnicas e
ferramentas que cubram todas as especificidades deste tipo
de programação.

As próximas seções deste artigo estão organizadas da
seguinte maneira: na Seção II será exibida uma visão geral
da linguagem OpenCL, na Seção III serão discutidos os
trabalhos relacionados, na Seção IV serão identificados os
desafios no ensino da programação paralela em ambientes
heterogêneos, a Seção V demonstra a abordagem proposta
neste artigo, e na Seção VI são feitas análises de
desempenho acerca de algumas das aplicações usadas na
abordagem. Por fim, na Seção VII é apresentada a
conclusão e os trabalhos futuros.

II. VISÃO GERAL DE OPENCL

A linguagem de programação OpenCL disponibilizada
pelo consórcio Khronos Group, surge com o propósito de
unificar o cenário de programação paralela e heterogênea,
por meio de uma linguagem livre, tendo como objetivo o
aumento de produtividade dos programadores, evitando
que os mesmos tenham que se adaptar aos diferentes
fabricantes de hardware [8]. Para possibilitar a
portabilidade do código OpenCL entre os diferentes
fabricantes de hardware, que fazem parte do consórcio
Khronos Group, entre outros requisitos que viabilizam o
bom funcionamento do código, é necessário que estes
implementem o suporte a abstração arquitetural exigida
pela linguagem [8].

Um dos propósitos do conteúdo dessa seção é
introduzir as principais características da linguagem
OpenCL de forma reduzida e simplificada, o que não
substitui a necessidade de leitura da especificação
OpenCL. Esta seção se restringe a explicar as principais
características da versão OpenCL 1.2, pois nem todos os
fabricantes suportam as versões superiores. Vale ressaltar
que restringir à explicação a versão 1.2 não torna o
documento desatualizado, pois as características
exemplificadas aqui se mantêm na versão 2.0.

Essa explicação é dividida da seguinte forma: Na
primeira subseção é apresentada uma visão macro acerca
dos elementos que compõem o desenvolvimento a fim de
tornar claro o cenário de programação em OpenCL. Na
segunda subseção é apresentada uma representação gráfica
da abstração arquitetural que não necessariamente é fiel a
especificação em sua totalidade, pois o principal objetivo é
destacar as principais características dessa abstração, que
tem forte influência no desenvolvimento das aplicações.
Sendo assim, não será dada ênfase à explicação dos
detalhes arquiteturais. Na terceira subseção é apresentada
uma explicação a cerca do mapeamento do processamento
paralelo para os elementos de processamento (PE).

A. Primeira parte

Nesta subseção é apresentada uma visão macro do
cenário, onde os principais componentes OpenCL são

explicados. O entendimento desta etapa é de grande
importância para a continuidade do aprendizado. A Figura
1 ilustra os principais componentes.

FIGURA 1 – PRINCIPAIS COMPONENTES OPENCL

1) Visão Geral: Como ilustrado na Figura 1, a
proposta da programação em OpenCL é extrair de maneira
eficiente desempenho de uma arquitetura heterogênea.
Isso é possível, pois diferentes hardwares como CPU,
GPU, Xeon PHI e FPGA são programáveis através da
linguagem de programação OpenCL C e possibilitam que
sejam coordenados pelo controlador através de uma API
[7]. Portanto, é possível que trechos dos códigos sejam
executados em hardwares diferentes. Como exemplo um
trecho com baixo potencial paralelo é executado no
próprio Host sequencialmente e outro trecho com alto
potencial paralelo é escrito em OpenCL C e enviado para
ser executado na GPU (Graphics Processing Unit)
possibilitando, assim, extrair as qualidades de diferentes
propostas arquiteturais.

A programação em OpenCL é composta por duas
linguagens de programação semelhantes, são elas: API
Controladora que é desenvolvida em C e a linguagem de
programação OpenCL C que herdou grande parte das
características da linguagem C99 porém, com restrições
tais como não permitir o uso de recursividade [7].

A API controladora é utilizada para coordenar o
funcionamento de todos os dispositivos. Sendo assim, o
programador utiliza a API para informar aos dispositivos o
que eles devem fazer, por exemplo: quantas vezes devem
repetir a execução de um trecho de código, quais regiões
de memória estão disponíveis para os dispositivos, se um
comando enviado deve esperar pela finalização de outro,
entre outras diversas formas disponíveis para realizar a
coordenação dos dispositivos.

