Computer Architecture Education (IJCAE)

Teaching Computer Architectures through

Automatically Corrected Projects:

Preliminary

Results

Mauricio Lima Pilla
Center for Technological Development
Federal University of Pelotas
Pelotas, RS, Brazil 96010-610
Email: pilla@inf.ufpel.edu.br

Abstract—In this paper, I report preliminary results of using
GitHub and Travis CI as tools for assigning and grading projects
in a course on Computer Architecture and Organization for
undergraduate students in Computer Science and Engineering.
Besides addressing the topics of the course itself, students are
presented with development tools used in the industry with a
hands-on experience. I present the workflow for assigning and
grading students, some helper scripts, and results on submissions.
Students tend to commit their code near the deadline, which
is both because they procrastinate and they are still learning
the philosophy behind version control, hence even with allegedly
having coded part of the assignment, they leave commits for when
the entire project is done.

Index Terms—Computer Architectures, Memory Hierarchies,
Teaching in Computer Science.

I. INTRODUCTION

Automatic grading of assignments is not a novelty for a
while. It is just recently that the availability of open, cloud-
based versioning and continuous integration system started to
make it easier to deploy solutions that are not ad-hoc in nature.

In this paper, I show a process for automatically distributing
and collecting assignments using tools available free of charge
in Computer Science and Engineering courses. A grading
library in C and scripts for automation of grading tasks are
provided.

My work is heavily influenced by the reports of Gennarelli
in two case studies in GitHub: David J. Malan’s CS50 classes
in Harvard [1] and Omar Shaikh’s C++ classes in San Fran-
cisco State University [2]. The former used GitHub and a
grading script for instant correction of assignments, while the
later included Travis CI into his workflow.

Besides the advantages of having an instantaneous feedback
about assignments, students are also presented to tools widely
used in the industry. Although some students already had
contact with GitHub before this course, source versioning,
continuous integration through Travis CI, and the case for
test-driven development are not formally required by other
undergraduate courses in my University to the best of my
knowledge. Hence, alternatives such as the Virtual Program-
ming Lab for Moodle (VPL) [3] for automatic grading code
are interesting but they do not enforce the aspect of getting

students to use industrial grade development tools. Other
authors such as Lawrence et al. [4] agree that knowledge of
version control is important for students majoring not only in
Computer Science and Engineering.

This paper is structured as follows. First, I present an
overview of the case test course in Section II. Afterwards,
Section III describes the tools that I used. Section IV dis-
cusses the workflow from submitting a new assignment to its
grading. Preliminary results obtained with the application of
this workflow are shown in Section V. Finally, final remarks
and future work are presented in Section VI.

II. LAY OF THE LAND: THE COURSE

The course “Computer Organization and Architecture II”
(Arquitetura e Organizagcdo de Computadores I (AOC2) in the
Portuguese original) is taught in both undergraduate courses
in Computer Science (CS) and Computer Engineering (CE)
in our school. It is preceded by “Computer Organization and
Architecture I” and other related courses in digital systems
and programming. In CS curricula, it is taught in the fourth
semester, and for CE undergraduate students, in the fifth.

In this course, students learn about memory hierarchies,
virtual memory, input and output, buses, and topics on ad-
vanced computer architectures (such as superscalar processors,
simultaneous multi-threading, and multi-core architectures).
AOC2 is pre-requisite for attending “Operating Systems” in
both courses, and it is expected to provide the understanding
of the underlying hardware and how it affects the design and
implementation of operating systems.

It is important for the discussion of this paper that the most
of the preceding programming courses in both CS and CE
courses employ C as their language of choice, hence students
should be reasonably acquainted with the usage of pointers at
the point they course AOC2.

This is the first semester that I am lecturing this specific
course in this University. Before that, I lectured undergraduate
courses in Computer Architectures in another University, and
I have also been lecturing graduate courses in this area since
2007, as my D.Sc. degree is in this field. I have also been

v.6, n.1, December 2017 - p.62

Computer Architecture Education (IJCAE)

lecturing other related courses such as Operating Systems for
even more years.

Currently, I set up an evaluation comprised of three projects
which sum up 60% of the grade, and an exam for the
remaining 40%, for a total of 10 points. Students will pass if
they either achieve at least a 7. If they do not have a pass grade
but at least 3 points, they are allowed to try a final exam, where
the average between their previous grade and the exam grade
must be at least 5, accordingly to local regulations. Therefore,
there is a strong motivation for doing the projects in a timely
manner.

