
Integrating Continuous Assessment into
Undergraduate Computer Architecture using

Automated Grading
Lucas Wanner

Institute of Computing – UNICAMP
Campinas, Brazil, 13083-852
Email: wanner@unicamp.br

Abstract—Continuous assessment (CA) improves student en-
gagement and understanding through regular evaluations and
rapid feedback. This approach was integrated into a foundational
Computer Architecture course using frequent quizzes. To manage
large class sizes and limited teaching assistance, automated grad-
ing software was used. This paper discusses the implementation
of automated grading for quizzes, detailing the process, and
presenting course results and student feedback. Observations
based on student feedback and outcomes suggest that integrating
CA through quizzes is beneficial for student engagement and
learning.

I. INTRODUCTION

Continuous assessment (CA) is a teaching strategy that
incorporates regular evaluations throughout a course, rather
than relying solely on final exams. CA includes frequent as-
signments that enable students to engage consistently with the
material, promoting a deeper understanding of the subject [1].
A key component of CA is quick feedback, which allows
students to identify and address their weaknesses promptly,
leading to improved learning outcomes. Furthermore, CA
allows for comprehensive coverage of the curriculum and
allows instructors to adjust their teaching strategies based on
student performance, creating a more adaptive and effective
learning environment.

The Design of Computing Systems course at Unicamp
(MC732) provided an opportunity to apply the benefits of
continuous assessment in a foundational computer architec-
ture class for students in computer science and engineering.
Based on the “Computer Organization and Design” book
by Patterson and Hennessy [9], this 60-hour course covers
performance evaluation, Instruction Set Architecture (ISA)
design, single-cycle and pipelined microarchitecture, caches
and memory hierarchy, multicore and a brief introduction to
advanced microarchitectures. As the last mandatory course in
the computer organization sequence, following prerequisites
in computer organization and digital systems, it serves as a
critical component for student formation, particularly for those
pursuing advanced study in related fields.

In an effort to introduce continuous assessment in recent
years, MC732 instructors have implemented frequent quizzes
that cover specific topics throughout the course. A typical quiz
consists of a few multiple choice questions or quantitative
problems that require numeric answers. These quizzes are

planned for 20-30 minutes and are administered at the end
of a class, focusing on topics discussed in the previous 2-3
classes. If students perform well on a quiz, receiving a grade
of 70% or higher, they are allowed to skip the corresponding
questions on the final exam, with their quiz grade applied to
those exam questions. In some editions of the course, quizzes
also account for a small fraction of the final grade.

Despite these efforts, with an average of approximately 100
students per class each semester and no teaching assistance,
the difficulty of grading tests and providing rapid feedback
in MC732 is substantial. Without quick assessment, quizzes
do not effectively contribute to CA, as a lack of timely
feedback prevents students and instructors from identifying
and addressing learning gaps. This hinders the ability to adapt
the course to meet students’ needs, diminishing the potential
benefits of CA.

This paper relates an experience of using automated grading
for in-person and online quizzes in a large undergraduate
computer architecture course. It presents the use of Auto
Multiple Choice (AMC) [4], a software package for creating
and grading multiple choice tests, in the Design of Computing
Systems course at Unicamp over the last few years. AMC
generates individual exams from a bank of questions written
in LATEX , varying both the questions and the numeric variables
for quantitative problems. Students fill in the answers on
paper forms that are then scanned and graded by AMC. For
online quizzes, students download a form and submit their
answers through a web system. Students typically receive
their graded quizzes via email the day after the exam. The
instructor can use statistics from the exams, including the
distribution of grades and the difficulty of each question, to
improve the course and revise topics when necessary. The use
of objective questions and automated grading allows the scale
of the evaluation to expand, allowing students to typically
solve 70–100 individual questions over the semester.

The paper describes the process of creating questions and
generating and grading quizzes and exams, introducing exam-
ples of multiple choice and quantitative questions for different
topics in the course. Additionally, it discusses the results of
quizzes and exams, and the impact of quizzes on final grades.
Finally, it presents a summary of student feedback on the use
of quizzes in the course.

II. COMPUTER ARCHITECTURE TEACHING AT UNICAMP

Computer Systems Design (MC732) is the final mandatory
undergraduate course in hardware systems for Computer Sci-
ence (CS) and Computer Engineering (CE) students at the
University of Campinas (Unicamp). The course follows the
Computer Organization and Design textbook by Patterson and
Hennessy [9], and provides an overview of key topics in
modern computer architecture.

Before taking MC732, students are required to complete
courses in digital systems and computer organization. In-
troduction to Digital Systems (MC602) focuses on digital
logic design, covering combinational and sequential circuits,
as well as basic circuit design using Hardware Description
Languages. Introduction to Computer Organization (MC404)
covers computer organization, instruction sets, assembly pro-
gramming, memory addressing, input/output operations, and
interrupt handling.

