International Journal of Computer Architecture Education, 2025, 14:1
ISSN: 2316-9915 e doi: 10.5753/ijcae.2025.6436

© This work is licensed under a Creative Commons Attribution 4.0 International License.

ARTIGO DE PESQUISA

VeryGA - Interface Modular VGA para Simulagao de Verilog

Talles de Sousa Costa © & [Universidade Federal de Vigosa | talles.costa@ufv.br]
Racyus Delano Garcia Pacifico ©® [Universidade Federal Ouro Preto | racyus.pacifico@ufop.edu.br]
Ricardo dos Santos Ferreira © [Universidade Federal de Vigosa | ricardo@ufv.br]

&9 Departamento de Informdtica, Universidade Federal de Vigosa, Campus Universitdrio, Vicosa, MG, 36.570-900,
Brasil

Resumo. O ensino de Verilog com FPGAs apresenta diversos desafios. Entre eles, destacam-se a complexidade das
ferramentas comerciais, o acesso limitado as placas fisicas, a propria linguagem de descricdo de hardware e a necessidade
de simula¢des com depuragdo por meio de formas de onda. Uma estratégia eficaz para motivar os estudantes a superar
essas barreiras é o desenvolvimento de jogos e aplicacdes graficas, cujos resultados podem ser verificados visualmente,
promovendo o aprendizado de programacdo em nivel intermedidrio a avancado. Neste trabalho, apresentamos o VeryGA,
uma ferramenta modular que integra simulagdes em Verilog com entradas via teclado ou mouse e saida em um emulador
de sinais VGA, possibilitando visualiza¢do grafica em tempo real. Ao oferecer um ambiente intuitivo e interativo, o
VeryGA auxilia iniciantes a compreender melhor e documentar seus projetos de sistemas computacionais em Verilog
com saida VGA, reduzindo a curva de aprendizado e promovendo a construg@o colaborativa de um conjunto de exemplos.
A solugdo € executada inteiramente no navegador por meio do Google Colab, configurado com o simulador Verilator e o
CMake, utilizando uma versdo em WebAssembly para alcangar desempenho préximo ao tempo real. Diversos exemplos
sdo apresentados para ilustrar os recursos do ambiente desenvolvido. O cédigo emulado € sintetizdvel, validado em placas
FPGA reais, e pode ser executado nelas sem alteragdes. Outra contribui¢do é demonstrar que, mesmo em um ambiente

virtualizado na nuvem, é possivel obter taxas de quadros por segundo préximas a uma execu¢io em tempo real.

Palavras-chave: FPGA, Verilog, VGA, Laboratério Remoto.

Recebido: 25 Agosto 2025 e Aceito: 01 Outubro 2025 e Publicado: 21 Janeiro 2026

1 Introducao

O ensino de FPGA ¢ desafiador pois as placas geralmente
tém um alto custo para os estudantes, € o acesso a elas cos-
tuma ser restrito, na maioria dos casos, a laboratérios pre-
senciais nas universidades. Além disso, as ferramentas co-
merciais da AMD/Xilinx e da Intel/Altera sdo complexas e
exigem grande espaco em disco, mesmo nas versdes com li-
cenca estudantil, dependendo do projeto, o tempo de compi-
lacdo pode ser muito longo, o que desmotiva os estudantes.

Outro desafio € o uso das linguagens de descrigdo
de hardware (Hardware Description Language, HDL), que
apresentam diferencas semanticas significativas em rela¢do
as linguagens de programacao tradicionais, o que pode re-
presentar uma barreira para muitos alunos. A depuragdo e os
testes também representam obsticulos: a andlise por meio de
formas de onda e temporizagdo é complexa para iniciantes, e
o uso de festbenches exige a compreensdo clara da separacao
entre o cédigo de teste e o cédigo que serd sintetizado em
hardware.

Uma abordagem motivadora na ciéncia da computag@o
€ o uso de jogos, que também ja foi explorada no ensino de
hardware e FPGAs [Sanchez-Elez and Roman, 2015; Liu,
2018; Brunvand, 2011]. O desenvolvimento de jogos en-
volve a compreensdo dos mecanismos de entrada e saida, o
que contribui para o aprendizado pritico. Muitas universi-
dades utilizam exemplos com saida VGA em placas FPGA
para motivar os estudantes por meio de aplicacdes gréficas.
Este trabalho propde a democratiza¢do do acesso a projetos
em Verilog com saida VGA para o desenvolvimento de jo-
gos e outras aplicacdes graficas, com o objetivo de motivar
os estudantes no aprendizado da linguagem Verilog e ao de-

senvolvimento de projetos com FPGAs em todos os niveis do
bésico ao avancado.

O primeiro desafio é o acesso as placas. As platafor-
mas de ensino e treinamento remoto podem ajudar a superar
o obstaculo de acesso aos FPGAs fisico, oferecendo acesso
remoto a kits de desenvolvimento de hardware [Soares ef al.,
2011; Navas-Gonzélez et al., 2023; Alhammami, 2024; Cruz
et al., 2024]. O acesso remoto traz diversos beneficios: am-
plia a acessibilidade ao permitir o aprendizado pratico inde-
pendente da localizagdo, reduz custos ao eliminar a necessi-
dade de aquisicao de hardware fisico, oferece flexibilidade de
tempo e lugar para estudo e permite a experimentagcdo com
diferentes configuracdes e testes em cendrios reais. Outra al-
ternativa € o uso de emuladores que permite acesso local ou
remoto sem a necessidade da placa fisica [Costa et al., 2023].

O segundo desafio é o aprendizado de Verilog, que ¢
uma HDL amplamente utilizada na inddstria e academia para
descrever e simular circuitos digitais. No entanto, na maio-
ria dos materiais didaticos, o processo de simulacdo de cir-
cuitos descritos em Verilog ainda é dependente da visuali-
zacdo de formas de onda geradas por ferramentas, tais como,
GTKWave [Bybell, 2023], ModelSim [Mentor Graphics Cor-
poration, 2022] e Vivado [Xilinx Inc., 2023].

Quando estudantes sdo expostos a projetos de hardware
de nivel intermedidrio ou avancado, com centenas ou mi-
lhares de sinais, a dificuldade em interpretar os resultados
da simulacdo aumenta consideravelmente. Embora algumas
ferramentas fornecam meios basicos de filtragem e agrupa-
mento de sinais, elas ndo oferecem um mecanismo interativo
visual adaptado a fins diddticos. Além disso, faltam solu-
¢des que integrem o fluxo de simulacdo com interfaces que
permitam intervengdes em tempo real ou a personalizagdo de

https://portal.issn.org/resource/ISSN/2316-9915
https://doi.org/10.5753/ijcae.2025.6436
https://orcid.org/0009-0008-1799-1820
mailto:talles.costa@ufv.br
https://orcid.org/0000-0003-0587-6127
mailto:racyus.pacifico@ufop.edu.br
https://orcid.org/0000-0003-1802-7829
mailto:ricardo@ufv.br

VeryGA - Interface Modular VGA para Simulagdo de Verilog

safdas visuais com base em estimulos especificos.

Nos tltimos anos, diversos esforcos tém sido realiza-
dos para tornar o ensino de HDLs mais eficazes e didati-
cos, integrando interfaces iterativas com simulacdo de HDLs,
tais como, Learn SystemVerilog [Lima, 2021], VGA play-
ground [Project, 2025] e simuladores baseados em navega-
dores, tal como, CAD4U no Google Colab [Canesche et al.,
2021] e DigitalJS [Materzok, 2019] que utilizam o simula-
dor Icarus de Verilog [Williams and Baxter, 2002] e a visu-
alizag@o grafica com Yosys [Wolf et al., 2013]. No entanto,
essas solucdes ainda sdo limitadas quanto a integragdo com
projetos reais em Verilog. Além disso, a maioria dos simula-
dores gratuitos concentra-se em aspectos académicos de pe-
quena escala, sem considerar a escalabilidade ou modulari-
dade necessdria para projetos maiores. Apesar do uso de for-
mas de onda ser eficaz para programadores experientes em
hardware, ele pouco contribui para o aprendizado pratico de
estudantes, que se beneficiariam mais de uma abordagem vi-
sual intuitiva e didatica. Nesse contexto, o desenvolvimento
de projetos com jogos e gréficos, aliados a ferramentas com
uma interface amigdvel e didética, pode ndo apenas acelerar
o aprendizado, mas também estimular a experimentacdo e a
criatividade na modelagem de circuitos digitais.

