
International Journal of Computer Architecture Education, 2025, 14:1
ISSN: 2316-9915 • doi: 10.5753/ijcae.2025.6319
� This work is licensed under a Creative Commons Attribution 4.0 International License.

ARTIGO DE PESQUISA

Desenvolvendo simuladores para arquitetura de
computadores com auxílio de modelos generativos de
linguagens
Ricardo Ferreira � [Universidade Federal Viçosa | ricardo@ufv.br]
Racyus Delano Garcia Pacífico [Universidade Federal Ouro Preto | racyus.pacifico@ufop.edu.br]

� Departamento de Informática, Universidade Federal de Viçosa, Viçosa, cep 36570-900, Viçosa, Brazil.

Resumo. Este trabalho apresenta o uso de modelos generativos para o desenvolvimento de simuladores interativos vol-
tados ao ensino de arquitetura de computadores em diferentes níveis de abstração. Os simuladores contam com interfaces
que incluem janelas de edição de código, visualização gráfica da execução e integração com o Google Colab, promo-
vendo a experimentação prática e acessível. O desenvolvimento foi realizado no contexto das disciplinas de arquitetura
de computadores da Universidade Federal de Viçosa, com participação ativa dos alunos. Como parte das atividades, os
estudantes receberam a demanda dos requisistos desejados para cada simulador, acompanhada de um código inicial com
número reduzido de funcionalidades, que deveria ser ampliado e aprimorado. Foram desenvolvidos simuladores para
diversas arquiteturas, incluindo: processadores RISC-V com e sem pipeline, arquiteturas com múltiplas unidades funci-
onais, simuladores baseados no algoritmo de Tomasulo, interpretadores para assembly vetorial, arquiteturas com array
processors SIMD, além de modelos de multiprocessadores com memória compartilhada e com troca de mensagens. Além
dos processadores, um projeto de uma cache 4-way também foi implementado. A cache e os processadores RISC-V têm
implementação em Verilog e Python. As demais arquiteturas usaram simuladores em Python. A abordagem visa tornar
o aprendizado mais visual, prático e alinhado com os fundamentos teóricos da área.

Palavras-chave: Simuladores, modelos generativos de linguagem, arquitetura de computadores, computação paralela.

Recebido: 04 Agosto 2025 • Aceito: 28 Setembro 2025 • Publicado: 21 Janeiro 2026

1 Introdução
Este artigo aborda o processo de desenvolvimento e ferra-
mentas adotadas na criação de simuladores interativos para
o ensino de arquitetura de computadores, com participação
dos alunos. Nosso objetivo é duplo: primeiro, fomentar a
troca de experiências entre educadores da área de engenha-
ria e computação, promovendo a criação e o compartilha-
mento de ferramentas de código aberto com acesso remoto;
segundo, refletir sobre as inovações pedagógicas impulsio-
nadas pela disponibilidade de novas ferramentas como mo-
delos generativos de linguagem (LLMs) e suporte de ambi-
entes virtuais com alto desempenho e acesso facilitado via
navegadores [Canesche et al., 2021; Jamieson et al., 2025],
que podem levar a práticas mais eficazes.

O uso de simulação no ensino tem se mostrado uma es-
tratégia interessante [Hwang et al., 2025] para promover o
aprendizado, apoiar tomada de decisões e facilitar a com-
preensão de sistemas complexos. No entanto, este trabalho
vai além da simples utilização de simuladores: propomos um
modelo no qual os estudantes são envolvidos como colabo-
radores no desenvolvimento das ferramentas, atuando como
”desenvolvedores dos simuladores” [Ferreira et al., 2015].
Esta abordagem estimula não apenas a compreensão técnica
dos conteúdos, mas também habilidades práticas de progra-
mação, uso de novas ferramentas com LLMs e colaboração.

A proposta tem caráter incremental. Os alunos rece-
bem, como ponto de partida, um código parcial funcional
com funcionalidades limitadas, além de uma especificação
clara da funcionalidade desejada. A partir disso, são desafi-

ados a expandir e aprimorar os simuladores, compreendendo
tanto a arquitetura do sistema quanto os conceitos computa-
cionais envolvidos. A metodologia de desenvolvimento in-
cluem o uso de técnicas convencionais de programação, uso
de LLM e uso de programação baseada em exemplos, onde
protótipos iniciais dos simuladores são fornecidos. A estru-
tura modular e acessível dos simuladores permite que os es-
tudantes rapidamente comecem a gerar códigos funcionais
para validação além da compreensão de diversas arquitetu-
ras computacionais e de como elas podem ser desenvolvidas
e validadas.

Além de sua aplicação nas disciplinas de arquitetura de
computadores da Universidade Federal de Viçosa, acredita-
mos que essa abordagem pode ser estendida para diversas
outras áreas da engenharia e da computação. As ferramen-
tas são de código livre e documentadas para a criação de um
espaço colaborativo voltado ao suporte técnico e pedagógico
para educadores interessados no desenvolvimento e uso de
ferramentas educacionais interativas.

Experiências práticas são parte essencial da formação
em engenharia, e o desenvolvimento de simuladores intera-
tivos pode ser interpretado como diretrizes de três catego-
rias clássicas de laboratórios educacionais [Jamieson et al.,
2021]:

1. Laboratório de desenvolvimento: Está alinhado ao
aprendizado baseado em projetos, os alunos são desafi-
ados a projetar, expandir e avaliar simuladores compu-
tacionais, partindo de demandas funcionais concretas e
códigos-base com funcionalidades limitadas.

https://portal.issn.org/resource/ISSN/2316-9915
https://doi.org/10.5753/ijcae.2025.6319
https://orcid.org/0000-0003-1802-7829
mailto:ricardo@ufv.br
https://orcid.org/0000-0003-0587-6127
mailto:racyus.pacifico@ufop.edu.br

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

2. Laboratório de pesquisa: O ambiente de simulação
também funciona como espaço para exploração aberta,
onde os estudantes podem investigar o comportamento
de arquiteturas alternativas, propor extensões e compre-
ender sistemas complexos por meio da experimentação.

3. Laboratório educacional: Os simuladores permitem
que os estudantes validem na prática os conceitos teó-
ricos discutidos em aula, como pipeline, paralelismo,
acesso à memória e comunicação entre processadores,
promovendo uma ponte direta entre teoria e aplicação.

Ao integrar essas três dimensões, o processo de desen-
volvimento e uso dos simuladores não apenas reforça o con-
teúdo curricular, mas também estimula habilidades de reso-
lução de problemas, colaboração e pensamento computacio-
nal de forma contextualizada e progressiva.

Cursos de arquitetura e organização de computadores
tradicionalmente envolvem atividades práticas como tarefas
e avaliações, onde os alunos desenvolvem programas em
linguagem de montagem, constroem arquiteturas simples e
complexas, implementando otimizações para compreender o
projeto de baixo nível e a operação de processadores e das
arquiteturas. Nesse contexto, os simuladores desenvolvidos
permitem não apenas a observação desses processos, mas
também sua experimentação ativa em um ambiente intuitivo
e acessível.

