International Journal of Computer Architecture Education, 2025, 14:1
ISSN: 2316-9915 e doi: 10.5753/ijcae.2025.6319

© This work is licensed under a Creative Commons Attribution 4.0 International License.

ARTIGO DE PESQUISA

Desenvolvendo simuladores para arquitetura de
computadores com auxilio de modelos generativos de
linguagens

Ricardo Ferreira © =9 [Universidade Federal Vigosa | ricardo@ufv.br]
Racyus Delano Garcia Pacifico ® [Universidade Federal Ouro Preto | racyus.pacifico@ufop.edu.br]

& Departamento de Informdtica, Universidade Federal de Vigosa, Vigosa, cep 36570-900, Vigosa, Brazil.

Resumo. Este trabalho apresenta o uso de modelos generativos para o desenvolvimento de simuladores interativos vol-
tados ao ensino de arquitetura de computadores em diferentes niveis de abstragdo. Os simuladores contam com interfaces
que incluem janelas de edi¢do de cédigo, visualizagdo gréfica da execugdo e integracdo com o Google Colab, promo-
vendo a experimentagdo pratica e acessivel. O desenvolvimento foi realizado no contexto das disciplinas de arquitetura
de computadores da Universidade Federal de Vigosa, com participacdo ativa dos alunos. Como parte das atividades, os
estudantes receberam a demanda dos requisistos desejados para cada simulador, acompanhada de um cédigo inicial com
nimero reduzido de funcionalidades, que deveria ser ampliado e aprimorado. Foram desenvolvidos simuladores para
diversas arquiteturas, incluindo: processadores RISC-V com e sem pipeline, arquiteturas com multiplas unidades funci-
onais, simuladores baseados no algoritmo de Tomasulo, interpretadores para assembly vetorial, arquiteturas com array
processors SIMD, além de modelos de multiprocessadores com memdria compartilhada e com troca de mensagens. Além
dos processadores, um projeto de uma cache 4-way também foi implementado. A cache e os processadores RISC-V tém
implementacdo em Verilog e Python. As demais arquiteturas usaram simuladores em Python. A abordagem visa tornar
o aprendizado mais visual, pratico e alinhado com os fundamentos tedricos da drea.

Palavras-chave: Simuladores, modelos generativos de linguagem, arquitetura de computadores, computagio paralela.

Recebido: 04 Agosto 2025 e Aceito: 28 Setembro 2025 e Publicado: 21 Janeiro 2026

1 Introducao

Este artigo aborda o processo de desenvolvimento e ferra-
mentas adotadas na cria¢do de simuladores interativos para
o ensino de arquitetura de computadores, com participacio
dos alunos. Nosso objetivo é duplo: primeiro, fomentar a
troca de experiéncias entre educadores da drea de engenha-
ria e computacdo, promovendo a criagdo e o compartilha-
mento de ferramentas de c6digo aberto com acesso remoto;
segundo, refletir sobre as inovagdes pedagdgicas impulsio-
nadas pela disponibilidade de novas ferramentas como mo-
delos generativos de linguagem (LLMs) e suporte de ambi-
entes virtuais com alto desempenho e acesso facilitado via
navegadores [Canesche et al., 2021; Jamieson et al., 2025],
que podem levar a préticas mais eficazes.

O uso de simulagdo no ensino tem se mostrado uma es-
tratégia interessante [Hwang et al., 2025] para promover o
aprendizado, apoiar tomada de decisdes e facilitar a com-
preensdo de sistemas complexos. No entanto, este trabalho
vai além da simples utilizacdo de simuladores: propomos um
modelo no qual os estudantes sdo envolvidos como colabo-
radores no desenvolvimento das ferramentas, atuando como
”desenvolvedores dos simuladores” [Ferreira et al., 2015].
Esta abordagem estimula ndo apenas a compreensdo técnica
dos conteddos, mas também habilidades préticas de progra-
magao, uso de novas ferramentas com LLMs e colaboragao.

A proposta tem cardter incremental. Os alunos rece-
bem, como ponto de partida, um cdédigo parcial funcional
com funcionalidades limitadas, além de uma especificacido
clara da funcionalidade desejada. A partir disso, sdo desafi-

ados a expandir e aprimorar os simuladores, compreendendo
tanto a arquitetura do sistema quanto os conceitos computa-
cionais envolvidos. A metodologia de desenvolvimento in-
cluem o uso de técnicas convencionais de programagao, uso
de LLM e uso de programagao baseada em exemplos, onde
protdtipos iniciais dos simuladores sao fornecidos. A estru-
tura modular e acessivel dos simuladores permite que os es-
tudantes rapidamente comecem a gerar codigos funcionais
para validag@o além da compreensdo de diversas arquitetu-
ras computacionais e de como elas podem ser desenvolvidas
e validadas.

Além de sua aplicag@o nas disciplinas de arquitetura de
computadores da Universidade Federal de Vigosa, acredita-
mos que essa abordagem pode ser estendida para diversas
outras dreas da engenharia e da computacdo. As ferramen-
tas sdo de cédigo livre e documentadas para a criacdo de um
espaco colaborativo voltado ao suporte técnico e pedagdgico
para educadores interessados no desenvolvimento e uso de
ferramentas educacionais interativas.

Experiéncias praticas sdo parte essencial da formagdo
em engenharia, e o desenvolvimento de simuladores intera-
tivos pode ser interpretado como diretrizes de trés catego-
rias classicas de laboratérios educacionais [Jamieson et al.,
2021]:

1. Laboratoério de desenvolvimento: Estd alinhado ao
aprendizado baseado em projetos, os alunos sdo desafi-
ados a projetar, expandir e avaliar simuladores compu-
tacionais, partindo de demandas funcionais concretas e
c6digos-base com funcionalidades limitadas.

https://portal.issn.org/resource/ISSN/2316-9915
https://doi.org/10.5753/ijcae.2025.6319
https://orcid.org/0000-0003-1802-7829
mailto:ricardo@ufv.br
https://orcid.org/0000-0003-0587-6127
mailto:racyus.pacifico@ufop.edu.br

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

2. Laboratoério de pesquisa: O ambiente de simulacéo
também funciona como espago para exploragdo aberta,
onde os estudantes podem investigar o comportamento
de arquiteturas alternativas, propor extensdes e compre-
ender sistemas complexos por meio da experimentacao.

3. Laboratoério educacional: Os simuladores permitem
que os estudantes validem na prética os conceitos ted-
ricos discutidos em aula, como pipeline, paralelismo,
acesso a memoria € comunicacdo entre processadores,
promovendo uma ponte direta entre teoria e aplicagao.

Ao integrar essas trés dimensdes, o processo de desen-
volvimento e uso dos simuladores nio apenas reforga o con-
teudo curricular, mas também estimula habilidades de reso-
lucdo de problemas, colaborag@o e pensamento computacio-
nal de forma contextualizada e progressiva.

Cursos de arquitetura e organizacdo de computadores
tradicionalmente envolvem atividades préticas como tarefas
e avaliacdes, onde os alunos desenvolvem programas em
linguagem de montagem, constroem arquiteturas simples e
complexas, implementando otimizacdes para compreender o
projeto de baixo nivel e a operacdo de processadores e das
arquiteturas. Nesse contexto, os simuladores desenvolvidos
permitem ndo apenas a observagdo desses processos, mas
também sua experimentacgdo ativa em um ambiente intuitivo
e acessivel.

2 Metodologia

A proposta deste trabalho baseia-se na integracdo de mode-
los de linguagem de grande escala (LLMs), Python/JavaS-
cript e Google Colab para o desenvolvimento de simuladores
voltados ao ensino de arquitetura de computadores. A me-
todologia explora as vantagens dessas tecnologias de forma
complementar para facilitar tanto a criacdo quanto o uso pe-
dagogico de simuladores interativos.

O uso de LLMs permite gerar rapidamente interpreta-
dores, estruturas de dados e interfaces graficas para diferen-
tes arquiteturas computacionais, como processadores vetori-
ais, processadores em array, e conjuntos de instrucdes redu-
zidas (como subconjuntos de RISC-V ou montadores didati-
cos) [Jamieson et al., 2025; de Figueiredo et al., 2024]. As
LLMs também auxiliam na explicacdo do cédigo gerado e
na adaptagdo de funcionalidades com base nas necessidades
didaticas de cada experimento, promovendo uma abordagem
iterativa e incremental no desenvolvimento dos simuladores.

A base da infraestrutura adotada € o Google Colab [Ca-
nesche et al., 2021; Ferreira et al., 2024a,b], que oferece
vérias vantagens para o contexto educacional: acesso gra-
tuito e multiplataforma, execu¢cdo em nuvem sem necessi-
dade de instalagdo local, facilidade para compartilhar note-
books com exemplos e exercicios, e suporte a recursos mul-
timidia para explica¢des interativas (como gréficos, widgets
€ animacoes).

