
International Journal of Computer Architecture Education, 2025, 14:1
ISSN: 2316-9915 • doi: 10.5753/ijcae.2025.6436
� This work is licensed under a Creative Commons Attribution 4.0 International License.

ARTIGO DE PESQUISA

VeryGA - Interface Modular VGA para Simulação de Verilog
Talles de Sousa Costa � [Universidade Federal de Viçosa | talles.costa@ufv.br]
Racyus Delano Garcia Pacífico [Universidade Federal Ouro Preto | racyus.pacifico@ufop.edu.br]
Ricardo dos Santos Ferreira [Universidade Federal de Viçosa | ricardo@ufv.br]

� Departamento de Informática, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, 36.570-900,
Brasil

Resumo. O ensino de Verilog com FPGAs apresenta diversos desafios. Entre eles, destacam-se a complexidade das
ferramentas comerciais, o acesso limitado às placas físicas, a própria linguagem de descrição de hardware e a necessidade
de simulações com depuração por meio de formas de onda. Uma estratégia eficaz para motivar os estudantes a superar
essas barreiras é o desenvolvimento de jogos e aplicações gráficas, cujos resultados podem ser verificados visualmente,
promovendo o aprendizado de programação em nível intermediário a avançado. Neste trabalho, apresentamos o VeryGA,
uma ferramenta modular que integra simulações em Verilog com entradas via teclado ou mouse e saída em um emulador
de sinais VGA, possibilitando visualização gráfica em tempo real. Ao oferecer um ambiente intuitivo e interativo, o
VeryGA auxilia iniciantes a compreender melhor e documentar seus projetos de sistemas computacionais em Verilog
com saída VGA, reduzindo a curva de aprendizado e promovendo a construção colaborativa de um conjunto de exemplos.
A solução é executada inteiramente no navegador por meio do Google Colab, configurado com o simulador Verilator e o
CMake, utilizando uma versão em WebAssembly para alcançar desempenho próximo ao tempo real. Diversos exemplos
são apresentados para ilustrar os recursos do ambiente desenvolvido. O código emulado é sintetizável, validado em placas
FPGA reais, e pode ser executado nelas sem alterações. Outra contribuição é demonstrar que, mesmo em um ambiente
virtualizado na nuvem, é possível obter taxas de quadros por segundo próximas a uma execução em tempo real.

Palavras-chave: FPGA, Verilog, VGA, Laboratório Remoto.

Recebido: 25 Agosto 2025 • Aceito: 01 Outubro 2025 • Publicado: 21 Janeiro 2026

1 Introdução
O ensino de FPGA é desafiador pois as placas geralmente
têm um alto custo para os estudantes, e o acesso a elas cos-
tuma ser restrito, na maioria dos casos, a laboratórios pre-
senciais nas universidades. Além disso, as ferramentas co-
merciais da AMD/Xilinx e da Intel/Altera são complexas e
exigem grande espaço em disco, mesmo nas versões com li-
cença estudantil, dependendo do projeto, o tempo de compi-
lação pode ser muito longo, o que desmotiva os estudantes.

Outro desafio é o uso das linguagens de descrição
de hardware (Hardware Description Language, HDL), que
apresentam diferenças semânticas significativas em relação
às linguagens de programação tradicionais, o que pode re-
presentar uma barreira para muitos alunos. A depuração e os
testes também representam obstáculos: a análise por meio de
formas de onda e temporização é complexa para iniciantes, e
o uso de testbenches exige a compreensão clara da separação
entre o código de teste e o código que será sintetizado em
hardware.

Uma abordagem motivadora na ciência da computação
é o uso de jogos, que também já foi explorada no ensino de
hardware e FPGAs [Sanchez-Elez and Roman, 2015; Liu,
2018; Brunvand, 2011]. O desenvolvimento de jogos en-
volve a compreensão dos mecanismos de entrada e saída, o
que contribui para o aprendizado prático. Muitas universi-
dades utilizam exemplos com saída VGA em placas FPGA
para motivar os estudantes por meio de aplicações gráficas.
Este trabalho propõe a democratização do acesso a projetos
em Verilog com saída VGA para o desenvolvimento de jo-
gos e outras aplicações gráficas, com o objetivo de motivar
os estudantes no aprendizado da linguagem Verilog e ao de-

senvolvimento de projetos com FPGAs em todos os níveis do
básico ao avançado.

O primeiro desafio é o acesso as placas. As platafor-
mas de ensino e treinamento remoto podem ajudar a superar
o obstáculo de acesso aos FPGAs físico, oferecendo acesso
remoto a kits de desenvolvimento de hardware [Soares et al.,
2011; Navas-González et al., 2023; Alhammami, 2024; Cruz
et al., 2024]. O acesso remoto traz diversos benefícios: am-
plia a acessibilidade ao permitir o aprendizado prático inde-
pendente da localização, reduz custos ao eliminar a necessi-
dade de aquisição de hardware físico, oferece flexibilidade de
tempo e lugar para estudo e permite a experimentação com
diferentes configurações e testes em cenários reais. Outra al-
ternativa é o uso de emuladores que permite acesso local ou
remoto sem a necessidade da placa física [Costa et al., 2023].

O segundo desafio é o aprendizado de Verilog, que é
uma HDL amplamente utilizada na indústria e academia para
descrever e simular circuitos digitais. No entanto, na maio-
ria dos materiais didáticos, o processo de simulação de cir-
cuitos descritos em Verilog ainda é dependente da visuali-
zação de formas de onda geradas por ferramentas, tais como,
GTKWave [Bybell, 2023], ModelSim [Mentor Graphics Cor-
poration, 2022] e Vivado [Xilinx Inc., 2023].

Quando estudantes são expostos a projetos de hardware
de nível intermediário ou avançado, com centenas ou mi-
lhares de sinais, a dificuldade em interpretar os resultados
da simulação aumenta consideravelmente. Embora algumas
ferramentas forneçam meios básicos de filtragem e agrupa-
mento de sinais, elas não oferecem um mecanismo interativo
visual adaptado a fins didáticos. Além disso, faltam solu-
ções que integrem o fluxo de simulação com interfaces que
permitam intervenções em tempo real ou a personalização de

https://portal.issn.org/resource/ISSN/2316-9915
https://doi.org/10.5753/ijcae.2025.6436
https://orcid.org/0009-0008-1799-1820
mailto:talles.costa@ufv.br
https://orcid.org/0000-0003-0587-6127
mailto:racyus.pacifico@ufop.edu.br
https://orcid.org/0000-0003-1802-7829
mailto:ricardo@ufv.br

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

saídas visuais com base em estímulos específicos.
Nos últimos anos, diversos esforços têm sido realiza-

dos para tornar o ensino de HDLs mais eficazes e didáti-
cos, integrando interfaces iterativas com simulação de HDLs,
tais como, Learn SystemVerilog [Lima, 2021], VGA play-
ground [Project, 2025] e simuladores baseados em navega-
dores, tal como, CAD4U no Google Colab [Canesche et al.,
2021] e DigitalJS [Materzok, 2019] que utilizam o simula-
dor Icarus de Verilog [Williams and Baxter, 2002] e a visu-
alização gráfica com Yosys [Wolf et al., 2013]. No entanto,
essas soluções ainda são limitadas quanto à integração com
projetos reais em Verilog. Além disso, a maioria dos simula-
dores gratuitos concentra-se em aspectos acadêmicos de pe-
quena escala, sem considerar a escalabilidade ou modulari-
dade necessária para projetos maiores. Apesar do uso de for-
mas de onda ser eficaz para programadores experientes em
hardware, ele pouco contribui para o aprendizado prático de
estudantes, que se beneficiariam mais de uma abordagem vi-
sual intuitiva e didática. Nesse contexto, o desenvolvimento
de projetos com jogos e gráficos, aliados a ferramentas com
uma interface amigável e didática, pode não apenas acelerar
o aprendizado, mas também estimular a experimentação e a
criatividade na modelagem de circuitos digitais.