A linguagem de programação OpenCL C é a
linguagem utilizada para escrever o código que será
executado pelos dispositivos. Essa linguagem utiliza o
marcador Kernel para identificar as funções que serão
executadas pelos nós de processamento dos dispositivos.
Um Kernel é a menor instância de execução em um
processo paralelo e, para se atingir o resultado final, na
maioria das vezes, uma mesma função Kernel é chamada
repetidas vezes de forma similar a uma estrutura de
repetição for comumente utilizada nas linguagens
sequenciais.

B. Segunda parte

Após entender que a programação em OpenCL é uma
forma de se extrair desempenho através da paralelização
dos códigos, e da utilização eficiente das diferentes
características de um ambiente heterogêneo, é necessário
aprender como OpenCL viabiliza a paralelização desses

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.12

códigos e como ele possibilita que se gerencie os
dispositivos de diferentes fabricantes, afim de extrair deles
suas melhores características. Por fim, torna-se necessário
realizar ambas as tarefas mencionadas para evitar o enorme
desperdício de potencial de hardware como atualmente
grande parte das aplicações o fazem.

Sendo assim, nesta subseção será apresentada de forma
resumida alguns elementos que possibilitam e influenciam
a programação utilizando a linguagem OpenCL. O foco
não será na sintaxe de criação de código e sim, nos
conceitos arquiteturais que influenciam na portabilidade e
bom funcionamento das aplicações desenvolvidas nesse
cenário.

1) Dispositivo: A abstração OpenCL, citada
anteriormente e ilustrada na Figura 2, está fortemente
relacionada com os dispositivos, pois são eles que
implementam essa abstração tornando possível que os
programadores se preocupem com um único modelo
arquitetural sem se preocupar com as características
arquiteturais de cada fabricante.

a) Elemento de processamento (PE): Os elementos
de processamento (PE) são os responsáveis por executar
todas as linhas de código desenvolvidas em OpenCL C, ou
seja, são eles os responsáveis por executar todas as
instruções [7]. Se há 128 elementos de processamento na
sua placa de vídeo aceleradora, então, é possível executar
128 threads em paralelo. Outra opção é dividir o trabalho
entre as unidades de computação (CU). Sendo assim, os
elementos de processamento trabalham em conjunto ao
processar uma thread e compartilham informação entre si.
A escolha acerca da forma de execução é altamente
dependente das características da aplicação.

FIGURA 2 – ABSTRAÇÃO OPENCL

b) Unidade de Computação (CU): A unidade de
computação é um aglomerado de elementos de
processamento (PE) [7]. A unidade de computação em si
não executa nenhuma instrução. O seu papel é criar um
conjunto que pode dividir a carga de trabalho, se assim
desejar o programador, e se comunicar através de uma
memória compartilhada entre todos os PE's de um mesmo
CU.

2) Memória: A abstração OpenCL especifica
quatro diferentes regiões de memória, a saber: memória
global, privada, constante e local [7], que podem ser

visualizadas na Figura 3. A utilização correta das
memórias resulta em aumento de desempenho, pois pode
melhorar a comunicação e diminuir a latência.

FIGURA 3 – REGIÕES DE MEMÓRIA

a) Memória Privada: cada elemento de
processamento (PE) tem sua própria memória privada e
nenhum outro elemento de processamento ou mesmo o
controlador tem acesso a essa região de memória.

b) Memória Local: Toda unidade de computação
(CU) tem sua memória local. Essa memória é
compartilhada exclusivamente entre os elementos de
processamento (PE) que estão contidos nessa CU.

c) Memória Global: A memória Global é acessada
tanto pelo controlador, quanto por todos os elementos de
processamento (PE). Existe a diferença de persistência dos
dados entre a memória Global e as demais.

d) Memória Constante: A memória Constante é
acessível a todos os elementos de processamento (PE)
porém somente para leitura.

C. Terceira parte

Essa subseção apresenta os conceitos necessários para
o entendimento da estrutura de repetição paralela utilizada
na linguagem OpenCL, e como balancear sua carga entre
os diversos núcleos de forma a evitar que núcleos fiquem
ociosos.