Cada estudante recebe como ponto de partida um note-
book contendo um simulador funcional baseado em um do-
minio especifico, por exemplo, um subconjunto de instrugdes
de um processador SIMD ou um emulador de cache com vi-
sualizacdo. Esses simuladores ja vém acompanhados de des-
cricdes e exemplos gerados com o apoio de LLMs. O exer-
cicio proposto aos alunos consiste em analisar, modificar e

Ferreira et al. 2025
expandir essas implementacdes.

3 Simuladores de processadores

Ha uma grande variedade de simuladores educacionais vol-
tados ao estudo de processadores, especialmente para as ar-
quiteturas MIPS e, mais recentemente, RISC-V [Giorgi and
Mariotti, 2019; Savaton, 2021; Mezger et al., 2022; Boseler
et al., 2022; Esmeraldo et al., 2023]. Entre os simuladores
disponiveis, destacam-se aqueles que implementam proces-
sadores de um ciclo (monociclo) e com pipeline, permitindo
a visualizacdo do fluxo de instruc¢des ao longo das etapas do
ciclo de execucao.

Entretanto, mesmo entre os simuladores com interface
gréafica [Giorgi and Mariotti, 2019; Savaton, 2021], incluindo
muitos de cédigo aberto, é comum que o funcionamento in-
terno seja fixo, com op¢des limitadas de personalizacdo. Para
que educadores e alunos possam modificar ou estender tais
ferramentas, € necessario um esforgco consideravel para com-
preender tanto a légica de simulacdo quanto a estrutura da
interface gréfica [Garcia et al., 2024]. Outro ponto de limita-
cdo frequente € que muitos desses simuladores ndo produzem
um cédigo intermedidrio ou de saida que possa ser mapeado
diretamente para implementagao fisica, como em FPGA ou
ASIC. Outros simuladores produzem cédigos em linguagem
de hardware (Verilog ou VHDL), mas ndo oferecem interfa-
ces didaticas [Schoeberl, 2025] ou envolvem projetos de im-
plementacdo dos processadores [Zekany et al., 2021]. Nossa
abordagem € ampla, pois inclui montador, simulador de alto
nivel, implementacdo em Verilog e visualizagdo grafica da
implementagao.

Nos tltimos anos, surgiram alternativas mais flexiveis,
como simuladores baseados no DigitalJS [Passe et al., 2020]
ou ambientes interativos como o Google Colab integrando
c6digo em Verilog, que permitem simulagio funcional e po-
dem gerar artefatos utilizdveis em sintese digital [Jamieson
etal.,2025; de Figueiredo et al., 2024]. Os simuladores apre-
sentados em [de Figueiredo et al., 2024] vao além ao permitir
a geracdo de saidas gréficas no formato SVG, que sao editd-
veis e possibilitam a inclusdo de extensdes personalizadas.

Neste contexto, desenvolvemos extensdes sobre os si-
muladores descritos em [de Figueiredo et al., 2024], incor-
porando um simulador de alto nivel em Python, capaz de ge-
rar automaticamente o c6digo assembly (montador) corres-
pondente para o simulador em Verilog. Além disso, imple-
mentamos uma visualizacao interativa do caminho de dados,
descrita na Secdo 3.1. O estudante pode facilmente adicio-
nar novas instrugdes, incluindo a decodificagio, o montador,
a simulagdo e a implementacdo, interagindo com o cédigo
Python, o cédigo Verilog e o desenho estrutural do projeto.

Em um segundo momento, abordamos arquiteturas
mais avancadas, como processadores com multiplas unida-
des funcionais em pipeline e com escalonamento dindmico
de instru¢des baseado no algoritmo de Tomasulo. Nessa
etapa, a simulagao foi realizada exclusivamente em Python,
com énfase na logica da execucdo fora de ordem, sem gera-
¢do de cédigo Verilog, conforme discutido na Secao 3.2.

3.1 RISC-V

Esta se¢@o apresenta um simulador interativo para o proces-
sador RISC-V monociclo, desenvolvido a partir das exten-

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

RISC-V Simulator

Code: | # Example:
addi x5,xe,10
addi x6,x0,9
aqui:
addi x6,x6,1
beq x5,x6,aqui
sw x6, 8(x0) x0: 0 x1:0 x2:0

Register File

x4:0 x5:10 x6:11
x8:0 x9:0 x10:0

(a) (b)
Figura 1. (a) janela de edi¢do do cédigo assembly; (b) execucao e emulacdo
para visualizar os registradores € memoria.

soes propostas em [de Figueiredo et al., 2024]. O simulador
possui um editor integrado de alto nivel em Python, visuali-
zacdo dos registradores e da memoria (ilustrado na Figura 1),
geracdo automatica de c6digo assembly e visualiza¢do passo
a passo do caminho de dados (ilustrado na Figura 2), permi-
tindo ao aluno explorar instru¢do por instru¢do em um ambi-
ente grafico e personalizavel.

elif opcode in alu_operations:

rd = self.parse_register(parts[1])

rsl = self.parse_register(parts[2])

rs2 = self.parse_register(parts[3])

f7, f3 = dict_rtype[opcode] # montador

inst = f7 + format(rs2, ’05b’) + format(rsl,
'05b7) + f3 + format(rd, '05b’) + opcodeR

hex_inst = bin2hex (inst)

self.code. write (hex_inst+”\n”) # verilog

inst = 732°b” + f7 + 7_” + format(rs2, ’05b’)
+ 7.7 + format(rsl, '05b7) + 7_” + f3 +
77 + format(rd, '05b°) + 7_” + opcodeR

self.instruction_memory .append(inst)

return Instruction (opcode, rd, rsl, rs2)

2| #

3| # Trecho do emulador

def execute_instruction(self, instruction):
if instruction.opcode == ‘add’:
self . registers[instruction.rd] =
.registers[instruction.rsl] +
self . registers[instruction.rs2]
Trecho do Editor/Exemplo
example_code = "77# ,Example:
addi x5,x0,10

self

swy X6, ,8(x0)
simulator_ui = RISCVSimulatorUI ()
simulator_ui.display ()

Listagem 1: Exemplos de trechos com parser e montador de
instru¢do do tipo R, emulador add e programa exemplo.

O trecho de cédigo 1 ilustra a simplicidade e modulari-
dade do cdédigo gerado pela LLM. Para cada tipo de instru-
¢do, hd o trecho que faz o parser e o montador do cédigo
bindrio para o préximo passo de execu¢@o no simulador Ve-
rilog. O simulador, além de executar o cédigo, faz o papel
do montador.

O simulador Python exporta um arquivo de memdria
com o codigo bindrio. A proposta € ter uma dupla validacio
do c6digo: no nivel do simulador Python e no nivel de Ve-
rilog. A verificacdo da execucdo do processador implemen-
tado em Verilog oferece uma depuracio com a visualizagio
do caminho de dados.

Os estudantes recebem o cédigo bédsico do simulador
com um pequeno conjunto de instru¢des. A tarefa é com-
pletar o simulador/montador com instrugdes de desvio e me-
moria, acrescentar sua visualizacdo posterior no Verilog, fa-

Ferreira et al. 2025

. e
Eranch 1 and
MenRead —
6..0 Opcode MenToReg

Awop 1
1100011 MemWrite

| “ALusre
Regurite

Control

19..15 Rs1 § o

[

24..20 Rsz 6

Rs2 2erg
ALU | -1
11..7 R0 29 |yrite Data . 11 /" Result— address
Register -
pata

wWrite -4 N :
— d
N = [
N TN
| Imm‘l a2 [aw Y
1 Gen [T ~|contro1 | ’
N o
beq x5, x6, -4 30, 14-12 |f3e00 f71

Figura 2. Visualizagio da execugio do cédigo Verilog com interface grafica
editdvel no formato SVG.

4294967295

cycless i [

add X3y, 3 || agdi xo, x0, 0

Figura 3. Caminho de dados do pipeline RISC-V com desvio no segundo
estdgio e encaminhamento com a visualizacdo da execu¢@o do cédigo Veri-
log passo a passo.

zer programas de teste e também criar novas instrucdes re-
solvendo exercicios do livro texto de RISC-V [Patterson and
Hennessy, 2017].

Uma versdo com pipeline também foi adaptada para in-
clusdo de editor de texto embutido para avaliar diferentes
exemplos e a geragdo automdtica da depuracdo em Verilog
no caminho de dados. O desenho do caminho de dados deri-
vado da implementacdo [de Figueiredo et al., 2024] foi mo-
dificado, juntamente com o cédigo Verilog. A tarefa dos es-
tudantes foi fazer a extensdo do simulador para a inclusdo
de encaminhamento (forward) e do tratamento de desvio no
segundo estdgio, conforme ilustrado na Figura 3.

Além das novas versdes de processadores RISC-V com
depuracao grifica, outro conceito que pode ser trabalhado em
alto nivel € a transferéncia de informagdes entre os estigios
da pipeline com uma estrutura de dados bem definida, como
sugerido em [Railing, 2023]. Com o auxilio das LLMs e
das facilidades da linguagem Python, apresentamos uma pro-
posta simples e did4tica para repassar os valores entre os esta-
gios com diciondrios. Cada diciondrio tem os sinais (chave)
e seus valores.