Para atender esses requisitos, propomos o VeryGA, uma
ferramenta modular e interativa voltado para a visualização
e interpretação de simulações em Verilog com saída VGA.
O VeryGA, intercepta sinais de entrada e saída, fornecendo
uma camada visual interpretável em tempo real para cone-
xão com um monitor VGA. Além disso, a ferramenta possui
uma arquitetura extensível, permitindo que novos módulos
de visualização e análise sejam incorporados de forma incre-
mental. A usabilidade foi priorizada, com interface projetada
para usuários com pouco ou nenhum conhecimento prévio
em ferramentas de simulação via Google Colab, garantindo
acesso remoto sem a necessidade de instalação. A ferramenta
também tem potencial em ambientes educacionais, pois re-
duz significativamente o tempo de validação de projeto com
saída VGA e pode aumentar o engajamento dos alunos em
projetos de hardware com jogos.

As principais contribuições deste trabalho são:

• Contribuir no ensino/aprendizado na programação de
HDLs usando jogos;

• Criar projetos Verilog usando o simulador Verilator in-
tegrado ao Google Colab;

• Validar os projetos desenvolvidos em placas reais, redu-
zindo o tempo de desenvolvimento.

• Visualizar a saída da simulação de um projeto em tempo
real, comunicando com uma tela VGA virtual imple-
mentado de forma eficiente com WebAssembly;

• Simular circuitos digitais, interagindo por sinais envia-
dos por entradas do teclado ou mouse.

Este artigo está organizado da seguinte forma: Seção 2
apresenta os trabalhos relacionados; Seção 3 contextualiza
conceitos fundamentais e ferramentas utilizadas no VeryGA;
Seção 4 descreve o funcionamento e detalhes de implemen-
tação da ferramenta; Seção 5 apresenta os casos de uso uti-
lizados para avaliar e validar o VeryGA; Seção 6 aborda os
resultados obtidos; Por fim, a Seção 7 aborda as conclusões,
destacando as principais vantagens da ferramenta.

2 Trabalhos relacionados
No ensino de linguagens de descrição de hardware, mui-
tos cursos usam apenas ferramentas tradicionais como
GTKWave [Bybell, 2023] e ModelSim [Mentor Graphics
Corporation, 2022], que oferecem apenas a visualização das
formas de onda para análise de sinais, o que limita a com-
preensão do comportamento dos circuitos, especialmente na
ausência de placas FPGA ou ASICs sintetizados.

Diversos projetos têm buscado estimular o ensino de
HDLs de uma forma mais didática e interativa. Por exemplo,
a ferramenta DigitalJS [Materzok, 2019] permite a visuali-
zação de projetos, a interação com sinais de entrada e saída,
exploração da visualização de forma hierárquica e visualiza-
ção das formas de onda. Uma extensão do DigitalJS, apre-
senta projetos do processador MIPS [Passe et al., 2020] para
estimular o ensino de Verilog. Trabalhos recentes exploram
as vantagens do Google Colab para criar laboratórios virtu-
ais para o ensino de Verilog [Canesche et al., 2021; Ferreira
et al., 2024b,a]. Uma alternativa explorada para motivar os
estudantes no ensino de linguagens é o uso de jogos [Com-
béfis et al., 2016]. O ensino de jogos também é utilizado
no ensino de FPGA e linguagens de hardware [Jarusauskas,
2009; Neebel et al., 2012; Sanchez-Elez and Roman, 2015].

Existem várias ferramentas para uso dos simuladores
da linguagem Verilog como Icarus [Canesche et al., 2021]
e Verilator [Snyder, 2004], um simulador de Verilog HDL
que permite simular e sintetizar de forma rápida e simples
circuitos digitais usando a linguagem C++. Além disso, su-
porta vários tipos de otimizações. No Verilator a simulação
suporta estímulos, importa arquivos gerados de outros simu-
ladores e os compila para um simulador específico.

Um ambiente virtual cliente servidor com interface para
chaves e display usando Verilator foi proposto por [Dai and
Cai, 2024]. Outro projeto similiar é o Learn SystemVeri-
log [Lima, 2021] foi desenvolvido para o ensino remoto de
HDLs, oferecendo simulação no navegador via Verilator e
WebAssembly. Ele permite interações básicas com perifé-
ricos como LEDs, chaves e display de sete segmentos, mas
não suporta interfaces gráficas usando VGA. Além disso, não
permite o carregamento de arquivos externos da memória.

A ferramenta mais próxima ao nosso trabalho é o VGA
Playground [Venn, 2024], que destaca-se pelo foco na simu-
lação de saídas gráficas via interface VGA, sendo um projeto
associado ao movimento TinyTapeout [Venn, 2024]. Embora
limitado a 64 cores e sem suporte a outros periféricos, sua
capacidade de resposta visual e suporte a áudio o tornam um
diferencial para o ensino de circuitos gráficos.

Em um contexto mais amplo, o ambiente EDA Play-
ground [Doulos, 2024] permite a experimentação de código
HDL (Verilog, SystemVerilog, VHDL) na nuvem, com su-
porte a diferentes simuladores. Apesar de ser uma ferramenta
poderosa no aprendizado de HDLs, não possui recursos vi-
suais que auxiliem na compreensão intuitiva dos circuitos.

Projetos como o Logisim Evolution [Burch et al., 2024]
também oferecem simulação gráfica de circuitos, mas não
trabalham diretamente com HDL. No entanto, sua interface
amigável é citada em diversos estudos como inspiração para
ferramentas voltadas ao ensino.

Além disso, o QUCS (Quite Universal Circuit Simula-

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

tor) [Qucs Team, 2024] e o Falstad Circuit Simulator [Fals-
tad, 2024] fornecem simulações interativas para circuitos
analógicos e digitais, mas não integram suporte a HDLs, o
que os limita no ensino de HDLs.

Por fim, destaca-se o EDAboard [EDABoard Commu-
nity, 2024] como fórum de discussão e compartilhamento de
simulações HDL com foco educacional. Embora não seja
uma ferramenta, é uma importante referência para soluções
práticas utilizadas no ensino de HDLs.