2 Metodologia
A proposta deste trabalho baseia-se na integração de mode-
los de linguagem de grande escala (LLMs), Python/JavaS-
cript e Google Colab para o desenvolvimento de simuladores
voltados ao ensino de arquitetura de computadores. A me-
todologia explora as vantagens dessas tecnologias de forma
complementar para facilitar tanto a criação quanto o uso pe-
dagógico de simuladores interativos.

O uso de LLMs permite gerar rapidamente interpreta-
dores, estruturas de dados e interfaces gráficas para diferen-
tes arquiteturas computacionais, como processadores vetori-
ais, processadores em array, e conjuntos de instruções redu-
zidas (como subconjuntos de RISC-V ou montadores didáti-
cos) [Jamieson et al., 2025; de Figueiredo et al., 2024]. As
LLMs também auxiliam na explicação do código gerado e
na adaptação de funcionalidades com base nas necessidades
didáticas de cada experimento, promovendo uma abordagem
iterativa e incremental no desenvolvimento dos simuladores.

A base da infraestrutura adotada é o Google Colab [Ca-
nesche et al., 2021; Ferreira et al., 2024a,b], que oferece
várias vantagens para o contexto educacional: acesso gra-
tuito e multiplataforma, execução em nuvem sem necessi-
dade de instalação local, facilidade para compartilhar note-
books com exemplos e exercícios, e suporte a recursos mul-
timídia para explicações interativas (como gráficos, widgets
e animações).

Cada estudante recebe como ponto de partida um note-
book contendo um simulador funcional baseado em um do-
mínio específico, por exemplo, um subconjunto de instruções
de um processador SIMD ou um emulador de cache com vi-
sualização. Esses simuladores já vêm acompanhados de des-
crições e exemplos gerados com o apoio de LLMs. O exer-
cício proposto aos alunos consiste em analisar, modificar e

expandir essas implementações.

3 Simuladores de processadores
Há uma grande variedade de simuladores educacionais vol-
tados ao estudo de processadores, especialmente para as ar-
quiteturas MIPS e, mais recentemente, RISC-V [Giorgi and
Mariotti, 2019; Savaton, 2021; Mezger et al., 2022; Böseler
et al., 2022; Esmeraldo et al., 2023]. Entre os simuladores
disponíveis, destacam-se aqueles que implementam proces-
sadores de um ciclo (monociclo) e com pipeline, permitindo
a visualização do fluxo de instruções ao longo das etapas do
ciclo de execução.

Entretanto, mesmo entre os simuladores com interface
gráfica [Giorgi and Mariotti, 2019; Savaton, 2021], incluindo
muitos de código aberto, é comum que o funcionamento in-
terno seja fixo, com opções limitadas de personalização. Para
que educadores e alunos possam modificar ou estender tais
ferramentas, é necessário um esforço considerável para com-
preender tanto a lógica de simulação quanto a estrutura da
interface gráfica [Garcia et al., 2024]. Outro ponto de limita-
ção frequente é que muitos desses simuladores não produzem
um código intermediário ou de saída que possa ser mapeado
diretamente para implementação física, como em FPGA ou
ASIC. Outros simuladores produzem códigos em linguagem
de hardware (Verilog ou VHDL), mas não oferecem interfa-
ces didáticas [Schoeberl, 2025] ou envolvem projetos de im-
plementação dos processadores [Zekany et al., 2021]. Nossa
abordagem é ampla, pois inclui montador, simulador de alto
nível, implementação em Verilog e visualização gráfica da
implementação.

Nos últimos anos, surgiram alternativas mais flexíveis,
como simuladores baseados no DigitalJS [Passe et al., 2020]
ou ambientes interativos como o Google Colab integrando
código em Verilog, que permitem simulação funcional e po-
dem gerar artefatos utilizáveis em síntese digital [Jamieson
et al., 2025; de Figueiredo et al., 2024]. Os simuladores apre-
sentados em [de Figueiredo et al., 2024] vão além ao permitir
a geração de saídas gráficas no formato SVG, que são editá-
veis e possibilitam a inclusão de extensões personalizadas.

Neste contexto, desenvolvemos extensões sobre os si-
muladores descritos em [de Figueiredo et al., 2024], incor-
porando um simulador de alto nível em Python, capaz de ge-
rar automaticamente o código assembly (montador) corres-
pondente para o simulador em Verilog. Além disso, imple-
mentamos uma visualização interativa do caminho de dados,
descrita na Seção 3.1. O estudante pode facilmente adicio-
nar novas instruções, incluindo a decodificação, o montador,
a simulação e a implementação, interagindo com o código
Python, o código Verilog e o desenho estrutural do projeto.

Em um segundo momento, abordamos arquiteturas
mais avançadas, como processadores com múltiplas unida-
des funcionais em pipeline e com escalonamento dinâmico
de instruções baseado no algoritmo de Tomasulo. Nessa
etapa, a simulação foi realizada exclusivamente em Python,
com ênfase na lógica da execução fora de ordem, sem gera-
ção de código Verilog, conforme discutido na Seção 3.2.

3.1 RISC-V
Esta seção apresenta um simulador interativo para o proces-
sador RISC-V monociclo, desenvolvido a partir das exten-

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

Figura 1. (a) janela de edição do código assembly; (b) execução e emulação
para visualizar os registradores e memória.

sões propostas em [de Figueiredo et al., 2024]. O simulador
possui um editor integrado de alto nível em Python, visuali-
zação dos registradores e da memória (ilustrado na Figura 1),
geração automática de código assembly e visualização passo
a passo do caminho de dados (ilustrado na Figura 2), permi-
tindo ao aluno explorar instrução por instrução em um ambi-
ente gráfico e personalizável.

1 e l i f opcode i n a l u _ o p e r a t i o n s :
2 rd = s e l f . p a r s e _ r e g i s t e r (p a r t s [1])
3 r s 1 = s e l f . p a r s e _ r e g i s t e r (p a r t s [2])
4 r s 2 = s e l f . p a r s e _ r e g i s t e r (p a r t s [3])
5 f7 , f3 = d i c t _ r t y p e [opcode] # montador
6 i n s t = f7 + fo rma t (r s2 , ’ 05b ’) + fo rma t (r s1 ,

’ 05b ’) + f3 + fo rma t (rd , ’ 05b ’) + opcodeR
7 h e x _ i n s t = b in2hex (i n s t)
8 s e l f . code . w r i t e (h e x _ i n s t +” \ n”) # v e r i l o g
9 i n s t = ” 32 ’ b” + f7 + ”_” + fo rma t (r s2 , ’ 05b ’)

+ ”_” + fo rma t (r s1 , ’ 05b ’) + ”_” + f3 +
”_” + fo rma t (rd , ’ 05b ’) + ”_” + opcodeR

10 s e l f . i n s t r u c t i o n _ m e m o r y . append (i n s t)
11 r e t u r n I n s t r u c t i o n (opcode , rd , r s1 , r s 2)
12 #
13 # Trecho do emulador
14 de f e x e c u t e _ i n s t r u c t i o n (s e l f , i n s t r u c t i o n) :
15 i f i n s t r u c t i o n . opcode == ’ add ’ :
16 s e l f . r e g i s t e r s [i n s t r u c t i o n . rd] = s e l f

. r e g i s t e r s [i n s t r u c t i o n . r s 1] +
s e l f . r e g i s t e r s [i n s t r u c t i o n . r s 2]

17 # Trecho do E d i t o r / Exemplo
18 example_code = ” ” ”# Example :
19 add i x5 , x0 , 10
20
21 sw x6 , 8(x0)
22 ” ” ”
23 s i m u l a t o r _ u i = RISCVSimulatorUI ()
24 s i m u l a t o r _ u i . d i s p l a y ()

Listagem 1: Exemplos de trechos com parser e montador de
instrução do tipo R, emulador add e programa exemplo.