Building on this foundation, MC732 covers fundamental
aspects of computer architecture and microarchitecture. The
course offers an in-depth exploration of Instruction Set Archi-
tecture (ISA), with an emphasis on RISC-V, which students
are introduced to in MC404. There is a significant focus on
microarchitecture, including single-cycle and pipelined data-
path designs, with additional discussions on deep pipelines,
superscalar, and out-of-order execution. Memory hierarchy
is covered with a focus on caches and virtual memory.
Finally, the course briefly introduces multicore architectures
and GPUs.

By the end of the course, students are expected to have
a solid understanding of modern computer architectures, in-
cluding the ability to analyze the design of basic processors,
especially pipelined architectures. In addition, students should
be able to assess the potential performance impact of optimiza-
tions in various parts of a system, such as accelerating spe-
cific instructions, including more processing cores, or adding
additional levels of cache. For further study, students are
encouraged to take elective courses such as Parallel Processing
and graduate-level Computer Architecture I and II, which are
also available to undergraduates.

The evaluation of MC732 is based primarily on exams, as
there are no practical assignments in the course. Although
this method allows for comprehensive testing of theoretical
knowledge, it can make it difficult to ensure ongoing student
engagement and immediate feedback on their understanding
of the material. To address these challenges, instructors have
introduced frequent quizzes as part of a continuous assessment
(CA) approach. These quizzes, which include but are not
limited to the ones listed below, assess students’ grasp of
recent topics and contribute to their overall grade.

1) Performance and CPI Calculation: Focuses on measuring
and calculating computer system performance, using Cy-
cles Per Instruction (CPI) as a metric. Requires students
to differentiate metrics related to performance such as
time, frequency, cycles, MIPS, etc.

2) ISA and Code Generation: Requires students to under-
stand and write simple code snippets in the RISC-V
assembly language, demonstrating an understanding of
the ISA and code generation for basic templates such as
if and for statements.

3) Application binary interface: Tests knowledge of the
Application Binary Interface (ABI), including calling
conventions, register allocation, and stack management.

4) Arithmetic for Computers: Covers numeric representa-
tion and the design of arithmetic units within computers,
including ALU design, adders, parallel and multi-cycle
multiplication, and division.

5) Datapath: Control and data signals: Explore how control
signals direct operations within the datapath, including
the values of control and data signals for various instruc-
tions.

6) Pipeline: Hazards and Forwarding: assesses understand-
ing of data and control hazards in pipelined processors
to performance, and how techniques like forwarding and
branch prediction can be used to mitigate these hazards.

7) Pipeline: Control and data signals: Requires students to
apply pipelined execution concepts by identifying the
state of the pipeline and determining which instructions
are active in each stage during a given cycle.

8) Cache: Direct-mapped Organization: Focuses on the
principles and operation of direct-mapped cache organi-
zation, including address address mapping and aliasing
for and varying capacity and block sizes.

9) Cache: Misses and Performance: Examines the impact of
cache misses on system performance, with an emphasis
on understanding how cache design affects efficiency.

10) Virtual Memory: covers virtual memory concepts, in-
cluding address translation, page tables, and the man-
agement of memory in modern computer systems.

These quizzes are designed to reinforce key concepts cov-
ered in lectures, providing students with regular opportunities
to apply their knowledge and prepare for more comprehensive
exams. However, practical implementation of quizzes faces the
significant challenge of managing and grading a large number
of quizzes for approximately 100 students, especially without
teaching assistance. This workload can lead to delays in
providing feedback, reducing the effectiveness of continuous
assessment (CA) by limiting the ability to quickly identify
learning gaps and adjust course content accordingly.

Automated grading offers a solution to this challenge by
expanding the scope of evaluation and allowing for rapid feed-
back. Using tools such as Auto Multiple Choice (AMC) [4],
instructors can efficiently generate both paper and digital
quizzes, streamline the grading process, and ensure that stu-
dents receive timely feedback. This approach not only supports
continuous assessment, but also enhances the overall learning
experience by allowing for quick course adjustments based on
student performance. The next section discusses how AMC
can be used to implement a continuous assessment strategy
supported by frequent quizzes.

III. AMC WORKFLOW

Auto Multiple Choice (AMC) is a LaTeX package and
toolset designed to streamline the generation and grading of
exams, particularly for multiple choice and numeric questions.
The exams are then assembled by selecting questions that
match the desired difficulty and topic coverage. These exams
can be distributed in either paper or digital format. In paper
format, the quizzes are printed, completed by the students,
and scanned for grading. Each exam includes a section for
student identification and a unique quiz identifier. In the digital
format, students receive a unique, pre-identified quiz, which
they complete using a PDF viewer and submit through an
online Learning Management System.