Para atender esses requisitos, propomos o VeryGA, uma
ferramenta modular e interativa voltado para a visualizacio
e interpretagdo de simulagdes em Verilog com saida VGA.
O VeryGA, intercepta sinais de entrada e saida, fornecendo
uma camada visual interpretdvel em tempo real para cone-
x40 com um monitor VGA. Além disso, a ferramenta possui
uma arquitetura extensivel, permitindo que novos médulos
de visualizacdo e andlise sejam incorporados de forma incre-
mental. A usabilidade foi priorizada, com interface projetada
para usudrios com pouco ou nenhum conhecimento prévio
em ferramentas de simulag¢do via Google Colab, garantindo
acesso remoto sem a necessidade de instalagdo. A ferramenta
também tem potencial em ambientes educacionais, pois re-
duz significativamente o tempo de validag@o de projeto com
saida VGA e pode aumentar o engajamento dos alunos em
projetos de hardware com jogos.

As principais contribuicdes deste trabalho sdo:

* Contribuir no ensino/aprendizado na programacio de
HDLs usando jogos;

* Criar projetos Verilog usando o simulador Verilator in-
tegrado ao Google Colab;

* Validar os projetos desenvolvidos em placas reais, redu-
zindo o tempo de desenvolvimento.

* Visualizar a saida da simulag¢@o de um projeto em tempo
real, comunicando com uma tela VGA virtual imple-
mentado de forma eficiente com WebAssembly;

* Simular circuitos digitais, interagindo por sinais envia-
dos por entradas do teclado ou mouse.

Este artigo estd organizado da seguinte forma: Secdo 2
apresenta os trabalhos relacionados; Se¢@o 3 contextualiza
conceitos fundamentais e ferramentas utilizadas no VeryGA;
Secdo 4 descreve o funcionamento e detalhes de implemen-
tacdo da ferramenta; Secdo 5 apresenta os casos de uso uti-
lizados para avaliar e validar o VeryGA; Secdo 6 aborda os
resultados obtidos; Por fim, a Se¢@o 7 aborda as conclusdes,
destacando as principais vantagens da ferramenta.

Costa et al. 2025

2 Trabalhos relacionados

No ensino de linguagens de descri¢do de hardware, mui-
tos cursos usam apenas ferramentas tradicionais como
GTKWave [Bybell, 2023] e ModelSim [Mentor Graphics
Corporation, 2022], que oferecem apenas a visualizacdo das
formas de onda para andlise de sinais, o que limita a com-
preensao do comportamento dos circuitos, especialmente na
auséncia de placas FPGA ou ASICs sintetizados.

Diversos projetos tém buscado estimular o ensino de
HDLSs de uma forma mais diddtica e interativa. Por exemplo,
a ferramenta Digital]S [Materzok, 2019] permite a visuali-
zacdo de projetos, a interacdo com sinais de entrada e saida,
exploragdo da visualizacdo de forma hierdrquica e visualiza-
¢do das formas de onda. Uma extensdo do DigitallS, apre-
senta projetos do processador MIPS [Passe et al., 2020] para
estimular o ensino de Verilog. Trabalhos recentes exploram
as vantagens do Google Colab para criar laboratérios virtu-
ais para o ensino de Verilog [Canesche ef al., 2021; Ferreira
et al., 2024b,a]. Uma alternativa explorada para motivar os
estudantes no ensino de linguagens € o uso de jogos [Com-
béfis et al., 2016]. O ensino de jogos também € utilizado
no ensino de FPGA e linguagens de hardware [Jarusauskas,
2009; Neebel et al., 2012; Sanchez-Elez and Roman, 2015].

Existem vdrias ferramentas para uso dos simuladores
da linguagem Verilog como Icarus [Canesche et al., 2021]
e Verilator [Snyder, 2004], um simulador de Verilog HDL
que permite simular e sintetizar de forma rdpida e simples
circuitos digitais usando a linguagem C++. Além disso, su-
porta vdrios tipos de otimiza¢des. No Verilator a simulacio
suporta estimulos, importa arquivos gerados de outros simu-
ladores e os compila para um simulador especifico.

Um ambiente virtual cliente servidor com interface para
chaves e display usando Verilator foi proposto por [Dai and
Cai, 2024]. Outro projeto similiar € o Learn SystemVeri-
log [Lima, 2021] foi desenvolvido para o ensino remoto de
HDLs, oferecendo simula¢ido no navegador via Verilator e
WebAssembly. Ele permite interacOes bdsicas com perifé-
ricos como LEDs, chaves e display de sete segmentos, mas
ndo suporta interfaces graficas usando VGA. Além disso, ndo
permite o carregamento de arquivos externos da memoria.

A ferramenta mais préxima ao nosso trabalho é o VGA
Playground [Venn, 2024], que destaca-se pelo foco na simu-
lacdo de saidas graficas via interface VGA, sendo um projeto
associado ao movimento TinyTapeout [Venn, 2024]. Embora
limitado a 64 cores e sem suporte a outros periféricos, sua
capacidade de resposta visual e suporte a dudio o tornam um
diferencial para o ensino de circuitos gréficos.

Em um contexto mais amplo, o ambiente EDA Play-
ground [Doulos, 2024] permite a experimentacao de cédigo
HDL (Verilog, SystemVerilog, VHDL) na nuvem, com su-
porte a diferentes simuladores. Apesar de ser uma ferramenta
poderosa no aprendizado de HDLs, ndo possui recursos vi-
suais que auxiliem na compreensao intuitiva dos circuitos.

Projetos como o Logisim Evolution [Burch et al., 2024]
também oferecem simulagdo gréfica de circuitos, mas nao
trabalham diretamente com HDL. No entanto, sua interface
amigdvel € citada em diversos estudos como inspira¢do para
ferramentas voltadas ao ensino.

Além disso, 0 QUCS (Quite Universal Circuit Simula-

VeryGA - Interface Modular VGA para Simulagdo de Verilog

tor) [Qucs Team, 2024] e o Falstad Circuit Simulator [Fals-
tad, 2024] fornecem simulagdes interativas para circuitos
analdgicos e digitais, mas ndo integram suporte a HDLs, o
que os limita no ensino de HDLs.

Por fim, destaca-se o EDAboard [EDABoard Commu-
nity, 2024] como férum de discussdo e compartilhamento de
simulacdes HDL com foco educacional. Embora nio seja
uma ferramenta, é uma importante referéncia para solugdes
praticas utilizadas no ensino de HDLs.

A Tabela 1 apresenta as principais caracteristicas das
ferramentas baseado nos recursos de simulacdo (Sim), lin-
guagem de descricao de hardware (HDL), acesso online na
internet (textitWeb), recursos de visualizacdo (Vis) e visuali-
zacdo VGA (VGA). Nenhuma das ferramentas contém todas
as funcionalidades disponiveis no VeryGA e no VGA Play-
ground. Entretanto, o VeryGA estd embarcado no Google
Colab, agregando todas os seus recursos para documentacao
com textos e graficos, codificagdo em células para modulari-
zar o c6digo, compartilhamento, além de ser dimensionado
para agregar extensdes na interface de sinais de entrada e sa-
ida. Ou seja, oferece mais recursos didaticos que o VGA
Playground.

Tabela 1. Comparacgdo das ferramentas com o VeryGA.