1) ND-Range: Para quebrar o paradigma
sequencial e iniciar a programação paralela, a linguagem
OpenCL utiliza o conceito ND-Range. Este conceito
consiste em disponibilizar um conjunto de índices onde
cada índice representa uma instância da função Kernel,
que deve ser executada. A melhor forma para entender
este conceito é pensar que o conjunto de índices é uma
estrutura de repetição for, onde cada índice é uma iteração
e a quantidade de índices gerados é igual ao limite de
repetições definidos no for, este conjunto de índices é
denomidado como WorkSize (WS). Lembrando que essa
comparação é somente uma técnica para facilitar o
entendimento, pois os índices diferentemente do for são
executados de forma paralela, não precisando que a
iteração anterior tenha acontecido para que a próxima
aconteça. Para facilitar o entendimento a Figura 4 ilustra
essa comparação.

FIGURA 4 – COMPARAÇÃO FOR / ND-RANGE

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.13

2) Mapeamento ND-Range: Para facilitar o
entendimento do mapeamento dos Kernels aos elementos
de processamento (PE) imagine que uma placa de vídeo
que tem suporte a OpenCL, contenha uma única unidade
de computação (CU) e somente quatro elementos de
processamento (PE). A aplicação necessita que quatro
posições de um vetor sejam multiplicadas por uma
constante de valor 2. A Figura 5 ilustra o mapeamento da
função Kernel Y * 2 e quais as posições do vetor cada
elemento de processamento irá multiplicar. O módulo de
transição contém esse código implementado e pode ser
utilizado como ponto de partida para iniciar a
programação em OpenCL.

FIGURA 5 – MAPEAMENTO DA FUNÇÃO KERNEL Y * 2

3) WorkGroup: Como explicado anteriormente, a
paralelização em OpenCL utiliza o conceito ND-Range.
Este conceito possibilita a paralelização através de
índices. Quem determina a quantidade de índices é o
tamanho do trabalho (WS). O WS deve ser informado
pelo programador ao escrever o código através da API C.
Os índices gerados devem ser divididos e distribuídos nas
unidades de computação (CU's) para serem executados
pelos elementos de processamento (PE's). É recomendado
que o próprio programador realize essa divisão pois,
assim, ele garante que nenhuma CU ficará ociosa. A
divisão do trabalho é realizada criando grupos de trabalho
(WG). A Figura 6 ilustra a divisão para fins didáticos,
deixando núcleos ociosos propositalmente afim de
demonstrar possíveis desperdícios de potencial de
hardware. O tamanho definido para o WG tem impacto no
desempenho final do trecho paralelo, pois tem influência
direta na utilização dos elementos de processamento e das
regiões de memória.

FIGURA 6 – MAPEAMENTO DA FUNÇÃO KERNEL COM WORK GROUP

Todo hardware que suporta OpenCL disponibiliza o

tamanho máximo de WG suportado, porém, apesar de
evitar que núcleos fiquem ociosos, nem sempre a
quantidade máxima é a que terá melhor desempenho. Este

artigo não irá entrar neste nível de detalhamento por se
tratar de algo que exige maior proximidade com os
conceitos de OpenCL e de arquitetura. Recomenda-se que
inicialmente seja utilizada a quantidade máxima
disponibilizada pelo fabricante.

III. TRABALHOS RELACIONADOS

A. WebGPU

Dakkak et al. [1] desenvolveram uma plataforma
escalável de desenvolvimento online para cursos de
programação em GPU. Os usuários da plataforma têm
acesso a um ambiente onde podem desenvolver e executar
códigos paralelos em OpenCL, OpenACC, CUDA e MPI.
O desenvolvimento dessa plataforma resolve alguns
problemas inerentes aos cursos gratuitos e online de
programação que são: reduz a exigência de que todos os
alunos tenham um computador pessoal semelhante aos
comercializados atualmente, ambiente de programação
com diversos fabricantes e diferentes configurações para
iniciar o desenvolvimento, capacidade de armazenar os
exercícios executados pelos alunos e as modificações
realizadas ao longo do tempo, entre outros inúmeros
benefícios disponibilizados por essa pesquisa. Porém,
nenhum desses benefícios cobre a proposta deste artigo,
que é disponibilizar um conjunto de aplicações que
auxiliem no início da programação paralela em ambientes
heterogêneos e no entendimento de suas características
arquiteturais, pois a plataforma WebGPU disponibiliza
somente o ambiente que viabiliza esse aprendizado e não o
material didático a ser utilizado nos cursos.