AMC processes scanned or digital submissions, recognizing
filled checkboxes and numeric answers. Errors in scanning
or recognition can be corrected manually by rescanning or
adjusting the recognized answers within AMC. The system
automatically grades multiple choice and numeric questions,
with provisions for correcting grading errors or adjusting point
allocations. Open-ended questions are manually graded.

Finally, AMC generates a spreadsheet for the instructor
detailing the results for each student and question. This allows
for the identification of inconsistencies in form completion
and the assessment of question difficulty. If an email client
is connected to AMC, students can receive a marked PDF of
their exam, including scores and any corrections made during
grading. The original submission, with corrections, is also
provided for review. Students can review their mistakes and
appeal their grades if necessary. Instructors may also include
explanations of correct answers in the marked PDFs. The
following section details the creation of questions and exams
using AMC.

IV. QUESTIONS AND QUIZES

Auto Multiple Choice (AMC) supports different types of
questions, including simple multiple choice, multiple choice
with multiple answers, numerical questions, and open ques-
tions graded manually by the instructor. Each question is
assigned a unique name and can be associated with a specific
topic (or element in AMC). By grouping questions under the
same topic, AMC can randomly select one or more questions
when generating a test. In this section, we introduce examples
for each type of question. The typeset output of the questions
is presented in a sample quiz in Section IV-E.

A. Multiple Choice Questions

Figure1 illustrates a multiple choice question designed to
assess students’ understanding of Amdahl’s law. The question
asks students to determine the required speedup for multiplica-
tion instructions in a program where 60% of the execution time
is spent on these operations, in order to achieve a doubling of
the program’s overall speed. To correctly answer, the student
must calculate the potential performance improvement when
optimizing only a part of the system.

Multiple versions of this question can be generated by
varying the numerical values provided, such as the percentage

\element{basic-amdahl}{
\begin{question}{amdahl1}
If a program spends 60\% of its time executing

multiplication instructions, how much faster do
the multiplication instructions need to be for
the program to run 2 times faster?

\begin{choices}
\correctchoice{6x faster.} \scoring{1}
\wrongchoice{3x faster.}
\wrongchoice{12x faster.}
\wrongchoice{It is not possible to achieve the
desired performance by optimizing only the
multiplication instructions.}

\wrongchoice{It is not possible to determine the
answer with the given information.}

\end{choices}
\end{question}
}

Fig. 1. Multiple choice question. A single correct choice is defined with a
score of one. The alternatives are shuffled for each exam. Questions with the
same element identifier can be randomly selected for different exams.

\element{basic-short}{
\begin{question}{reg-bits}

How many bits are needed to address a register
in the RISC-V register file?

\begin{choiceshoriz}
\correctchoice[5]{}
\wrongchoice[16]{}
\wrongchoice[32]{}
\wrongchoice[6]{}
\wrongchoice[8]{}

\end{choiceshoriz}
\end{question}

}

Fig. 2. Simple multiple choice question. The correct answer is shown inside
the answer box.

of time spent on multiplication or the desired overall speedup.
This can be done by creating multiple versions of the question
with different hardcoded values or by using variables and
formulas to dynamically generate the numbers, as described
in Section IV-B. Additionally, Python can be used to pro-
grammatically generate these values, providing even greater
flexibility, as outlined in Section IV-C. This diversifies the
questions and also plays a role in preventing cheating by
reducing the likelihood that students will encounter identical
questions.

Simpler multiple choice questions can present the alterna-
tives in the answer box itself. Figure 2 presents a straight-
forward question of information encoding in the RISC-V
Instruction Set Architecture (ISA), focusing on how many
bits are needed to address a register in the register file.
Variations of the question can assess related concepts, such
as determining the number of registers given a specific bit
length or calculating how many instructions can be encoded
with a given opcode length.

It is also possible to define questions where multiple an-
swers may be correct, or none at all. Finally, for all multiple

\element{num-fp}{
\begin{questionmultx}{fpcv1}

Convert the number 0xc0980000 representing a
single-precision floating point value to
decimal.
\begin{center}

\AMCnumericChoices{-4.75}{sign=true,
vertical=true,base=10,digits=4,decimals=2,
scoreexact=1}
\end{center}
\end{questionmultx}

}

Fig. 3. Quantitative question with a signed decimal answer. Only exactly
correct responses are considered.