III. TooLs

Many tools were employed in order to develop the workflow
explored in this paper. In the following subsections, a short
description of each one and its usefulness for teaching AOC2
are described. All those tools are currently gracefully provided
free of charge.

A. GitHub Classroom

GitHub Classroom [5] is a GitHub initiative to reach out
for the education public. It provides automated facilities to dis-
tribute starter code, give students feedback, provide automated
tests and collect assignments [6]. These tasks were previously
executed through a set of scripts called teachers_pet [7].

Repositories are hosted in GitHub and can be accessed by
the same login and tools that students have for other projects.
Teachers may apply for free educational organizations in
GitHub, where there is no restriction in the number of private
repositories.

B. Travis CI

Travis CI [8] is a Continuous Integration [9] service that in-
tegrates with GitHub. As modifications are pushed to GitHub’s
repositories, Travis CI’s hooks clone the repository, then look
fora .travis.yml file with a build recipe. Figure 1 shows
an example of such a recipe. It asks Travis CI to load a Linux
image, install GCC, clone the repository and then run “make”
on it.

sudo: false
language: cpp
compiler:

— gcc
0s:

— linux

addons:
apt:
sources :
packages:
— gce

script:
— make

Figure 1. Example of Travis’ recipe file.

The results are presented in Travis CI's Dashboard and are
available for all members of the project. Travis CI's website
has two versions: https://travis-ci.org for public repositories

(i.e. that everybody can clone and fork), and https://travis-ci.
com for private repositories. I used the later as students are
required to keep their repositories privates to avoid plagiarism.

C. Google Classroom

Google Classroom [10] is a virtual classroom environment
that integrates well with the G Suite provided by Google.
It provides facilities such as support for notes, assignments,
sending email to students, sharing documents, and others.

For the purpose of this work, Google Classroom was used
for sharing the link for the projects in GitHub, to answer
general doubts about the specification, and to return grades.
The later was done in order to simplify the collection of grades
in the end of the semester. Another virtual classroom such as
Moodle! would fulfill these needs as well.

D. Sherlock

The Sherlock Plagiarism Detector [11] is a C program
aptly named after Conan Doyle’s famous sleuth that identifies
similarities among text files by first calculating signatures, and
later comparing them. It can be configured for different levels
of similarity, and the default setup is to warn if files are 20%
or more similar to each other.

Sherlock is not accurate enough to detect all kinds of pla-
giarism and does not substitute manual inspection. If students
change variable names and the ordering of functions in their
code, Sherlock may not find it. It does not check against code
available in the Internet too. However, Sherlock provides a first
assessment of code similarity among students’ projects which
I found useful as the projects I design are specific enough to
make it harder to find ready code elsewhere.

Currently, Sherlock is provided without a specific license.

E. Simpletest and Simplegrade

Simpletest? is a Unit Test library in C designed to be
lightweight and simple to use. It was developed by my
(then) Masters student Vitor Alano de Ataides to help me
teach students how to design and apply case tests to their
assignments.

It is a single header file with the functions used to test so
the students do not need to worry about compiling and linking
additional code to theirs. Four functions are designed to just
output formatted information about what is expected for each
test defined by the user (Figure 2).

void DESCRIBE(char* text);
void WHEN(char* text);
void IF(charx text);

void THEN(charx text);

Figure 2. Simpletest’s formatted output functions. Source: [12].

Where text is the string to be displayed. Colors are
different for each one of the functions. Simpletest is not
structured, i.e., the programmer may use these functions in

Thttps://moodle.org
Zhttps://github.com/bundz/simpletest

v.6, n.1, December 2017 - p.63

Computer Architecture Education (IJCAE)

any order (or not use them at all) for each test, although this
specific order is recommended.
The current provided tests are as listed in Figure 3:

void
void
void
void
void
void

isNull (void= ptr);

isNotNull(void * ptr);
isGreaterThan (int num, int value);
isEqual (int num, int value);
isNotEqual (int num, int value);
isLesserThan(int num, int value);

Figure 3. Simpletest’s tests. Source: [12].