A Tabela 1 apresenta as principais características das
ferramentas baseado nos recursos de simulação (Sim), lin-
guagem de descrição de hardware (HDL), acesso online na
internet (textitWeb), recursos de visualização (Vis) e visuali-
zação VGA (VGA). Nenhuma das ferramentas contém todas
as funcionalidades disponíveis no VeryGA e no VGA Play-
ground. Entretanto, o VeryGA está embarcado no Google
Colab, agregando todas os seus recursos para documentação
com textos e gráficos, codificação em células para modulari-
zar o código, compartilhamento, além de ser dimensionado
para agregar extensões na interface de sinais de entrada e sa-
ída. Ou seja, oferece mais recursos didáticos que o VGA
Playground.

Tabela 1. Comparação das ferramentas com o VeryGA.

Ferramenta Sim HDL Web Vis VGA
ModelSIM X X X
CAD4U X X X
Icarus X X
Verilator X X
Games X
Games FPGA X X X
Logisim X X X
Learn
SystemVerilog X X X X
EDA Playground X X X X
DigitalJS X X X X
QUCS X X X
Falstad Simulator X X X
VGA Playground X X X X X
GTKWave X
EDAboard X
VeryGA X X X X X

Ferramentas: ModelSIM [Mentor Graphics Corporation, 2022],
CAD4U [Canesche et al., 2021], Icarus [Williams, 2024], Verilator [Sny-
der, 2004], Games [Combéfis et al., 2016], Games FPGA [Jarusauskas,
2009; Neebel et al., 2012; Sanchez-Elez and Roman, 2015], Logisim [Burch
et al., 2024], QUCS [Qucs Team, 2024], Falstad Simulator [Falstad, 2024],
VGA Playground [Venn, 2024], GTKWave [Bybell, 2023], EDAbo-
ard [EDABoard Community, 2024].

3 Referencial Teórico
Protocolo VGA: É um padrão de interface analógica
para saída de vídeo de computadores, desenvolvido pela
IBM [Thompson, 1988] para equipar os computadores da
empresa na década de 1980. Para a transmissão de imagem, o
protocolo VGA utiliza dois sinais de sincronização digitais:
um horizontal (HSYNC) e um vertical (VSYNC). Além disso,
o protocolo utiliza três sinais de cores analógicos (R, G e B)

com resolução padrão de 640 × 480 pixels com 262.144 co-
res, correspondendo a um sinal RGB com 6 bits por canal de
cor (26 × 26 × 26).

Figura 1. Temporização dos sinais VGA [Guimarães, 2019].

O escaneamento do frame é iniciado após um pulso
de VSYNC e realizado linha por linha. Após cada pulso de
HSYNC, o escaneamento da próxima linha começa, com cada
pixel sendo desenhado em um intervalo de tempo determi-
nado. São necessários 40 ns para desenhar cada pixel na área
visível de 640 × 480 pixels dentro de uma área total de 800 ×
525 pixels. Os pixels não visíveis são necessários para pro-
ver tempo de espera entre linhas e quadros, permitindo que
o monitor reposicione o feixe de elétrons (nos tubos de raios
catódicos, CRTs).

Existem três categorias de pixels não visíveis: o des-
canso antes do pulso (Front porch, 16 pixels), a sincronização
real (sync pulse, 96 pixels) e o tempo até começar os dados
úteis (back porch, 48 pixels). Na Figura 1 é possível observar
o envio da imagem visível e dos outros três campos, com 33
linhas no topo antes de começar a parte visível, aplicados a
cada linha, e na parte inferior com 10 linhas [Chinchanikar
et al., 2023].

Jupyter Notebook e Google Colab: O Jupyter Note-
book permite a execução e exibição de células de código e
texto em navegadores Web. Os códigos de linguagens de
programação podem ser intercalados com texto formatado
para documentar o processo de desenvolvimento, funcio-
nando como um caderno de pesquisa interativo, razão pela
qual recebe o nome de notebook [Kluyver et al., 2016]. Além
disso, suporta diferentes tipos de saída, incluindo texto, gráfi-
cos, fórmulas matemáticas formatadas e elementos gráficos
interativos. Alguns comandos podem ter funções específi-
cas, por exemplo, modificar a execução de uma célula, tais
como os comandos mágicos. Inicialmente foi desenvolvido
pelo projeto IPython [Perez and Granger, 2007] para uso com
a linguagem Python. Atualmente possui integração com di-
versas linguagens, tais como, C++ e JavaScript por meio de
backends e extensões. Um Jupyter Notebook pode ser hospe-
dado gratuitamente no Google Colab [Research, 2017], um
serviço do Google Cloud. Embora seja mais utilizado para
prototipagem de modelos de aprendizado de máquina usando
GPUs e TPUs [Bisong, 2019], também pode ser aplicado em
outros tipos de domínios.

Verilator: É uma ferramenta de código aberto ampla-

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

mente utilizada para simulação e verificação de projetos em
Verilog. Diferente de simuladores tradicionais baseados em
interpretação, como o ModelSim ou Icarus Verilog, o Verila-
tor realiza tradução de código Verilog para C++ ou SystemC,
gerando um modelo de simulação compilado. Esse modelo é
então executado como um programa nativo, o que permite si-
mulações extremamente rápidas, especialmente em testes de
longa duração. O processo de tradução envolve análise lé-
xica e sintática, otimizações estáticas, eliminação de blocos
redundantes e geração de funções C++ correspondentes aos
módulos e comportamentos do hardware descrito [Snyder,
2004]. O Verilator foi escolhido para executar simulações
rápidas usando linguagem de alto nível no VeryGA, gerando
código C++ compatível com código Verilog.

Emscripten: É uma ferramenta que compila código
LLVM (Low Level Virtual Machine) para WebAssembly, per-
mitindo a execução de aplicações escritas em diversas lin-
guagens diretamente no navegador, por exemplo, C, C++ e
Rust. O uso do WebAssembly garante desempenho próximo
ao nativo, tornando o Emscripten uma solução eficaz para
aplicações que exigem execução em tempo real. Isso ocorre
porque ele integra um ambiente que simula aspectos de um
sistema operacional, tais como, sistema de arquivos virtual,
suporte a threads e ponteiros, melhorando o desempenho da
aplicação que está rodando no navegador. O Emscripten foi
incorporado ao VeryGA para possibilitar a execução da si-
mulação no navegador com alto desempenho, uma vez que a
emulação de um monitor VGA em tempo real (ou próximo
a isso) demanda uma implementação eficiente [Zakai, 2011;
Zakai and contributors, 2025].

4 VeryGA
Nesta seção descrevemos detalhes de implementação e funci-
onamento do VeryGA, que integra simulação de código Ve-
rilog conectado a um emulador de monitor VGA e leitura do
teclado ou mouse como entrada da ferramenta. Para o fun-
cionamento do VeryGA no Google Colab, o primeiro passo
consiste em realizar a instalação do repositório do projeto1.
Para executar o respectivo código, deve-se criar uma célula.
Em seguida, conectar o projeto do código Verilog que deseja
validar, às interfaces de entrada (teclado ou mouse) e saída
(monitor VGA). É importante ressaltar que o código emu-
lado no VeryGA sob o Google Colab, pode ser executado
diretamente no FPGA sem adaptações porque é totalmente
compatível com as configurações do hardware.