O trecho de código 1 ilustra a simplicidade e modulari-
dade do código gerado pela LLM. Para cada tipo de instru-
ção, há o trecho que faz o parser e o montador do código
binário para o próximo passo de execução no simulador Ve-
rilog. O simulador, além de executar o código, faz o papel
do montador.

O simulador Python exporta um arquivo de memória
com o código binário. A proposta é ter uma dupla validação
do código: no nível do simulador Python e no nível de Ve-
rilog. A verificação da execução do processador implemen-
tado em Verilog oferece uma depuração com a visualização
do caminho de dados.

Os estudantes recebem o código básico do simulador
com um pequeno conjunto de instruções. A tarefa é com-
pletar o simulador/montador com instruções de desvio e me-
mória, acrescentar sua visualização posterior no Verilog, fa-

Figura 2. Visualização da execução do código Verilog com interface gráfica
editável no formato SVG.

Figura 3. Caminho de dados do pipeline RISC-V com desvio no segundo
estágio e encaminhamento com a visualização da execução do código Veri-
log passo a passo.

zer programas de teste e também criar novas instruções re-
solvendo exercícios do livro texto de RISC-V [Patterson and
Hennessy, 2017].

Uma versão com pipeline também foi adaptada para in-
clusão de editor de texto embutido para avaliar diferentes
exemplos e a geração automática da depuração em Verilog
no caminho de dados. O desenho do caminho de dados deri-
vado da implementação [de Figueiredo et al., 2024] foi mo-
dificado, juntamente com o código Verilog. A tarefa dos es-
tudantes foi fazer a extensão do simulador para a inclusão
de encaminhamento (forward) e do tratamento de desvio no
segundo estágio, conforme ilustrado na Figura 3.

Além das novas versões de processadores RISC-V com
depuração gráfica, outro conceito que pode ser trabalhado em
alto nível é a transferência de informações entre os estágios
da pipeline com uma estrutura de dados bem definida, como
sugerido em [Railing, 2023]. Com o auxílio das LLMs e
das facilidades da linguagem Python, apresentamos uma pro-
posta simples e didática para repassar os valores entre os está-
gios com dicionários. Cada dicionário tem os sinais (chave)
e seus valores.

A Figura 4 ilustra um exemplo de um pequeno trecho
no editor do simulador Python com cinco instruções. A parte
superior mostra o dicionário e uma ilustração quando a pri-
meira instrução add x1,x2,x3 está no estágio de decodifi-
cação e a instrução sub x4,x1,x5 está no estágio de busca

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

Figura 4. Exemplo de execução com emulação em Python usando dicioná-
rios para os sinais entre os estágios do pipeline.

(fetch). O destaque está nos sinais que irão ser propagados
para o estágio de execução.

Já na parte inferior da Figura 4, ilustramos o próximo
ciclo que tem a instrução mul x6,x4,x7 sendo buscada no
estágio de fetch, a instrução sub já no estágio de decodifi-
cação e a instrução add sendo executada e propagando seu
resultado no estágio de execução.

3.2 Múltiplas unidades e tomasulo
Para explorar conceitos avançados como paralelismo interno
ao processador, dependências de dados e execução fora de or-
dem, desenvolvemos simuladores em Python para arquitetu-
ras com múltiplas unidades funcionais em pipeline com dife-
rentes latências. A primeira tarefa foi implementar um pipe-
line estático com múltiplas unidades em paralelo. A segunda
tarefa foi simular o algoritmo de Tomasulo, com escalona-
mento dinâmico de instruções, uso de estações de reserva,
buffers e a técnica de renomeação de registradores, permi-
tindo ao aluno visualizar a resolução dinâmica de dependên-
cias e a execução eficiente de instruções fora de ordem.

Como resultado da atividade da disciplina de arquitetura
de computadores do primeiro semestre de 2025, foram apre-
sentados seis simuladores funcionais do algoritmo de Toma-
sulo. A Figura 5 ilustra três exemplos das interfaces dos si-
muladores que permitem editar o código, visualizar o quadro
de execução passo a passo e o estado das estações de reserva.
Cada grupo apresentou um simulador funcional com diferen-
tes recursos de visualização com o auxílio das LLMs.

4 Arquiteturas Paralelas
O ensino de arquiteturas paralelas é essencial para compreen-
der o desempenho e a escalabilidade de sistemas modernos.
Entretanto, muitas ideias de arquitetura são ensinadas sem
exercícios de programação, às vezes apenas com pseudo-
código de forma teórica, sem validação da execução ou si-
mulação. Nesta seção, apresentamos simuladores interativos
personalizados para uma determinada arquitetura e uma lin-
guagem de domínio específico com construções para expres-
sar o paralelismo. Esta abordagem é inovadora e permite ao
professor e estudante desenvolver e prototipar ideias rapida-
mente, além de programar vários algoritmos clássicos da lite-
ratura com construções paralelas. Os simuladores exploram
diferentes formas de paralelismo em nível de dados e tarefas.
A proposta inclui arquiteturas vetoriais, array processors do
tipo SIMD (Single Instruction, Multiple Data) e arquiteturas
multiprocessadas, oferecendo ao estudante ferramentas para

experimentar com diferentes formas de organização paralela
e estratégias de comunicação e sincronização.

4.1 Processador Vetorial
Os processadores vetoriais representam uma abordagem
clássica de paralelismo em nível de dados, operando sobre
grandes conjuntos de elementos simultaneamente. São um
marco importante na história da computação paralela, onde
foram desenvolvidas várias técnicas com pipeline e escalo-
namento de instruções. Desde os anos 90, com o Pentium
MMX, a Intel introduziu a programação com vetores nos pro-
cessadores comerciais x86, que evoluíram para o SSE e atual-
mente o conjunto AVX. Devido à demanda das aplicações ci-
entíficas e de inteligência artificial, várias extensões do con-
junto de instruções dos processadores RISC-V estão focando
nas operações vetoriais. Entretanto, não existem simuladores
disponíveis para exercitar os conceitos e novos conjuntos de
instruções do ponto de vista didático. Por exemplo, na disci-
plina de arquitetura de computadores foi definido um assem-
bly vetorial simples, gerado pela ferramenta ChatGPT, junta-
mente com um simulador que permite a execução de instru-
ções vetoriais com suporte a carregamento, armazenamento,
operações aritméticas e redução, além da visualização da es-
trutura de registradores vetoriais e do controle de stride. A
ferramenta visa reforçar conceitos de SIMD e eficiência com-
putacional em operações sobre vetores, conforme ilustrado
na Figura 6.