A Figura 4 ilustra um exemplo de um pequeno trecho
no editor do simulador Python com cinco instrugdes. A parte
superior mostra o diciondrio e uma ilustragdo quando a pri-
meira instru¢do add x1,x2,x3 estd no estagio de decodifi-
cacdo e a instrugdo sub x4,x1,x5 estd no estidgio de busca

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

Codigo: | add x1, x2, x3 Barreiras do Pipeline:

aqui: IF ID: sub x4, x1, x5 Dicionario
sub x4, x1, x5 ID EX: {'op': 'add’', 'rd': 'x1', 'datal': 10, 'data2': 5}
mul x6, x4, x7 EX MEM: None
bge x4, x2, aqui yEw wg: None Decode
add x8, x6, x1
’ Counter: 8 sub datal 10
ro m Coun r: "
gram tounte IF (Instruction data2 5
préximo ciclo Stall: False Fetch) >
Barreiras do Pipeline: ADD
IF ID: mul x6, x4, x7 D|C|onar|0

ID EX: {'op': 'sub', 'rd': 'x4', 'rsl': 'x1', 'rs2': '
EX MEM: {'rd': 'x1' result 15
MEM _WB: None

Decode rd | Exec rd x1
Program Counter: 8 mul datal x1
stall: True (Instruction dataz x5 result 15
Fetch) — >
ADD

Figura 4. Exemplo de execu¢do com emula¢do em Python usando diciond-
rios para os sinais entre os estdgios do pipeline.

(fetch). O destaque estd nos sinais que irdo ser propagados
para o estdgio de execugdo.

Ja na parte inferior da Figura 4, ilustramos o préximo
ciclo que tem a instru¢do mul x6,x4,x7 sendo buscada no
estigio de ferch, a instru¢do sub ja no estdgio de decodifi-
cacdo e a instrucdo add sendo executada e propagando seu
resultado no estdgio de execucao.

3.2 Multiplas unidades e tomasulo

Para explorar conceitos avangados como paralelismo interno
ao processador, dependéncias de dados e execugao fora de or-
dem, desenvolvemos simuladores em Python para arquitetu-
ras com multiplas unidades funcionais em pipeline com dife-
rentes laténcias. A primeira tarefa foi implementar um pipe-
line estdtico com miltiplas unidades em paralelo. A segunda
tarefa foi simular o algoritmo de Tomasulo, com escalona-
mento dinamico de instru¢des, uso de estacdes de reserva,
buffers e a técnica de renomeacdo de registradores, permi-
tindo ao aluno visualizar a resolu¢@o dinamica de dependén-
cias e a execugdo eficiente de instrucdes fora de ordem.

Como resultado da atividade da disciplina de arquitetura
de computadores do primeiro semestre de 2025, foram apre-
sentados seis simuladores funcionais do algoritmo de Toma-
sulo. A Figura 5 ilustra trés exemplos das interfaces dos si-
muladores que permitem editar o cédigo, visualizar o quadro
de execugdo passo a passo e o estado das estagdes de reserva.
Cada grupo apresentou um simulador funcional com diferen-
tes recursos de visualiza¢do com o auxilio das LLMs.

4 Arquiteturas Paralelas

O ensino de arquiteturas paralelas € essencial para compreen-
der o desempenho e a escalabilidade de sistemas modernos.
Entretanto, muitas ideias de arquitetura sdo ensinadas sem
exercicios de programacdo, as vezes apenas com pseudo-
c6digo de forma tedrica, sem validagdo da execugdo ou si-
mulagdo. Nesta se¢do, apresentamos simuladores interativos
personalizados para uma determinada arquitetura e uma lin-
guagem de dominio especifico com construgdes para expres-
sar o paralelismo. Esta abordagem € inovadora e permite ao
professor e estudante desenvolver e prototipar ideias rapida-
mente, além de programar varios algoritmos cldssicos da lite-
ratura com construcdes paralelas. Os simuladores exploram
diferentes formas de paralelismo em nivel de dados e tarefas.
A proposta inclui arquiteturas vetoriais, array processors do
tipo SIMD (Single Instruction, Multiple Data) e arquiteturas
multiprocessadas, oferecendo ao estudante ferramentas para

Ferreira et al. 2025

experimentar com diferentes formas de organizacdo paralela
e estratégias de comunicacdo e sincronizacao.

4.1 Processador Vetorial

Os processadores vetoriais representam uma abordagem
cldssica de paralelismo em nivel de dados, operando sobre
grandes conjuntos de elementos simultaneamente. Sdo um
marco importante na histéria da computagado paralela, onde
foram desenvolvidas varias técnicas com pipeline e escalo-
namento de instru¢des. Desde os anos 90, com o Pentium
MMX, aIntel introduziu a programagao com vetores nos pro-
cessadores comerciais x86, que evoluiram para o SSE e atual-
mente o conjunto AVX. Devido a demanda das aplicagdes ci-
entificas e de inteligéncia artificial, varias extensdes do con-
junto de instrug¢des dos processadores RISC-V estdo focando
nas operagdes vetoriais. Entretanto, ndo existem simuladores
disponiveis para exercitar os conceitos e novos conjuntos de
instru¢des do ponto de vista didatico. Por exemplo, na disci-
plina de arquitetura de computadores foi definido um assem-
bly vetorial simples, gerado pela ferramenta ChatGPT, junta-
mente com um simulador que permite a execugdo de instru-
¢Oes vetoriais com suporte a carregamento, armazenamento,
operacdes aritméticas e redugdo, além da visualizagdo da es-
trutura de registradores vetoriais e do controle de stride. A
ferramenta visa reforcar conceitos de SIMD e eficiéncia com-
putacional em operacdes sobre vetores, conforme ilustrado
na Figura 6.
As instrugdes vetoriais iniciais do assembly sdo:

1. Registradores vetoriais VO a V7: Cada registrador ar-
mazena um vetor de oito elementos e possui suporte a
acesso com stride;

2. Registradores escalares FO a F7: Sao utilizados para
armazenar valores escalares de ponto flutuante;

3. Instrucoes suportadas:

e VLOAD Vx, addr, stride: Carrega oito ele-
mentos consecutivos da memoria em V_x, com es-
pacamento definido por stride;

e VSTORE Vx, addr, stride:
elementos de Vx na memoria;

* VADD Vx, Vy, Vz: Realiza a soma vetorial;

e VMUL Vx, Vy, Vz: Executa a multiplicacio ve-
torial;

* VBROADCAST Vx, Fk: Copia valor contido no re-
gistrador Fk para todos os elementos do registra-
dor vetorial Vx.

* VREDUCE_SUM Fk, Vx: Efetua reducdo do vetor.

Armazena oito

Como tarefas, os estudantes implementaram extensdes
do conjunto de instrugdes, por exemplo, instru¢des para lagos
de repeticdo. Para validacdo, o trabalho inicial foi a execucdo
de uma versao paralela do algoritmo de multiplicacdo de ma-
trizes e do algoritmo de criptografia TEA [Wheeler and Ne-
edham, 1994]. Além disso, foi requisitada a execugdo passo a
passo e a validacdo da execucao com um cédigo equivalente
em Python. A Figura 7 ilustra o simulador vetorial com capa-
cidade de executar uma, /N ou todas as instrugdes do codigo.

A Listagem 2 ilustra um trecho do c6digo do simulador
com a instru¢do de load vetorial e a instru¢io de multiplica-
¢do, mostrando o parser e o interpretador.