B. Tetra

Finlayson et al. [2] acreditam que os principais
obstáculos para o ensino de programação paralela na
graduação são as linguagens de alto desempenho tais
como: C, C++, Fortran, OpenCL e CUDA, classificando-as
como linguagens de difícil utilização. Outro obstáculo,
segundo os autores, é que os ambientes de
desenvolvimento integrados (IDEs) e as ferramentas de
depuração de código existentes para programação paralela
disponíveis atualmente, são difíceis de usar, proprietárias
ou contém poucos recursos de depuração de código. Para
solucionar os obstáculos identificados anteriormente
Finlayson et al. propõem a linguagem de programação
Tetra, através de um ambiente de desenvolvimento
integrado. A linguagem Tetra vem para facilitar o
aprendizado de programação paralela, abrindo mão do
desempenho, mas com foco na simplicidade, contendo
características de linguagem de alto nível e realizando a
paralelização por trechos através de marcadores, não
exigindo inicialmente grandes mudanças no código
sequencial, diferentemente de OpenCL e CUDA. O
ambiente de desenvolvimento proposto vem com o
objetivo de facilitar a execução e depuração do código
paralelo, característica relevante para entendimento da
execução dos diversos trechos paralelos.

 Apesar de muito relevante, o esforço realizado pelos
autores ao desenvolver a linguagem Tetra e o ambiente que
possibilite principalmente depurar a execução de códigos
paralelos, não foca no aprendizado de programação
paralela para alto desempenho como a pesquisa realizada
nesse artigo. Entretanto, mesmo não tendo o mesmo foco,

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.14

1https://github.com/cart-pucminas/OpenCL-freshmen

a linguagem Tetra e o conjunto de aplicações apresentadas
nesse artigo desenvolvido em OpenCL, podem ser
utilizados em conjunto para o ensino de programação
paralela. Sendo a linguagem Tetra responsável por
apresentar o universo paralelo, e o conjunto de aplicações
proposto nesse artigo responsável por realizar uma
transição suave entre a programação sequencial para a
programação de alto desempenho paralela e heterogênea.

C. Ensino de programação paralela usando Java

Shafi et al. [10] desenvolveram as etapas e conteúdos
de um curso para ensino de programação paralela, com o
intuito de possibilitar que engenheiros de software
tivessem contato com o novo paradigma de programação
ao cursar o bacharelado em Engenharia de Software na
National University of Sciences and Technology - (NUST)
no Paquistão. O curso no primeiro momento introduz os
conceitos de programação paralela, hardwares
aceleradores, métricas para análise de desempenho e
sistemas de memória distribuída e compartilhada. Após a
introdução, o curso é dividido em três seções. A primeira
seção cobre técnicas de programação paralela em sistemas
de memória compartilhada, utilizando as linguagens de
programação OpenMP [12], Intel Cilk Plus [13] e Java
threads [11]. A segunda seção apresenta ferramentas de
programação e APIs para programação paralela, em
sistemas com memória distribuída, tendo como foco a
utilização do software MPJ Express [14] para atividades
práticas de desenvolvimento das aplicações paralelas. A
terceira e última seção introduz a programação paralela
avançada através da utilização de aceleradores de propósito
geral GPU e o modelo de programação MapReduce
através da utilização do Hadoop [15].

O trabalho desenvolvido por Shafi et al. é de grande
valia para o meio acadêmico, pois aborda temas atuais que
se relacionam com a programação paralela e disponibiliza
uma metodologia para ensino destes conceitos. Porém,
diferentemente da proposta desse artigo, a utilização de
aceleradores é superficial segundo os próprios autores [10].

IV. DESAFIOS DE ENSINO

Diferente da estratégia para extrair maior desempenho
dos processadores por meio do grande aumento de
frequência, a estratégia em arquiteturas multi/many-core
exige modificação do software para atingir o potencial do
hardware disponível [6]. Sendo assim, os programas
sequenciais que aumentavam de desempenho
simplesmente trocando o processador para um com maior
frequência, agora precisam ser reprogramados de forma a
tornar possível a utilização de todos os núcleos. Além da
necessidade de alteração do código sequencial para o
código paralelo, com a introdução das arquiteturas
heterogêneas, é necessário também identificar quais
propostas de arquitetura executam melhor um trecho de
código da aplicação. Como por exemplo, trechos onde a
execução em aceleradores como GPU têm ganho de
desempenho sobre a execução em CPU.