As instruções vetoriais iniciais do assembly são:

1. Registradores vetoriais V0 a V7: Cada registrador ar-
mazena um vetor de oito elementos e possui suporte a
acesso com stride;

2. Registradores escalares F0 a F7: São utilizados para
armazenar valores escalares de ponto flutuante;

3. Instruções suportadas:

• VLOAD Vx, addr, stride: Carrega oito ele-
mentos consecutivos da memória em V_x, com es-
paçamento definido por stride;

• VSTORE Vx, addr, stride: Armazena oito
elementos de Vx na memória;

• VADD Vx, Vy, Vz: Realiza a soma vetorial;
• VMUL Vx, Vy, Vz: Executa a multiplicação ve-

torial;
• VBROADCAST Vx, Fk: Copia valor contido no re-

gistrador Fk para todos os elementos do registra-
dor vetorial Vx.

• VREDUCE_SUM Fk, Vx: Efetua redução do vetor.

Como tarefas, os estudantes implementaram extensões
do conjunto de instruções, por exemplo, instruções para laços
de repetição. Para validação, o trabalho inicial foi a execução
de uma versão paralela do algoritmo de multiplicação de ma-
trizes e do algoritmo de criptografia TEA [Wheeler and Ne-
edham, 1994]. Além disso, foi requisitada a execução passo a
passo e a validação da execução com um código equivalente
em Python. A Figura 7 ilustra o simulador vetorial com capa-
cidade de executar uma, N ou todas as instruções do código.

A Listagem 2 ilustra um trecho do código do simulador
com a instrução de load vetorial e a instrução de multiplica-
ção, mostrando o parser e o interpretador.

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

Figura 5. Três implementações de simuladores Tomasulo:(a) simulador com configuração de estações de reserva e quadro de execução passo a passo para
Loop; (b) código com marcador, quadro de estações e janela de edição; (c) janela edição e configuração, quadro de execução, estações, registradores e
memória

Figura 6. Visualização da execução de um assembly vetorial com registra-
dores e memória.

Figura 7. Visualização da execução de um assembly vetorial com registra-
dores e memória, execução de N passos para o algoritmo TEA de cripto-
grafia.

O exemplo de multiplicação de matrizes é uma referên-
cia básica. A execução foi elaborada fixando a linha da ma-
triz e com dois laços aninhados. A Figura 8 mostra o resul-
tado do trabalho da disciplina: um simulador de assembly
vetorial desenvolvido executando a multiplicação de matri-
zes.

Figura 8. Visualização da execução de um assembly vetorial com registra-
dores e memória para multiplicação de matrizes com laços aninhados em
O(n2).

1 i f i n s t r == ’VLOAD’ :
2 vx , addr , s t r i d e = t o k e n s [1] . r s t r i p (’ , ’) ,

s e l f . p a r s e _ v a l u e (t o k e n s [2]) , s e l f .
p a r s e _ v a l u e (t o k e n s [3])

3 s e l f .V[vx] = s e l f . memory [add r : add r + 8∗
s t r i d e : s t r i d e] . copy ()

4 e l i f i n s t r == ’VMUL’ :
5 vx , vy , vz = t o k e n s [1] . r s t r i p (’ , ’) ,

t o k e n s [2] . r s t r i p (’ , ’) , t o k e n s [3]
6 s e l f .V[vx] = s e l f .V[vy] ∗ s e l f .V[vz]

Listagem 2: Exemplos de trechos com parser do assembly
vetorial.

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

Figura 9. Array Processor Linear Programável com exemplo ordenação Par-
Impar com laço e instrução Compara e Troca (CMPXHG) e o identificador
i para o número do processador.

É importante ressaltar que as tarefas das atividades prá-
ticas da disciplina incluem a extensão do conjunto de instru-
ções vetoriais e a elaboração de vários algoritmos. Como o
simulador é interpretado e tem um editor, vários exemplos
podem ser validados. Existe a opção do uso de bibliotecas
de parser, como a lark do Python, para gerar um código
com uma gramática bem definida e mais genérica para exten-
são [Coura et al., 2025], ou uso de JavaScript para execução
no Google Colab sem a necessidade de conexão.

4.2 Array processor
A arquitetura de array processors pode ser implementada
com diversas topologias: em anel, grade, hipercubo, etc.
Os múltiplos processadores executam instruções de forma
síncrona ou condicional com máscaras. Com o auxílio das
LLMs, é possível gerar rapidamente simuladores para di-
versas topologias com um conjunto de instruções variado.
Como os array processors não geraram produtos comerciais,
existe uma escassez de exemplos na literatura de linguagem
de programação para esta arquitetura. Este recurso foi explo-
rado para gerar tarefas onde os estudantes tinham que criar as
linguagens respeitando o paradigma de programação SIMD.
A simulação foi feita em Python com suporte à visualização
gráfica da comunicação entre processadores.

Diferentemente da programação para GPU, onde o pa-
ralelismo está vinculado ao número da thread, no array pro-
cessor a programação é indexada com o número do processa-
dor. O estudante tem várias tarefas no projeto do simulador,
que envolvem a estrutura de memória de cada elemento de
processamento, a topologia e as primitivas de comunicação,
a linguagem de domínio específico e elaborar exemplos de
código e validá-los.

A Figura 9 ilustra um simulador de exemplo para o pro-
blema de ordenação em um array processor linear de oito
elementos de processamento, onde i é o identificador do pro-
cessador. O simulador tem o código editável da linguagem
de domínio específico criada para programá-lo.

4.3 Multiprocessadores
Multiprocessadores são sistemas compostos por múltiplas
unidades de processamento independentes, capazes de exe-
cutar tarefas em paralelo. Nesta subseção, exploramos dois
modelos distintos de comunicação entre processadores: com
memória compartilhada e com troca de mensagens. Ambos
os simuladores permitem ao aluno observar os mecanismos
de sincronização, consistência de dados e comunicação entre
processos de forma visual e interativa.

4.3.1 Memória Compartilhada
O simulador com memória compartilhada modela um ambi-
ente em que os processadores acessam um espaço comum de

Figura 10. Código de demonstração com memória compartilhada com três
processadores em um multiprocessador.

memória, exigindo controle de concorrência para garantir a
integridade dos dados. Através do uso de LLM, a tarefa de
gerar um simulador inicial com três processadores foi rea-
lizada com facilidade. A LLM criou primitivas simples de
sincronização e variáveis compartilhadas.