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

Ferreira et al. 2025

P Ld 3, 0(r1)
O | ulte 1, 12, 13
Instruces assembly =Gy 2
~ Su I W Ty Instruction Fetch Decode Execute Write Registrador. Memoria (of... | 6=10.0, 4=20.0, 8=36.0
Instrugdes: | addi r1, r1, 4 . o
bne r1, L .
N'decnc\ospcrm:lemgéo - Loob: 1d 1, O(rl) | 1 2 > ou Load/Store ¢ Ml 2
ddi 1, r2, r3 2 3 4 5 il
Load/Store: | 2 o0 e : Add 2 mm 1
Addf: | 3 mulf 2, f1, f3 3 4 5- LS Cycles 2 AddF Cycles 3 MultF Cycles 5
muif: | 5 sd 2, 0(rl) 4 5 6 Executar Tudo Passar Ciclo
N* de estaces de reserva addf 1, f3, f1 5 6 7 Instrugao |12 IF[1°1D] 1°EX |[1°WB Reservation Stations
Load/Store: | 3 sd 1, 4(rl) 6 7 Ld f3,0(r1) 1 2 k4 5L0 RS a Src P
Adar: | 2 addi r1, r1, 4 7 muitf 1,23 2 [38 [4-4r59 |[1oMmo] L0 [No F multf 5,14
Mulf: | 2 one 1, Loop Ld 4, 4(r1) 3 |4 56 7 L1 L1 |No 3 addf f5,f5,f4
Executar imultf f5,f1,f4 |4 5 6-9r 10-14 15 M1 L2 |[No 3
PC+1 imultf f4,f4f2 |5 10 (11-15 16 MO; MO|(No -
P Sdf50(r1) |10 |11 |[12-14r 15-16]F LO M1][No F multf 1,f2,£3, Ld f4, 4(r1)
. (a) | |[addf f5f5f4 |11 |12 |[13-15r 16-1819 A0 IAO [No - multf 5,f1,f4, multf f4,f4,f2
Ok 6, PCI 6 Exemplo: | 1: Exemplo 1 Dependéncias ¢ Forvarding Sdf54() |12 |13 |[14-18r19-20] L1 [AT][No F
= (B:ggiN sacC Clocks: | load=2,store=2,mut=5,add=3 Addiri18 |13 14 |15 1610 10 |[No 5
+
0 MULTF F1 F2 F3 Estacdes: | load=3,store=3,add=2,mut=2 Beq r1,r2,LO0P||14
1 ADDF F4 F1 F3 " =0,R0=: .
2 LD F5 0 R2 ok | R2=0R0=2 Instrucdes Agurdando RS Meméria
3ADDF F6 F1 F5 M OGFRE B [instruction_|[Needed RS dereco]Va
4 ADDI R2 R2 1 - =2 [Beq r1.r2,L00P|[- o [220.0]
> 5 MULTF F3 F4 F6 Aor R R2 #1) [200
6 BNE R2 et Loop Registradores 500 |
+END_SRC o [[o-of[r1 [8.0][r2][64.0][r3 [[0.0]r4 [[0.0]5 [[0.0f6 [0.0[7][o.0]
s+ Instruction status Smopameo o L LL) Rowo 8 [[0.09 [[0.0[r10[00 |[r170.0[r12]0.0[r73]0.0]740.0[T5][0.0
_____________________________ SR | [6][0.0[r17][0.0][r18]0.0 |[r19][0.0][r20][0.0][r21][0.0][r22][0.0][r23][0.0]
| Instruction | Fetch | Issue | Exec | Write | Station | p24Joojr2s[oojr2sjo Jr27]0.lr28o.ojrz90.ofr3ofo0fr31jo0
| R T T T Fommmmne T B Fommmmmann Fommmmmnan N
| MULTF F1 F2 F3 | 1 |2 | | [miel | Registradores Float _
| ADDF F4 F1 F3 |2 |3 | | | addl | o Jfo.0f1 "o off2 [2.[f3 [0.0[F |[20.]5 [220.0]t6 Jo.0[f7 Jjo.g
| LD F5 @ R2 |3 | 4 | 6 | | loadl | e [fo.of[to Jfo.0 J[r10]fo.offr11[fo.0 [[12][o.0 J[13]0.0][f14]f0.0][r15][0.0]
| ADDF F6 F1 F5 | 4 |5 | | | add2 | [6o.0r17]o.0 [r18][0.0][r19][0.0 |[r20][0.0 [[f21][0.0 [ﬁﬁ“ﬁ@
| ADDI R2 R2 1 |5 | 6 | 6 | 6 | | [r24]jo.0]25]0.0 |[r26]0.0]27[0.0 [128]0.0 |[r29[0.0_|r30]0.0]f1][0.0
| MULTF F3 F4 F6 | 6 | | | | |
|-mmmmmmmm s Heeeeoannn Heceeennnn . Hememmenn . |
(b) ©

Figura 5. Trés implementagdes de simuladores Tomasulo:(a) simulador com configuracdo de estacdes de reserva e quadro de execugdo passo a passo para
Loop; (b) cédigo com marcador, quadro de estagdes e janela de edicdo; (c) janela edi¢do e configuracdo, quadro de execucdo, estacdes, registradores e

memoria
Exemplo Registradores Vetoriais (V@-V7):
VBROADCAST V@, FO Vo: (6060006680
VLOAD V1, 10, 1 V1: [16 11 12 13 14 15 16 17]
VADD V2, VO, V1 V2: [10 11 12 13 14 15 16 17
VSTORE V2, 100, 1 V3 {e 00000860]] Banco de
VREDUCE_SUM F1, V2 .
’ V4: (0000000 0]
. |ws: 100000000 Regls_tr_adores
Janela de Edicao|ve: eeeeeeee] Vetoriais
V7: [06000600080]

e Escalares

Registradores Escalares (FO-F7):
0:

0
Executar F1: 108
F2: 2

3
4
5
6

F7: 7
Memoria (enderecos 0-255):
000: [6 1 2 3 4 5 6 7 8 91011 12 13 14 15]

Memoria

M
Figura 6. Visualizacdo da execucdo de um assembly vetorial com registra-
dores e memoria.

27 Codigo Assembly: - REGISTRADORES VETORIAIS (Ve-V7)

VO: [0x00000000, ©x00000000, ©x000E

#
ROTINA DE CRIPTOGRAFIA
#

exeeeeeeeé, 0)(99099006]
e, 0,0

Dec: [0, 6, 0, 6, 0, 6, 0, 0]
ENCRYPT_START: R V1: [0x00000000, 0x00000000, ©x000€
parel;ovs s7, @ # S7 = Ponteiro de endereco para os 0x00000000, 0x60000600,

0x00000000, ©x00000000]
Dec: [0, 6, 0, 6, 0, 6, 0, 0]
V2: [0x00000000, 0x00000000, ©xOOOE

Execucdes: | 32

Executar X

ENCRYPT_INNER LOOP:
S 54, S4, S5

SHLV V2, V1, 4
annvR V> V> <A

(31)>XORV V3,V3, V4

Figura 7. Visualizacdo da execu¢io de um assembly vetorial com registra-
dores e memoria, execugdo de IV passos para o algoritmo TEA de cripto-
grafia.

O exemplo de multiplicacdo de matrizes € uma referén-
cia basica. A execucio foi elaborada fixando a linha da ma-
triz e com dois lacos aninhados. A Figura 8 mostra o resul-
tado do trabalho da disciplina: um simulador de assembly
vetorial desenvolvido executando a multiplicacdo de matri-
zes.

./ Interpretador de Assembler Vetorial 1

Multiplicacdo de matrizes 8x8 usando loops

SMOV F6, © #1i=0 (A0)

SMOV F7, 128 # ponteiro para inicio de C

LooP 8 # primeiro loop para cada linha de A
SMOV F4, 64 # Reseta ponteiro da coluna de B (B=64)

VMUL V2, VO, V1

SSTORE FO, F7
SADD F4, F4, 1
SADD F7, F7, 1
ENDLOOP
SADD F6, F6, 8
ENDLOOP

VREDUCE SUM F@, V2

LOOP 8 # Laco para cada coluna de B
VLOAD VO, F6, 1 # Carrega linha de A. stride = 1, 1& 8 elementos em sequéncia (uma linha)
VLOAD V1, F4, 8 # Carrega coluna de B. stride = 8, 1& um elemento e pula 8 posicdes pra 1

Multiplica

Soma (produto escalar). reduz s
Armazena o resultado escalar

Avanca ponteiro de B (B++)

Avanca ponteiro de C (i++)

Avanga para préxima linha de A (A+=8)

Verificar

Figura 8. Visualizagdo da execucdo de um assembly vetorial com registra-
dores e memdria para multiplicacdo de matrizes com lagos aninhados em

O(n?).

I if instr == 'VLOAD’:

2 vx, addr, stride = tokens[l].rstrip(’,"),
self.parse_value (tokens[2]), self.
parse_value (tokens[3])

3 self .V[vx] = self.memory[addr:addr + 8x
stride : stride].copy ()

4 elif instr == "VMUL:

5 vX, vy, vz = tokens[l].rstrip(’,"),
tokens [2]. rstrip(’.’), tokens[3]

6 self .V[vx] = self.V[vy] x self.V[vz]

Listagem 2: Exemplos de trechos com parser do assembly

vetorial.

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

Codigo: | loop 3

CMPXCHG, range i

Proximo passo % 2
CMPXCHG, range 1 % 2

c]
1

Resetar

Estado dos processadores (passo 0):
(7102106 [1] 051 ([3]1T18]TIA4l]

Figura9. Array Processor Linear Programdvel com exemplo ordenaco Par-
Impar com lago e instru¢do Compara e Troca (CMPXHG) e o identificador
% para o nimero do processador.

E importante ressaltar que as tarefas das atividades pra-
ticas da disciplina incluem a extens@o do conjunto de instru-
¢des vetoriais e a elaboragdo de varios algoritmos. Como o
simulador € interpretado e tem um editor, varios exemplos
podem ser validados. Existe a op¢do do uso de bibliotecas
de parser, como a lark do Python, para gerar um cédigo
com uma gramadtica bem definida e mais genérica para exten-
s@o [Coura et al., 2025], ou uso de JavaScript para execucdo
no Google Colab sem a necessidade de conexao.