Neste novo contexto, aumenta-se a exigência acerca
dos conhecimentos necessários para o desenvolvimento de
aplicações que não desperdicem potencial de hardware.
Portanto, um dos obstáculos para o ensino de programação
nesse contexto está relacionado com a diminuição da
abstração da arquitetura para aplicações de alto nível.

Outro obstáculo para o ensino é a quebra de paradigma
de programação sequencial, sendo necessário introduzir as
boas práticas de programação, a análise de trechos com
potencial paralelo e análise de dependência de dados. Esse
conjunto de exigências cria um conjunto de barreiras para
o ensino em cursos de graduação, sendo necessário o
desenvolvimento de técnicas e ferramentas que auxiliem
na realização de uma transição suave entre a programação
sequencial e a programação paralela de alto desempenho.

V. ABORDAGEM PROPOSTA

A abordagem proposta é composta por dois
componentes. O primeiro é o Componente Introdutório,
que é composto por uma aplicação que auxilia o
programador a identificar os elementos de hardware que
compõem a sua arquitetura, um resumo que auxilia a
entender conceitualmente os modelos da linguagem
OpenCL e como programar esses modelos para extração de
maior desempenho da arquitetura alvo e, por fim, por
instruções que possibilitam a reprodução de todos os
resultados obtidos ao executar as aplicações do
componente de transição, para fins de análise ou
preparação de ambiente para iniciar a programação
paralela. Já o Componente de Transição é composto por
quatro aplicações com níveis de complexidade diferentes,
iniciando com uma aplicação bem simples até uma
aplicação de média complexidade. Todas as aplicações
desenvolvidas que integram o componente de transição,
implementam os conceitos de otimização de código com
foco nas arquiteturas disponíveis no componente
introdutório. A linguagem de programação OpenCL foi
escolhida por ser uma linguagem de código aberto e ter
alta portabilidade entre diferentes fabricantes de hardware,
evitando assim, restringir o ambiente de desenvolvimento
dos usuários da abordagem proposta.

A. Componente Introdutório

Identificação do ambiente: A identificação do
ambiente é feita através da execução da aplicação
desenvolvida para tal. Essa aplicação identifica as
plataformas OpenCL, os dispositivos disponíveis e seus
fabricantes. É utilizada por todas as outras para viabilizar a
criação do contexto solicitado ao se programar em
OpenCL.

 Resumo da abstração OpenCL: OpenCL é uma
linguagem com alta portabilidade. Essa portabilidade é
possível devido ao consórcio criado pelo Khronos Group
que é integrado por empresas como AMD, Intel, Altera
(adquirida pela Intel) Nvidia, IBM, entre outros fabricantes
de hardware que concordaram em suportar a linguagem
OpenCL. Para que o programador não tenha que se
preocupar com as diferenças entre as arquiteturas de
diferentes fabricantes, OpenCL disponibiliza uma
abstração de arquitetura, onde todos os fabricantes devem
implementar essa abstração. Para que o programador inicie
a programação em OpenCL é necessário que ele tenha
compreendido os conceitos da mesma. Para auxiliar os
estudantes é disponibilizado um resumo1 que aborda as
principais características dessa abstração, viabilizando
assim, o início da prática de programação.

Instruções para reprodução dos resultados: As
aplicações disponibilizadas no componente de transição
foram executadas utilizando a ferramenta de

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.15

1https://github.com/cart-pucminas/OpenCL-freshmen

desenvolvimento Microsoft Visual Studio Comunnity
2017, uma placa aceleradora AMD Radeon R7 360 e um
processador Xeon E3-1240. Para que seja possível
reproduzir os resultados obtidos, as configurações
necessárias foram disponibilizadas no arquivo
"Configuração do ambiente de desenvolvimento" que está
contido no componente introdutório1. Instruções também
podem ser utilizadas para configuração do ambiente para
iniciar a programação de outras aplicações.

Introdução de conceitos essenciais: Para
compreensão do ganho de desempenho, e do modelo de
programação, são apresentados conceitos de paralelismo,
dependência de dados, concorrência, balanceamento de
carga, paralelismo de dados e de tarefas. Conceitos de
arquitetura também são apresentados, tais como:
hierarquia de memória, memória distribuída e centralizada
e arquitetura de von Neumann.