\FPeval{\blp}{round(random*4+1,0)}
\FPeval{\blw}{round(2ˆ\blp,0)}
\FPeval{\ccp}{trunc(\blp+random*4+4,0)}
\FPeval{\ccb}{round(2ˆ\ccp,0)}
\FPeval{\idx}{round(\ccp-\blp-2,0)}
\FPeval{\off}{round(\blp+2,0)}
\FPeval{\tag}{round(32-\off-\idx,0)}

\begin{questionmultx}{indexsize}
Consider an architecture with 32-bit words and
a direct-mapped L1 data cache with \ccb{} bytes
capacity. If the cache has blocks of \blw{}
words, how many bits are required for the index
field in the address division?

\begin{center}
\AMCnumericChoices{\idx}{sign=false,

vertical=false,nozero=true,base=10,digits=1,
scoreexact=1}
\end{center}

\end{questionmultx}

Fig. 4. Quantitative question with random variables and response determined
by a formula.

choice questions, points can be awarded or deducted for each
individual answer, allowing for a more precise assessment.
This approach helps to reward partial knowledge or penalize
significant errors, providing a more accurate assessment of
student comprehension.

B. Quantitative Questions, Variables, and Formulas

AMC allows the creation of quantitative questions in which
the expected result is defined as a number. Figure 3 shows an
example in which students are asked to convert a hexadecimal
number from single-precision floating point representation to
its decimal equivalent. The specified parameters indicate that
the answer must be provided as a signed number in decimal
representation (base 10), using 4 digits in total, with two
decimal digits. Only exactly correct responses are considered
for full credit. It is possible to configure numerical tolerances
for correct responses as well as partial credit for approximately
correct responses.

As with multiple choice questions, multiple variations of
numeric questions can be created for the same topic, such
as using different values or asking students to convert from
decimal to floating-point representation instead. For questions

in which the answer can be derived from a formula involving
variables, the Fixed Point (FP) package [8] can be used. This
package allows for the random selection of variable values and
the automatic calculation of the correct answer, enabling the
generation of diverse question sets that test the same concept
without requiring the creation of multiple versions of each
question.

The question in Figure 4 assesses the student’s under-
standing of how memory addresses are divided in a direct-
mapped cache architecture. It presents an architecture with 32-
bit words and an L1 data cache with a capacity of ccs bytes,
organized into blocks containing blw words. The student must
calculate the number of bits required for the index field in the
address division. The values for cache size and block size are
randomly chosen using the LaTeX Fixed Point (FP) package.
The sizes of the index, offset, and tag fields are calculated and
could be used to generate further questions. In this example,
only answers between 1 and 9 are accepted, so care must
be taken to ensure that the correct answers fall within these
bounds.

C. Integration with Python

Integration with Python code is possible using the pythontex
package [10], which allows Python code to be executed and its
output to be included directly in the document. This is useful
for generating dynamic content, such as questions and answers
based on complex calculations.

Figure 5 demonstrates this integration with a question about
multicycle division. The first Python function calculates the
value for each register in a multicycle divider, and the second
function generates a question for a specific register and cycle.
Random input values are selected, and a question asking for
the state of the Remainder register at a given cycle is inserted
into the document.

To produce the final document, LATEX is preprocessed with
PythonTeX, which executes the Python code and inserts the
output into the LATEX file for AMC processing. Although
debugging can be challenging, this approach greatly simplifies
the creation of complex questions.

D. Open Questions

AMC allows for the combination of multiple choice and
numeric questions with open-ended questions that require
manual grading by the instructor. In these cases, after stu-
dents complete the exam, the instructor manually checks and
grades open-ended responses before processing the files for
automated grading. Figure 6 illustrates an example of an open
question in which students are asked to write a function
using RISC-V assembly. This approach ensures that, while
objective questions are automatically graded, the instructor
systematically evaluates more complex and essay answers.

E. Quiz and Exam Organization

Figures 7 and 8 show examples of paper and digital quizzes,
respectively. The process of question selection and exam
composition is the same for both formats.

\begin{pycode}
def mc_div(ddend, dsor, b, cycle):

dsor <<= b
quotient = 0
remainder = ddend
if cycle == 0 :

return {'Quotient':quotient,
'Remainder':remainder,
'dsor':dsor}

for i in range(1,b+2):
remainder = remainder - dsor
if remainder < 0:

remainder = remainder + dsor
quotient <<= 1

else :
quotient <<= 1
quotient += 1

dsor >>= 1
if i == cycle:

return {'Quotient':quotient,
'Remainder':remainder,
'dsor':dsor}

def div_q(reg, ddend, dsor, b, cycle, pts):
ans = mc_div(ddend, dsor, b, cycle)[reg]
bsize = b * 2 if (reg == 'dsor') else b
print("""
\\begin{questionmultx}{Division%s%d}
\\\\%s, Cycle %d
\\begin{center}
\\AMCnumericChoices{%d}{sign=false,vertical=
true,base=2,digits=%d,scoreexact=%f}
\\end{center}
\\end{questionmultx}
""" %(reg, cycle, reg, cycle, ans, bsize, pts))

\end{pycode}

\element{divider}{
\pyc{import random; ddend=random.randint(11, 14);

dsor = random.randint(3, 5);}

For the next question, considering a multi-cycle
divider, divide \py{ddend} by \py{dsor},
indicating the value of the specified register
at the end of the clock cycle. Assume that the
inputs and results are represented with 4 bits,
and give your answer in binary.