A Figura 10 mostra um exemplo gerado pela ferramenta
ChatGPT com três janelas com capacidade de editar o código
e executar. O simulador encapsula a comunicação e criou a
primitiva shared para compartilhar uma variável e o método
shared.get('NomeDaVariavel', 0) para ler uma variá-
vel compartilhada e implementar o sincronismo.

O exemplo ilustrado na Figura 10 tem três processado-
res. O processador 1 aguarda a variável ready ter o valor 2
para somar as variáveis x e y. Os processadores 2 e 3 inici-
alizam as variáveis compartilhadas x e y, respectivamente.
Depois, os processadores 2 e 3 incrementam a variável com-
partilhada ready para sinalizar ao processador 1 que conclu-
íram a tarefa. De posse do exemplo, os estudantes têm como
tarefa criar simuladores com mais processadores, outras pri-
mitivas de sincronização e elaborar exemplos de código pa-
ralelo. Novamente, o editor permite mudar o código e testar
novas implementações.

No primeiro semestre de 2025, a tarefa dos estudantes
da disciplina de arquitetura de computadores da Universi-
dade Federal de Viçosa foi programar o algoritmo K-NN (K-
Nearest Neighbors) distribuído em um multiprocessador com
quatro processadores.

4.3.2 Troca de Mensagens
No modelo baseado em troca de mensagens, cada processa-
dor possui sua própria memória local e se comunica expli-
citamente com os demais por meio de envio e recepção de
dados. O simulador inicial gerado pela ferramenta ChatGPT
permite exercitar os conceitos de paralelismo distribuído e
sincronização explícita.

A Figura 11 mostra um exemplo gerado pela ferramenta
ChatGPT com três janelas com capacidade de editar o có-
digo e executar. O simulador encapsula a comunicação e
criou as primitivas send(processadorDestino,valor)
e receive(processadorOrigem) para comunicar os pro-
cessadores e implementar o sincronismo. A tarefa dos estu-
dantes também foi programar o algoritmo K-NN distribuído
em um multiprocessador com quatro processadores.

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

Figura 11. Código de demonstração de multiprocessador com troca de men-
sagens com um exemplo com três processadores.

A implementação do código base do simulador usou os
mecanismos de multi-thread da linguagem Python. Portanto,
os processadores são programados com a sintaxe de Python
junto com as primitivas de comunicação, o que possibilita
a validação de vários algoritmos paralelos em ambientes de
multiprocessadores.

5 Memória cache 4-Way
A compreensão de hierarquias de memória é fundamental
para o estudo de desempenho computacional. A descrição
de detalhes de implementação de uma memória cache é um
tópico que não está disponível nos livros-texto da área de ar-
quitetura de computadores. Esta seção apresenta uma pro-
posta de tarefa para os estudantes da disciplina de arquite-
tura de computadores para fazer a extensão de um simula-
dor de cache 2-way [Ferreira et al., 2023] para criar um novo
simulador de uma cache 4-way. A ferramenta deve ter im-
plementação validada em Verilog com visualização gráfica
para depuração. As implementações da literatura mostram
apenas formas de onda que são complexas para validação e
códigos comportamentais sem uma visão estrutural do pro-
jeto. A construção de um simulador com visualização estru-
tural dos sinais permite ao aluno realizar várias sequências
de acesso à memória, observando o funcionamento interno
passo a passo. Foi solicitada a implementação da política de
substituição LRU (Least Recently Used) com uma solução
distribuída e escalável para cache com maior associatividade
com uma cache 8-way. O objetivo é observar que, mesmo
em caso de acerto (hit), a cache tem várias tarefas paralelas
para realizar internamente, dando uma visão mais aprofun-
dada das arquiteturas de caches.

Com relação a trabalhos da literatura, um projeto Ve-
rilog foi apresentado em [Chauan et al., 2015]. Porém, o
código não está disponível e o trabalho apenas apresenta a
descrição em alto nível da implementação. Outros traba-
lhos recentes apresentaram projetos em VHDL [Kaur et al.,
2021; Hazlan et al., 2023], mas não detalham o projeto da
política de substituição do controlador. Alguns trabalhos
abordam as implementações do controlador LRU ou pseudo-
LRU [Omran and Amory, 2018; Puidenko and Kharchenko,
2020], mas não fornecem o código-fonte. Para uma cache 4-
way, o código-fonte foi apresentado em [Patel, 2021], porém
para uma política de substituição FIFO. Duas implementa-
ções em Verilog estão disponíveis em [Airin, 2015], mas o
código tem uma máquina de estados complexa e não está do-
cumentado. Em todos os exemplos, a depuração é complexa
usando apenas formas de onda.

Nosso ponto de partida é um projeto documentado que
possui implementações de uma cache de mapeamento direto
e 2-way [Ferreira et al., 2023], parametrizadas e divididas
em módulos em Verilog, com documentação em um Google
Colab e uma visualização estrutural do projeto. A tarefa dos
estudantes foi a extensão para 4-way. Por se tratar de uma
tarefa complexa, as LLMs foram usadas apenas para auxi-
liar na compreensão do código e comando generate, uma vez
que o projeto base tinha uma estrutura modular, que é rela-
tivamente difícil de ser gerada por uma LLM com poucos
prompts.

A base do projeto é o módulo distribuído LRU. Uma vi-
são geral do esquemático da cache está ilustrada na Figura 12.
O desenho foi implementado com rótulos no formato veto-
rial SVG, seguindo a proposta apresentada em [de Figueiredo
et al., 2024] pelos estudantes da disciplina de arquitetura de
computadores de 2025. Cada sinal a ser monitorado possui
o rótulo com o prefixo "@". A simulação é executada em Ve-
rilog, onde a cada ciclo são gravados os valores dos sinais.
Estes valores são aplicados no arquivo SVG para substituir
os rótulos com os valores, possibilitando a geração de uma
animação e visualização passo a passo.

A Figura 13 destaca um dos quatro módulos que com-
põem a cache. Além dos campos tradicionais de validação,
tag, número de sequência do LRU e dados, cada módulo tem
seu próprio atualizador da política LRU. O LRU mais recente
é o menor valor, 0 no caso da 4-way, e o menos recente tem o
valor 3. No caso de hit, o módulo recebe o seu valor de LRU
e o valor do LRU do módulo onde aconteceu o hit. Se seu va-
lor de LRU for menor, ele deve ser incrementado, fica menos
recente, já que outro bloco foi acessado e será o mais recente.
Se ele próprio é o bloco que está sendo acessado, ou seja, o
mesmo valor de LRU, seu valor deve ser zerado. Se seu valor
for maior que o valor do LRU que teve o hit, não é necessário
ser alterado. Dessa maneira, o projeto é escalável. A parte
mais complexa é a inicialização, quando a cache está vazia.
A unidade LRU pode também tratar esta situação utilizando
o número do módulo e os bits de validação em sequência.

