
Celestial Suite: uma Ferramenta para a Tradução e
Execução de Código de Três Endereços

Guilherme Galante
Ciência da Computação

Universidade Estadual do Oeste do Paraná - Unioeste
Cascavel, Paraná, Brasil

guilherme.galante@unioeste.br

Daniel Carlos Chaves Boll
Ciência da Computação

Universidade Estadual do Oeste do Paraná - Unioeste
Cascavel, Paraná, Brasil

danielboll.academico@gmail.com

Resumo—O artigo descreve o desenvolvimento e a avaliação
de uma ferramenta didática chamada Celestial Suite, destinada
ao ensino de compiladores. A ferramenta realiza a conversão
de programas descritos em código de três endereços para
assembly MIPS, além de permitir a emulação e sua execução
por meio de uma máquina virtual. A avaliação feita pelos alunos
indicou que a ferramenta é eficaz como recurso didático, mas
sugeriu melhorias, como a precisão das mensagens de erro, a
implementação de dicas no editor e melhor documentação.

Index Terms—Compiladores, Código de três endereços, MIPS.

I. INTRODUÇÃO

Compiladores são ferramentas essenciais, pois constituem
uma peça central na infraestrutura de construção de soft-
ware. Praticamente todos os programas que executam em um
computador foram processados por um compilador ou uma
ferramenta similar [1]. Dada essa importância, a disciplina
sobre a construção de compiladores é componente funda-
mental de um curso de ciência da computação, conforme
pode-se encontrar em currı́culos propostos, por exemplo, pela
Sociedade Brasileira da Computação (SBC)1 e pela Joint Task
Force on Computer Science Curricula - ACM/IEEE2.

O conteúdo destas disciplinas incluem teoria de linguagens
formais, teoria dos autômatos, análise léxica, análise sintática,
análise semântica, geração de código intermediário, geração de
código e otimização. O campo dos compiladores está ainda es-
treitamente ligado a outras disciplinas, incluindo arquitetura e
organização de computadores, linguagens de programação, te-
oria de linguagens formais e autômatos, teoria da computação,
engenharia de software e sistemas operacionais.

Nesse contexto se insere a disciplina de Compiladores
do curso de Ciência da Computação da Unioeste, campus
Cascavel-PR. Integrada ao quarto ano do curso, possui uma
carga horária de 102 horas/aula e aborda os conceitos fun-
damentais mencionados anteriormente. As avaliações incluem
provas teóricas e um projeto prático de construção de um
compilador. Neste projeto, os alunos desenvolvem uma lingua-
gem de programação, implementando os analisadores léxicos,
sintáticos e semânticos, culminando na criação de um gerador

1https://www.sbc.org.br/documentos-da-sbc/summary/131-curriculos-de-
referencia/760-curriculo-de-referencia-cc-ec-versao2005

2https://dl.acm.org/doi/pdf/10.1145/3664191

de código intermediário, especificamente em código de três
endereços (Three Address Code - TAC) [2], [3].

Esta representação intermediária, embora útil didaticamente,
apresenta uma limitação prática fundamental: não existe uma
maneira direta de convertê-la em código executável (back-
end) utilizando ferramentas acessı́veis. Assim, neste trabalho
apresenta-se um conjunto de ferramentas web que permitem a
tradução do código de três endereços para linguagem de mon-
tagem MIPS e posterior execução. Ao possibilitar a conversão
de código de três endereços para a linguagem de montagem,
a Celestial Suite oferece aos estudantes uma experiência mais
integrada e completa para a disciplina de Compiladores em
nosso curso, na qual o aluno inicia com a concepção da
linguagem de programação e consegue visualizar todas as
etapas até a execução do código.

O restante do trabalho está organizado da seguinte forma: A
Seção II descreve alguns trabalhos relacionados. A Seção III
apresenta os conceitos básicos necessários para a compreensão
do estudo. A Seção IV justifica o desenvolvimento do trabalho.
Na Seção V, a ferramenta proposta e seus componentes são
detalhados. A Seção VI relata a avaliação da ferramenta
pelos alunos da disciplina de Compiladores. Por fim, a Seção
VII conclui o trabalho e sugere algumas possibilidades para
pesquisas futuras.