Ferramenta Sim | HDL | Web | Vis | VGA

ModelSIM X X X

CAD4U X X X

Icarus X X

Verilator X X

Games X

Games FPGA X X X

Logisim X X X

Learn

System Verilog X X X X

EDA Playground X X X X

Digital]S X X X X

QUCS X X X

Falstad Simulator X X X

VGA Playground X X X X X

GTKWave X

EDAboard X

VeryGA X X X X X
Ferramentas: ModelSIM [Mentor Graphics Corporation, 2022],

CADA4U [Canesche et al., 2021], Icarus [Williams, 2024], Verilator [Sny-
der, 2004], Games [Combéfis et al., 2016], Games FPGA [Jarusauskas,
2009; Neebel et al., 2012; Sanchez-Elez and Roman, 2015], Logisim [Burch
et al., 2024], QUCS [Qucs Team, 2024], Falstad Simulator [Falstad, 2024],
VGA Playground [Venn, 2024], GTKWave [Bybell, 2023], EDAbo-
ard [EDABoard Community, 2024].

3 Referencial Teodrico

Protocolo VGA: E um padrio de interface analégica
para saida de video de computadores, desenvolvido pela
IBM [Thompson, 1988] para equipar os computadores da
empresa na década de 1980. Para a transmissdo de imagem, o
protocolo VGA utiliza dois sinais de sincronizagdo digitais:
um horizontal (HSYNC) e um vertical (VSYNC). Além disso,
o protocolo utiliza trés sinais de cores analdgicos (R, G e B)

Costa et al. 2025

com resolugdo padrao de 640 x 480 pixels com 262.144 co-
res, correspondendo a um sinal RGB com 6 bits por canal de
cor (26 x 26 x 26).

Pulso de sincronismo
vertical (2 linhas)

> Back porch
vertical (33 linhas)

Tempo de uma linha

Front porch
z vertical (10 linhas)

Figura 1. Temporizagdo dos sinais VGA [Guimardes, 2019].

z

O escaneamento do frame € iniciado apés um pulso
de VSYNC e realizado linha por linha. Apds cada pulso de
HSYNC, o escaneamento da pr6xima linha comeca, com cada
pixel sendo desenhado em um intervalo de tempo determi-
nado. Sao necessarios 40 ns para desenhar cada pixel na drea
visivel de 640 x 480 pixels dentro de uma drea total de 800 x
525 pixels. Os pixels ndo visiveis sdo necessdrios para pro-
ver tempo de espera entre linhas e quadros, permitindo que
0 monitor reposicione o feixe de elétrons (nos tubos de raios
catddicos, CRTs).

Existem trés categorias de pixels ndo visiveis: o des-
canso antes do pulso (Front porch, 16 pixels), a sincronizacio
real (sync pulse, 96 pixels) e o tempo até comecar os dados
uteis (back porch, 48 pixels). Na Figura 1 € possivel observar
o envio da imagem visivel e dos outros trés campos, com 33
linhas no topo antes de comegar a parte visivel, aplicados a
cada linha, e na parte inferior com 10 linhas [Chinchanikar
et al., 2023].

Jupyter Notebook e Google Colab: O Jupyter Note-
book permite a execugdo e exibi¢dao de células de cdédigo e
texto em navegadores Web. Os cédigos de linguagens de
programacdo podem ser intercalados com texto formatado
para documentar o processo de desenvolvimento, funcio-
nando como um caderno de pesquisa interativo, razao pela
qual recebe o nome de notebook [Kluyver et al., 2016]. Além
disso, suporta diferentes tipos de saida, incluindo texto, grafi-
cos, féormulas matematicas formatadas e elementos graficos
interativos. Alguns comandos podem ter fungdes especifi-
cas, por exemplo, modificar a execu¢dao de uma célula, tais
como os comandos magicos. Inicialmente foi desenvolvido
pelo projeto IPython [Perez and Granger, 2007] para uso com
a linguagem Python. Atualmente possui integragdo com di-
versas linguagens, tais como, C++ e JavaScript por meio de
backends e extensoes. Um Jupyter Notebook pode ser hospe-
dado gratuitamente no Google Colab [Research, 2017], um
servico do Google Cloud. Embora seja mais utilizado para
prototipagem de modelos de aprendizado de mdquina usando
GPUs e TPUs [Bisong, 2019], também pode ser aplicado em
outros tipos de dominios.

Verilator: E uma ferramenta de cédigo aberto ampla-

VeryGA - Interface Modular VGA para Simulagdo de Verilog

mente utilizada para simulacdo e verificacdo de projetos em
Verilog. Diferente de simuladores tradicionais baseados em
interpretacdo, como o ModelSim ou Icarus Verilog, o Verila-
tor realiza traducdo de c6digo Verilog para C++ ou SystemC,
gerando um modelo de simulagdo compilado. Esse modelo é
entdo executado como um programa nativo, o que permite si-
mulagdes extremamente rdpidas, especialmente em testes de
longa duracdo. O processo de traducdo envolve andlise 1é-
xica e sintdtica, otimizac¢des estiticas, eliminacdo de blocos
redundantes e geracdo de fungdes C++ correspondentes aos
médulos e comportamentos do hardware descrito [Snyder,
2004]. O Verilator foi escolhido para executar simulagdes
rapidas usando linguagem de alto nivel no VeryGA, gerando
c6digo C++ compativel com codigo Verilog.

Emscripten: E uma ferramenta que compila cédigo
LLVM (Low Level Virtual Machine) para WebAssembly, per-
mitindo a execugdo de aplicagdes escritas em diversas lin-
guagens diretamente no navegador, por exemplo, C, C++ e
Rust. O uso do WebAssembly garante desempenho préximo
ao nativo, tornando o Emscripten uma solucgdo eficaz para
aplicacdes que exigem execucdo em tempo real. Isso ocorre
porque ele integra um ambiente que simula aspectos de um
sistema operacional, tais como, sistema de arquivos virtual,
suporte a threads e ponteiros, melhorando o desempenho da
aplicacdo que estd rodando no navegador. O Emscripten foi
incorporado ao VeryGA para possibilitar a execucdo da si-
mulagdo no navegador com alto desempenho, uma vez que a
emulacdo de um monitor VGA em tempo real (ou préximo
a isso) demanda uma implementacdo eficiente [Zakai, 2011;
Zakai and contributors, 2025].

4 VeryGA

Nesta se¢do descrevemos detalhes de implementagao e funci-
onamento do VeryGA, que integra simulagdo de cédigo Ve-
rilog conectado a um emulador de monitor VGA e leitura do
teclado ou mouse como entrada da ferramenta. Para o fun-
cionamento do VeryGA no Google Colab, o primeiro passo
consiste em realizar a instalacdo do repositério do projeto!.
Para executar o respectivo cédigo, deve-se criar uma célula.
Em seguida, conectar o projeto do cédigo Verilog que deseja
validar, as interfaces de entrada (teclado ou mouse) e saida
(monitor VGA). E importante ressaltar que o cédigo emu-
lado no VeryGA sob o Google Colab, pode ser executado
diretamente no FPGA sem adaptacdes porque € totalmente
compativel com as configura¢des do hardware.

O codigo da célula VeryGA ¢ executado seguindo o flu-
xograma ilustrado na Figura 2. Primeiro, o usudrio cria uma
ou mais células com seu projeto em Verilog no Google Co-
lab. Uma das células serd a principal e as outras irdo com-
por o projeto, permitindo ao usudrio modularizar seu cédigo
e documentd-lo. O usudrio pode implementar todo o pro-
jeto em uma unica célula ou decompo-lo em células auxili-
ares, que devem ter na primeira linha o comando %%veryga
[NomeModulo.v], onde o nome do arquivo corresponde ao
nome do médulo especificado. Todo projeto criado na fer-
ramenta contém uma célula principal, representando o topo
da hierarquia. Nesta célula, o comando magico %%veryga

Upip install git+https:/github.com/hamsty/VeryGA.git, % load_ext
plugin

Costa et al. 2025

—--top deve ser inserido na primeira linha da célula, em se-
guida, adicionadoo cédigo template apresentado na Figura 3.

1. Criar célula 2. Executar célula
do design $%¥veryga --top

Figura 2. Fluxograma de execucdo VeryGA.