B. Componente de transição

Multiplicação de vetor simples: Esta aplicação
consiste na multiplicação de todos os elementos de um
vetor por uma constante de forma paralela, ou seja, cada
núcleo de processamento é responsável por realizar a
multiplicação de um elemento do vetor. Esta aplicação foi
escolhida com o objetivo de introduzir a programação
paralela, pois além de sua simplicidade, é uma aplicação
que facilmente se identifica a não existência de
dependência de dados, possibilitando a divisão de trabalho
de forma paralela. A aplicação multiplicação de vetor
simples é a aplicação de menor complexidade do conjunto
proposto nesse artigo, sendo a aplicação recomendada para
o primeiro contato do programador com a prática de
programação paralela.

Multiplicação de vetor x vetor: A multiplicação de
vetor por vetor contém todas as características que a
multiplicação de vetor simples possui, porém com
pequenas diferenças que aumentam um pouco a
complexidade da aplicação. Nessa aplicação, cada
elemento de um vetor é multiplicado pelo mesmo elemento
de outro vetor, tendo como saída um vetor com o resultado
da multiplicação. Essa aplicação foi escolhida para compor
o conjunto proposto justamente para que o aumento de
complexidade fosse crescente e possibilitasse uma
transição suave entre os diferentes paradigmas de
programação.

Multiplicação matriz x constante: Diferentemente da
aplicação multiplicação de vetores, a multiplicação de
matrizes utilizando a linguagem OpenCL exige que se
utilize um recurso disponibilizado pela linguagem que é a
possibilidade de lidar com mais de uma dimensão em um
trecho paralelo. Por conta dessa diferença, essa aplicação
foi escolhida para fazer parte da abordagem.

Ordenação: A aplicação de ordenação é um algoritmo
de força bruta sem dependência de dados. Esse algoritmo
foi escolhido para demonstrar o enorme potencial de
hardware que pode ser desperdiçado ao se programar de
forma sequencial.

Redução numérica: A aplicação de redução numérica
consiste em retornar a soma de todos os elementos de um
vetor de forma paralela. Essa aplicação foi escolhida, pois
nela é possível introduzir os conceitos de corrida e

dependência de dados, aumentando assim a complexidade
da aplicação e possibilitando o ensino de conceitos
importantes da programação paralela.

VI. ANÁLISE DE DESEMPENHO

Esta seção é dividida em duas partes, onde a primeira
detalha o ambiente utilizado para produção dos resultados,
e a segunda apresenta três resultados obtidos utilizando
duas aplicações da proposta com o objetivo de
conscientizar, tanto a necessidade de desenvolvimento com
foco na arquitetura, quanto na necessidade de evitar o
desperdício de hardware através da paralelização dos
códigos sequenciais.

A. Materiais

Para que o controlador consiga enviar os comandos aos
dispositivos, foi necessário instalar a implementação
OpenCL da AMD e configurar a IDE Microsoft Visual
Studio Community 2017. O sistema operacional utilizado
foi o Windows 10 de 64 bits, a arquitetura foi composta
por um processador de propósito geral Intel Xeon E3-
1240, uma placa aceleradora gráfica AMD Radeon R7 360
e 64 Gigabytes de memória principal.

A GPGPU AMD Radeon R7 360 contém 768
elementos de processamento. O processo de fabricação do
chip é de 28nm, o Clock dos elementos de processamento
é de 1050MHz, a largura de banda de comunicação com a
memória é de 128-bit com capacidade máxima de
transferência de 104 GB/s e contém capacidade de
armazenamento de 2GB GDDR5 em sua memória.

O processador Intel Xeon E3-1240 contém 4 núcleos
de processamento com a tecnologia SMT - Simultaneous
Multithreading que possibilita a execução de 8 threads em
paralelo. O processo de fabricação do chip é de 32 nm, a
frequência máxima dos núcleos é de 3,7 GHz e tem
capacidade de armazenamento de 128 kB em sua cache
nível 1, 1024 kB em sua cache nível 2 e 8 MB em sua
memória cache nível 3.

As análises de desempenho realizadas utilizando as
aplicações de ordenação e de multiplicação simples
tiveram carga de trabalho fixa e foram executadas vinte
vezes, a unidade de tempo está em milissegundos para
todas as avaliações.