4.2 Array processor

A arquitetura de array processors pode ser implementada
com diversas topologias: em anel, grade, hipercubo, etc.
Os miiltiplos processadores executam instrugdes de forma
sincrona ou condicional com mdscaras. Com o auxilio das
LLMs, € possivel gerar rapidamente simuladores para di-
versas topologias com um conjunto de instru¢des variado.
Como os array processors nao geraram produtos comerciais,
existe uma escassez de exemplos na literatura de linguagem
de programacao para esta arquitetura. Este recurso foi explo-
rado para gerar tarefas onde os estudantes tinham que criar as
linguagens respeitando o paradigma de programacio SIMD.
A simulagdo foi feita em Python com suporte a visualizacio
grafica da comunicagao entre processadores.

Diferentemente da programacao para GPU, onde o pa-
ralelismo estd vinculado ao nimero da thread, no array pro-
cessor aprogramacao € indexada com o nimero do processa-
dor. O estudante tem vdrias tarefas no projeto do simulador,
que envolvem a estrutura de memoria de cada elemento de
processamento, a topologia e as primitivas de comunicagao,
a linguagem de dominio especifico e elaborar exemplos de
codigo e valida-los.

A Figura 9 ilustra um simulador de exemplo para o pro-
blema de ordenacdo em um array processor linear de oito
elementos de processamento, onde ¢ € o identificador do pro-
cessador. O simulador tem o cédigo editdvel da linguagem
de dominio especifico criada para programa-lo.

4.3 Multiprocessadores

Multiprocessadores sdo sistemas compostos por multiplas
unidades de processamento independentes, capazes de exe-
cutar tarefas em paralelo. Nesta subse¢@o, exploramos dois
modelos distintos de comunicacio entre processadores: com
memoria compartilhada e com troca de mensagens. Ambos
os simuladores permitem ao aluno observar os mecanismos
de sincronizag¢do, consisténcia de dados e comunicagado entre
processos de forma visual e interativa.

4.3.1 Meméria Compartilhada
O simulador com memdria compartilhada modela um ambi-
ente em que os processadores acessam um espago comum de

Ferreira et al. 2025

=] Execugao concorrente com variaveis compartilhadas
Edite os cédigos abaixo. Use 'shared’ para acessar variaveis globais entre scripts.
Cédigo 1

Codigo 1

Espera os outros 2 cédigos ficarem prontos (barreira)

while shared.get('ready’', 0) < 2
pass # espera ativa

shared['result'] = shared['x'] + shared['y']

Cédigo 2

Codigo 2 4 Variaveis compartilhadas
Define 'x' e avanga a barreira

shared['x'] = 10 valor @
shared['ready'] = shared.get('ready', 0) + 1 - 10 u
Caédigo 3

ready 2

Codigo 3

Define 'y' e avanga a barreira y 20
shared['y'] = 20

shared['ready'] = shared.get('ready’', 0) + 1 result 30

Figura 10. Cédigo de demonstracdo com memdria compartilhada com trés
processadores em um multiprocessador.

memoria, exigindo controle de concorréncia para garantir a
integridade dos dados. Através do uso de LLM, a tarefa de
gerar um simulador inicial com trés processadores foi rea-
lizada com facilidade. A LLM criou primitivas simples de
sincronizag@o e varidveis compartilhadas.

A Figura 10 mostra um exemplo gerado pela ferramenta
ChatGPT com trés janelas com capacidade de editar o c6digo
e executar. O simulador encapsula a comunicagdo e criou a
primitiva shared para compartilhar uma varidvel e o método
shared.get ('NomeDaVariavel', 0) paraler uma varia-
vel compartilhada e implementar o sincronismo.

O exemplo ilustrado na Figura 10 tem trés processado-
res. O processador 1 aguarda a varidvel ready ter o valor 2
para somar as varidveis x e y. Os processadores 2 e 3 inici-
alizam as varidveis compartilhadas = e y, respectivamente.
Depois, os processadores 2 e 3 incrementam a varidvel com-
partilhada ready para sinalizar ao processador 1 que conclu-
fram a tarefa. De posse do exemplo, os estudantes t€m como
tarefa criar simuladores com mais processadores, outras pri-
mitivas de sincronizacdo e elaborar exemplos de cédigo pa-
ralelo. Novamente, o editor permite mudar o c6digo e testar
novas implementagdes.

No primeiro semestre de 2025, a tarefa dos estudantes
da disciplina de arquitetura de computadores da Universi-
dade Federal de Vigosa foi programar o algoritmo K-NN (K-
Nearest Neighbors) distribuido em um multiprocessador com
quatro processadores.

4.3.2 Troca de Mensagens

No modelo baseado em troca de mensagens, cada processa-
dor possui sua propria memdria local e se comunica expli-
citamente com os demais por meio de envio e recepgdo de
dados. O simulador inicial gerado pela ferramenta ChatGPT
permite exercitar os conceitos de paralelismo distribuido e
sincroniza¢do explicita.

A Figura 11 mostra um exemplo gerado pela ferramenta
ChatGPT com trés janelas com capacidade de editar o c6-
digo e executar. O simulador encapsula a comunicacgio e
criou as primitivas send (processadorDestino,valor)
e receive(processadorOrigem) para comunicar os pro-
cessadores e implementar o sincronismo. A tarefa dos estu-
dantes também foi programar o algoritmo K-NN distribuido
em um multiprocessador com quatro processadores.

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

Execugao concorrente com troca de mensagens
Varidveis sdo locais. Use send (dest, valor) e receive(origem) para comunicagao.
Cédigo 1

Codigo 1

x = receive('code2’
y = receive('code3’
result = x +y
print("Resultado =",

" Log de Execugao
code2 - codel: 10

result)

Codigo 2 Cédigo 3 codel - code2: 10
; — code3 - codel: 20
Codigo 2 # Codigo 3 codel - code3: 20

send('codel’, 10) | send(’codel’, 20) ;o1 ppyNT. Resultado = 30

Figura 11. Cédigo de demonstracdo de multiprocessador com troca de men-
sagens com um exemplo com trés processadores.

A implementagdo do cédigo base do simulador usou os
mecanismos de multi-thread da linguagem Python. Portanto,
os processadores sdo programados com a sintaxe de Python
junto com as primitivas de comunicagdo, o que possibilita
a validacdo de vdrios algoritmos paralelos em ambientes de
multiprocessadores.

5 Memoria cache 4-Way

A compreensdo de hierarquias de meméria € fundamental
para o estudo de desempenho computacional. A descricdo
de detalhes de implementacdo de uma memoria cache € um
tépico que ndo estd disponivel nos livros-texto da drea de ar-
quitetura de computadores. Esta se¢do apresenta uma pro-
posta de tarefa para os estudantes da disciplina de arquite-
tura de computadores para fazer a extensdo de um simula-
dor de cache 2-way [Ferreira et al., 2023] para criar um novo
simulador de uma cache 4-way. A ferramenta deve ter im-
plementacdo validada em Verilog com visualizacdo gréfica
para depuragdo. As implementagdes da literatura mostram
apenas formas de onda que sdo complexas para validagcdo e
c6digos comportamentais sem uma visao estrutural do pro-
jeto. A construcdo de um simulador com visualizacdo estru-
tural dos sinais permite ao aluno realizar varias sequéncias
de acesso a memoria, observando o funcionamento interno
passo a passo. Foi solicitada a implementagao da politica de
substituicdo LRU (Least Recently Used) com uma solugao
distribuida e escaldvel para cache com maior associatividade
com uma cache 8-way. O objetivo € observar que, mesmo
em caso de acerto (hir), a cache tem vdrias tarefas paralelas
para realizar internamente, dando uma visdo mais aprofun-
dada das arquiteturas de caches.

Com relacdo a trabalhos da literatura, um projeto Ve-
rilog foi apresentado em [Chauan et al., 2015]. Porém, o
codigo ndo estd disponivel e o trabalho apenas apresenta a
descricdo em alto nivel da implementacdo. Outros traba-
lhos recentes apresentaram projetos em VHDL [Kaur ef al.,
2021; Hazlan et al., 2023], mas ndo detalham o projeto da
politica de substituicdo do controlador. Alguns trabalhos
abordam as implementa¢des do controlador LRU ou pseudo-
LRU [Omran and Amory, 2018; Puidenko and Kharchenko,
2020], mas ndo fornecem o cédigo-fonte. Para uma cache 4-
way, o codigo-fonte foi apresentado em [Patel, 2021], porém
para uma politica de substitui¢do FIFO. Duas implementa-
¢des em Verilog estdo disponiveis em [Airin, 2015], mas o
codigo tem uma méaquina de estados complexa e nao estd do-
cumentado. Em todos os exemplos, a depuragdo € complexa
usando apenas formas de onda.