\pyc{div_question('Remainder',ddend,dsor,4,3,1)}
}

Fig. 5. Integration with Python Code. The first Python function calculates
the value for each register in a multicycle divider, and the second function
generates a question for a specific register and cycle. Finally, random input
values are selected and a question is inserted.

\element{asm}{
\begin{question}{open-asm}
Implement the \texttt{int strlen(const char* str)}

function in RISC-V assembly. %...
\AMCOpen{lineheight=0.7cm,lines=5}{
\wrongchoice[0]{0}\scoring{0}
% ...
\correctchoice[5]{5}\scoring{5}}
\end{question}
}

Fig. 6. Open question. Prior to processing, the instructor must manually grade
the question using the reserved field.

Questions can be categorized into different topics, called
elements. Within each topic, questions may be shuffled and
randomly selected, allowing for variability in the quizzes. In
addition, multiple topics can be combined to form new topics,
offering flexibility in exam design. The final exam is composed
by inserting a set number of questions, or all of them, from
one or more of these topics.

For paper quizzes (Figure 7), the header includes a section
for student identification, used to associate the completed exam
with the correct student. Answers to the questions can be
presented along with the questions themselves or on separate
answer sheets. Exams can span multiple pages, provided that
each exam contains a unique identifier for the student. It is
recommended that students fill in their answers completely,
rather than using checkmarks, to ensure better accuracy during
the scanning process.

For digital quizzes (Figure 8), each student receives a unique
exam. To manage the distribution of online exams generated
by AMC, a Python script is used to separate individual student
forms from the single PDF file provided by AMC. The
system generates a single PDF containing all student exams in
sequence, but to deliver each student their specific form, the
document must be split into individual files while preserving
interactive fillable fields. For each student, a new PDF is
created with only their respective pages, named according to
their identification data, and then uploaded for distribution.

The system can also be used to create comprehensive exams
that combine new objective questions, new open-ended and
essay questions, and a selection of questions reused from
previous quizzes. Reusing quiz questions may be appropriate
when quiz results indicate that most students struggled with
certain material. In such cases, the instructor may choose to
revise the content and then include those same questions in
the exam to retest student understanding.

In MC732, quiz grades are used to allow students to skip
certain exam questions. For instance, some questions on the
exam may include an instruction stating: “If you received a
grade of 7 or higher on quiz (number), you may skip this
question (or the questions on this section or page) and copy the
quiz grade into the question’s grade.” This approach rewards
students for strong performance on quizzes, reducing their
workload on the final exam.

The results of the quiz can also inform the selection of
questions for the exam. If a quiz question was answered
correctly by most students, it might be excluded from the
exam to focus on areas where students demonstrated weaker
understanding. This allows the exam to better target knowledge
gaps and ensure that the assessment is meaningful.

Typically, an exam in MC732 consists of a mix of question
types. It includes general objective questions that were not
covered in the quizzes, which all students must answer. There
is also a set of objective or open questions that students answer
based on their quiz performance, as well as a set of open-ended
questions that all students are required to complete.

Open-ended questions in the exams are designed to assess
higher levels of understanding. These questions might involve

y +1/1/60+ y
Undergraduate Computer Architecture

Quiz Example
Instructions: Fill in your student ID and sign below. All answers must be
provided on this page; answers outside the form will be ignored. Questions
with | may have zero, one, or more correct answers. The use of calculators
and consultation materials is not allowed. This is an individual quiz.

Signature :

. .

ID
0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Question 1 If a program spends 60% of its time exe-
cuting multiplication instructions, how much faster do the
multiplication instructions need to be for the program to
run 2 times faster?

A It is not possible to determine the answer with the
given information.

B It is not possible to achieve the desired performance
by optimizing only the multiplication instructions.

C 3x faster.

D 12x faster.

E 6x faster.

Question 2 How many bits are needed to address a
register in the RISC-V register file?

16 8 6 5 32

Question 3 Convert the number 0xc0980000 from
single-precision floating-point representation to decimal.

+

�

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9 .

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Question 4 Consider an architecture with 32-bit words
and a direct-mapped L1 data cache with 512 bytes capac-
ity. If the cache has blocks of 4 words, how many bits are
required for the index field in the address division?