O segundo passo € executar a célula principal. Neste
momento, o projeto é compilado e os erros de compilacdo
sao sinalizados. Caso ndo haja erros, o projeto Verilog é
transformado em C++ pelo Verilator e, posteriormente, con-
vertido em WebAssembly para execucdo. Este processo pode
demorar alguns segundos, devido a complexidade da simu-
lagdo de eventos em hardware. Finalmente, quando o c6digo
inicia a execucdo, a saida VGA ¢ exibida e o usudrio pode
interagir com o projeto durante a simula¢do usando teclado
e/ou mouse.

module veryga(input wire [63:0] in,

1

2 output wire [63:0] out
305

4 wire clk, rst;

5 wire [3:0] mov;

6 wire hsync, vsync;

7 wire [3:0] r, g, b;

8

9 assign out = {50'b0,hsync,vsync,r,g,bl};
10 assign clk = in[0];

11 assign rst = in[1];

12 assign mov = in[6:2];

13

14 /*

15 Adicionar cbédigo Verilog que
16 deseja conectar com o ’Ver_\'GA.
17 */

18 endmodule
Figura 3. Cédigo template da célula principal do projeto veryga.v.

A Figura 3 apresenta o médulo veryga e sua interface
de entrada e saida, ambas com 64 bits cada. Para possibilitar
futuras extensdes, o mddulo foi projetado para enviar e rece-
ber 64 sinais simultaneamente em uma simulacdo. A versdo
atual possui o seguinte mapeamento de sinais:

Sinais de entrada: O barramento in possui apenas seis
conexdes iniciais. Dois sinais de controle: o clock principal
(c1k conectado em in[0]), autogerado com 25 MHz na si-
mulacdo, e o sinal de reset (rst conectado em in[1] e na
tecla A. Pressionando a tecla A, o projeto serd reiniciado.
Para conectar ao teclado, a versao atual possui uma interface
de quatro bits com o sinal mov conectado em in[5:2] e as
teclas direcionais (seta para cima, seta para baixo, seta para
esquerda e seta para direita).

Sinais de saida: O barramento out possui os seguintes
campos conectados: o canal de cor B (out[3:0]), o canal
de cor G (out [7:4]) e o canal de cor R (out [11:8]), pro-
porcionando uma interface de 4096 cores, além dos sinais de
sincronizag@o horizontal HSYNC (out [12]) e sincronizac¢do
vertical VSYNC (out [13]). Os sinais VSYNC, HSYNC, R, G

VeryGA - Interface Modular VGA para Simulagdo de Verilog

1 module veryga(

2 input wire [63:0] inm,

3 output wire [63:0] out

4);

5 wire clk,rst;

6 wire hsync, vsync;

7 wire [3:0] r, g, b;

8

9 assign out = {50'b0O, hsync, wvsync, r, g, bl};

10 assign clk = in[0];

11 assign rst = in[1];

12

13 wire display_en;

14 wire [11:0] x, y;

15

16 vga_driver wvgal (clk, ~rst, hsync, vsync,
display_en, x, y);

17

18 assign r = ((display_en && rst)?7((x < 80)7 4'
hF:((x < 160 || (x>=320 && =<480))74'hB:0))
:4"h0) ;

19 assign g = ((display_en && rst)?((x < 80)7 4'
hF:((x < 320)74'hB:0)):4'h0);

20 assign b = ((display_en && rst)?((x < 80)7 4'

hF:(((x % 160) < 80)74'hB:4'h0)):4'h0);
21
22 endmodule
Figura 4. EBU bars em Verilog.

e B seguem o padrao VGA descrito na Figura 1 e foram im-
plementados de forma a emular o monitor VGA. Todos os
projetos testados foram validados em placas de FPGA, onde
funcionaram corretamente seguindo o padrao VGA.

Um exemplo cldssico para ensino e teste do monitor
VGA ¢ o padrdo de barras verticais com cores, conhecido
como padrdo EBU cores, que consiste em conjunto de pa-
drdes de cores estabelecidos pela Unido Europeia de Radi-
odifusdao (EBU) para a produgdo de video e televisdo. Es-
tes padrdes visam garantir consisténcia e compatibilidade na
reproducdo de cores em diferentes equipamentos e platafor-
mas. A Figura 4 apresenta o c6digo que deve ser adicionado
ao template do projeto Verilog que foi ilustrado na Figura 3.
A compilagdo e execucdo do cédigo EBU ird gerar a saida
exibida na Figura 5.

Figura 5. EBU bars.

O cddigo da Figura 4 demonstra a defini¢do da interface
de conex@o com o VGA, implementando um padrio de co-
res EBU (European Broadcasting Union) através do controle
dos canais de cor R, G e Bem fung¢do da coordenada horizontal
X. O médulo vga_driver € responsdvel por gerar os sinais
de sincronizacdo e fornecer as coordenadas de pixel atual. A
implementagdo das cores segue uma légica condicional que
s6 € executada quando o reset estd desativado (sinal rst em
nivel alto) e o display esté habilitado (display_en ativo).

O padriao EBU ¢ implementado a partir de diferentes

Costa et al. 2025
combinagdes de cores baseadas na posicao horizontal X:

¢ Branco (X < 80): Todos os canais RGB em maxima in-
tensidade (4’hF), criando uma barra branca na regido
inicial da tela.

¢ Amarelo (80 < X < 160): Canal vermelho (R) e verde
(G) em alta intensidade (4’hB), com azul (B) alternando
entre alta e baixa intensidade conforme X % 160, resul-
tando em tons de amarelo.

e Ciano (160 £ X < 320): Apenas o canal verde (G) em
alta intensidade (4’hB), com vermelho (R) desligado e
azul (B) alternando, produzindo tons de ciano.

¢ Verde (320 < X < 480): Canal vermelho (R) e verde (G)
em alta intensidade (4’hB), com azul (B) seguindo o pa-
drao de alternancia, gerando tons esverdeados.

¢ Preto/Azul (X > 480): Canal vermelho (R) e verde (G)
desligados, com apenas o azul (B), alternando entre alta
e baixa intensidade.

A intensidade 4’hB (valor hexadecimal 11, equivalente
a75% da intensidade maxima) e 4’ hF (valor hexadecimal 15,
intensidade maxima) sdo utilizadas para criar as diferentes
tonalidades do padrdao EBU, proporcionando uma referéncia
visual para calibrag@o e teste de monitores.

As células com mdédulos auxiliares além do mddulo
principal devem ser executadas para salvar os arquivos em
um diretério tempordrio. Somente apds a execucdo de to-
das as células com os mdédulos auxiliares deve-se executar
a célula do topo. Como ja mencionado, a execugdo inicia
com a etapa de compilacdo, que executa uma configuracio
de build do CMake e, posteriormente, compila a build uti-
lizando o make. Os médulos sdo mapeados em codigo C++
pelo compilador Verilator, e os arquivos gerados sdo conec-
tados a uma camada visual que utiliza Simple DirectMedia
Layer 2 (SDL2) para renderizar a tela.

O projeto € compilado utilizando o Emscripten, pos-
sibilitando sua execu¢@o no navegador, incluindo em ambi-
entes de desenvolvimento que utilizam o Jupyter Notebook.
Para que essa integracdo seja possivel, foram adicionadas
ao arquivo main. cpp as linhas da Figura 6, onde a funcio
emscripten_set_main_loop define a funcdo de loop que
serd executada pelo navegador e um intervalo de tempo reser-
vado. As funcdes anteriores definem as fungdes de callback
para as entradas do teclado.

1 emscripten_set_keydown_callback("#canvas", 0,
1, key_callback);
emscripten_set_keyup_callback("#canvas", 0,
1, key_callback);
emscripten_set_main_loop(loop, -1, true);
4 emscripten_set_main_loop_timing(
EM_TIMING_SETTIMEOUT, 1000);

Figura 6. Integracdo com Emscripten.

(o)

(%)

Para a integracdo com ambientes online onde nao € pos-
sivel definir as configura¢des do servidor que hospeda a pa-
gina principal, por exemplo, o Google Colaboratory, foi im-
portante configurar a compilagdo para desabilitar o uso de th-
reads pelo programa. A execu¢do de multiplas threads com
WebAssembly depende do uso de memoria compartilhada
através do objeto JavaScript SharedArrayBuffer. Paraevi-
tar que contetido malicioso seja executado por fontes desco-

VeryGA - Interface Modular VGA para Simulagdo de Verilog

nhecidas, é exigido que a resposta do servidor retorne os ca-
becalhos Cross-Origin-Opener-Policy: same-origin e Cross-
Origin-Embedder-Policy: require-corp.