B. Resultados de desempenho

A primeira análise mostra o forte impacto ao se
programar em OpenCL sem se preocupar com a arquitetura
dos dispositivos que estão sendo utilizados. A segunda
análise apresenta o impacto de uma característica da
aplicação multiplicação de vetor simples sobre seu
desempenho ao ser paralelizada em um ambiente
heterogêneo e a terceira análise mostra o enorme
desperdício de hardware ao se programar de forma
sequencial.

Impacto do grupo de trabalho: Ao se programar em
OpenCL e não distribuir a carga de trabalho entre as
unidades de computação do dispostivo corretamente, é
possível que potencial de hardware seja desperdiçado. A
Figura 7 ilustra o possível desperdício de hardware caso o
programador não distribua corretamente a carga de
trabalho para a aplicação “multiplicação de vetor

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.16

simples”, pois ao se dimensionar corretamente a carga de
trabalho para as unidades de computação evita-se que
alguma unidade de computação ou elemento de
processamento fique ocioso. No caso onde a carga é
dimensionada corretamente, é possível melhorar o
desempenho da aplicação “multiplicação de vetor
simples” em aproximadamente três vezes.

FIGURA 7 – INFLUÊNCIA DO WORKGROUP SIZE

1) Análise da aplicação multiplicação de vetor
simples: Para que uma aplicação tenha um bom ganho de
desempenho ao ser executada em um acelerador como a
arquitetura de GPU utilizada, uma das características
necessárias da aplicação é que a latência de acesso à
memória seja ocultada pela carga de trabalho que será
realizada sobre os dados.

A aplicação “multiplicação de vetor simples” realiza
poucas operações lógicas após transferir todo o vetor para
a memória do dispositivo. Sendo assim, o seu ganho de
desempenho sobre a aplicação sequencial é ocultado pelo
tempo de leitura e transferência de dados para a memória
do dispositivo. Esse ganho de aproximadamente 1,5x pode
ser visualizado na Figura 8, onde as aplicações sequencial
e paralela realizaram a multiplicação de 196.777.216
posições de um vetor pela constante 8.

FIGURA 8 – MULTIPLICAÇÃO DE VETOR POR CONSTANTE

2) Desperdício de potencial de hardware: A
aplicação “ordenação por força bruta” obtém enorme
ganho de desempenho quando programada em OpenCL de
forma paralela. Esse resultado é obtido pois essa aplicação
contém características que contribuem para um ótimo
ganho de desempenho ao ser executada em placas
aceleradoras com arquiteturas SIMD. A aplicação contém

carasterísticas como: i) mesma operação sobre diferentes
dados, ii) tempo de transferência dos dados muito inferior
ao tempo de processamento e iii) não existência de
dependência de dados nem condição de corrida.
Aplicações com essas características obtém bons
resultados ao serem paralelizadas. A Figura 9 ilustra o
ganho de desempenho da aplicação de “ordenação por
força bruta” sobre a mesma aplicação sequencial ao
ordenar um vetor com cem mil posições.

FIGURA 9 – ORDENAÇÃO POR FORÇA BRUTA

VII. CONCLUSÃO

A tendência de processadores com mais de um núcleo
já é realidade e infelizmente os cursos de graduação na
área de computação, possuem dificuldade para introduzir a
computação paralela em ambientes heterogêneos na sua
grade curricular. Essa dificuldade resulta em produção de
códigos sequenciais para serem executados em máquinas
paralelas tendo como consequência enorme desperdício de
hardware. Diminuir os desafios do ensino de programação
paralela é essencial para modificar esse cenário. Sendo
assim, trabalhos de pesquisa precisam dar continuidade a
essa linha de trabalho disponibilizando ferramentas e
técnicas que viabilizem o ensino de programação paralela
em ambientes heterogêneos nos cursos de graduação.

Iniciar a programação em linguagens paralelas é um
desafio e exige a quebra do paradigma de programação
sequencial porém, no cenário atual onde a era many-core é
uma realidade, programar de forma sequencial é um
enorme erro. OpenCL permite ir além, você não só
programa de forma paralela, mas programa usufruindo de
todos os benefícios de uma arquitetura heterogênea com
alto nível de portabilidade entre diferentes fabricantes. A
explicação acerca da abstração OpenCL disponibilizada
nesse artigo, possibilita que as próximas etapas de estudo a
cerca da linguagem sejam menos complexas, pois
dominando os conceitos básicos, os demais são adquiridos
de forma gradual.