For each test, the programmer provides an input which is
compared to an expected result. The first two functions do not
require the expected result, as they just check for null pointers.
The output is printed in green, if the test PASSED, or in red,
if NOT PASSED. For the cases where a second parameter is
provided, the output also includes the expected value if the
test fails. The source code in Figure 4 presents an example
for isEqual (), which compares two integer values. KGRN
changes the output color to green, KRED to red, and KNRM
back to normal.

void isEqual(int num, int value) {

if (num == value) {
printf ("%s,_PASSED!\n%s", KGRN, KNRM);
} else {

printf ("%s _NOT_PASSED !\n_got: %d_==_%d_%s\n",
KRED, num, value, KNRM);

Figure 4. Simpletest’s source code for isEqual(). Source: [12].

Simpletest provides no side effects from tests, just colored
output in the standard output. An important hallmark of
Simpletest’s design is its simplicity. It should not made the
process of compiling and linking programs, and should be
IDE-agnostic, as to avoid dispersing students from the core of
the assignment itself.

Simplegrade > is a fork from Simpletest in which I added
some extra functions to help grade projects. Each test function
gets an extra parameter that is used to calculate a final grade.
The global variable grade accumulates the grades from
passed tests, while currmaxgrade stores the maximum
grade as if all tests so far were passed. Three functions were
added to help with the final grading (Figure 5):

int GETGRADE():
int GETMAXGRADE();
void GRADEME();

Figure 5. Simplegrade’s grading functions.

These functions are intended to (i) get the current absolute
grade, (ii) get the current maximum grade as if all tests passed,
and (iii) grade the tests. The last function prints the grade and
the maximum possible grade for the tests in green if it is more

3https://github.com/pilla/simplegrade

than 70% of the maximum grade, or red otherwise. It can be
easily changed by modifying one line in Simplegrade. A usage
example of Simplegrade is provided in Figure 6.

#include "simplegrade.h"
#include <limits.h>

/x%x A function that the student should implement,
* preferentially in another source file
*/
int increment(int a){
return (a+1);

}

int main(){
DESCRIBE(" Project: _increment_an_integer");

WHEN("I_increment_positive_numbers");

IF("I_Increment _0");
THEN("I_expect_1");
isEqual (increment (0),1,1);

IF("I_increment_the_maximum_integer");
THEN("I_expect it _not_to_overflow");
isGreaterThan (increment (INT_MAX) ,0,2);

GRADEME () ;

return GETGRADE();

Figure 6. Example of grading with Simplegrade.

Figure 7 shows the result of the execution of the code
presented in Figure 6. The first test will pass, but the second
one will not as there is a untreated overflow.

pilla@banshee ~ $./test

I increment positive numbers

I Increment @
I expect 1

PASSED!

I increment the maximum integer
I expect it not to overflow

NOT PASSED!

got: -2147483648 > @

You did 1 out of 3

Figure 7. Result of the execution of a Simplegrade example.

IV. WORKFLOW

As I expected that some students would not have acquain-
tance with Git versioning, and most would not been used to
Travis CI, the first assignment was a tutorial whose grade
was not considered. This first tutorial was a simple factorial
calculator. The README . md provided presented instructions
that included how to setup accounts on both GitHub and
Travis, how to get the link for the assignment that would
generate a private repository for each student, and what should
be done to push modifications to the implementation to GitHub
(and Travis). The large majority of students did not have much
difficulties to finish the tutorial without further help.

The workflow for each assignment followed these steps:

1) T created a seed repository with the assignment in
README.md, a C header with required structures

v.6, n.1, December 2017 - p.64

Computer Architecture Education (IJCAE)

and function signatures, C sources to build tests, a
Makefile to be used to build the tests, and a
travis.yml for Travis CI. This repository is then
pushed to the previously generated “ufpelaoc2” orga-
nization in GitHub.

2) Then, I created a new assignment in GitHub Classroom
for individual, private repositories.

3) Afterwards, I shared the link for the assignment in
Google Classroom with the required deadline.

4) Some classes were reserved for discussion of the project.

5) After the deadline, I cloned all the repositories and
started tests.

6) The first test was Sherlock’s for all student files to check
for plagiarism.

7) The second test was to copy over my own Makefile and
test sources for each repository, and then run make.

8) The resulting log from the previous step was sent to all
students.

9) Optionally, extra time for corrections was provided for

the second assignment.

I did a manual correction of the final version of each

assignment.