O código da célula VeryGA é executado seguindo o flu-
xograma ilustrado na Figura 2. Primeiro, o usuário cria uma
ou mais células com seu projeto em Verilog no Google Co-
lab. Uma das células será a principal e as outras irão com-
por o projeto, permitindo ao usuário modularizar seu código
e documentá-lo. O usuário pode implementar todo o pro-
jeto em uma única célula ou decompô-lo em células auxili-
ares, que devem ter na primeira linha o comando %%veryga
[NomeModulo.v], onde o nome do arquivo corresponde ao
nome do módulo especificado. Todo projeto criado na fer-
ramenta contém uma célula principal, representando o topo
da hierarquia. Nesta célula, o comando mágico %%veryga

1!pip install git+https://github.com/hamsty/VeryGA.git, % load_ext
plugin

--top deve ser inserido na primeira linha da célula, em se-
guida, adicionadoo código template apresentado na Figura 3.

Figura 2. Fluxograma de execução VeryGA.

O segundo passo é executar a célula principal. Neste
momento, o projeto é compilado e os erros de compilação
são sinalizados. Caso não haja erros, o projeto Verilog é
transformado em C++ pelo Verilator e, posteriormente, con-
vertido em WebAssembly para execução. Este processo pode
demorar alguns segundos, devido a complexidade da simu-
lação de eventos em hardware. Finalmente, quando o código
inicia a execução, a saída VGA é exibida e o usuário pode
interagir com o projeto durante a simulação usando teclado
e/ou mouse.

Figura 3. Código template da célula principal do projeto veryga.v.

A Figura 3 apresenta o módulo veryga e sua interface
de entrada e saída, ambas com 64 bits cada. Para possibilitar
futuras extensões, o módulo foi projetado para enviar e rece-
ber 64 sinais simultaneamente em uma simulação. A versão
atual possui o seguinte mapeamento de sinais:

Sinais de entrada: O barramento in possui apenas seis
conexões iniciais. Dois sinais de controle: o clock principal
(clk conectado em in[0]), autogerado com 25 MHz na si-
mulação, e o sinal de reset (rst conectado em in[1] e na
tecla A. Pressionando a tecla A, o projeto será reiniciado.
Para conectar ao teclado, a versão atual possui uma interface
de quatro bits com o sinal mov conectado em in[5:2] e às
teclas direcionais (seta para cima, seta para baixo, seta para
esquerda e seta para direita).

Sinais de saída: O barramento out possui os seguintes
campos conectados: o canal de cor B (out[3:0]), o canal
de cor G (out[7:4]) e o canal de cor R (out[11:8]), pro-
porcionando uma interface de 4096 cores, além dos sinais de
sincronização horizontal HSYNC (out[12]) e sincronização
vertical VSYNC (out[13]). Os sinais VSYNC, HSYNC, R, G

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

Figura 4. EBU bars em Verilog.

e B seguem o padrão VGA descrito na Figura 1 e foram im-
plementados de forma a emular o monitor VGA. Todos os
projetos testados foram validados em placas de FPGA, onde
funcionaram corretamente seguindo o padrão VGA.

Um exemplo clássico para ensino e teste do monitor
VGA é o padrão de barras verticais com cores, conhecido
como padrão EBU cores, que consiste em conjunto de pa-
drões de cores estabelecidos pela União Europeia de Radi-
odifusão (EBU) para a produção de vídeo e televisão. Es-
tes padrões visam garantir consistência e compatibilidade na
reprodução de cores em diferentes equipamentos e platafor-
mas. A Figura 4 apresenta o código que deve ser adicionado
ao template do projeto Verilog que foi ilustrado na Figura 3.
A compilação e execução do código EBU irá gerar a saída
exibida na Figura 5.

Figura 5. EBU bars.

O código da Figura 4 demonstra a definição da interface
de conexão com o VGA, implementando um padrão de co-
res EBU (European Broadcasting Union) através do controle
dos canais de cor R, G e B em função da coordenada horizontal
X. O módulo vga_driver é responsável por gerar os sinais
de sincronização e fornecer as coordenadas de pixel atual. A
implementação das cores segue uma lógica condicional que
só é executada quando o reset está desativado (sinal rst em
nível alto) e o display está habilitado (display_en ativo).

O padrão EBU é implementado a partir de diferentes

combinações de cores baseadas na posição horizontal X:

• Branco (X < 80): Todos os canais RGB em máxima in-
tensidade (4’hF), criando uma barra branca na região
inicial da tela.

• Amarelo (80 ≤ X < 160): Canal vermelho (R) e verde
(G) em alta intensidade (4’hB), com azul (B) alternando
entre alta e baixa intensidade conforme X % 160, resul-
tando em tons de amarelo.

• Ciano (160 ≤ X < 320): Apenas o canal verde (G) em
alta intensidade (4’hB), com vermelho (R) desligado e
azul (B) alternando, produzindo tons de ciano.

• Verde (320 ≤ X < 480): Canal vermelho (R) e verde (G)
em alta intensidade (4’hB), com azul (B) seguindo o pa-
drão de alternância, gerando tons esverdeados.

• Preto/Azul (X ≥ 480): Canal vermelho (R) e verde (G)
desligados, com apenas o azul (B), alternando entre alta
e baixa intensidade.

A intensidade 4’hB (valor hexadecimal 11, equivalente
a 75% da intensidade máxima) e 4’hF (valor hexadecimal 15,
intensidade máxima) são utilizadas para criar as diferentes
tonalidades do padrão EBU, proporcionando uma referência
visual para calibração e teste de monitores.

As células com módulos auxiliares além do módulo
principal devem ser executadas para salvar os arquivos em
um diretório temporário. Somente após a execução de to-
das as células com os módulos auxiliares deve-se executar
a célula do topo. Como já mencionado, a execução inicia
com a etapa de compilação, que executa uma configuração
de build do CMake e, posteriormente, compila a build uti-
lizando o make. Os módulos são mapeados em código C++
pelo compilador Verilator, e os arquivos gerados são conec-
tados a uma camada visual que utiliza Simple DirectMedia
Layer 2 (SDL2) para renderizar a tela.

O projeto é compilado utilizando o Emscripten, pos-
sibilitando sua execução no navegador, incluindo em ambi-
entes de desenvolvimento que utilizam o Jupyter Notebook.
Para que essa integração seja possível, foram adicionadas
ao arquivo main.cpp as linhas da Figura 6, onde a função
emscripten_set_main_loop define a função de loop que
será executada pelo navegador e um intervalo de tempo reser-
vado. As funções anteriores definem as funções de callback
para as entradas do teclado.

Figura 6. Integração com Emscripten.