Ferreira et al. 2025

Nosso ponto de partida € um projeto documentado que
possui implementacdes de uma cache de mapeamento direto
e 2-way [Ferreira et al., 2023], parametrizadas e divididas
em moédulos em Verilog, com documentagdo em um Google
Colab e uma visualizacdo estrutural do projeto. A tarefa dos
estudantes foi a extensdo para 4-way. Por se tratar de uma
tarefa complexa, as LLMs foram usadas apenas para auxi-
liar na compreensdo do c6digo e comando generate, uma vez
que o projeto base tinha uma estrutura modular, que € rela-
tivamente dificil de ser gerada por uma LLM com poucos
prompts.

A base do projeto € o médulo distribuido LRU. Uma vi-
sao geral do esquemadtico da cache estd ilustrada na Figura 12.
O desenho foi implementado com rétulos no formato veto-
rial SVG, seguindo a proposta apresentada em [de Figueiredo
et al., 2024] pelos estudantes da disciplina de arquitetura de
computadores de 2025. Cada sinal a ser monitorado possui
o rétulo com o prefixo "@". A simulacdo € executada em Ve-
rilog, onde a cada ciclo sdo gravados os valores dos sinais.
Estes valores sdo aplicados no arquivo SVG para substituir
os rétulos com os valores, possibilitando a geracdo de uma
animacdo e visualizag@o passo a passo.

A Figura 13 destaca um dos quatro médulos que com-
pdem a cache. Além dos campos tradicionais de validagao,
tag, nimero de sequéncia do LRU e dados, cada médulo tem
seu proprio atualizador da politica LRU. O LRU mais recente
€ o menor valor, 0 no caso da 4-way, e 0 menos recente tem o
valor 3. No caso de hit, o mddulo recebe o seu valor de LRU
e o valor do LRU do médulo onde aconteceu o hit. Se seu va-
lor de LRU for menor, ele deve ser incrementado, fica menos
recente, ja que outro bloco foi acessado e serd o mais recente.
Se ele proprio € o bloco que estd sendo acessado, ou seja, o
mesmo valor de LRU, seu valor deve ser zerado. Se seu valor
for maior que o valor do LRU que teve o hif, ndo é necessario
ser alterado. Dessa maneira, o projeto € escaldvel. A parte
mais complexa € a inicializa¢do, quando a cache esta vazia.
A unidade LRU pode também tratar esta situacdo utilizando
o nimero do médulo e os bits de validacdo em sequéncia.

A Figura 14 ilustra outra interface desenvolvida pelos
estudantes para a depuracdo do cddigo Verilog da cache 4-
way, oferecendo uma visao mais funcional da cache e ocul-
tando, em um primeiro momento, os detalhes de implemen-
tagcdo. Todos os sinais exibidos sdo rétulos extraidos direta-
mente da simulagao Verilog e automaticamente mapeados no
desenho SVG. A parte inferior da figura destaca o médulo 0
da cache, exibindo os rétulos antes da substitui¢do e eviden-
ciando que todos os campos podem ser facilmente depurados.
Esta interface € especifica para uma cache 4-way com quatro
blocos de 4 bytes cada. Para uma saida mais generalizada,
uma alternativa € o uso de bibliotecas como svgwrite [Jami-
eson et al., 2025].

6 Trabalhos Relacionados

No nivel de circuitos, podemos destacar o simulador Digi-
taljs [Materzok, 2019], que utiliza a ferramenta Yosys para
gerar o desenho esquemdtico de projetos descritos em Veri-
log, uma extenséo voltada ao ensino com programagio por
blocos [Castro and Azevedo, 2020] e um projeto hierdrquico
de processador MIPS [Passe et al., 2020]. Apesar da exis-

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

Cache 4-way com 4 blocos e 64 elementos total

Ferreira et al. 2025

Counter

FSM -—
[ome [o][] \
e | —
. ne - - []
L
Lo
v v v v v v v v v v v P v
e o | cwmo [y [oum | [w[i][v] wmm ool e
QneLO | @move | @medatale @miLe |gmive | @nidatal® m2L0 | @m2ve | @m2datale @m3L0 [gm3ve | @m3datal®
@noL1 | @movi | @medatall @mill |@mivi | @nidatall @m2L1 | @m2vi | @m2datall @m3L1 |@m3vi | @n3datall
oz [z | vtz iz [| otz e e | ooz iz o | otz
@noL3 |@mov3 | @modatal3 @mil3 |@miv3 | @midatal3 @m2L3 | @m2v3 | @m2datal3 @m3L3 | @m3v3 | @m3datal3
v L v
== = La(== » ==
@mmud;_j__. aLRUn qmmjj_:l__, oLRUnL nsn2 aLRun R < BT
ourig aLry ourug
ot = | o R oug
on an - an
L‘ avg “ &g S a9 . 0
T [ST, S T = e '3 - e
YT
‘]
| il
I SRR
‘ Enc I
— Tm

Figura 12. Caminho de dados da cache 4-way com médulos LRU locais em cada conjunto e formato editdvel para depuragdo do cédigo Verilog.

v h AR 4 Yy v v
TAG L v DATA M@

@moLe |@move | @medatal®

@moLl | @mevi | @medatall
@meLZ | @mEV2 @n@datal 2

@meL3 |@mOV3 | @m@datal3

@LRUmG

A4

@hitmo
Mg

= > iihg
“ g
T * 4| RU Update !

Figura 13. Mdédulo LRU e cache com campos: validag@o, tag, sequéncia
LRU e bloco de dados.

@LRUg

téncia de diversas ferramentas com interface visual [Siever
et al., 2025], a maioria delas ndo foi projetada para exten-
sibilidade. Um levantamento de simuladores para arquite-
tura organiza varias ferramentas de c6digo aberto [Materzok,
2019; Hwang et al., 2025]; entretanto, essas ferramentas sao
voltadas para atividades de pesquisa e nao foram desenvol-
vidas com foco no ensino de conceitos bdsicos em nivel de
graduacdo. Além disso, ndo apresentam facilidades para atu-
alizagdes e extensoes.

Trabalhos anteriores introduziram o uso do Google Co-
lab para o ensino de circuitos digitais [Canesche et al., 2021],
o uso da biblioteca Gradio e do protocolo MQTT para acesso
remoto interativo [Ferreira et al., 2024a], o uso de depuracao
com interface grifica editdvel em SVG para o processador
RISC-V e a aplicagdo de LLMs em exercicios de codifica-
cdo [de Figueiredo ef al., 2024], a visualizag¢ao grafica com
apoio das bibliotecas svgwrite e Graphviz [Jamieson et al.,

Ciclo *154*

| Adress Tag Line [Block
000000100000 | 0000016 | 00 00

T v Tag Data
3 1 00 00 o1 02 03
Way @ ° o x x o o xx
o o XX xx XX xx xx
Q g xx XX Xx xx xx

4t v Tag Data
v 1 o1 10 11 12 13
way 1 1 o XX XX XX X xx
1 Q xx XX xx xx xx
1 g xx XX XX XX XX

T v Tag Data
or 1 02 20 21 22 23
Way 2 2 3 XX Xx XX XX xx
2 g xx XX XX xx xx
2 o X XX XX XX XX

([t v Tag Data
2" 1 03 30 31 32 33
Way 3 3 o X XX xx XX xx
3 ® X XX X XX X
3 0 xx xx *x xx xx

Ciclo @ciclo

Adress Tag Pna Iilod(
@address @tag @line @block
L v Tag Data
@Iru_0_0 @valid_0_0 @tag_0_0 @d0_00 @d0_0_1 @d0_02 @do_0_3
Way @Iru_0_1 @valid_0_1 @tag_0_1 @d0_10 @do_11 @d0_12 @do 13
@Iru_0_2 @valid_0_2 @tag_0_2 @d02.0 @d0 2.1 @d022 @do 23
@Iru_03 @valid_0_3 @tag_0_3 @d0_30 @do_3.1 @d0o32 @do 33

Figura 14. Cédigo de demonstragdo multiprocessador com troca de men-

sagens e exemplo com trés processadores.

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

2025], além de simuladores de cache e processadores em ni-
vel assembly [Jamieson et al., 2025; Ferreira et al., 2023].

Este trabalho € uma extensdo dessas iniciativas. O pri-
meiro aspecto € a incorpora¢do da emulagdo de processa-
dores RISC-V com um montador assembly integrado a um
simulador Verilog do processador, incluindo depuragdo gra-
fica em SVG. A mesma metodologia foi adotada no simula-
dor de memdria cache 4-way, com projeto detalhado e docu-
mentado. Além disso, destacam-se a avalia¢do e construcio
de diversos simuladores funcionais para processadores com
multiplas unidades funcionais e escalonamento dindmico uti-
lizando o algoritmo de Tomasulo. Finalmente, explora-se o
uso de LLMs para simuladores e a criagdo de linguagens de
dominio especifico (DSLs) voltadas a diferentes arquiteturas
paralelas.

No melhor conhecimento dos autores, ndo existem fer-
ramentas diddticas para o ensino de arquiteturas paralelas,
como processadores vetoriais, array processors e multipro-
cessadores que oferecam: (i) programacdo via editor de
texto; (ii) cédigo-fonte acessivel e estruturado para exten-
soes; e (iii) suporte a criacao de linguagens de dominio espe-
cifico que expressem o paralelismo com base nas restri¢cdes
arquiteturais. Nesse sentido, este trabalho € inovador.