II. TRABALHOS RELACIONADOS

Devido ao grande número de algoritmos e às construções
teóricas complexas, o ensino de compiladores representa um
domı́nio desafiador tanto para os professores quanto para os
alunos. Nesse contexto, os softwares educacionais desempe-
nham um papel cada vez mais importante, auxiliando os alunos
na aprendizagem ao transformar conceitos teóricos abstratos
em objetos tangı́veis com os quais eles podem interagir. A
seguir, alguns softwares usados no ensino de compiladores
são apresentados cronologicamente.

Mernik e Zumer [4] desenvolveram a ferramenta LISA, um
sistema que gera automaticamente um compilador a partir de
especificações formais de linguagens baseadas em gramáticas
de atributos. Ao observar a execução do LISA, o acadêmico
pode visualizar o processo de compilação e obter uma com-
preensão intuitiva da execução do compilador. Para cada fase



(léxica, sintática e semântica), uma animação é oferecida para
aprimorar o modelo cognitivo do espectador.

Sheshat [5] é uma ferramenta baseada na web para ensino de
conceitos relacionados à análise léxica, incluindo linguagens
regulares, expressões regulares e autômatos finitos. Com foco
na análise sintática, Sangal et al. [6] descrevem a ferramenta
PAVT. O PAVT pode ser usado para visualizar como conjuntos
First e Follow, conjuntos de itens, tabela de análise, árvore
de análise e derivação mais à esquerda ou mais à direita,
dependendo do algoritmo sendo analisado.

Stamenković e Jovanović [7] apresentam o ComVis, um sis-
tema Web bastante completo para a visualização e simulação
de conceitos e algoritmos básicos de compiladores. Nele
é possı́vel visualizar as fases de análise léxica, sintática
e semântica, bem como a geração de representações inter-
mediárias e código em linguagem de montagem.

Muñoz et al. [8] descreve a implementação de uma
aplicação de avaliação automática voltada à disciplina de
compiladores, construı́da como um plug-in de um sistema de
avaliação (SIETTE) que é capaz de gerar automaticamente
uma gramática livre de contexto (GLC) aleatória, determinar
se ela é adequada para análise LL(1) e/ou SLR(1), construir
as tabelas de análise passo a passo e avaliar as respostas dos
alunos.

Outras ferramentas são analisadas por Stamenković et
al. [9]. É possı́vel notar que as diversas ferramentas apresen-
tadas possuem caracterı́sticas e funcionalidades distintas, mas
complementares entre si, podendo ser utilizadas para cobrir o
conteúdo de uma disciplina de compiladores quase que por
completo. No entanto, a ferramenta proposta neste trabalho
se diferencia por sua singularidade na literatura, uma vez
que não existem ferramentas que, a partir da representação
intermediária de três endereços, gerem código para MIPS e
permitam sua execução.

III. CONCEITOS BÁSICOS

Nesta seção aborda-se os conceitos básicos necessários para
a compreensão do trabalho.

A. Fases de um Compilador

O processo de compilação é muito complexo, sendo estrutu-
rado em duas grandes fases conhecidas como análise e sı́ntese.
A fase de análise, também chamada de front-end, divide o
programa fonte em partes e impõe uma estrutura gramatical
sobre elas. Uma das principais responsabilidades dessa fase é
garantir que a sintaxe e a semântica do programa fonte estejam
corretas. A fase de sı́ntese, conhecida como back-end, constrói
o programa objeto a partir de uma representação intermediária
criada na fase de análise.

Se o compilador for cuidadosamente projetado, é possı́vel
produzir tradutores para diferentes linguagens fonte e arquite-
turas alvo, combinando diferentes estruturas de front-end com
um único back-end ou um único front-end com diferentes
back-ends (Figura 1).

O processo de compilação começa com o analisador léxico,
que varre todo o programa fonte e transforma o texto em

C 

Fortran

Ada

Front-end

Representação

 Intermediária
ARM 

PowerPC

x86

Back-end

linguagens arquiteturas

Figura 1. Combinações de diversos Front-ends e Back-ends.

um fluxo de tokens. Em seguida, a análise sintática lê o
fluxo de tokens e valida a estrutura do programa, criando
uma árvore sintática. A terceira fase é a análise semântica,
responsável por garantir as regras semânticas, o contexto e
o inter-relacionamento das partes do programa. Todas essas
fases compõem a tarefa de análise.