A Figura 14 ilustra outra interface desenvolvida pelos
estudantes para a depuração do código Verilog da cache 4-
way, oferecendo uma visão mais funcional da cache e ocul-
tando, em um primeiro momento, os detalhes de implemen-
tação. Todos os sinais exibidos são rótulos extraídos direta-
mente da simulação Verilog e automaticamente mapeados no
desenho SVG. A parte inferior da figura destaca o módulo 0
da cache, exibindo os rótulos antes da substituição e eviden-
ciando que todos os campos podem ser facilmente depurados.
Esta interface é específica para uma cache 4-way com quatro
blocos de 4 bytes cada. Para uma saída mais generalizada,
uma alternativa é o uso de bibliotecas como svgwrite [Jami-
eson et al., 2025].

6 Trabalhos Relacionados
No nível de circuitos, podemos destacar o simulador Digi-
taljs [Materzok, 2019], que utiliza a ferramenta Yosys para
gerar o desenho esquemático de projetos descritos em Veri-
log, uma extensão voltada ao ensino com programação por
blocos [Castro and Azevedo, 2020] e um projeto hierárquico
de processador MIPS [Passe et al., 2020]. Apesar da exis-

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

Figura 12. Caminho de dados da cache 4-way com módulos LRU locais em cada conjunto e formato editável para depuração do código Verilog.

Figura 13. Módulo LRU e cache com campos: validação, tag, sequência
LRU e bloco de dados.

tência de diversas ferramentas com interface visual [Siever
et al., 2025], a maioria delas não foi projetada para exten-
sibilidade. Um levantamento de simuladores para arquite-
tura organiza várias ferramentas de código aberto [Materzok,
2019; Hwang et al., 2025]; entretanto, essas ferramentas são
voltadas para atividades de pesquisa e não foram desenvol-
vidas com foco no ensino de conceitos básicos em nível de
graduação. Além disso, não apresentam facilidades para atu-
alizações e extensões.

Trabalhos anteriores introduziram o uso do Google Co-
lab para o ensino de circuitos digitais [Canesche et al., 2021],
o uso da biblioteca Gradio e do protocolo MQTT para acesso
remoto interativo [Ferreira et al., 2024a], o uso de depuração
com interface gráfica editável em SVG para o processador
RISC-V e a aplicação de LLMs em exercícios de codifica-
ção [de Figueiredo et al., 2024], a visualização gráfica com
apoio das bibliotecas svgwrite e Graphviz [Jamieson et al.,

Figura 14. Código de demonstração multiprocessador com troca de men-
sagens e exemplo com três processadores.

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

2025], além de simuladores de cache e processadores em ní-
vel assembly [Jamieson et al., 2025; Ferreira et al., 2023].

Este trabalho é uma extensão dessas iniciativas. O pri-
meiro aspecto é a incorporação da emulação de processa-
dores RISC-V com um montador assembly integrado a um
simulador Verilog do processador, incluindo depuração grá-
fica em SVG. A mesma metodologia foi adotada no simula-
dor de memória cache 4-way, com projeto detalhado e docu-
mentado. Além disso, destacam-se a avaliação e construção
de diversos simuladores funcionais para processadores com
múltiplas unidades funcionais e escalonamento dinâmico uti-
lizando o algoritmo de Tomasulo. Finalmente, explora-se o
uso de LLMs para simuladores e a criação de linguagens de
domínio específico (DSLs) voltadas a diferentes arquiteturas
paralelas.

No melhor conhecimento dos autores, não existem fer-
ramentas didáticas para o ensino de arquiteturas paralelas,
como processadores vetoriais, array processors e multipro-
cessadores que ofereçam: (i) programação via editor de
texto; (ii) código-fonte acessível e estruturado para exten-
sões; e (iii) suporte à criação de linguagens de domínio espe-
cífico que expressem o paralelismo com base nas restrições
arquiteturais. Nesse sentido, este trabalho é inovador.

Um exemplo de assembly MIPS vetorial como extensão
do simulador MARS foi apresentado por [Alves et al., 2015].
Em relação a array processors, apenas simuladores voltados
a arquiteturas específicas com foco em pesquisa foram apre-
sentados [Barr and Dudek, 2008; Herbordt et al., 2000], além
de exemplos de aplicação de array processors em supercom-
putadores [Potter and Meilander, 2002].

7 Conclusão
Este trabalho apresenta uma sequência integrada de simula-
dores desenvolvidos com finalidade didática para o ensino
de processadores RISC-V, com implementação em Verilog,
simuladores de memória cache também descritos em Veri-
log, além de diversos simuladores de arquiteturas paralelas
de alto nível, baseados em modelos de linguagem generativa
(LLMs) para a criação automática de códigos. Esses simula-
dores foram utilizados como material de apoio na disciplina
de arquitetura de computadores, ofertada no primeiro semes-
tre de 2025 na Universidade Federal de Viçosa. O objetivo
pedagógico consistiu em disponibilizar aos estudantes plata-
formas de simulação interativas, nas quais as tarefas práticas
incluíram tanto a extensão funcional dos simuladores quanto
a elaboração de exemplos aplicados.

Foram desenvolvidos simuladores específicos para os
principais tópicos abordados na disciplina: processadores
RISC-V, memória cache 4-way, algoritmo de Tomasulo, pro-
cessadores com pipeline e múltiplas unidades funcionais de
latência variável, processadores vetoriais, array processors
e sistemas multiprocessados. Todos os simuladores incorpo-
ram um editor de texto interativo que permite a modificação
do código de entrada e sua reexecução imediata. A imple-
mentação em ambiente Google Colab assegura portabilidade
e facilidade de uso, eliminando a necessidade de instalações
e configurações adicionais. Um dos principais diferenciais
deste trabalho é o uso de LLMs na criação de linguagens de
domínio específico com primitivas voltadas à programação

paralela. Essas linguagens foram utilizadas para ilustrar a
implementação de algoritmos paralelos e validação.

Como direções para trabalhos futuros, pretende-se ge-
neralizar as linguagens desenvolvidas por meio da formali-
zação de gramáticas específicas, aliadas ao uso de LLMs e
ao suporte de bibliotecas baseadas em avaliação preguiçosa
(lark) em Python. Tal abordagem visa a construção de simu-
ladores mais flexíveis, passíveis de extensão e reutilização
em múltiplos contextos educacionais e de pesquisa.

Declarações complementares
Agradecimentos
Gostaríamos de agradecer a colaboração de todos os estudantes da
turma do primeiro semestre de 2025 da disciplina INF450 arquite-
tura de computadores da Universidade Federal de Viçosa.

Financiamento
Apoio financeiro do Projeto FAPEMIG APQ-01577-22, CNPq e
CAPES.

Contribuições dos autores
O autor Ricardo Ferreira elaborou os exemplos base dos simulado-
res e realizou a redação do texto. O autor Racyus Delano Garcia
Pacífico colaborou com sugestões e revisão do texto.

Conflitos de interesse
Os autores declaram não haver conflitos de interesse.

Disponibilidade de dados e materiais
As ferramentas desenvolvidas neste trabalho são de código
aberto e estão disponíveis no link https://colab.resear
ch.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-
xDGZAiHC?usp=sharing.