Ap6s a etapa de compilagdo, caso o servidor Web ainda
ndo esteja ativo, um novo servidor € iniciado, apontando para
a pasta de saida da build. Retorna-se entao um iframe como
saida, direcionando para o enderecgo do servidor. O resultado
do cédigo na Figura 4, ap6s o processo mencionado acima,
pode ser visualizado na Figura 5.

Caso o projeto seja implementado utilizando o wire
mov € possivel interagir com a simulac¢éo usando as telas di-
recionais, como em uma placa FPGA ou ASIC sintetizado
com o mesmo codigo. A simulagdo pode ser encerrada a
qualquer momento utilizando a tecla B e essa retorna status
de execugdo da simulagdo, como tempo de execugdo e tempo
de simulacdo.

5 Casos de uso

Um dos objetivos deste trabalho € motivar estudantes a apren-
der Verilog com exemplos lidicos de jogos e efeitos graficos.
Virios trabalhos utilizam jogos cldssicos de videogames para
exemplificar projetos em hardware de forma divertida [Jaru-
sauskas, 2009; Neebel et al., 2012; Sanchez-Elez and Roman,
2015], como jogos do videogame Atari (breakout, space in-
vaders) ou classicos como snake, tetris, pong, dentre outros.

Esta secdo apresenta varios exemplos com complexi-
dade incremental para validar a ferramenta e motivar o apren-
dizado de Verilog. Foram escolhidos cinco exemplos, além
do EBU j4 apresentado, baseados no nivel de complexidade
de implementacdo. A proposta é que estudantes possam fa-
zer pequenas modifica¢des para entender como desenhar em
um monitor VGA e, posteriormente, aprender técnicas basi-
cas de construcdo de jogos, a0 mesmo tempo que reforcam
o aprendizado de Verilog e de projetos de hardware com pa-
ralelismo, maquinas de estados e outras construgdes. Cada
exemplo possui uma funcionalidade especifica, como des-
crito a seguir:

1. Retangulos: Demonstra um exemplo simples de pro-
jeto de uma forma geométrica;

2. Capivara: Realiza a leitura de uma imagem de um ar-
quivo para uma memoria ROM integrada ao ambiente;

3. Movimentacao de Retangulos: Apresenta um exem-
plo simples de extensdo do projeto do retangulo para
utilizar a interface de entrada com interagdo via teclado,
fazendo uso de comandos direcionais (setas) para mo-
vimentar o retdngulo dinamicamente no monitor VGA;

4. Breakout: Valida um c6digo desenvolvido em uma dis-
ciplina de graduacdo da Unicamp [Martins Jacob ez al.,
2024], projetado para executar em uma placa de FPGA,
demonstrando que o emulador € capaz de reproduzir um
jogo em tempo real com pequeno atraso aceitdvel de-
vido ao ambiente virtual multicamadas que possibilita
a execugdo;

5. Labirinto: Exemplo de jogo que inclui a criacdo de um
labirinto maior que a tela visivel, demonstrando como
implementar um projeto com navegacao através do des-
locamento da janela visivel no monitor, além de intera-
gir com o teclado.

Costa et al. 2025

Nas Secdes 5.1 a 5.5 sdo apresentados mais detalhes de
cada exemplo validado na ferramenta VeryGA.

5.1 Retangulos

Este exemplo € um projeto simples que desenha retdngulos
com borda. Ele é desenvolvido em torno do médulo rectan-
gle (Figura 7), que permite criar retangulos na tela com ta-
manho, posi¢do, cor, espessura de borda e cor de borda vari-
aveis.

1

2module rectangle

3#(parameter X0 = 20, parameter YO = 20,
4 parameter WIDTH = 600,

5 parameter HEIGHT = 440,
parameter COLOR = 12'hFFF,

7 parameter BORDER = 20,

8 parameter BORDER_COLOR = 12'hFFF
93¢«

10 input wire clk, rst,

11 input wire [11:0] x, [11:0] ¥,

=)}

12 output wire emnable,
13 output reg [11:0] p_color
14);

16 assign p_color = (x > (XO0+BORDER) && x < (XO0+
WIDTH-BORDER)) && (y > (YO+BORDER) && y < (YO
+HEIGHT -BORDER)) ?COLOR : BORDER_COLOR ;

18 assign enable = (x > X0 && x < (XO0+WIDTH)) && (
vy > YO && y < (YO+HEIGHT))?1'b1:1'bO0;

19

20 endmodule

Figura 7. Cédigo do médulo retangle.

Na Figura 8 ¢ possivel ver a saida da simulagdo de um
exemplo com duas instancias do médulo retdngulo execu-
tando na ferramenta. A implementa¢do de um moédulo pa-
rametrizado ilustrado na Figura 9 permite que o usuério mo-
difique o cddigo e visualize mudancas na imagem mostrada
com pouco conhecimento de Verilog.

Figura 8. Retangulos estaticos.

| rectangle #(.X0(20), .Y0(20), .WIDTH(600),

2 .HEIGHT (440) , .COLOR(12'h000),

3 .BORDER_COLOR(12'hOF0))

4r1(clk, ~rst, x, y, rect_en, p_color(pixel));

Figura 9. Cédigo com médulo parametrizado.

O cédigo do retangulo cria um retdngulo com o vértice
superior esquerdo na posicao (20,20), com 600 pixels de lar-
gura e 440 de altura, na cor verde. A cor € definida pelo valor
hexadecimal 12’hOF0, onde os canais vermelho e azul estao
desligados (valor 0) e o verde estd no valor maximo (0xF). A
cor de fundo € preta.

VeryGA - Interface Modular VGA para Simulagdo de Verilog

5.2 Capivara

Neste caso de uso foi criado um projeto que mapeia o conte-
udo de um arquivo e produz uma saida com imagem estatica
de uma capivara espacial. A imagem foi criada usando o mo-
delo generativo da ferramenta Copilot da Microsoft [Stratton,
2024]. A resolucdo daimagem foi inicialmente reduzida para
160x120 pixels e posteriormente convertida para 12 bits (4
bits por canal de cor). Em seguida, cada pixel foi armazenado
em uma linha de um arquivo de texto no formato hexadeci-
mal.

O arquivo foi passado como parametro para a instancia
de meméria ROM, que carrega os dados no momento da si-
mulacéo a partir da funcdo $readmemh, nativa do Verilog.
No caso de execuciao em hardware real, os dados devem ser
gravados no médulo em tempo de sintese. A saida da simu-
lagd@o na ferramenta pode ser vista na Figura 10.

Figura 10. Imagem de Capivara carregada na ROM.

5.3 Movimentacao de Retangulos

Para demonstrar a utilizacdo dos comandos direcionais ma-
peados para a entrada da simulagdo, foi criado um exem-
plo baseado nos retdngulos na Secdo 5.1. A posi¢do X0 e
YO, anteriormente passadas como parametro da instancia (Fi-
gura 7), agora sdo sinais recebidos pelo médulo rectangle
e que modificam a posi¢do do retdngulo conforme o usud-
rio pressiona as teclas direcionais. A Figura 11 mostra a si-
mulacdo em andamento, apds o retdngulo ser movido da sua
posicdo inicial, que € o centro da tela.

Figura 11. Retangulo fora da sua posicao inicial.

5.4 Breakout

Esse caso de uso foi criado originalmente como projeto final
da disciplina MC613 - Laboratério de Circuitos Digitais, mi-
nistrada no primeiro semestre de 2024 pelo Prof. Dr. Rodolfo
Jardim De Azevedo, Unicamp. O grupo composto pelas alu-
nas Gabriela Martins Jacob, Leticia Lopes Mendes da Silva

Costa et al. 2025

e Luisa de Melo Barros Penze criou uma versao simplificada
do jogo Breakout [Kent, 2010] para rodar em uma placa DE1
da Terasic.