A próxima fase é a geração de código intermediário, que cria
uma abstração do código. Logo após, vem a fase de geração
do código objeto, cujo objetivo é gerar o código de baixo nı́vel
baseado na arquitetura da máquina alvo. Pode haver ainda
uma fase de otimização do código antes das fases de geração
de código intermediário e objeto. Essas fases fazem parte da
tarefa de sı́ntese. A Figura 2 sintetiza as fases envolvidas na
compilação.

programa fonte

An. Léxico

An. Sintático

An. Semântico

Gerador de Cod. Interm.

tokens

árvore sintática

Otimizador de Código

representação intermediária

árvore sintática

Gerador de Código

código na máquina alvo

F
ro

n
t-
E
n
d

B
a
ck

-E
n
d

repres. interm. otimizada

Figura 2. Fases de um compilador.

B. Código de Três Endereços

Na fase de geração de código intermediário, há diversas
possibilidades de representação. Dentre elas há o código de
três endereços (Three Address Code - TAC), comumente
utilizado em disciplinas de compiladores por sua simplicidade
e fácil aplicação didática. Como visto, essa representação serve
como uma ponte entre a análise semântica e a geração de



código, facilitando a tradução de programas de alto nı́vel para
código de máquina ou código de um nı́vel mais baixo [3].

Código de três endereços é uma sequência de instruções
na forma A = B OP C, onde A, B e C são nomes de
variáveis, constantes ou variáveis temporárias geradas pelo
compilador. OP é qualquer operação aritmética ou lógica
aplicada aos operandos B e C. O nome reflete que há no
máximo três variáveis, onde duas são operandos e uma é para
o resultado. Em uma instrução de três endereços, apenas um
operador é permitido. Caso uma expressão seja composta por
múltiplos operadores, ela deve ser dividida em uma sequência
de subexpressões [10]. Por exemplo, a expressão a ∗ –(b+ c)
é convertida no código:

t1 = b + c
ts = uminus t1
t3 = a * t2

Um outro exemplo, de conversão é dado a seguir, onde o
trecho de código de um laço for em C a seguir

for(i = 1; i<=10; i++)
{

a[i] = x * 5;
}

é convertido em:

i = 1 //inicialização de i
L1: //inı́cio do laço
if i > 10 goto L2 //condição do laço
t1 = x * 5 //bloco do laço
a[i] = t1
i = i+1
goto L1
L2: //fim do laço

Mais detalhes sobra a TAC pode ser encontrada na literatura,
por exemplo, nos livros de Aho et al. [2], Torczon et al [3]
e Sunita [10]. Neste trabalho, utiliza-se uma versão estendida
do código de três endereços, ETAC, descrita na Seção V-A.

C. MIPS

A arquitetura MIPS (Microprocessor without Interlocked
Pipeline Stages) é uma arquitetura desenvolvida pela MIPS
Computer Systems. A principal caracterı́stica da arquitetura
MIPS é o uso do modelo load/store para manipulação de
dados, onde todas as operações são realizadas em registrado-
res do processador, e o acesso à memória principal é feito
exclusivamente por instruções de carga e armazenamento.
Pela sua elegância e simplicidade, processadores MIPS são
bastante usados em cursos de arquiteturas de computadores
de muitas universidades. Ele é considerado um processador
bastante didático.

A linguagem de montagem MIPS é conhecida por sua sim-
plicidade e eficiência. Essas caracterı́sticas são evidenciadas
por sua estrutura de instrução e design. A MIPS adota um mo-
delo de conjunto de instruções reduzido (Reduced Instruction
Set Computer, RISC), que se concentra em um número menor

de instruções frequentemente usadas. Essas instruções são de
tamanho fixo e seguem um formato consistente, facilitando a
compreensão e implementação.

Mais detalhes da arquitetura MIPS pode ser encontrados na
literatura técnica [11].

IV. JUSTIFICATIVA DA PLATAFORMA: A DISCIPLINA DE
COMPILADORES

A disciplina de Compiladores do curso de Ciência da
Computação da Unioeste é ofertada na quarta série, com
carga horária de 102 horas/aula distribuı́da ao longo de
dois semestres3. A ementa contempla os seguintes itens:
(i) Conceitos básicos sobre compiladores e interpretado-
res. (ii) Análise Léxica. (iii) Análise Sintática. (iv) Análise
Semântica. (v) Geração e Otimização de Código. (vi) Projeto
e implementação de um Compilador.