Para a integração com ambientes online onde não é pos-
sível definir as configurações do servidor que hospeda a pá-
gina principal, por exemplo, o Google Colaboratory, foi im-
portante configurar a compilação para desabilitar o uso de th-
reads pelo programa. A execução de múltiplas threads com
WebAssembly depende do uso de memória compartilhada
através do objeto JavaScript SharedArrayBuffer. Para evi-
tar que conteúdo malicioso seja executado por fontes desco-

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

nhecidas, é exigido que a resposta do servidor retorne os ca-
beçalhos Cross-Origin-Opener-Policy: same-origin e Cross-
Origin-Embedder-Policy: require-corp.

Após a etapa de compilação, caso o servidor Web ainda
não esteja ativo, um novo servidor é iniciado, apontando para
a pasta de saída da build. Retorna-se então um iframe como
saída, direcionando para o endereço do servidor. O resultado
do código na Figura 4, após o processo mencionado acima,
pode ser visualizado na Figura 5.

Caso o projeto seja implementado utilizando o wire
mov é possível interagir com a simulação usando as telas di-
recionais, como em uma placa FPGA ou ASIC sintetizado
com o mesmo código. A simulação pode ser encerrada a
qualquer momento utilizando a tecla B e essa retorna status
de execução da simulação, como tempo de execução e tempo
de simulação.

5 Casos de uso
Um dos objetivos deste trabalho é motivar estudantes a apren-
der Verilog com exemplos lúdicos de jogos e efeitos gráficos.
Vários trabalhos utilizam jogos clássicos de videogames para
exemplificar projetos em hardware de forma divertida [Jaru-
sauskas, 2009; Neebel et al., 2012; Sanchez-Elez and Roman,
2015], como jogos do videogame Atari (breakout, space in-
vaders) ou clássicos como snake, tetris, pong, dentre outros.

Esta seção apresenta vários exemplos com complexi-
dade incremental para validar a ferramenta e motivar o apren-
dizado de Verilog. Foram escolhidos cinco exemplos, além
do EBU já apresentado, baseados no nível de complexidade
de implementação. A proposta é que estudantes possam fa-
zer pequenas modificações para entender como desenhar em
um monitor VGA e, posteriormente, aprender técnicas bási-
cas de construção de jogos, ao mesmo tempo que reforçam
o aprendizado de Verilog e de projetos de hardware com pa-
ralelismo, máquinas de estados e outras construções. Cada
exemplo possui uma funcionalidade específica, como des-
crito a seguir:

1. Retângulos: Demonstra um exemplo simples de pro-
jeto de uma forma geométrica;

2. Capivara: Realiza a leitura de uma imagem de um ar-
quivo para uma memória ROM integrada ao ambiente;

3. Movimentação de Retângulos: Apresenta um exem-
plo simples de extensão do projeto do retângulo para
utilizar a interface de entrada com interação via teclado,
fazendo uso de comandos direcionais (setas) para mo-
vimentar o retângulo dinamicamente no monitor VGA;

4. Breakout: Valida um código desenvolvido em uma dis-
ciplina de graduação da Unicamp [Martins Jacob et al.,
2024], projetado para executar em uma placa de FPGA,
demonstrando que o emulador é capaz de reproduzir um
jogo em tempo real com pequeno atraso aceitável de-
vido ao ambiente virtual multicamadas que possibilita
a execução;

5. Labirinto: Exemplo de jogo que inclui a criação de um
labirinto maior que a tela visível, demonstrando como
implementar um projeto com navegação através do des-
locamento da janela visível no monitor, além de intera-
gir com o teclado.

Nas Seções 5.1 a 5.5 são apresentados mais detalhes de
cada exemplo validado na ferramenta VeryGA.

5.1 Retângulos
Este exemplo é um projeto simples que desenha retângulos
com borda. Ele é desenvolvido em torno do módulo rectan-
gle (Figura 7), que permite criar retângulos na tela com ta-
manho, posição, cor, espessura de borda e cor de borda vari-
áveis.

Figura 7. Código do módulo retangle.

Na Figura 8 é possível ver a saída da simulação de um
exemplo com duas instâncias do módulo retângulo execu-
tando na ferramenta. A implementação de um módulo pa-
rametrizado ilustrado na Figura 9 permite que o usuário mo-
difique o código e visualize mudanças na imagem mostrada
com pouco conhecimento de Verilog.

Figura 8. Retângulos estáticos.

Figura 9. Código com módulo parametrizado.

O código do retângulo cria um retângulo com o vértice
superior esquerdo na posição (20,20), com 600 pixels de lar-
gura e 440 de altura, na cor verde. A cor é definida pelo valor
hexadecimal 12’h0F0, onde os canais vermelho e azul estão
desligados (valor 0) e o verde está no valor máximo (0xF). A
cor de fundo é preta.

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

5.2 Capivara
Neste caso de uso foi criado um projeto que mapeia o conte-
údo de um arquivo e produz uma saída com imagem estática
de uma capivara espacial. A imagem foi criada usando o mo-
delo generativo da ferramenta Copilot da Microsoft [Stratton,
2024]. A resolução da imagem foi inicialmente reduzida para
160×120 pixels e posteriormente convertida para 12 bits (4
bits por canal de cor). Em seguida, cada pixel foi armazenado
em uma linha de um arquivo de texto no formato hexadeci-
mal.

O arquivo foi passado como parâmetro para a instância
de memória ROM, que carrega os dados no momento da si-
mulação a partir da função $readmemh, nativa do Verilog.
No caso de execução em hardware real, os dados devem ser
gravados no módulo em tempo de síntese. A saída da simu-
lação na ferramenta pode ser vista na Figura 10.

Figura 10. Imagem de Capivara carregada na ROM.

5.3 Movimentação de Retângulos
Para demonstrar a utilização dos comandos direcionais ma-
peados para a entrada da simulação, foi criado um exem-
plo baseado nos retângulos na Seção 5.1. A posição X0 e
Y0, anteriormente passadas como parâmetro da instância (Fi-
gura 7), agora são sinais recebidos pelo módulo rectangle
e que modificam a posição do retângulo conforme o usuá-
rio pressiona as teclas direcionais. A Figura 11 mostra a si-
mulação em andamento, após o retângulo ser movido da sua
posição inicial, que é o centro da tela.

Figura 11. Retângulo fora da sua posição inicial.

5.4 Breakout
Esse caso de uso foi criado originalmente como projeto final
da disciplina MC613 - Laboratório de Circuitos Digitais, mi-
nistrada no primeiro semestre de 2024 pelo Prof. Dr. Rodolfo
Jardim De Azevedo, Unicamp. O grupo composto pelas alu-
nas Gabriela Martins Jacob, Letícia Lopes Mendes da Silva

e Luísa de Melo Barros Penze criou uma versão simplificada
do jogo Breakout [Kent, 2010] para rodar em uma placa DE1
da Terasic.

O objetivo do jogo é rebater uma bolinha branca em blo-
cos coloridos no topo da tela, utilizando uma plataforma que
movimenta horizontalmente. O jogador possui três vidas e
perde uma vida a cada vez que a bolinha bate no chão. Ele
vence o jogo ao eliminar todos os blocos. Caso o jogador
perca todas as vidas, o jogo é finalizado, e ele perde. Peque-
nos ajustes na temporização foram feitos no código, pois a
placa possui um clock principal de 50 Mhz e a ferramenta
assume que o clock principal seja 25Mhz. É possível ver a
saída da simulação na Figura 12.