Outras informações relevantes
O texto deste artigo é de responsabilidade dos autores, onde ferra-
mentas de IA foram usadas apenas para revisão ortográfica e gra-
matical, além de algumas sugestões. O tema do trabalho é sobre
o uso de IA, neste aspecto os modelos de IA foram avaliados para
geração dos simuladores apresentados.

Referências
Airin (2015). Verilog-caches. Available at: https:

//github.com/airin711/Verilog-caches Accessed:
2025-07-19.

Alves, F. A., Almeida, D., Bragança, L., Gomes, A. B.,
Ferreira, R. S., and Nacif, J. A. M. (2015). Ensi-
nando arquiteturas vetoriais utilizando um simulador
de instruções mips. International Journal of Computer
Architecture Education, 4(1):9–12. Available at: https:
//www2.sbc.org.br/ceacpad/ijcae/v4_n1_dec_201
5/IJCAE_v4_n1_dez_2015_paper_3_vf.pdf.

Barr, D. R. and Dudek, P. (2008). A cellular proces-
sor array simulation and hardware prototyping tool. In
2008 11th International Workshop on Cellular Neural
Networks and Their Applications, pages 213–218. IEEE.
DOI: 10.1109/cnna.2008.4588680.

Böseler, F., Walter, J., and Perjikolaei, B. R. (2022). A
comparison of virtual platform simulation solutions for ti-
ming prediction of small risc-v based socs. In 2022 Forum

https://colab.research.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-xDGZAiHC?usp=sharing
https://colab.research.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-xDGZAiHC?usp=sharing
https://colab.research.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-xDGZAiHC?usp=sharing
https://github.com/airin711/Verilog-caches
https://github.com/airin711/Verilog-caches
https://www2.sbc.org.br/ceacpad/ijcae/v4_n1_dec_2015/IJCAE_v4_n1_dez_2015_paper_3_vf.pdf
https://www2.sbc.org.br/ceacpad/ijcae/v4_n1_dec_2015/IJCAE_v4_n1_dez_2015_paper_3_vf.pdf
https://www2.sbc.org.br/ceacpad/ijcae/v4_n1_dec_2015/IJCAE_v4_n1_dez_2015_paper_3_vf.pdf
https://doi.org/10.1109/cnna.2008.4588680

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

on Specification & Design Languages (FDL), pages 1–8.
IEEE. DOI: 10.1109/FDL56239.2022.9925667.

Canesche, M., Bragança, L., Neto, O. P. V., Nacif, J. A., and
Ferreira, R. (2021). Google colab cad4u: Hands-on cloud
laboratories for digital design. In 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5.
IEEE. DOI: 10.1109/iscas51556.2021.9401151.

Castro, L. and Azevedo, R. (2020). Circuitly: A visual and
constructive framework for teaching digital circuits. In-
ternational Journal of Computer Architecture Education,
9(1):10–15. DOI: 10.5753/ijcae.2020.4839.

Chauan, P., Singh, G., and Singh, G. (2015). Cache control-
ler for 4-way set-associative cache memory. Internatio-
nal Journal of Computer Applications, 129(1):8887. DOI:
10.5120/ijca2015906787.

Coura, P., Freitas, I., Costa, H., Nacif, J., and Ferreira, R.
(2025). Desmistificando o ensino de inteligência artificial
e aprendizado de máquina. In Simpósio Brasileiro de Edu-
cação em Computação (EDUCOMP), pages 25–27. SBC.

de Figueiredo, G. A., de Souza, E. S., Rodrigues, J. H., Nacif,
J. A., and Ferreira, R. (2024). Desenvolvendo ferramentas
para ensino de risc-v com python, verilog, matplotlib, svg
e chatgpt. International Journal of Computer Architecture
Education, 13(1):43–52. DOI: 10.5753/ijcae.2024.5343.

Esmeraldo, G. Á. R., Feitosa, R. G. F., da Silva Barros, E. N.,
Proto, E. C. P. d. S., de Mello, H. M., Lisboa, E. B.,
Bispo Jr, E. L., and de Campos, G. A. L. (2023). Uma
abordagem para ensino-aprendizado de projetos de siste-
mas computacionais com utilização do simulador comp-
sim com suporte à arquitetura risc-v. Revista Brasileira de
Informática na Educação, 31:271–288. DOI: 10.5753/r-
bie.2023.2951.

Ferreira, R., Canesche, M., Jamieson, P., Neto, O. P. V., and
Nacif, J. A. (2024a). Examples and tutorials on using go-
ogle colab and gradio to create online interactive student-
learning modules. Computer Applications in Engineering
Education, 32(4):e22729. DOI: 10.1002/cae.22729.

Ferreira, R., Canesche, M., and Penha, J. (2023). Google co-
lab para ensino de computação. In Simpósio Brasileiro de
Educação em Computação (EDUCOMP), pages 46–47.
SBC. DOI: 10.5753/educompestendido.2023.228279.

Ferreira, R., Nacif, J., Magalhaes, S., de Almeida, T., and
Pacifico, R. (2015). Be a simulator developer and go
beyond in computing engineering. In 2015 IEEE Fronti-
ers in Education Conference (FIE), pages 1–8. IEEE. DOI:
10.1109/fie.2015.7344416.

Ferreira, R., Sabino, C., Canesche, M., Neto, O. P. V.,
and Nacif, J. A. (2024b). Aiot tool integration for
enriching teaching resources and monitoring student
engagement. Internet of Things, 26:101045. DOI:
10.1016/j.iot.2023.101045.

Garcia, M., Niyaz, Q., Yang, X., Javaid, A. Y., and
Paheding, S. (2024). An interactive visualization tool
for computer organization and design course. In
2024 IEEE International Conference on Electro Infor-
mation Technology (eIT), pages 457–462. IEEE. DOI:
10.1109/eit60633.2024.10609897.

Giorgi, R. and Mariotti, G. (2019). Webrisc-v: A
web-based education-oriented risc-v pipeline simula-

tion environment. In Proceedings of the workshop
on computer architecture education, pages 1–6. DOI:
10.1145/3338698.3338894.

Hazlan, M. A. A.-Z., Gunawan, T. S., Yaacob, M., Kar-
tiwi, M., and Arifin, F. (2023). Design and performance
analysis of a fast 4-way set associative cache controller
using tree pseudo least recently used algorithm. Indo-
nesian Journal of Electrical Engineering and Informatics
(IJEEI), 11(4):1051–1063. DOI: 10.52549/.v11i4.5014.

Herbordt, M. C., Cravy, J., Sam, R., Kidwai, O., and
Lin, C. (2000). A system for evaluating performance
and cost of simd array designs. Journal of Paral-
lel and Distributed Computing, 60(2):217–246. DOI:
10.1006/jpdc.1999.1602.

Hwang, I., Lee, J., Kang, H., Lee, G., and Kim, H. (2025).
Survey of cpu and memory simulators in computer archi-
tecture: A comprehensive analysis including compiler in-
tegration and emerging technology applications. Simula-
tion Modelling Practice and Theory, 138:103032. DOI:
10.1016/j.simpat.2024.103032.