Os itens (i) a (v) são apresentados de modo teórico e são
avaliados por meio de provas escritas. Já no item (vi), o
objetivo é desenvolver o front-end do compilador, a partir de
uma linguagem de programação especificada pelos próprios
alunos. Na primeira fase do projeto, especifica-se a linguagem
de programação e implementa-se o analisador léxico. Na
segunda, o aluno desenvolve um analisador sintático, do zero,
baseado na abordagem Top-Down ou Bottom-Up. Na última
etapa, implementa-se o analisador semântico e o gerador de
código intermediário. Salienta-se que as implementações são
realizadas sem o uso de geradores automáticos como Flex e
Bison, de modo que o discente compreenda como as técnicas
envolvidas funcionam na prática.

Nas últimas ofertas da disciplina, optou-se por utilizar
como representação intermediária código de três endereços,
considerando a sua simplicidade e facilidade de compreensão
e geração. Representações como LLVM são interessantes por
já contemplarem um back-end completo e funcional, mas
a linguagem LLVM-IR é bastante complexa e sua geração
não é trivial, o que acabava desencorajando os alunos a
desenvolverem a última etapa do trabalho. No entanto, a
opção pelo TAC apresenta uma limitação: não há um back-
end implementado que use essa representação como entrada,
e assim, os alunos não conseguiam gerar a execução de seus
códigos. Dessa limitação surgiu a ideia de implementar uma
plataforma, a Celestial Suite, que contempla um tradutor de
código de três endereços para a linguagem de montagem MIPS
e uma máquina virtual para a execução esse código.

V. CELESTIAL SUITE

A Celestial Suite inspira-se na arte da navegação celestial,
sendo composta por componentes nomeados em alusão a
instrumentos de navegação ou elementos astronômicos:

• Compass: tradutor do código de três endereços para
linguagem de montagem MIPS;

• Astrolabe: analisadores para o código MIPS;
• Sextant: máquina virtual para execução do código MIPS;

3Na Unioeste o regime é anual, havendo disciplinas que perduram por um
ou dois semestres.



• Horizon: interface web da ferramenta;
• Orion’s Belt: biblioteca de interligação entre as ferramen-

tas.
A ferramenta está disponı́vel publicamente para uso4. Os

códigos-fonte estão disponı́veis no GitHub5.

A. Extended Three-Address Code - ETAC

O Celestial Suite utiliza uma versão estendida da tradicio-
nal representação intermediária de código de três endereços,
denominado ETAC (Extended Three-Address Code). O ETAC
diferencia-se da TAC tradicional principalmente pela inclusão
de tipagem forte, operando sobre variáveis com tipos de dados
definidos explicitamente.

1) Tipos: O ETAC suporta uma variedade de tipos de
dados, como apresentado na Tabela I. Esta diversidade per-
mite simular um ambiente de programação mais próximo de
linguagens reais, enfatizando a importância da consistência de
tipos para evitar erros comuns em linguagens de baixo nı́vel.

Tabela I
TIPOS DE DADOS SUPORTADOS PELO ETAC

Tipo Descrição
i8 Inteiro de 8 bits
i16 Inteiro de 16 bits
i32 Inteiro de 32 bits
f32 Número de ponto flutuante de 32 bits
f64 Número de ponto flutuante de 64 bits
bool Tipo booleano
ptr Ponteiro, contendo um endereço de memória

2) Atribuições e Expressões: As operações de atribuição
e expressões no ETAC seguem uma abordagem rigorosa de
tipagem, como ilustrado a seguir.

t1: i32 = 100
t2: f64 = 3.14
t3: i32 = t1 + t2 # Erro: t2 nao é um i32
t4: f64 = t2 * t2
t6: f64 = (f64) t1 # Conv. de t1 para f64

Esta estrutura ajuda os alunos a compreenderem as
implicações das conversões de tipo e as operações entre
diferentes tipos.

Estas extensões implementadas no ETAC foram projetadas
para cobrir aspectos importantes da programação de compu-
tadores encontrados em ambientes de desenvolvimento reais.
Ao mesmo tempo, mantém-se alinhada com os objetivos
pedagógicos da disciplina, garantindo que os conceitos vistos
na teoria sejam aplicáveis. Exemplos de uso da ETAC estão
disponı́veis na documentação do Celestial Hub.