The final grade was established.

10)

11)
Travis CI provides an interesting dashboard that can be used
to follow students’ progress.

V. RESULTS

In this Section, I discuss the results of two of three as-
signments presented to students. The first assignment was an
average latency calculator for memory hierarchies that were
being studied in the beginning of the course. A configuration
would imply in none to three levels of cache and their
latencies, and the main memory’s latency. It was a fairly simple
assignment that required about 20 to 30 lines of C code.
Deadline was set to about 10 days after its initial availability.

The second assignment was a simplified memory hierarchy
simulator. It could also include up to three levels of cache,
but configurations also included other information such as
associativity, block size, and capacity. All levels should use
the same writeback policy, all accesses were aligned, and the
replacement policy to be used was LRU (Least Recently Used).
For this project, students received about 5 weeks.

The class was comprised of 37 students, but only 36 pro-
ceeded to register themselves in Google Classroom. In the
following discussions, only the 36 students that accessed
Google Classroom are considered.

All grades are out of a maximum of 100 points.

A. Participation

The first assignment was returned by 31 out of 36 students,
an 86.1% delivery rate. The average grade was 93.58 out of
100 not counting projects that were not delivered.

In the second assignment, 5 out of the 37 students already
had missed more than 25% of the classes, thus making it
impossible for them to get approved in the class according
to local regulations. Only 36.1% of students, 13, delivered

code that would compile and run to a grade greater than zero.
The main reasons for that seem to be related to the increased
difficulty when compared to the first assignment.

An interesting trend is that no student that failed returning
the first assignment returned the second one. As the first
assignment was very simple and there was more than enough
time for its development, I suppose that the second, much
more demanding second assignment was probably too hard or
not worth the development time for these students.

Although I do not have historic data about return rates in
this specific course, the trend is similar to other courses I
lecture (such as Operating Systems) for students in Computer
Science and Engineering in our University.

B. Grades

Both assignments presented very good grades for the stu-
dents that returned them. The average grade for the first
assignment was 93.58 with a standard deviation of 20.80
points, while the second assignment had an average grade of
97.08 and a standard deviation of 10.12 points.

If we take a look at all grades, 37 out of 44 assignments (or
84%) received the maximum grade. Only 3 assignments were
graded less than 70 (8, 23 and 62, respectively).

Currently, I do not have historic data about practical as-
signments in this class, hence they cannot be directly with
previously seen performance.

C. Commits

Figures 8 and 9 show the number of commits by date for
both assignments. In the first assignment, as it was simpler
and a smaller timeframe was provided for students, commits
are well distributed with a peak in the middle of the period
between assignment and deadline.

25

201

-
v

of Commits

—
o

0 2 4 6 8 10
Days from Assignment

Figure 8. Commits by date for the first assignment.

For the second assignment (Figure 9, there is a clear
tendency for commits to be near the deadline, with a large
peak during the deadline date (represented by a red line).
There were just a few commits before the first month after the
assignment was released. There were two distinct hypothesis

v.6, n.1, December 2017 - p.65

Computer Architecture Education (IJCAE)

that could explain it: (i) students procrastinated; and (i) stu-
dents started working without committing their first codes. I
am strongly inclined to believe the first hypothesis is correct
for most cases, as I provided class time for doubts about the
assignment during the entire period and there was almost none
in the first month. Notice that some commits happen after
the deadline, as the students received an extra week to fix
problems in their submissions.

40}

w
vl

w
=}

Deadline

of Commits
N N)
o w

—
%

=
o

o w
=
]
]

| . .
0 10 20 30 40 50

Days from Assignment

[

Figure 9. Commits by date for the second assignment.

Figure 10 shows the trend for commits in assignment #2
to be left for the deadline, with the cumulative percentage
of commits by date. A conclusion from these data is that
I provided too much time for this specific assignment. For
future assignments, it may be interesting either to shorten
these or require partial submissions. However, the later option
would increase my work if I was to check for meaningful
submissions.

1.0

0.8

Deadline

0.6

0.4

Accumulated Commits

0.2

0.0 1 1 i
10 20 30 40 50

Days from Assignment

Figure 10. Cumulative commits by date for the second assignment.