Um exemplo de assembly MIPS vetorial como extenso
do simulador MARS foi apresentado por [Alves et al., 2015].
Em relacdo a array processors, apenas simuladores voltados
a arquiteturas especificas com foco em pesquisa foram apre-
sentados [Barr and Dudek, 2008; Herbordt et al., 2000], além
de exemplos de aplicagdo de array processors em supercom-
putadores [Potter and Meilander, 2002].

7 Conclusao

Este trabalho apresenta uma sequéncia integrada de simula-
dores desenvolvidos com finalidade didética para o ensino
de processadores RISC-V, com implementa¢do em Verilog,
simuladores de memdria cache também descritos em Veri-
log, além de diversos simuladores de arquiteturas paralelas
de alto nivel, baseados em modelos de linguagem generativa
(LLMs) para a criacdo automdtica de cédigos. Esses simula-
dores foram utilizados como material de apoio na disciplina
de arquitetura de computadores, ofertada no primeiro semes-
tre de 2025 na Universidade Federal de Vicosa. O objetivo
pedagdgico consistiu em disponibilizar aos estudantes plata-
formas de simulacdo interativas, nas quais as tarefas praticas
incluiram tanto a extensdo funcional dos simuladores quanto
a elaboragdo de exemplos aplicados.

Foram desenvolvidos simuladores especificos para os
principais tépicos abordados na disciplina: processadores
RISC-V, meméria cache 4-way, algoritmo de Tomasulo, pro-
cessadores com pipeline e multiplas unidades funcionais de
laténcia varidvel, processadores vetoriais, array processors
e sistemas multiprocessados. Todos os simuladores incorpo-
ram um editor de texto interativo que permite a modificagdo
do cédigo de entrada e sua reexecucdo imediata. A imple-
mentagdo em ambiente Google Colab assegura portabilidade
e facilidade de uso, eliminando a necessidade de instalagdes
e configuracdes adicionais. Um dos principais diferenciais
deste trabalho é o uso de LLMs na criagdo de linguagens de
dominio especifico com primitivas voltadas a programacao

Ferreira et al. 2025

paralela. Essas linguagens foram utilizadas para ilustrar a
implementagdo de algoritmos paralelos e validacdo.

Como direcdes para trabalhos futuros, pretende-se ge-
neralizar as linguagens desenvolvidas por meio da formali-
zacdo de gramdticas especificas, aliadas ao uso de LLMs e
ao suporte de bibliotecas baseadas em avaliagdo preguicosa
(lark) em Python. Tal abordagem visa a construcio de simu-
ladores mais flexiveis, passiveis de extensdo e reutilizacio
em multiplos contextos educacionais e de pesquisa.

Declaragoes complementares
Agradecimentos

Gostarfamos de agradecer a colaboracdo de todos os estudantes da
turma do primeiro semestre de 2025 da disciplina INF450 arquite-
tura de computadores da Universidade Federal de Vigosa.

Financiamento

Apoio financeiro do Projeto FAPEMIG APQ-01577-22, CNPq e
CAPES.

Contribuigoes dos autores

O autor Ricardo Ferreira elaborou os exemplos base dos simulado-
res e realizou a redacdo do texto. O autor Racyus Delano Garcia
Pacifico colaborou com sugestdes e revisdo do texto.

Conflitos de interesse
Os autores declaram nao haver conflitos de interesse.

Disponibilidade de dados e materiais

As ferramentas desenvolvidas neste trabalho sdo de cdédigo
aberto e estdo disponiveis no link https://colab.resear
ch.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-
xDGZAiHC?usp=sharing.

Outras informacgoées relevantes

O texto deste artigo € de responsabilidade dos autores, onde ferra-
mentas de [A foram usadas apenas para revisdo ortografica e gra-
matical, além de algumas sugestdes. O tema do trabalho é sobre
o uso de IA, neste aspecto os modelos de IA foram avaliados para
geracdo dos simuladores apresentados.

Referéncias

Airin (2015). Verilog-caches. Available at: https:
//github.com/airin711/Verilog-caches Accessed:
2025-07-19.

Alves, F. A., Almeida, D., Braganca, L., Gomes, A. B.,
Ferreira, R. S., and Nacif, J. A. M. (2015). Ensi-
nando arquiteturas vetoriais utilizando um simulador
de instrucdes mips. International Journal of Computer
Architecture Education, 4(1):9-12. Available at: https:
//www2.sbc.org.br/ceacpad/ijcae/v4_nl_dec_201
5/IJCAE_v4_nl_dez_2015_paper_3_vf.pdf.

Barr, D. R. and Dudek, P. (2008). A cellular proces-
sor array simulation and hardware prototyping tool. In
2008 11th International Workshop on Cellular Neural
Networks and Their Applications, pages 213-218. IEEE.
DOI: 10.1109/cnna.2008.4588680.

Boseler, F., Walter, J., and Perjikolaei, B. R. (2022). A
comparison of virtual platform simulation solutions for ti-
ming prediction of small risc-v based socs. In 2022 Forum

https://colab.research.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-xDGZAiHC?usp=sharing
https://colab.research.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-xDGZAiHC?usp=sharing
https://colab.research.google.com/drive/1L80E1YoeXnuQxKSNcm1KxJp-xDGZAiHC?usp=sharing
https://github.com/airin711/Verilog-caches
https://github.com/airin711/Verilog-caches
https://www2.sbc.org.br/ceacpad/ijcae/v4_n1_dec_2015/IJCAE_v4_n1_dez_2015_paper_3_vf.pdf
https://www2.sbc.org.br/ceacpad/ijcae/v4_n1_dec_2015/IJCAE_v4_n1_dez_2015_paper_3_vf.pdf
https://www2.sbc.org.br/ceacpad/ijcae/v4_n1_dec_2015/IJCAE_v4_n1_dez_2015_paper_3_vf.pdf
https://doi.org/10.1109/cnna.2008.4588680

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

on Specification & Design Languages (FDL), pages 1-8.
IEEE. DOI: 10.1109/FDL56239.2022.9925667.

Canesche, M., Braganca, L., Neto, O. P. V., Nacif, J. A., and
Ferreira, R. (2021). Google colab cad4u: Hands-on cloud
laboratories for digital design. In 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1-5.
IEEE. DOI: 10.1109/iscas51556.2021.9401151.

Castro, L. and Azevedo, R. (2020). Circuitly: A visual and
constructive framework for teaching digital circuits. In-
ternational Journal of Computer Architecture Education,
9(1):10-15. DOI: 10.5753/ijcae.2020.4839.

Chauan, P., Singh, G., and Singh, G. (2015). Cache control-
ler for 4-way set-associative cache memory. Internatio-
nal Journal of Computer Applications, 129(1):8887. DOI:
10.5120/ijca2015906787.

Coura, P., Freitas, 1., Costa, H., Nacif, J., and Ferreira, R.
(2025). Desmistificando o ensino de inteligéncia artificial
e aprendizado de maquina. In Simpdsio Brasileiro de Edu-
cagdo em Computacdo (EDUCOMP), pages 25-27. SBC.

de Figueiredo, G. A., de Souza, E. S., Rodrigues, J. H., Nacif,
J. A., and Ferreira, R. (2024). Desenvolvendo ferramentas
para ensino de risc-v com python, verilog, matplotlib, svg
e chatgpt. International Journal of Computer Architecture
Education, 13(1):43-52. DOI: 10.5753/ijcae.2024.5343.

Esmeraldo, G. A. R., Feitosa, R. G. F., da Silva Barros, E. N,
Proto, E. C. P. d. S., de Mello, H. M., Lisboa, E. B.,
Bispo Jr, E. L., and de Campos, G. A. L. (2023). Uma
abordagem para ensino-aprendizado de projetos de siste-
mas computacionais com utilizagdo do simulador comp-
sim com suporte a arquitetura risc-v. Revista Brasileira de
Informdtica na Educagdo, 31:271-288. DOI: 10.5753/r-
bie.2023.2951.

Ferreira, R., Canesche, M., Jamieson, P., Neto, O. P. V., and
Nacif, J. A. (2024a). Examples and tutorials on using go-
ogle colab and gradio to create online interactive student-
learning modules. Computer Applications in Engineering
Education, 32(4):¢22729. DOI: 10.1002/cae.22729.

Ferreira, R., Canesche, M., and Penha, J. (2023). Google co-
lab para ensino de computacdo. In Simpdsio Brasileiro de
Educacdo em Computacdo (EDUCOMP), pages 46-47.
SBC. DOI: 10.5753/educomp, stendido.2023.228279.

Ferreira, R., Nacif, J., Magalhaes, S., de Almeida, T., and
Pacifico, R. (2015). Be a simulator developer and go
beyond in computing engineering. In 2015 IEEE Fronti-
ers in Education Conference (FIE), pages 1-8. IEEE. DOI:
10.1109/fie.2015.7344416.