B. Compass e Astrolabe

O tradutor Compass é um componente central no pipeline
do projeto. É o componente que processa o código de três

4https://horizon.unioeste.br/
5https://github.com/celestial-hub

endereços estendido (ETAC) e realiza a tokenização e a
construção da Árvore de Sintaxe Abstrata (AST) através de
análises sintática e semântica.

A linguagem Rust foi escolhida para a implementação do
compilador, dada a sua eficiência e robustez em desenvolvi-
mento de compiladores. Para a análise léxica, foi utilizado o
Logos6, que oferece uma interface intuitiva para a definição
de tokens com expressões regulares. Para a análise sintática e
semântica utilizou-se o LALRPOP7. Este gerador de analisa-
dor sintático, análogo a ferramentas como YACC e ANTLR,
permite definir a gramática do parser com base na sintaxe do
Rust. A integração entre o Lexer do Logos e o LALRPOP é
realizada adaptando o Lexer para funcionar como um iterador
que o LALRPOP pode processar.

O processo de tradução realizada pelo Compass inicia-se
com a análise léxica para identificar e reportar erros relacio-
nados a tokens malformados ou desconhecidos. Na sequência,
executa a análise sintática, que constrói uma Árvore de Sintaxe
Abstrata (AST) do código de entrada, seguida por uma análise
semântica que assegura a corretude dos tipos e declarações de
variáveis. Após a análise bem-sucedida, o Compass procede
para a geração de código, onde a AST é traduzida para um
subconjunto de instruções especı́fico de assembly MIPS.

O código MIPS gerado é então enviado para o Astrolabe,
que após as análises léxica e sintática, gera uma AST que
é usada posteriormente pela máquina virtual Sextant. Assim
como no Compass, o Astrolabe emprega o Logos e LALRPOP
para a sua construção.

C. Sextant

O Sextant funciona como uma máquina virtual (MV) que
interpreta e executa a partir da AST MIPS. Esta MV per-
mite uma configuração personalizada, permitindo aos usuários
ajustar a quantidade de memória e o tamanho da pilha. Essa
flexibilidade ajuda a adaptar a MV a uma variedade de cenários
de uso, variando de ambientes educacionais a aplicações com
diferentes exigências.

Uma vez inicializada, a Sextant procede com a avaliação da
AST MIPS, alocando memória conforme necessário e proces-
sando as instruções MIPS. Importante destacar que o conjunto
de instruções implementado na Sextant é uma versão restrita
do assembly MIPS completo. A máquina virtual mantém
os 32 registradores originais da arquitetura MIPS, porém
não suporta todas as instruções MIPS, especialmente aquelas
relacionadas a operações com números em ponto flutuante.
A representação de números negativos é feita utilizando o
método de complemento de dois.

O sistema de E/S da Sextant é modular, permitindo fácil
integração com diferentes interfaces de usuário e mecanismos
de entrada e saı́da. Em ambientes web, por exemplo, a MV
pode interagir com elementos do Document Object Model
(DOM) ou produzir alertas, demonstrando assim sua adap-
tabilidade e versatilidade.

6https://crates.io/crates/logos-codegen
7http://lalrpop.github.io/lalrpop/



D. Horizon e Orion’s Belt

O Horizon é a interface do usuário (User Interface, UI)
do projeto, desenvolvida como uma plataforma web para
maximizar acessibilidade e disponibilidade. A utilização de
uma interface baseada na web elimina a necessidade de
instalação de software adicional, facilitando o acesso em
diversas plataformas. A plataforma, construı́da com Next.JS,
incorpora módulos-chave, como a aba de transpilação, onde
os usuários inserem código de três endereços e recebem o
código MIPS correspondente, e a aba da máquina virtual, que
permite a carga e visualização do estado da máquina durante
a execução.

A tela de conversão de código de três endereços para
assembly MIPS pode ser visualizada na Figura 3. Esta tela
contém duas caixas de texto: à esquerda, o usuário pode inserir
ou selecionar códigos ETAC pré-definidos através de uma
caixa de seleção acima do editor. Após a inserção do código,
o usuário pode converter o código ETAC para MIPS clicando
no botão Transpile. O código MIPS resultante é exibido no
editor à direita.