Figura 12. Retângulo fora da sua posição inicial.

5.5 Labirinto

Figura 13. Início do jogo Labirinto.

Para o teste do uso de todas as funcionalidades da plataforma
VeryGA, foi criado um jogo de labirinto. Nesse jogo o usu-
ário começa no canto superior de um labirinto 48x48, carre-
gado em memória durante o processo de síntese do código. O
labirinto não é visto em sua totalidade, com sua visão sendo
restrita a uma área 16x16 do labirinto. Cada bit do labirinto
48x48, sendo 0 o muro e 1 o caminho, é desenhado como
um bloco 40x30 pixels, que em uma visão 16x16 ocupa a to-
talidade da resolução VGA implementada (640x480), como
pode ser visto na Figura 13.

Para compatibilidade com a placa FPGA citada nos tes-
tes abaixo, foi mapeado 4 bits por canal de cor, totalizando
4096 cores disponíveis. Isso não impede que, em futuras ver-
sões, seja desenvolvida uma implementação que aceite 8 bits
por canal, totalizando 16.777.216 de cores presentes no pa-
drão RGB 888, amplamente utilizado nos monitores atuais.

O jogador (quadrado amarelo) pode andar com as en-
tradas passadas por sinal ao wire mov, sendo que para

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

Tabela 2. Resultado simulação casos de uso do VeryGA.

Velocidade (ms/s) Taxa de Quadros (fps)
Casos de uso Min Max Média Desvio Min Max Média Desvio
Retângulo 936,18 1007,00 982,84 24,8338 56,90 59,86 58,62 1,1589
EBU bars 800,78 874,58 851,81 20,5762 47,79 52,02 50,68 1,1802
Capivara 348,12 371,23 363,75 7,1565 20,71 22,08 21,64 0,4248
Retângulo ambulante 984,18 1008,00 1000,45 9,1901 58,54 59,91 59,49 0,5338
Breakout 195,76 197,94 196,63 0,7106 12,22 12,35 12,30 0,0487
Labirinto 413,85 426,02 421,44 3,9980 24,64 25,33 25,07 0,2307

mov=4'b0001 anda para direita, mov=4'b0010 anda para
baixo, mov=4'b0100 anda para cima e mov=4'b1000 anda
para esquerda. Para outros valores de mov, o jogador não exe-
cutará nenhuma ação, evitando padrões não desejados, como
andar na diagonal.

O jogador pode andar pelas casas azuis e as casas as
quais ele não pode andar são desenhadas com uma imagem
carregada em memória. Ao andar sete casas quando está nas
bordas do labirinto, a câmera se movimenta pelo mapa, uma
casa na direção do movimento, a fim de ver o caminho à
frente, parando ao chegar próximo a outra borda.

O jogo termina ao chegar no quadrado vermelho, na
borda direita inferior do labirinto, apresentado na Figura 14.

Figura 14. Fim do jogo labirinto.

Figura 15. Célula Google Colab com o código Verilog da memória ROM
do Labirinto.

Os arquivos que compõem o projeto foram divididos em
oito células de código com o comando %%veryga antes da
etapa de síntese, oferecendo portabilidade ao projeto. A Fi-
gura 15 ilustra um módulo que pode ser facilmente substitu-
ído ao sobrescrever o arquivo. Esse exemplo testa o compor-
tamento da plataforma para reagir a mudanças contínuas nas
entradas e mostrar diferentes telas, ilustrando a funcionali-
dade da simulação interagindo com estímulos externos.

6 Resultados
Nesta seção apresentamos os resultados da ferramenta em um
ambiente realista, demonstrando que o código simulado no
Google Colab pode ser executado em hardware. O ambiente
de teste foi composto por:

• Uma placa FPGA, DE10-Lite da Terasic que possui um
chip Intel MAX 10M50DAF484C7G, com 50 k de ele-
mentos lógicos;

• Para simulação do VeryGA, usamos um notebook Sam-
sung Galaxy Book 3 360 com a seguinte configura-
ção: processador Intel(R) Core(TM) i5-1335U, 16 GB
de memória RAM e sistema operacional Windows 11.
Nesta máquina executamos o Google Colab com o có-
digo do VeryGA usando o navegador Microsoft Edge.

Os cálculos dos testes do VeryGA foram realizados uti-
lizando o status retornado pela simulação ao ser finalizada
pressionando a tecla B. Os testes foram realizados de forma
automatizada utilizando scripts para simular a entrada do
mouse e teclado. Para validar o VeryGA rodando em uma
FPGA, escolhemos o estudo de caso mais complexo, labi-
rinto, devido ao grau de dificuldade de implementação. A
Figura 16 apresenta o labirinto rodando em uma FPGA com
saída VGA conectada em um monitor LCD, com frequência
de 60 Hz ou 60 fps.

Figura 16. Labirinto rodando em FPGA conectado em TV LCD via VGA.

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

Além de validarmos o VeryGA em hardware, medimos
a velocidade (ms/s) e fps da simulação dos casos de uso para
avaliar o desempenho de cada um rodando no navegador. Re-
petimos a simulação para cada estudo de caso 10 vezes esta-
ticamente, sem movimentos, por um minuto. Os resultados
obtidos da simulação são apresentados na Tabela 2.

Em relação à execução no FPGA houve uma perda de
mais da metade do desempenho, mas a simulação continuou
gerando uma taxa de quadros que não comprometeu a visu-
alização e permitiu a interação com ela.

7 Conclusão
Neste trabalho propomos o VeryGA, uma ferramenta intera-
tiva voltado para a visualização e interpretação de simula-
ções em Verilog com saída VGA, que representa um recurso
atrativo no ensino HDLs, especialmente no contexto do uso
de FPGAs e da linguagem Verilog. A ferramenta contorna
de forma eficaz desafios existentes nesse contexto, como a
limitação de acesso físico às placas, a complexidade das fer-
ramentas comerciais e a dificuldade de interpretação das si-
mulações por meio de formas de onda. Ao integrar a visuali-
zação de saída VGA em tempo real a um ambiente acessível
via Google Colab, o VeryGA possibilita que estudantes inte-
rajam com projetos de hardware de maneira prática, intuitiva
e motivadora, independentemente de sua localização ou da
disponibilidade de equipamentos físicos.

Além de democratizar o acesso a recursos de simula-
ção, a abordagem adotada potencializa o uso de jogos como
meio de aprendizado, incentivando a experimentação, a cri-
atividade e o engajamento. A arquitetura modular e extensí-
vel da ferramenta favorece sua evolução futura, permitindo a
incorporação de novos módulos e funcionalidades que am-
pliem seu alcance e aplicação. Assim, o VeryGA contri-
bui para aproximar teoria e prática, tornando o processo de
aprendizado de HDLs mais acessível, didático e estimulante,
e abrindo caminho para novas metodologias de ensino vol-
tadas à formação de profissionais mais preparados para os
desafios do desenvolvimento de sistemas digitais. Um exem-
plo prático do VeryGA é integrá-lo ao processador RISC-V
por meio de uma interface de saída com o professor podendo
preparar o experimento e guiar o estudante a partir das célu-
las do Google Colab.