Ferreira, R., Sabino, C., Canesche, M., Neto, O. P. V.,
and Nacif, J. A. (2024b). Aiot tool integration for
enriching teaching resources and monitoring student
engagement. Internet of Things, 26:101045. DOI:
10.1016/j.i0t.2023.101045.

Garcia, M., Niyaz, Q., Yang, X., Javaid, A. Y., and
Paheding, S. (2024). An interactive visualization tool
for computer organization and design course. In
2024 IEEE International Conference on Electro Infor-
mation Technology (elT), pages 457-462. IEEE. DOI:
10.1109/eit60633.2024.10609897.

Giorgi, R. and Mariotti, G. (2019). Webrisc-v: A
web-based education-oriented risc-v pipeline simula-

Ferreira et al. 2025

tion environment. In Proceedings of the workshop
on computer architecture education, pages 1-6. DOI:
10.1145/3338698.3338894.

Hazlan, M. A. A.-Z., Gunawan, T. S., Yaacob, M., Kar-
tiwi, M., and Arifin, F. (2023). Design and performance
analysis of a fast 4-way set associative cache controller
using tree pseudo least recently used algorithm. Indo-
nesian Journal of Electrical Engineering and Informatics
(IJEEI), 11(4):1051-1063. DOI: 10.52549/.v11i4.5014.

Herbordt, M. C., Cravy, J., Sam, R., Kidwai, O., and
Lin, C. (2000). A system for evaluating performance
and cost of simd array designs. Journal of Paral-
lel and Distributed Computing, 60(2):217-246. DOI:
10.1006/jpdc.1999.1602.

Hwang, L., Lee, J., Kang, H., Lee, G., and Kim, H. (2025).
Survey of cpu and memory simulators in computer archi-
tecture: A comprehensive analysis including compiler in-
tegration and emerging technology applications. Simula-
tion Modelling Practice and Theory, 138:103032. DOI:
10.1016/j.simpat.2024.103032.

Jamieson, P., Ferreira, R., and Nacif, J. (2025). Levera-
ging large language models to create interactive online
resources for digital systems and computer architecture
education. In ASEE Annual Conference Exposition.
Available at: https://peer.asee.org/board-72-
leveraging-large-language-models-to-create-
interactive-online-resources-for-digital-
systems—-and-computer—-architecture-education.

Jamieson, P., Ferreira, R., and Nacif, J. A. (2021). Persona-
lizing online computer engineering resources and labs for
digital, embedded, and computer system courses. In 2027
IEEE frontiers in education conference (FIE), pages 1-5.
IEEE. DOI: 10.1109/1ie49875.2021.9637244.

Kaur, G., Arora, R., and Panchal, S. S. (2021). Implemen-
tation and comparison of direct mapped and 4-way set as-
sociative mapped cache controller in vhdl. In 2021 Sth
International Conference on Signal Processing and Inte-
grated Networks (SPIN), pages 1018-1023. IEEE. DOI:
10.1109/spin52536.2021.9566081.

Materzok, M. (2019). Digitaljs: A visual verilog simu-
lator for teaching. In Proceedings of the 8th Computer
Science Education Research Conference, pages 110-115.
DOI: 10.1145/3375258.3375272.

Mezger, B. W., Santos, D. A., Dilillo, L., Zeferino, C. A., and
Melo, D. R. (2022). A survey of the risc-v architecture
software support. IEEE Access, 10:51394-51411. DOI:
10.1109/access.2022.3174125.

Omran, S. S. and Amory, 1. A. (2018). Implementation of
Iru replacement policy for reconfigurable cache memory
using fpga. In 2018 International Conference on Advanced
Science and Engineering (ICOASE), pages 13-18. IEEE.
DOI: 10.1109/icoase.2018.8548892.

Passe, F., Canesche, M., Neto, O. P. V., Nacif, J. A., and Fer-
reira, R. (2020). Mind the gap: Bridging verilog and com-
puter architecture. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1-5. IEEE. DOI:
10.1109/iscas45731.2020.9180650.

Patel, R. (2021). 4-way-set-associative-cache-verilog. Avai-
lable at: https://github.com/rajshadow/4-way-

https://doi.org/10.1109/FDL56239.2022.9925667
https://doi.org/10.1109/iscas51556.2021.9401151
https://doi.org/10.5753/ijcae.2020.4839
https://doi.org/10.5120/ijca2015906787
https://doi.org/10.5753/ijcae.2024.5343
https://doi.org/10.5753/rbie.2023.2951
https://doi.org/10.5753/rbie.2023.2951
https://doi.org/10.1002/cae.22729
https://doi.org/10.5753/educomp_estendido.2023.228279
https://doi.org/10.1109/fie.2015.7344416
https://doi.org/10.1016/j.iot.2023.101045
https://doi.org/10.1109/eit60633.2024.10609897
https://doi.org/10.1145/3338698.3338894
https://doi.org/10.52549/.v11i4.5014
https://doi.org/10.1006/jpdc.1999.1602
https://doi.org/10.1016/j.simpat.2024.103032
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://peer.asee.org/board-72-leveraging-large-language-models-to-create-interactive-online-resources-for-digital-systems-and-computer-architecture-education
https://doi.org/10.1109/fie49875.2021.9637244
https://doi.org/10.1109/spin52536.2021.9566081
https://doi.org/10.1145/3375258.3375272
https://doi.org/10.1109/access.2022.3174125
https://doi.org/10.1109/icoase.2018.8548892
https://doi.org/10.1109/iscas45731.2020.9180650
https://github.com/rajshadow/4-way-set-associative-cache-verilog
https://github.com/rajshadow/4-way-set-associative-cache-verilog

Desenvolvendo simuladores para arquitetura de computadores
com auxilio de modelos generativos de linguagens

set-associative-cache-verilog Accessed: 2025-
07-19.

Patterson, D. A. and Hennessy, J. L. (2017). Computer Orga-
nization and Design RISC-V Edition: The Hardware Soft-
ware Interface. The Morgan Kaufmann Series. Book.

Potter, J. L. and Meilander, W. C. (2002). Array pro-
CEessor supercomputers. Proceedings of the IEEE,
77(12):1896-1914. DOI: 10.1109/5.48831.

Puidenko, V. and Kharchenko, V. (2020). The minimizating
of hardware for implementation of pseudo Iru algorithm
for cache memory. In 2020 IEEE 11th International Con-
ference on Dependable Systems, Services and Technolo-
gies (DESSERT), pages 65-71. IEEE. DOI: 10.1109/des-
sert50317.2020.9125054.

Railing, B. P. (2023). Cadss: Computer architecture design
simulator for students. In Proceedings of the Workshop
on Computer Architecture Education, pages 34—40. DOI:
10.1145/3605507.3610626.

Savaton, G. (2021). A visual simulator for teaching
computer architecture using the risc-v instruction set.
Guillaume-Savaton-ESEO/emulsiV. Available at: https://-
github.com/ESEO-Tech/emulsiV.

Schoeberl, M. (2025). Wildcat: Educational risc-v mi-
croprocessors. arXiv preprint arXiv:2502.20197. DOI:
10.1007/978-3-032-03281-2, 3.

Siever, B., Hall, M., Feher, J., and Chamberlain, R.
(2025). Teaching digital logic and computer architec-
ture using open source tools. In Proceedings of the
22nd ACM International Conference on Computing Fron-
tiers: Workshops and Special Sessions, pages 38—41. DOI:
10.1145/3706594.3726971.

Wheeler, D. J. and Needham, R. M. (1994). Tea, a tiny
encryption algorithm. In International workshop on
fast software encryption, pages 363-366. Springer. DOI:
10.1007/3-540-60590-8,9.

Zekany, S. A., Tan, J., and Connolly, J. A. (2021). Tea-
ching out-of-order processor design with the risc-v isa.
In 2021 ACM/IEEE Workshop on Computer Architecture
Education (WCAE), pages 1-8. IEEE. DOI: 10.1109/w-
cae53984.2021.9707143.

Ferreira et al. 2025

https://github.com/rajshadow/4-way-set-associative-cache-verilog
https://doi.org/10.1109/5.48831
https://doi.org/10.1109/dessert50317.2020.9125054
https://doi.org/10.1109/dessert50317.2020.9125054
https://doi.org/10.1145/3605507.3610626
https://doi.org/10.1007/978-3-032-03281-2_13
https://doi.org/10.1145/3706594.3726971
https://doi.org/10.1007/3-540-60590-8_29
https://doi.org/10.1109/wcae53984.2021.9707143
https://doi.org/10.1109/wcae53984.2021.9707143

	Introdução
	Metodologia
	Simuladores de processadores
	RISC-V
	Múltiplas unidades e tomasulo

	Arquiteturas Paralelas
	Processador Vetorial
	Array processor
	Multiprocessadores
	Memória Compartilhada
	Troca de Mensagens

	Memória cache 4-Way
	Trabalhos Relacionados
	Conclusão