O próximo passo é validar a curva de aprendizado ao se
utilizar a abordagem proposta em cursos de graduação em
Computação. Outro passo importante é o desenvolvimento
de dois novos componentes para a abordagem proposta,
chamados de intermediário e avançado com novas
aplicações para possibilitar a continuidade do estudo de
forma mais abrangente. O componente intermediário será
composto por aplicações mais complexas que o
introdutório, como por exemplo a aplicação K-means. Já o
componente avançado abordará a escolha de algoritmos
paralelos de acordo com o problema a ser solucionado,

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.17

levando em consideração as características da arquitetura
paralela alvo.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) – Código de Financiamento
001, além do apoio do CNPq, FAPEMIG e PUC Minas.

REFERÊNCIAS
[1] A. Dakkak, C. Pearson and W. M. Hwu, "WebGPU: A Scalable

Online Development Platform for GPU Programming Courses,"
2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), Chicago, IL, 2016, pp. 942-
949 .

[2] I. Finlayson, J. Mueller, S. Rajapakse and D. Easterling,
"Introducing Tetra: An Educational Parallel Programming System,"
2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, Hyderabad, 2015, pp. 746-751.

[3] S. Borkar, 2007. Thousand core chips: a technology perspective.
Proceedings of Annual Design Automation Conference (DAC)
pp.746-749.

[4] R. W. Keyes, "Fundamental limits of silicon technology,"
in Proceedings of the IEEE, vol. 89, no. 3, pp. 227-239, Mar 2001.

[5] C. H. Lu, C. S. Lin, H. L. Chao, J. S. Shen and P. A. Hsiung,
"Reconfigurable Multi-core Architecture -- A Plausible Solution to
the Von Neumann Performance Bottleneck," 2013 IEEE 7th
International Symposium on Embedded Multicore Socs, Tokyo,
2013,pp.159-164. doi: 10.1109/MCSoC.2013.32.

[6] R. Muresano, D. Rexachs, E. Luque, "Learning parallel
programming: a challenge for university students", Procedia
Computer Science, Volume 1, Issue 1, 2010, pp. 875-883.

[7] A.MUNSHI, "The opencl specification". In: Hot Chips 21
Symposium (HCS). IEEE, 2009. p. 1-314.

[8] M. Paprzycki, "Education: Integrating Parallel and Distributed
Computing in Computer Science Curricula," in IEEE Distributed
Systems Online, vol. 7, no. 2, pp. 6-6, Feb. 2006

[9] A. Marowka, "Think Parallel: Teaching Parallel Programming
Today," in IEEE Distributed Systems Online, vol. 9, no. 8, pp. 1-1,
Aug. 2008

[10] A. Shafi, A. Akhtar, A. Javed and B. Carpenter, "Teaching Parallel
Programming Using Java," 2014 Workshop on Education for High
Performance Computing, New Orleans, LA, 2014, pp. 56-63

[11] S. Oaks and H. Wong, Java Threads, Third Edition, 3rd ed.
O’Reilly Media, Inc., 2004

[12] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R.
Menon, Parallel Programming in OpenMP.Morgan Kaufmann
Publishers Inc., 2001.

[13] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and
Implementation (PLDI),1998, pp. 212–223.

[14] A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for
multi-core HPC systems using Java,” Journal of Parallel and
Distributed Computing, vol. 69, no. 6, pp. 532 – 545, 2009.

[15] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media,
Inc., 2009

[16] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to
Parallel Computing: Design and Analysis of Algorithms.
Benjamin/ Cummings Publishing Company, 1994.

[17] W. Gropp, K. Kennedy, L. Torczon, A. White, J. Dongarra, I.
Foster, and G. C. Fox. The Sourcebook of Parallel Computing (The
Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann, November 2002.

[18] HENNESSY, John L.; PATTERSON, David A. Computer
architecture: a quantitative approach. Elsevier, 2011.

[19] FLYNN, M. J.; RUDD, K. W. Parallel Architectures. ACM
Computing Surveys (CSUR), 1996,pp. 67-70 .

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.7, n.1, December 2018 - p.18