O objetivo do jogo € rebater uma bolinha branca em blo-
cos coloridos no topo da tela, utilizando uma plataforma que
movimenta horizontalmente. O jogador possui trés vidas e
perde uma vida a cada vez que a bolinha bate no chio. Ele
vence o jogo ao eliminar todos os blocos. Caso o jogador
perca todas as vidas, o jogo ¢ finalizado, e ele perde. Peque-
nos ajustes na temporizagdo foram feitos no cédigo, pois a
placa possui um clock principal de 50 Mhz e a ferramenta
assume que o clock principal seja 25Mhz. E possivel ver a
saida da simulac@o na Figura 12.

Figura 12. Retangulo fora da sua posicdo inicial.

5.5 Labirinto

:} TTTTT1]
Hﬁ. I][IHH
T T1T T]
[T 11 1t
a HHLIHIJH
] O Fem Oy =
T 111 1] [

Figura 13. Inicio do jogo Labirinto.

Para o teste do uso de todas as funcionalidades da plataforma
VeryGA, foi criado um jogo de labirinto. Nesse jogo o usu-
drio comeca no canto superior de um labirinto 48x48, carre-
gado em memoria durante o processo de sintese do cddigo. O
labirinto ndo € visto em sua totalidade, com sua visao sendo
restrita a uma drea 16x16 do labirinto. Cada bit do labirinto
48x48, sendo 0 o muro e 1 o caminho, € desenhado como
um bloco 40x30 pixels, que em uma visdo 16x16 ocupa a to-
talidade da resolu¢do VGA implementada (640x480), como
pode ser visto na Figura 13.

Para compatibilidade com a placa FPGA citada nos tes-
tes abaixo, foi mapeado 4 bits por canal de cor, totalizando
4096 cores disponiveis. Isso ndo impede que, em futuras ver-
soes, seja desenvolvida uma implementag@o que aceite 8 bits
por canal, totalizando 16.777.216 de cores presentes no pa-
drao RGB 888, amplamente utilizado nos monitores atuais.

O jogador (quadrado amarelo) pode andar com as en-
tradas passadas por sinal ao wire mov, sendo que para

VeryGA - Interface Modular VGA para Simulagdo de Verilog

Tabela 2. Resultado simulago casos de uso do VeryGA.

Costa et al. 2025

Velocidade (ms/s) Taxa de Quadros (fps)
Casos de uso Min Max Média Desvio Min Max | Média | Desvio
Retangulo 936,18 | 1007,00 | 982,84 | 24,8338 | 56,90 | 59,86 | 58,62 | 1,1589
EBU bars 800,78 | 874,58 851,81 | 20,5762 | 47,79 | 52,02 | 50,68 | 1,1802
Capivara 348,12 | 371,23 363,75 7,1565 | 20,71 | 22,08 | 21,64 | 0,4248
Retangulo ambulante || 984,18 | 1008,00 | 1000,45 | 9,1901 | 58,54 | 59,91 | 59,49 | 0,5338
Breakout 195,76 | 197,94 196,63 0,7106 | 12,22 | 12,35 | 12,30 | 0,0487
Labirinto 413,85 | 426,02 | 421,44 | 3,9980 | 24,64 | 25,33 | 25,07 | 0,2307

mov=4'b0001 anda para direita, mov=4'b0010 anda para
baixo, mov=4'b0100 anda para cima e mov=4'b1000 anda
paraesquerda. Para outros valores de mov, o jogador nao exe-
cutard nenhuma agdo, evitando padrdes ndo desejados, como
andar na diagonal.

O jogador pode andar pelas casas azuis e as casas as
quais ele ndo pode andar sdo desenhadas com uma imagem
carregada em memoria. Ao andar sete casas quando estd nas
bordas do labirinto, a cAmera se movimenta pelo mapa, uma
casa na direcdo do movimento, a fim de ver o caminho a
frente, parando ao chegar préximo a outra borda.

O jogo termina ao chegar no quadrado vermelho, na
borda direita inferior do labirinto, apresentado na Figura 14.

 Fofom oo

Figura 14. Fim do jogo labirinto.

CcO & VeryGA Exampleipynb ¥ &
Arquivo Editar Ver Inserir Ambiente de execugdo Ferramentas Ajuda

Q Comandos b Executartudo -

= ©

+ Codige + Texto

%%veryga dual_port_rom.v

“timescale 1ns/1ns

module dual port rom

@ #(parameter mem_init = ""
parameter data width=24,

parameter addr width = 15,

< parameter size=19200)
(

(o) input [addr width-1:0] addr _a, addr_b,
input clk,

I-:, output reg [(data width-1):0] q a, q b

reg [data width-1:0] rom[size-1:0];
initial
begin
$readmemh (mem_init, rom,0,size-1);
end
always @ (posedge clk)
begin
q a <= rom[addr_a];
q_b <= rom[addr_b];
end
endmodule

5> dual_port_rom.v saved!
{3 Varidveis [(2 Terminal

Figura 15. Célula Google Colab com o cédigo Verilog da memoéria ROM
do Labirinto.

Os arquivos que compdem o projeto foram divididos em
oito células de c6digo com o comando %%veryga antes da
etapa de sintese, oferecendo portabilidade ao projeto. A Fi-
gura 15 ilustra um médulo que pode ser facilmente substitu-
ido ao sobrescrever o arquivo. Esse exemplo testa o compor-
tamento da plataforma para reagir a mudangas continuas nas
entradas e mostrar diferentes telas, ilustrando a funcionali-
dade da simulagdo interagindo com estimulos externos.

6 Resultados

Nesta se¢@o apresentamos os resultados da ferramenta em um
ambiente realista, demonstrando que o c6digo simulado no
Google Colab pode ser executado em hardware. O ambiente
de teste foi composto por:

* Uma placa FPGA, DE10-Lite da Terasic que possui um
chip Intel MAX 10M50DAF484C7G, com 50 k de ele-
mentos logicos;

¢ Para simulacdo do VeryGA, usamos um notebook Sam-
sung Galaxy Book 3 360 com a seguinte configura-
¢do: processador Intel(R) Core(TM) i5-1335U, 16 GB
de memoéria RAM e sistema operacional Windows 11.
Nesta mdquina executamos o Google Colab com o c6-
digo do VeryGA usando o navegador Microsoft Edge.

Os cdlculos dos testes do VeryGA foram realizados uti-
lizando o status retornado pela simulagio ao ser finalizada
pressionando a tecla B. Os testes foram realizados de forma
automatizada utilizando scripts para simular a entrada do
mouse e teclado. Para validar o VeryGA rodando em uma
FPGA, escolhemos o estudo de caso mais complexo, labi-
rinto, devido ao grau de dificuldade de implementagdo. A
Figura 16 apresenta o labirinto rodando em uma FPGA com
saida VGA conectada em um monitor LCD, com frequéncia
de 60 Hz ou 60 fps.

| som infomacoes
540x480 @60Hz

Figura 16. Labirinto rodando em FPGA conectado em TV LCD via VGA.

VeryGA - Interface Modular VGA para Simulagdo de Verilog

Além de validarmos o VeryGA em hardware, medimos
a velocidade (ms/s) e fps da simulag¢do dos casos de uso para
avaliar o desempenho de cada um rodando no navegador. Re-
petimos a simulag@o para cada estudo de caso 10 vezes esta-
ticamente, sem movimentos, por um minuto. Os resultados
obtidos da simulagao sdo apresentados na Tabela 2.

Em relacdo a execucdo no FPGA houve uma perda de
mais da metade do desempenho, mas a simula¢do continuou
gerando uma taxa de quadros que ndo comprometeu a visu-
alizacdo e permitiu a interacdo com ela.

7 Conclusao

Neste trabalho propomos o VeryGA, uma ferramenta intera-
tiva voltado para a visualizagdo e interpretacdo de simula-
¢des em Verilog com saida VGA, que representa um recurso
atrativo no ensino HDLs, especialmente no contexto do uso
de FPGAs e da linguagem Verilog. A ferramenta contorna
de forma eficaz desafios existentes nesse contexto, como a
limitacdo de acesso fisico as placas, a complexidade das fer-
ramentas comerciais e a dificuldade de interpretacao das si-
mulacdes por meio de formas de onda. Ao integrar a visuali-
zacdo de saida VGA em tempo real a um ambiente acessivel
via Google Colab, o VeryGA possibilita que estudantes inte-
rajam com projetos de hardware de maneira prética, intuitiva
e motivadora, independentemente de sua localizacdo ou da
disponibilidade de equipamentos fisicos.