1 2 3 4 5 6 7 8 9

For the next question, considering a multi-cycle di-
vider, divide 13 by 5, indicating the value of the specified
register at the end of the clock cycle. Assume that the
inputs and results are represented with 4 bits, and give
your answer in binary.
Question 5
Remainder, Cycle 3

0

1

0

1

0

1

0

1

Question 6 Implement the int strlen(const char*
str) function in RISC-V assembly, following all necessary
ABI conventions and without using pseudo-instructions.
The function should return the length of the string.

0 1 2 3 4 5

. .

. .

. .

. .

. .

y yFig. 7. Sample quiz. Questions are typeset from the examples in Section IV. The source code for each question is presented in the respective Figure number.
Each quiz has a unique identifier, so they can span multiple pages and students only need to identify themselves on the first page. ID code format may be
adapted as necessary.

y +2/1/59+ y
Undergraduate Computer Architecture – Online Quiz Example

Instructions: Locate the file with your name and student ID. Upload the PDF with the filled-out answers in the
form. Answers outside the form will be ignored. This is an individual quiz.

Name:

Firstname Lastname
ID:

123456

Consider a half-precision floating-point representation using 16 bits with the following characteristics:

• Sign Bit (Bit 15)

• 5-bit Exponent (Bits 14–10)

• 10-bit Fractional Part (Bits 9–0)

• Exponent bias equal to 15

This representation follows all the conventions of the IEEE 754 floating-point representations, including normalization,
value conversion, representation of infinity and NaN, denormal numbers, etc.
Question 1 How is the number 26.25 represented in half-precision floating-point notation?

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

y y

Fig. 8. Digital quiz for online submission. Each student receives a pre-identified form, completes the quiz by selecting checkboxes in the PDF, and submits
the finished file through an online platform such as Google Classroom.

TABLE I
AVERAGE SCORES AND SUCCESSFUL RESULT PERCENTAGES FOR TOPICS IN THE COURSE OVER DIFFERENT SEMESTERS.

Topic / Semester Average Grade Successful Result
22.1 22.2 23.2 24.2 Mean 22.1 22.2 23.2 24.2 Mean

Performance and CPI Calculation 6.7 5.7 6.5 5.7 6.2 57% 67% 56% 62% 61%
ISA and Code Generation 5.3 6.2 4.5 - 5.3 38% 70% 21% - 43%
Application Binary Interface 6.2 6.8 6.4 6.8 6.6 57% 73% 56% 66% 63%
Arithmetic for Computers 5.3 - 8.4 7.8 7.2 40% - 84% 95% 73%
Datapath: Control and Data Signals 4.1 4.2 7.4 6 5.4 36% 47% 71% 66% 55%
Mean for Exam 1 Quizzes 5.5 5.7 6.6 6.6 6.1 46% 64% 58% 72% 60%
Exam 1 5.6 6.3 6.5 6 6.1 54% 75% 82% 84% 74%
Pipeline: Hazards and Forwarding 5.7 4.8 4.5 3.6 4.7 47% 52% 40% 33% 43%
Pipeline: Control and Data Signals 5.9 3.3 5.6 5.2 5.0 50% 36% 44% 70% 50%
Cache: Direct Mapped Organization 6 6.4 7.3 6.2 6.5 63% 69% 74% 83% 72%
Cache: Misses and Performance 6.8 3.1 7.6 5 5.6 65% 36% 73% 73% 62%
Virtual Memory - - - 5.3 5.3 - - - 71% 71%
Mean for Exam 2 Quizzes 6.1 4.4 6.3 5.1 5.5 54% 48% 58% 66% 57%
Exam 2 5.6 5.1 6.2 6.5 5.9 68% 67% 85% 86% 77%

evaluating or creating new solutions or modifications to an
architecture implementation. For example, students might be
asked to modify a datapath to support a new type of instruc-
tion. These questions are difficult to automatically grade and
require careful analysis by the instructor. However, they are
crucial for evaluating a deeper understanding of the course
material and the ability to apply concepts in novel situations.

V. LEARNING ASSESSMENT

AMC has been used in varying degrees in MC732 since
2019. This section briefly summarizes the learning assessment
results for the most recent editions of the course. Table I
presents an overview of the average scores and successful

results for various topics covered in the computer archi-
tecture course over different semesters. The data spans the
four semesters since the return to in-person classes after the
COVID-19 pandemic, during which quizzes with automated
grading were applied.

Overall, the average scores show variability between topics
and semesters, with some notable trends. For example, the
topic Performance and CPI Calculation” saw a slight decline
from 6.7 to 5.7, while “Application Binary Interface” main-
tained relatively stable performance around 6.8. The successful
results, which indicate the percentage of students achieving a
satisfactory grade (7/10 for tests and 5/10 for exams), generally

TABLE II
PERCENTAGE OF STUDENTS USING QUIZ GRADES ON EXAMS (S), AND
MEAN PORTION OF THE EXAM GRADE ATTRIBUTED TO QUIZZES (G).