Jamieson, P., Ferreira, R., and Nacif, J. (2025). Levera-
ging large language models to create interactive online
resources for digital systems and computer architecture
education. In ASEE Annual Conference Exposition.
Available at: https://peer.asee.org/board-72-
leveraging-large-language-models-to-create-
interactive-online-resources-for-digital-
systems-and-computer-architecture-education.

Jamieson, P., Ferreira, R., and Nacif, J. A. (2021). Persona-
lizing online computer engineering resources and labs for
digital, embedded, and computer system courses. In 2021
IEEE frontiers in education conference (FIE), pages 1–5.
IEEE. DOI: 10.1109/fie49875.2021.9637244.

Kaur, G., Arora, R., and Panchal, S. S. (2021). Implemen-
tation and comparison of direct mapped and 4-way set as-
sociative mapped cache controller in vhdl. In 2021 8th
International Conference on Signal Processing and Inte-
grated Networks (SPIN), pages 1018–1023. IEEE. DOI:
10.1109/spin52536.2021.9566081.

Materzok, M. (2019). Digitaljs: A visual verilog simu-
lator for teaching. In Proceedings of the 8th Computer
Science Education Research Conference, pages 110–115.
DOI: 10.1145/3375258.3375272.

Mezger, B. W., Santos, D. A., Dilillo, L., Zeferino, C. A., and
Melo, D. R. (2022). A survey of the risc-v architecture
software support. IEEE Access, 10:51394–51411. DOI:
10.1109/access.2022.3174125.

Omran, S. S. and Amory, I. A. (2018). Implementation of
lru replacement policy for reconfigurable cache memory
using fpga. In 2018 International Conference on Advanced
Science and Engineering (ICOASE), pages 13–18. IEEE.
DOI: 10.1109/icoase.2018.8548892.

Passe, F., Canesche, M., Neto, O. P. V., Nacif, J. A., and Fer-
reira, R. (2020). Mind the gap: Bridging verilog and com-
puter architecture. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5. IEEE. DOI:
10.1109/iscas45731.2020.9180650.

Patel, R. (2021). 4-way-set-associative-cache-verilog. Avai-
lable at: https://github.com/rajshadow/4-way-

https://doi.org/10.1109/FDL56239.2022.9925667
https://doi.org/10.1109/iscas51556.2021.9401151
https://doi.org/10.5753/ijcae.2020.4839
https://doi.org/10.5120/ijca2015906787
https://doi.org/10.5753/ijcae.2024.5343
https://doi.org/10.5753/rbie.2023.2951
https://doi.org/10.5753/rbie.2023.2951
https://doi.org/10.1002/cae.22729
https://doi.org/10.5753/educomp_estendido.2023.228279
https://doi.org/10.1109/fie.2015.7344416
https://doi.org/10.1016/j.iot.2023.101045
https://doi.org/10.1109/eit60633.2024.10609897
https://doi.org/10.1145/3338698.3338894
https://doi.org/10.52549/.v11i4.5014
https://doi.org/10.1006/jpdc.1999.1602
https://doi.org/10.1016/j.simpat.2024.103032
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://doi.org/10.1109/fie49875.2021.9637244
https://doi.org/10.1109/spin52536.2021.9566081
https://doi.org/10.1145/3375258.3375272
https://doi.org/10.1109/access.2022.3174125
https://doi.org/10.1109/icoase.2018.8548892
https://doi.org/10.1109/iscas45731.2020.9180650
https://github.com/rajshadow/4-way-set-associative-cache-verilog
https://github.com/rajshadow/4-way-set-associative-cache-verilog

Desenvolvendo simuladores para arquitetura de computadores
com auxílio de modelos generativos de linguagens Ferreira et al. 2025

set-associative-cache-verilog Accessed: 2025-
07-19.

Patterson, D. A. and Hennessy, J. L. (2017). Computer Orga-
nization and Design RISC-V Edition: The Hardware Soft-
ware Interface. The Morgan Kaufmann Series. Book.

Potter, J. L. and Meilander, W. C. (2002). Array pro-
cessor supercomputers. Proceedings of the IEEE,
77(12):1896–1914. DOI: 10.1109/5.48831.

Puidenko, V. and Kharchenko, V. (2020). The minimizating
of hardware for implementation of pseudo lru algorithm
for cache memory. In 2020 IEEE 11th International Con-
ference on Dependable Systems, Services and Technolo-
gies (DESSERT), pages 65–71. IEEE. DOI: 10.1109/des-
sert50317.2020.9125054.

Railing, B. P. (2023). Cadss: Computer architecture design
simulator for students. In Proceedings of the Workshop
on Computer Architecture Education, pages 34–40. DOI:
10.1145/3605507.3610626.

Savaton, G. (2021). A visual simulator for teaching
computer architecture using the risc-v instruction set.
Guillaume-Savaton-ESEO/emulsiV. Available at: https://-
github.com/ESEO-Tech/emulsiV.

Schoeberl, M. (2025). Wildcat: Educational risc-v mi-
croprocessors. arXiv preprint arXiv:2502.20197. DOI:
10.1007/978-3-032-03281-213.

Siever, B., Hall, M., Feher, J., and Chamberlain, R.
(2025). Teaching digital logic and computer architec-
ture using open source tools. In Proceedings of the
22nd ACM International Conference on Computing Fron-
tiers: Workshops and Special Sessions, pages 38–41. DOI:
10.1145/3706594.3726971.

Wheeler, D. J. and Needham, R. M. (1994). Tea, a tiny
encryption algorithm. In International workshop on
fast software encryption, pages 363–366. Springer. DOI:
10.1007/3-540-60590-829.

Zekany, S. A., Tan, J., and Connolly, J. A. (2021). Tea-
ching out-of-order processor design with the risc-v isa.
In 2021 ACM/IEEE Workshop on Computer Architecture
Education (WCAE), pages 1–8. IEEE. DOI: 10.1109/w-
cae53984.2021.9707143.

https://github.com/rajshadow/4-way-set-associative-cache-verilog
https://doi.org/10.1109/5.48831
https://doi.org/10.1109/dessert50317.2020.9125054
https://doi.org/10.1109/dessert50317.2020.9125054
https://doi.org/10.1145/3605507.3610626
https://doi.org/10.1007/978-3-032-03281-2_13
https://doi.org/10.1145/3706594.3726971
https://doi.org/10.1007/3-540-60590-8_29
https://doi.org/10.1109/wcae53984.2021.9707143
https://doi.org/10.1109/wcae53984.2021.9707143

	Introdução
	Metodologia
	Simuladores de processadores
	RISC-V
	Múltiplas unidades e tomasulo

	Arquiteturas Paralelas
	Processador Vetorial
	Array processor
	Multiprocessadores
	Memória Compartilhada
	Troca de Mensagens

	Memória cache 4-Way
	Trabalhos Relacionados
	Conclusão