Como trabalhos futuros, desenvolveremos uma inter-
face para suportar a criação de periféricos personalizados
e simulação de outras tecnologias de entrada e saída de ví-
deo, por exemplo, HDMI, DVP, MIPI CSI e MIPI DSI. Além
disso, o VeryGA suportará GPUs para acelerar a simulação
dos projetos, melhorando o desempenho da ferramenta.

Declarações complementares
Agradecimentos
Gostaríamos de agradecer as instituições de financiamento pelos re-
cursos disponibilizados para o desenvolvimento das atividades desta
pesquisa.

Financiamento
Apoio financeiro do Projeto FAPEMIG APQ-01577-22, CNPq e
CAPES.

Contribuições dos autores
O autor Talles de Sousa Costa implementou a ferramenta VeryGA e
realizou parte da redação do texto. O autor Ricardo Ferreira elabo-
rou os exemplos base dos simuladores e realizou a redação do texto.
O autor Racyus Delano Garcia Pacífico colaborou com sugestões e
revisão no texto.

Conflitos de interesse
Os autores declaram não haver conflitos de interesse.

Disponibilidade de dados e materiais
As ferramentas desenvolvidas neste trabalho são de código aberto
e estão disponíveis no link https://github.com/hamsty/
VeryGA.git.

Outras informações relevantes
O texto deste artigo é de responsabilidade dos autores, onde ferra-
mentas de IA foram usadas apenas para revisão ortográfica e gra-
matical, gerar uma imagem e sugestões.

Referências
Alhammami, M. (2024). Fpga hardware kit for remote

training platforms. Discover Education, 3(1):102. DOI:
10.1007/s44217-024-00203-w.

Bisong, E. (2019). Google colaboratory. Building Machine
Learning and Deep Learning Models on Google Cloud
Platform, pages 59–64. DOI: 10.1007/978-1-4842-4470-
87.

Brunvand, E. (2011). Games as motivation in compu-
ter design courses: I/o is the key. In ACM techni-
cal symposium on Computer science education. DOI:
10.1145/1953163.1953178.

Burch, C. et al. (2024). Logisim evolution. Availa-
ble at: https://github.com/logisim-evolution/
logisim-evolution.

Bybell, T. (2023). Gtkwave: A vcd and lxt waveform viewer.
Available at: http://gtkwave.sourceforge.net.

Canesche, M., Bragança, L., Neto, O. P. V., Nacif, J. A., and
Ferreira, R. (2021). Google colab cad4u: Hands-on cloud
laboratories for digital design. In International Symposium
on Circuits and Systems (ISCAS), pages 1–5. IEEE. DOI:
10.1109/iscas51556.2021.9401151.

Chinchanikar, A., Chandankhede, P. H., and Titarmare, A.
(2023). Vga controller design & implementation on fpga.
In IEEE Global Conf. for Advancement in Technology
(GCAT). DOI: 10.1109/GCAT59970.2023.10353298.

Combéfis, S., Beresnevičius, G., and Dagienė, V. (2016). Le-
arning programming through games and contests: over-
view, characterisation and discussion. Olympiads in Infor-
matics, 10(1). Available at: https://ioinformatics.
org/journal/v10_2016_39_60.pdf.

Costa, A. S., Silveira, L. D., and Reis, A. I. (2023). Live
demonstration: Pitanga platform for virtual fpga remote
laboratories. In 2023 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE. DOI:
10.1109/iscas46773.2023.10181345.

Cruz, C., Gil, R., de la Llana, A., Bravo, I., Gardel, A., and
Lázaro, J. L. (2024). Remote laboratory based on a recon-
figurable hardware platform. In Congreso de Tecnología,

https://github.com/hamsty/VeryGA.git
https://github.com/hamsty/VeryGA.git
https://doi.org/10.1007/s44217-024-00203-w
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1145/1953163.1953178
https://github.com/logisim-evolution/logisim-evolution
https://github.com/logisim-evolution/logisim-evolution
http://gtkwave.sourceforge.net
https://doi.org/10.1109/iscas51556.2021.9401151
https://doi.org/10.1109/GCAT59970.2023.10353298
https://ioinformatics.org/journal/v10_2016_39_60.pdf
https://ioinformatics.org/journal/v10_2016_39_60.pdf
https://doi.org/10.1109/iscas46773.2023.10181345

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

Aprendizaje y Enseñanza de la Electrónica (TAEE). IEEE.
DOI: 10.1109/taee59541.2024.10604937.

Dai, Z. and Cai, L. (2024). Autotrinity: An heterogeneous
runner based remote digital system lab system. In Int. Con-
ference on Computer and Communications (ICCC). IEEE.
DOI: 10.1109/iccc62609.2024.10941836.

Doulos (2024). Eda playground. Available at: https://
www.edaplayground.com.

EDABoard Community (2024). Edaboard – forum for eda
tools and hdl development. Available at: https://www.
edaboard.com.

Falstad, P. (2024). Falstad circuit simulator. Available at:
https://www.falstad.com/circuit/.

Ferreira, R., Canesche, M., Jamieson, P., Neto, O., and Na-
cif, J. (2024a). Examples and tutorials on using google co-
lab and gradio to create online interactive student-learning
modules. Computer Applications in Engineering Educa-
tion. DOI: 10.1002/cae.22729.

Ferreira, R., Sabino, C., Canesche, M., Neto, O. P. V.,
and Nacif, J. A. (2024b). Aiot tool integration for
enriching teaching resources and monitoring student
engagement. Internet of Things, 26:101045. DOI:
10.1016/j.iot.2023.101045.

Guimarães, F. (2019). Como funciona o vga - mundo pro-
jetado. Available at: https://mundoprojetado.com.
br/como-funciona-o-vga/.

Jarusauskas, A. (2009). Fpga based vga driver and
arcade game. University of Sussex, 2010. Avai-
lable at: https://static.armandas.lt/res/fpga_
based_vga_driver_and_arcade_game.pdf.

Kent, S. L. (2010). The ultimate history of video games, vo-
lume 1: From Pong to Pokemon and beyond... the story
behind the craze that touched our lives and changed the
world. Crown. Book.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.,
Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J.,
Grout, J., Corlay, S., et al. (2016). Jupyter Notebooks–
a publishing format for reproducible computational work-
flows. In Positioning and Power in Academic Pu-
blishing: Players, Agents and Agenda. IOS Press. Avai-
lable at: https://eprints.soton.ac.uk/403913/1/
STAL9781614996491-0087.pdf.

Lima, I. D. A. (2021). Scalable Web-Based FPGA Board
Simulator. Trabalho de conclusão de curso, UFCG. Avai-
lable at: http://dspace.sti.ufcg.edu.br/jspui/
handle/riufcg/24990.