Além de democratizar o acesso a recursos de simula-
cdo, a abordagem adotada potencializa o uso de jogos como
meio de aprendizado, incentivando a experimentagdo, a cri-
atividade e o engajamento. A arquitetura modular e extensi-
vel da ferramenta favorece sua evolucao futura, permitindo a
incorporacdo de novos médulos e funcionalidades que am-
pliem seu alcance e aplicacdo. Assim, o VeryGA contri-
bui para aproximar teoria e pratica, tornando o processo de
aprendizado de HDLs mais acessivel, diddtico e estimulante,
e abrindo caminho para novas metodologias de ensino vol-
tadas a formacdo de profissionais mais preparados para os
desafios do desenvolvimento de sistemas digitais. Um exem-
plo prético do VeryGA ¢ integra-lo ao processador RISC-V
por meio de uma interface de saida com o professor podendo
preparar o experimento e guiar o estudante a partir das célu-
las do Google Colab.

Como trabalhos futuros, desenvolveremos uma inter-
face para suportar a criagdo de periféricos personalizados
e simulacdo de outras tecnologias de entrada e saida de vi-
deo, por exemplo, HDMI, DVP, MIPI CSI e MIPI DSI. Além
disso, o VeryGA suportard GPUs para acelerar a simulacio
dos projetos, melhorando o desempenho da ferramenta.

Declaragoes complementares

Agradecimentos

Gostarfamos de agradecer as institui¢des de financiamento pelos re-
cursos disponibilizados para o desenvolvimento das atividades desta
pesquisa.

Financiamento

Apoio financeiro do Projeto FAPEMIG APQ-01577-22, CNPq e
CAPES.

Costa et al. 2025

Contribuicoes dos autores

O autor Talles de Sousa Costa implementou a ferramenta VeryGA e
realizou parte da redac@o do texto. O autor Ricardo Ferreira elabo-
rou os exemplos base dos simuladores e realizou a redacdo do texto.
O autor Racyus Delano Garcia Pacifico colaborou com sugestdes e
revisdo no texto.

Conflitos de interesse

Os autores declaram nao haver conflitos de interesse.

Disponibilidade de dados e materiais

As ferramentas desenvolvidas neste trabalho sdo de cédigo aberto
e estdo disponiveis no link https://github.com/hamsty/
VeryGA.git.

Outras informacgoées relevantes

O texto deste artigo € de responsabilidade dos autores, onde ferra-
mentas de [A foram usadas apenas para revisdo ortografica e gra-
matical, gerar uma imagem e sugestoes.

Referéncias

Alhammami, M. (2024). Fpga hardware kit for remote
training platforms. Discover Education, 3(1):102. DOI:
10.1007/s44217-024-00203-w.

Bisong, E. (2019). Google colaboratory. Building Machine
Learning and Deep Learning Models on Google Cloud
Platform, pages 59-64. DOI: 10.1007/978-1-4842-4470-
8.

Brunvand, E. (2011). Games as motivation in compu-
ter design courses: I/o is the key. In ACM techni-
cal symposium on Computer science education. DOI:
10.1145/1953163.1953178.

Burch, C. et al. (2024). Logisim evolution. Availa-
ble at: https://github.com/logisim-evolution/
logisim-evolution.

Bybell, T. (2023). Gtkwave: A vcd and 1xt waveform viewer.
Available at: http://gtkwave.sourceforge.net.

Canesche, M., Braganca, L., Neto, O. P. V., Nacif, J. A., and
Ferreira, R. (2021). Google colab cad4u: Hands-on cloud
laboratories for digital design. In International Symposium
on Circuits and Systems (ISCAS), pages 1-5. IEEE. DOI:
10.1109/iscas51556.2021.9401151.

Chinchanikar, A., Chandankhede, P. H., and Titarmare, A.
(2023). Vga controller design & implementation on fpga.
In IEEE Global Conf. for Advancement in Technology
(GCAT). DOLI: 10.1109/GCAT59970.2023.10353298.

Combéfis, S., Beresnevicius, G., and Dagiené, V. (2016). Le-
arning programming through games and contests: over-
view, characterisation and discussion. Olympiads in Infor-
matics, 10(1). Available at: https://ioinformatics.
org/journal/v10_2016_39_60.pdf.

Costa, A. S., Silveira, L. D., and Reis, A. 1. (2023). Live
demonstration: Pitanga platform for virtual fpga remote
laboratories. In 2023 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1-5. IEEE. DOI:
10.1109/iscas46773.2023.10181345.

Cruz, C., Gil, R., de la Llana, A., Bravo, I., Gardel, A., and
Lazaro, J. L. (2024). Remote laboratory based on a recon-
figurable hardware platform. In Congreso de Tecnologia,

https://github.com/hamsty/VeryGA.git
https://github.com/hamsty/VeryGA.git
https://doi.org/10.1007/s44217-024-00203-w
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1145/1953163.1953178
https://github.com/logisim-evolution/logisim-evolution
https://github.com/logisim-evolution/logisim-evolution
http://gtkwave.sourceforge.net
https://doi.org/10.1109/iscas51556.2021.9401151
https://doi.org/10.1109/GCAT59970.2023.10353298
https://ioinformatics.org/journal/v10_2016_39_60.pdf
https://ioinformatics.org/journal/v10_2016_39_60.pdf
https://doi.org/10.1109/iscas46773.2023.10181345

VeryGA - Interface Modular VGA para Simulagdo de Verilog

Aprendizaje y Ensefianza de la Electronica (TAEE). IEEE.
DOI: 10.1109/taee59541.2024.10604937.

Dai, Z. and Cai, L. (2024). Autotrinity: An heterogeneous
runner based remote digital system lab system. In Int. Con-
ference on Computer and Communications (ICCC). IEEE.
DOI: 10.1109/iccc62609.2024.10941836.

Doulos (2024). Eda playground. Available at: https://
www.edaplayground. com.

EDABoard Community (2024). Edaboard — forum for eda
tools and hdl development. Available at: https://www.
edaboard. com.

Falstad, P. (2024). Falstad circuit simulator. Available at:
https://www.falstad.com/circuit/.

Ferreira, R., Canesche, M., Jamieson, P., Neto, O., and Na-
cif, J. (2024a). Examples and tutorials on using google co-
lab and gradio to create online interactive student-learning
modules. Computer Applications in Engineering Educa-
tion. DOI: 10.1002/cae.22729.

Ferreira, R., Sabino, C., Canesche, M., Neto, O. P. V.,
and Nacif, J. A. (2024b). Aiot tool integration for
enriching teaching resources and monitoring student
engagement. Internet of Things, 26:101045. DOI:
10.1016/j.i0t.2023.101045.

Guimaraes, F. (2019). Como funciona o vga - mundo pro-
jetado. Available at: https://mundoprojetado.com.
br/como-funciona-o-vga/.

Jarusauskas, A. (2009). Fpga based vga driver and
arcade game. University of Sussex, 2010. Avai-
lable at: https://static.armandas.lt/res/fpga_
based_vga_driver_and_arcade_game.pdf.

Kent, S. L. (2010). The ultimate history of video games, vo-
lume 1: From Pong to Pokemon and beyond... the story
behind the craze that touched our lives and changed the
world. Crown. Book.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.,
Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J.,
Grout, J., Corlay, S., et al. (2016). Jupyter Notebooks—
a publishing format for reproducible computational work-
flows. In Positioning and Power in Academic Pu-
blishing: Players, Agents and Agenda. 10S Press. Avai-
lable at: https://eprints.soton.ac.uk/403913/1/
STAL9781614996491-0087 . pdf.