Semester Exam 1 Exam 2
S G S G

22.1 71% 31% 90% 58%
22.2 92% 53% 86% 32%
23.1 91% 33% 80% 37%
24.1 73% 41% 73% 33%

Average 82% 40% 82% 40%

align with the average scores. A significant improvement
is observed in “Arithmetic for Computers” with successful
results increasing from 40% to 95%. Furthermore, the average
scores and successful results for Exam 1 and Exam 2 quizzes
are indicative of the effectiveness of continuous assessment
methods, with a general upward trend in student performance
and understanding over time.

Table II shows the percentage of students who used their
quiz grades on exams (S) and the mean portion of the exam
grade attributed to the quizzes (G) in different semesters.
For Exam 1, the highest percentage of students using quiz
grades was observed in semester 22.2 with 92%, where quizzes
accounted for 53% of the exam grade. Similarly, for Exam
2, semester 22.1 saw the highest percentage at 90%, with
quizzes contributing 58% to the exam grade. The average
percentage of students using quiz grades on the exams was
consistent for both exams at 82%, with an average contribution
of 40% of the exam grade attributed to quizzes. This data
indicates a significant reliance on quiz grades for overall exam
performance.

VI. STUDENT FEEDBACK

Unicamp applies course evaluation forms every semester,
in which students numerically assess a series of quantitative
criteria and fill out a text field for qualitative evaluation.
The average result of quantitative evaluations of the course
in semesters when the continuous evaluation system was
applied was approximately 95%, compared to an average of
85% for other courses at the Institute of Computing. Quali-
tative evaluations mentioning tests and continuous assessment
can be categorized into positive comments and suggestions
(approximately 80%) and negative comments (approximately
20%). The most significant positive comments are summarized
below.

Keeping up with the course. Many students appreciated the
quizzes, feeling that they helped them stay up-to-date with the
material. The continuous assessment model allowed students
to follow the course topics gradually and provided a clear view
of their assimilation of the content.

Assessment Format and Motivation The quizzes were seen
as a helpful way to maintain engagement with the material and
ensure class attendance. Students found the quiz model to be
motivating, even those who typically do not enjoy attending
classes. The course was praised for requiring continuous
attendance and maintaining consistency between quiz content

and class material, with suggestions that this method could be
applied to other courses.

Quick Grading. The quick correction of quizzes was seen
as a valuable aspect of the course structure.

The most frequent suggestions included:
Conducting quizzes during the first period. Students sug-

gested holding quizzes on days when the course is taught in
the first period, particularly for evening courses, as they felt
more rested and prepared at that time.

More quizzes and greater valuation. There were requests
for more quizzes and exercises for home practice, formatted
similarly to the quizzes. Additionally, some students suggested
increasing the weight of quizzes in the final grade calculation.

Finally, the vast majority of negative comments mentioned
the rigidity of the correction system. Some students felt that
the quiz correction was too binary and did not consider partial
knowledge or reasoning. They expressed concerns that the
evaluation method focused solely on the final result rather
than the student’s thought process. Suggestions were made
to include partial credit for partially correct answers, as the
binary approach was seen as too rigid.

Note that while multiple choice questions are naturally
binary in evaluation, quantitative questions can include tol-
erances in results and partial credit for answers close to the
correct one. However, re-visiting student responses to give
partial credit for correct reasoning is challenging for a large-
scale class.

VII. RELATED WORKS

Continuous assessment (CA) requires significant effort from
the instructor to implement effectively [11], making the use of
computer-assisted assessment tools essential to manage this
workload, particularly in large-scale settings [2].

The use of AMC, particularly for quizzes to support contin-
uous assessment, has been described in various higher learning
settings. Sauerwein et al. [12] investigated the use of AMC
software to facilitate continuous assessment in university-level
physics courses. By using AMC, the authors were able to
streamline the correction process, reduce the time required for
feedback, and ultimately make continuous assessment more
feasible in large classroom settings.

Clancy and Quinn [3] highlight the effectiveness of AMC in
reducing the response time for providing feedback in Physics
courses. The authors also explore the impact of automated
feedback on student motivation and the ability to predict
exam performance. The study found that the students often
performed better on the final exam than the quizzes, suggesting
that the quizzes may have motivated some students to improve
their understanding and performance.

Santos et al. [5] describe how Matlab scripts can be used to
generate multiple versions of exams, similarly to the strategy
using Python presented in this paper. The exams are generated
and processed by AMC, allowing for fast and detailed feed-
back to students, and allowed for statistical analyses of student
performance with respect to specific topics. Similarly, Hamada

et al. [6] describe the integration of AMC with Computer
Algebra Systems using the Lua language.