Figure 11 presents the number of inserted (green) and re-
moved (red) lines for each commit. The vertical axis represents
the students. The largest green circle is a 34K lines debug
file added by one of the students to the respective repository,

and not actual code. The majority of insertions were around
3K lines, and most times there were less than 100 lines being
deleted (with a maximum of 3K lines in the largest red circle).
There is only one student that seems to be distributing commits
in time, and also finishing before the deadline. Most students
concentrated their commits in a few dates in the last two weeks
before the deadline. Commits after the deadline were very
small and intended to fix bugs that were made clear by my
tests. Students did not proceed to overhaul their source codes
after the deadline, although there was probably time for more
of them to get their assignments to partially work considering
that most students seemed to finish the assignment in two
weeks.

35f

Deadling
30} g

N
v
T

Repository
N
o

-
u
T

10}

<N
8
8

0 10 20 30 40 50
Days from Assignment

Figure 11. Lines committed by date and student for the second assignment.

VI. CONCLUSIONS

In this paper, I discussed preliminary results of teaching
Computer Organization and Architecture using GitHub and
Travis CI. My experience differs from those reported by
Genarelli [1], [2] as I try to provide both automatic testing
and a simple, IDE-agnostic environment for students.

The Simplegrade library is distributed with a MIT license
and can be found in https://github.com/pilla/simplegrade. The
scripts used for management of students’ repositories can be
found in https://gist.github.com/pilla/.

In future work, I intend to make Simplegrade thread-safe as
a safeguard for its application in more complex cases in other
courses such as Operating Systems. I also intend to add limits
to time and memory used by tests.

Simplegrade is vulnerable to attacks to the global variables
that keep grades, but scripts to search for references to it from
students’ code could easily address it.

I also intend to add results with Operating System classes
and more statistics extracted from git logs.

v.6, n.1, December 2017 - p.66

Computer Architecture Education (IJCAE)

ACKNOWLEDGMENTS

I would like to acknowledge the efforts of Github, Travis,
and Google to provide their storage and computing resources
to educational use free of charge. I would also like to thank
Rob Pike and Loki for Sherlock, and my student Vitor
Alano de Ataides for the Simpletest library. This work was
partially supported by CAPES/Brasil (Programa Nacional de
Cooperacdo Académica da Coordenacdo de Aperfeicoamento
de Pessoal de Nivel Superior)

REFERENCES

[1] V. Gennarelli, “How CS50 at Harvard uses GitHub to teach
computer science,” 2017, available at https:/github.com/blog/
2322-how-cs50-at-harvard-uses- github- to-teach-computer-science.
Accessed in: July 2017.

“Real-time feedback for

integration tools,” 2017, available at

[2]

students using continuous
https://github.com/blog/

2324-real-time-feedback-for-students-using-continuous-integration-tools.

Accessed in: July 2017.

[3]
[4]

[5]
[6]
[7]
[8]
[9]

[10]
(1]

[12]

J. C. R. del Pino, “The Virtual Programming Lab for Moodle,” 2017,
available at: http://vpl.dis.ulpgc.es.

J. Lawrance, S. Jung, and C. Wiseman, “Git on the cloud in the
classroom,” in Proc. of the 44th ACM Tech. Symp. on Computer Science
Education, ser. SIGCSE "13. New York, USA: ACM, 2013, pp. 639—
644.

GitHub, “Github classroom,” 2016, available at: https://classroom.github.
com. Accessed in: July 2017.

, “Github education,” 2016, available at: https://education.github.
com. Accessed in: July 2017.

A. Feldman, “teachers_pet,” 2013, available at: https://github.com/
education/teachers_pet. Accessed in: July 2017.

Travis CI GmbH, “Travis continuous integration,” Berlin, 2016, available
at: https://travis-ci.com. Accessed in: July 2017.

M. Fowler, “Continuous integration,” 2010, available at: https://
martinfowler.com/articles/originalContinuousIntegration.html. Accessed
in: July, 2017.=.

Google, “Google classroom for higher education,” 2016, available at:
https://edu.google.com/higher-education/. Accessed in: July 2017.

R. Pike and Loki, “The Sherlock plagiarism detector,” 2016, available
at: http://www.cs.usyd.edu.au/~scilect/sherlock/. Accessed in: July 2017.
V. A. Ataides, “Simpletest: the simplest C test framework ever,” 2016,
available at: https://github.com/bundz/simplest. Accessed in: July 2017.

v.6, n.1, December 2017 - p.67