Lima, I. D. A. (2021). Scalable Web-Based FPGA Board
Simulator. Trabalho de conclusdo de curso, UFCG. Avai-
lable at: http://dspace.sti.ufcg.edu.br/jspui/
handle/riufcg/24990.

Liu, C. C. (2018). Use of fpgas in a digital system design
course with computer gaming applications. In ASEE. DOI:
10.18260/1-2-31188.

Martins Jacob, G., Lopes Mendes da Silva, L., and
de Melo Barros Penze, L. (2024). Github - ic-
unicamp/2024s1-mc613-projeto-elektras: Projeto final
de mc613. Available at: https://github.com/
ic-unicamp/2024s1-mc613-projeto-elektras.

Materzok, M. (2019). Digitaljs: A visual verilog simu-
lator for teaching. In Proceedings of the 8th Computer
Science Education Research Conference, pages 110-115.
DOI: 10.1145/3375258.3375272.

Mentor Graphics Corporation (2022). Modelsim user’s ma-

Costa et al. 2025

nual. Available at: https://eda.sw.siemens.com/
en-US/ic/modelsim/.

Navas-Gonzdlez, R., Oballe-Peinado, O., Castellanos-
Ramos, J., and Rosas-Cervantes, D. (2023). Practice
projects for an fpga-based remote laboratory to teach
and learn digital electronics. Information, 14(10). DOI:
10.3390/info14100558.

Neebel, D. J., Burek, N. J., and Griebel, T. (2012). Fpgar-
cade: Motivating the study of digital hardware. In 2012
ASEE Annual Conference & Exposition, pages 25-648.
DOI: 10.18260/1-2-21405.

Passe, F., Canesche, M., Neto, O. P. V., Nacif, J. A., and Fer-
reira, R. (2020). Mind the gap: Bridging verilog and com-
puter architecture. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1-5. IEEE. DOI:
10.1109/iscas45731.2020.9180650.

Perez, F. and Granger, B. E. (2007). Ipython: A system for
interactive scientific computing. Computing in Science &
Engineering, 9:21-29. DOI: 10.1109/mcse.2007.53.

Project, V. (2025). Vga playground. Available at: https:
//vga-playground. com/ Accessed: 2025-08-03.

Qucs Team (2024). Quite universal circuit simulator. Avai-
lable at: https://qucs.sourceforge.net/.

Research, G. (2017). Google colaboratory. https://
colab.research.google.com/. Available at: https:
//colab.research.google.com/.

Sanchez-Elez, M. and Roman, S. (2015). Learning hard-
ware design by implementing student’s video-game
on a fpga. In Proceedings of the International Con-
ference on Frontiers in Education: Computer Science
and Computer Engineering (FECS), page 24. The
Steering Committee of The World Congress in Com-
puter Science, Computer Avaialble at: https://
www.researchgate.net/publication/283450129_
Learning_Hardware_Design_by_implementing_
student’27s_Video-Game_on_a_FPGA.

Snyder, W. (2004). Verilator and systemperl. Availa-
ble at: https://veripool.org/papers/verilator_
systemperl_nascug.pdf.

Soares, J., Lobo, J., and DEEC, F. (2011). A remote fpga
laboratory for digital design students. In Portuguese
meeting on reconfigurable systems (REC). Avaialble at:
https://www.researchgate.net/publication/
228744476_A_Remote_FPGA_Laboratory_for_
Digital_Design_Students.

Stratton, J. (2024). An introduction to microsoft copilot. In
Copilot for Microsoft 365: Harness the Power of Gene-
rative Al in the Microsoft Apps You Use Every Day. DOI:
10.1007/979-8-8688-0447-2,.

Thompson, S. (1988). Vga—sign choices for a new vi-
deo subsystem. IBM Systems Journal, 27:185-197. DOI:
10.1147/5j.272.0185.

Venn, M. D. (2024). Tiny tapeout: A shared silicon tape-
out platform accessible to everyone. DOI: 10.36227/techr-
Xiv.172055642.27780676/v1.

Williams, S. (2024). Icarus verilog. Available at: https:
//github.com/steveicarus/iverilog.

Williams, S. and Baxter, M. (2002). Icarus verilog: open-
source verilog more than a year later. Linux Journal,

https://doi.org/10.1109/taee59541.2024.10604937
https://doi.org/10.1109/iccc62609.2024.10941836
https://www.edaplayground.com
https://www.edaplayground.com
https://www.edaboard.com
https://www.edaboard.com
https://www.falstad.com/circuit/
https://doi.org/10.1002/cae.22729
https://doi.org/10.1016/j.iot.2023.101045
https://mundoprojetado.com.br/como-funciona-o-vga/
https://mundoprojetado.com.br/como-funciona-o-vga/
https://static.armandas.lt/res/fpga_based_vga_driver_and_arcade_game.pdf
https://static.armandas.lt/res/fpga_based_vga_driver_and_arcade_game.pdf
https://eprints.soton.ac.uk/403913/1/STAL9781614996491-0087.pdf
https://eprints.soton.ac.uk/403913/1/STAL9781614996491-0087.pdf
http://dspace.sti.ufcg.edu.br/jspui/handle/riufcg/24990
http://dspace.sti.ufcg.edu.br/jspui/handle/riufcg/24990
https://doi.org/10.18260/1-2--31188
https://github.com/ic-unicamp/2024s1-mc613-projeto-elektras
https://github.com/ic-unicamp/2024s1-mc613-projeto-elektras
https://doi.org/10.1145/3375258.3375272
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://doi.org/10.3390/info14100558
https://doi.org/10.18260/1-2--21405
https://doi.org/10.1109/iscas45731.2020.9180650
https://doi.org/10.1109/mcse.2007.53
https://vga-playground.com/
https://vga-playground.com/
https://qucs.sourceforge.net/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://veripool.org/papers/verilator_systemperl_nascug.pdf
https://veripool.org/papers/verilator_systemperl_nascug.pdf
https://www.researchgate.net/publication/228744476_A_Remote_FPGA_Laboratory_for_Digital_Design_Students
https://www.researchgate.net/publication/228744476_A_Remote_FPGA_Laboratory_for_Digital_Design_Students
https://www.researchgate.net/publication/228744476_A_Remote_FPGA_Laboratory_for_Digital_Design_Students
https://doi.org/10.1007/979-8-8688-0447-2_2
https://doi.org/10.1147/sj.272.0185
https://doi.org/10.36227/techrxiv.172055642.27780676/v1
https://doi.org/10.36227/techrxiv.172055642.27780676/v1
https://github.com/steveicarus/iverilog
https://github.com/steveicarus/iverilog

VeryGA - Interface Modular VGA para Simulagdo de Verilog

2002(99):3. Available at: https://dl.acm.org/doi/
10.5555/513581.513584.

Wolf, C., Glaser, J., and Kepler, J. (2013). Yosys-a free ve-
rilog synthesis suite. In Proceedings of the 21st Austrian
Workshop on Microelectronics (Austrochip), volume 97.
Available at: https://yosyshq.net/yosys/files/
yosys—austrochip2013.pdf.

Xilinx Inc. (2023). Vivado design suite user guide. https:
//www.xilinx.com/products/design-tools/
vivado.html. Available at: https://www.xilinx.
com/products/design-tools/vivado.html.

Zakai, A. (2011). Emscripten: An llvm-to-javascript
compiler. In ACM Int Conf Companion on Ob-
Jject Oriented Programming Systems Languages and
Applications Companion (OOPSLA ’11). ACM. DOI:
10.1145/2048147.2048224.

Zakai, A. and contributors (2025). Emscripten official web-
site. Available at: https://emscripten.org.

Costa et al. 2025

https://dl.acm.org/doi/10.5555/513581.513584
https://dl.acm.org/doi/10.5555/513581.513584
https://yosyshq.net/yosys/files/yosys-austrochip2013.pdf
https://yosyshq.net/yosys/files/yosys-austrochip2013.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://doi.org/10.1145/2048147.2048224
https://emscripten.org

	Introdução
	Trabalhos relacionados
	Referencial Teórico
	VeryGA
	Casos de uso
	Retângulos
	Capivara
	Movimentação de Retângulos
	Breakout
	Labirinto

	Resultados
	Conclusão