In the context of a Computer Architecture Laboratory class,
Llamas-Nistal et al. [7] introduced short exercises at the
beginning of lab sessions to encourage continuous engagement
and self-assessment, with these exercises contributing to a
small component of the final grade. The authors found that
short exercises positively impact student learning outcomes
by encouraging continuous participation.

VIII. CONCLUSION

The implementation of continuous assessment (CA) through
frequent quizzes in the Design of Computing Systems course
has been effective in enhancing student engagement and under-
standing. Automated grading allows students to answer a very
large number of questions throughout the semester, a task that
is unmanageable without such tools. This approach rewards
continuous engagement, reduces the exam burden for consis-
tently performing students, and allows targeted adjustments in
teaching based on student performance. Automated grading
also ensures objective, fair, and error-free assessments.

However, this approach shifts the workload from grading to
question creation, which requires significant effort, especially
to create effective multiple choice questions and technically
challenging numerical questions. Although beneficial for large
classes, the approach may not be worthwhile for smaller
groups. Another issue is that the distribution of graded solu-
tions eases the creation of previous quiz and exam banks by the
students, which requires regular updates to the question pool.
Finally, students have expressed concerns about rigid correc-
tion methods that only recognize exactly correct responses,
potentially overlooking partial understanding. Therefore, the
best results are achieved when the quizzes are supplemented
with open questions that can test higher-level competencies.

In general, CA supported by automated grading has created
a more efficient and adaptive learning environment in the
course. The code for the examples featured in this paper is
available at https://github.com/lfwanner/caca.

ACKNOWLEDGMENTS

This work was supported by the National Council for
Scientific and Technological Development (CNPq) grants
402467/2021-3 and 405940/2022-0, Coordination for the Im-
provement of Higher Education Personnel (CAPES) grant
88887.954253/2024-00, and Unicamp FAEPEX grant 2477/23.

REFERENCES

[1] Thomas A. Angelo and K. Patricia Cross. Classroom As-
sessment Techniques: A Handbook for College Teachers.
Jossey-Bass, San Francisco, CA, 2nd edition, 1993.

[2] John Bull and Colleen McKenna. A Blueprint for
Computer-Assisted Assessment. RoutledgeFalmer, Lon-
don, UK, 2001.

[3] Ian Clancy and Ann Marcus-Quinn. Exploring the pos-
sibilities of automated feedback for third level students.
Form@re, 19(3):247–256, Dec. 2019.

[4] Alexandre Courbot. Auto multiple choice. https://www.
auto-multiple-choice.net, 2024.

[5] Milana Lima dos Santos, Hernán Prieto Schmidt, Gio-
vanni Manassero, and Eduardo Lorenzetti Pellini. Auto-
mated design for engineering student examinations using
matlab/octave scripts and the auto multiple choice pack-
age. In 2019 IEEE World Conference on Engineering
Education (EDUNINE), pages 1–5, 2019.

[6] Tatsuyoshi Hamada, Yoshiyuki Nakagawa, and Makoto
Tamura. Method to create multiple choice exercises for
computer algebra system. In International Conference on
Mathematical Software, volume 12097 of Lecture Notes
in Computer Science, pages 419–425. Springer, 2020.

[7] Martı́n Llamas-Nistal, Martı́n Liz-Domı́nguez, Juan M.
Santos-Gago, Manuel J. Fernández-Iglesias, Luis E.
Anido-Rifón, and Moisés R. Pacheco-Lorenzo. Short-
exercise assessment in a computer architecture labora-
tory. In XVI Congreso de Tecnologı́a, Aprendizaje y
Enseñanza de la Electrónica (TAEE), pages 1–5, 2024.

[8] Michael Mehlich. Fixed point package for latex. https:
//ctan.org/pkg/fp, 2021.

[9] David A. Patterson and John L. Hennessy. Computer
Organization and Design RISC-V Edition: The Hard-
ware/Software Interface. Morgan Kaufmann, Cambridge,
MA, 2nd edition, 2020.

[10] Geoffrey M. Poore. PythonTeX: Run Python from within
LATEX, 2023.

[11] Jose-Luis Poza-Lujan, Carlos T. Calafate, Juan-Luis
Posadas-Yagüe, and Juan-Carlos Cano. Assessing the
impact of continuous evaluation strategies: Tradeoff be-
tween student performance and instructor effort. IEEE
Transactions on Education, 59(1):17–23, 2016.

[12] Ricardo Andreas Sauerwein, Josemar Alves, and
Dioni Paulo Pastorio. Uso de um software de correção
automática: uma alternativa para viabilizar o processo
avaliativo contı́nuo no contexto do ensino universitário.
Informática na Educação: Teoria & Prática, 21(3), dez.
2018.