A segunda tela exibe a máquina virtual (MV), onde o
código MIPS pode ser carregado utilizando o botão Load to
VM, localizado no canto superior direito do editor de código
MIPS. A interface da MV mostra os estados visı́veis, incluindo
registradores, memória e a instrução atual, além de saı́da de
resultados e controles da VM conforme ilustrado na Figura 4.

A documentação da ferramenta está disponı́vel em https:
//horizon.unioeste.br/docs, a qual aborda a especificação do
ETAC e o uso das ferramentas desenvolvidas. A documentação
inclui tutoriais, exemplos práticos e uma descrição completa
das funcionalidades de cada componente, visando auxiliar os
usuários na compreensão e utilização eficaz das ferramentas.

O Orion’s Belt integra os componentes desenvolvidos em
Rust com a interface de usuário em JavaScript. Esta integração
é realizada através do Napi RS8, que facilita a comunicação
entre módulos escritos em diferentes linguagens, conectando-
se à API nativa do NodeJS. Tal abordagem é estratégica
para permitir a interação fluida entre as distintas tecnologias
empregadas no projeto.

Esta configuração do Horizon e do Orion’s Belt garante uma
interface do usuário funcional e acessı́vel, promovendo uma
experiência de usuário fluida e eficiente, enquanto oferece uma
ponte robusta entre Rust e JavaScript.

E. Funcionamento da Ferramenta

Basicamente, o uso da ferramenta é composto por dois
passos: (1) conversão do ETAC para assembly MIPS e (2)
emulação da execução do código MIPS.

A conversão do ETAC para MIPS é apresentado no di-
agrama de sequência apresentado na Figura 5. O processo
inicia com o usuário inserindo o código de três endereços
no Horizon e submetendo-o para tradução. Na sequência, o

8https://napi.rs/pt-BR

Horizon solicita ao Compass, via Orion’s Belt, a tradução do
código. O Compass executa o parsing e a análise do código de
três endereços, convertendo-o em código MIPS. Este código
MIPS é então retornado ao Horizon e exibido para o usuário.

No segundo caso, o usuário solicita a execução do código
MIPS na máquina virtual (MV) integrada. Aqui, o Astrolabe
executa uma análise sintática e semântica do código MIPS
e retorna uma Árvore de Sintaxe Abstrata (AST) para o
Sextant. O Sextant, por sua vez, prepara as instruções de
código de máquina correspondentes e envia o estado da MV e
as instruções de volta ao Horizon, que as exibe para o usuário,
permitindo que visualize as instruções executadas e o estado
atual da MV.

VI. AVALIAÇÃO DOS ALUNOS

Ao final da disciplina de compiladores do ano letivo de
2023, foi solicitado aos alunos que avaliassem a ferramenta
desenvolvida. O objetivo principal foi avaliar a eficácia da
ferramenta Celestial como um recurso didático e identifi-
car possı́veis melhorias. Antes da pesquisa, foi feita uma
apresentação detalhada do contexto do projeto, a relevância do
que havia sido aprendido na disciplina até aquele momento,
e uma introdução ao funcionamento da ferramenta, incluindo
demonstrações de seu uso através de exemplos práticos. Após
a explanação foi dado um perı́odo de 30 minutos para que os
alunos pudessem explorar a ferramenta.

Na sequência, um formulário foi submetido aos alunos,
o qual 9 alunos responderam. As respostas obtidas foram
usadas entender a percepção dos alunos sobre a especificação
do ETAC, a funcionalidade de visualização de execução do
código, a eficácia geral da ferramenta e sugestões de melhoria.

Todos os alunos concordaram que a especificação do ETAC
estava alinhada com o conteúdo visto em aula e que a
visualização de execução do código era satisfatória. Quanto à
avaliação do Celestial como uma ferramenta didática, obteve-
se uma média geral de 4,5 em 5. Isso indica uma recepção
positiva da ferramenta em termos de sua integração educaci-
onal e usabilidade, refletindo seu potencial como um recurso
valioso no ensino de compiladores.

Quanto às melhorias para a ferramenta, destacam-se:
• Mensagens de Erro: A dificuldade na interpretação das

mensagens de erro foi destacada por cinco alunos. Me-
lhorar a precisão na indicação de erros no código foi
uma sugestão comum, visando facilitar a identificação e
correção de problemas;

• Funcionalidades Adicionais: Foi sugerida a
implementação de dicas no editor e de um recurso de
autocomplete para funções, para acelerar o aprendizado
e a usabilidade da ferramenta;

• Documentação: A necessidade de clareza e con-
sistência na documentação também foi enfatizada, com
recomendações para que ela detalhe mais profundamente
as funcionalidades e especificações da linguagem.



Figura 3. Horizon: Conversão de ETAC para assembly MIPS.

Figura 4. Horizon: Execução do código MIPS.



Figura 5. Diagrama do processo de tradução.

VII. CONSIDERAÇÕES FINAIS

As ferramentas desenvolvidas neste trabalho atendem à de-
manda da disciplina de Compiladores da Unioeste, permitindo
a execução de programas em código de três endereços gerados
pelos alunos. Dessa forma, após o desenvolvimento completo
do front-end e do gerador de representação intermediária
(etapas iniciais da avaliação), o aluno pode verificar como
um código para uma arquitetura alvo é gerado e executado,
permitindo visualizar todo o processo de tradução.

Embora o conjunto de ferramentas tenha sido bem avaliado
pelos alunos, foram identificados pontos de melhoria que serão
implementados nas próximas etapas do trabalho.

Destacam-se também algumas funcionalidades que podem
ser agregadas à Celestial Suite para melhorar a experiência de
uso:

1) Expansão de Arquiteturas Suportadas: ampliar a Ce-
lestial Suite para permitir a tradução do conjunto de
instruções completo do MIPS e de outras arquiteturas
diferentes;

2) Integração com outras ferramentas e ambientes de apren-
dizado: integrar a Celestial Suite com outras ferramentas
relacionadas a outras etapas de compilação e plataformas
de aprendizado de modo a proporcionar uma experiência
de aprendizado mais abrangente;

3) Pesquisa sobre Métodos de Ensino: Investigar e testar
diferentes métodos pedagógicos usando a Celestial Suite
para determinar quais abordagens são mais eficazes no
ensino de compiladores.

VIII. AGRADECIMENTOS

Agradecimentos especiais aos alunos que contribuı́ram com
os comentários e pareceres sobre a ferramenta.

REFERÊNCIAS

[1] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and
L. Zhang, “A survey of compiler testing,” vol. 53, no. 1, feb 2020.
[Online]. Available: https://doi.org/10.1145/3363562

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[3] L. Torczon and K. Cooper, Engineering A Compiler, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[4] M. Mernik and V. Zumer, “An educational tool for teaching compiler
construction,” IEEE Transactions on Education, vol. 46, no. 1, p.
61–68, Feb. 2003. [Online]. Available: http://dx.doi.org/10.1109/TE.
2002.808277

[5] A. Arnaiz-González, J.-F. Dı́ez-Pastor, I. Ramos-Pérez, and C. Garcı́a-
Osorio, “Seshat - a web-based educational resource for teaching the
most common algorithms of lexical analysis,” Computer Applications
in Engineering Education, vol. 26, no. 6, p. 2255–2265, Jul. 2018.
[Online]. Available: http://dx.doi.org/10.1002/cae.22036

[6] S. Sangal, S. Kataria, T. Tyagi, N. Gupta, Y. Kirtani, S. Agrawal,
and P. Chakraborty, “Pavt: a tool to visualize and teach parsing
algorithms,” Education and Information Technologies, vol. 23, no. 6, p.
2737–2764, May 2018. [Online]. Available: http://dx.doi.org/10.1007/
s10639-018-9739-x

[7] S. Stamenković and N. Jovanović, “A web-based educational system
for teaching compilers,” IEEE Transactions on Learning Technologies,
vol. 17, pp. 143–156, 2024.

[8] R. C. Muñoz, B. B. Blanco, J. d. Campo-Ávila, and J. L. T. Rodriguez,
“Teaching compilers: Automatic question generation and intelligent
assessment of grammars’ parsing,” IEEE Transactions on Learning
Technologies, vol. 17, pp. 1734–1744, 2024.

[9] S. Stamenković, N. Jovanović, and P. Chakraborty, “Evaluation of
simulation systems suitable for teaching compiler construction courses,”
Computer Applications in Engineering Education, vol. 28, no. 3, p.
606–625, Mar. 2020. [Online]. Available: http://dx.doi.org/10.1002/cae.
22231

[10] K. Sunitha, Compiler Construction, ser. Always learning. Pearson
Education India, 2013.

[11] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth
Edition: A Quantitative Approach, 6th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017.