Liu, C. C. (2018). Use of fpgas in a digital system design
course with computer gaming applications. In ASEE. DOI:
10.18260/1-2–31188.

Martins Jacob, G., Lopes Mendes da Silva, L., and
de Melo Barros Penze, L. (2024). Github - ic-
unicamp/2024s1-mc613-projeto-elektras: Projeto final
de mc613. Available at: https://github.com/
ic-unicamp/2024s1-mc613-projeto-elektras.

Materzok, M. (2019). Digitaljs: A visual verilog simu-
lator for teaching. In Proceedings of the 8th Computer
Science Education Research Conference, pages 110–115.
DOI: 10.1145/3375258.3375272.

Mentor Graphics Corporation (2022). Modelsim user’s ma-

nual. Available at: https://eda.sw.siemens.com/
en-US/ic/modelsim/.

Navas-González, R., Oballe-Peinado, Ó., Castellanos-
Ramos, J., and Rosas-Cervantes, D. (2023). Practice
projects for an fpga-based remote laboratory to teach
and learn digital electronics. Information, 14(10). DOI:
10.3390/info14100558.

Neebel, D. J., Burek, N. J., and Griebel, T. (2012). Fpgar-
cade: Motivating the study of digital hardware. In 2012
ASEE Annual Conference & Exposition, pages 25–648.
DOI: 10.18260/1-2–21405.

Passe, F., Canesche, M., Neto, O. P. V., Nacif, J. A., and Fer-
reira, R. (2020). Mind the gap: Bridging verilog and com-
puter architecture. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5. IEEE. DOI:
10.1109/iscas45731.2020.9180650.

Perez, F. and Granger, B. E. (2007). Ipython: A system for
interactive scientific computing. Computing in Science &
Engineering, 9:21–29. DOI: 10.1109/mcse.2007.53.

Project, V. (2025). Vga playground. Available at: https:
//vga-playground.com/ Accessed: 2025-08-03.

Qucs Team (2024). Quite universal circuit simulator. Avai-
lable at: https://qucs.sourceforge.net/.

Research, G. (2017). Google colaboratory. https://
colab.research.google.com/. Available at: https:
//colab.research.google.com/.

Sanchez-Elez, M. and Roman, S. (2015). Learning hard-
ware design by implementing student’s video-game
on a fpga. In Proceedings of the International Con-
ference on Frontiers in Education: Computer Science
and Computer Engineering (FECS), page 24. The
Steering Committee of The World Congress in Com-
puter Science, Computer …. Avaialble at: https://
www.researchgate.net/publication/283450129_
Learning_Hardware_Design_by_implementing_
student%27s_Video-Game_on_a_FPGA.

Snyder, W. (2004). Verilator and systemperl. Availa-
ble at: https://veripool.org/papers/verilator_
systemperl_nascug.pdf.

Soares, J., Lobo, J., and DEEC, F. (2011). A remote fpga
laboratory for digital design students. In Portuguese
meeting on reconfigurable systems (REC). Avaialble at:
https://www.researchgate.net/publication/
228744476_A_Remote_FPGA_Laboratory_for_
Digital_Design_Students.

Stratton, J. (2024). An introduction to microsoft copilot. In
Copilot for Microsoft 365: Harness the Power of Gene-
rative AI in the Microsoft Apps You Use Every Day. DOI:
10.1007/979-8-8688-0447-22.

Thompson, S. (1988). Vga—sign choices for a new vi-
deo subsystem. IBM Systems Journal, 27:185–197. DOI:
10.1147/sj.272.0185.

Venn, M. D. (2024). Tiny tapeout: A shared silicon tape-
out platform accessible to everyone. DOI: 10.36227/techr-
xiv.172055642.27780676/v1.

Williams, S. (2024). Icarus verilog. Available at: https:
//github.com/steveicarus/iverilog.

Williams, S. and Baxter, M. (2002). Icarus verilog: open-
source verilog more than a year later. Linux Journal,

https://doi.org/10.1109/taee59541.2024.10604937
https://doi.org/10.1109/iccc62609.2024.10941836
https://www.edaplayground.com
https://www.edaplayground.com
https://www.edaboard.com
https://www.edaboard.com
https://www.falstad.com/circuit/
https://doi.org/10.1002/cae.22729
https://doi.org/10.1016/j.iot.2023.101045
https://mundoprojetado.com.br/como-funciona-o-vga/
https://mundoprojetado.com.br/como-funciona-o-vga/
https://static.armandas.lt/res/fpga_based_vga_driver_and_arcade_game.pdf
https://static.armandas.lt/res/fpga_based_vga_driver_and_arcade_game.pdf
https://eprints.soton.ac.uk/403913/1/STAL9781614996491-0087.pdf
https://eprints.soton.ac.uk/403913/1/STAL9781614996491-0087.pdf
http://dspace.sti.ufcg.edu.br/jspui/handle/riufcg/24990
http://dspace.sti.ufcg.edu.br/jspui/handle/riufcg/24990
https://doi.org/10.18260/1-2--31188
https://github.com/ic-unicamp/2024s1-mc613-projeto-elektras
https://github.com/ic-unicamp/2024s1-mc613-projeto-elektras
https://doi.org/10.1145/3375258.3375272
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://doi.org/10.3390/info14100558
https://doi.org/10.18260/1-2--21405
https://doi.org/10.1109/iscas45731.2020.9180650
https://doi.org/10.1109/mcse.2007.53
https://vga-playground.com/
https://vga-playground.com/
https://qucs.sourceforge.net/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://www.researchgate.net/publication/283450129_Learning_Hardware_Design_by_implementing_student%27s_Video-Game_on_a_FPGA
https://veripool.org/papers/verilator_systemperl_nascug.pdf
https://veripool.org/papers/verilator_systemperl_nascug.pdf
https://www.researchgate.net/publication/228744476_A_Remote_FPGA_Laboratory_for_Digital_Design_Students
https://www.researchgate.net/publication/228744476_A_Remote_FPGA_Laboratory_for_Digital_Design_Students
https://www.researchgate.net/publication/228744476_A_Remote_FPGA_Laboratory_for_Digital_Design_Students
https://doi.org/10.1007/979-8-8688-0447-2_2
https://doi.org/10.1147/sj.272.0185
https://doi.org/10.36227/techrxiv.172055642.27780676/v1
https://doi.org/10.36227/techrxiv.172055642.27780676/v1
https://github.com/steveicarus/iverilog
https://github.com/steveicarus/iverilog

VeryGA - Interface Modular VGA para Simulação de Verilog Costa et al. 2025

2002(99):3. Available at: https://dl.acm.org/doi/
10.5555/513581.513584.

Wolf, C., Glaser, J., and Kepler, J. (2013). Yosys-a free ve-
rilog synthesis suite. In Proceedings of the 21st Austrian
Workshop on Microelectronics (Austrochip), volume 97.
Available at: https://yosyshq.net/yosys/files/
yosys-austrochip2013.pdf.

Xilinx Inc. (2023). Vivado design suite user guide. https:
//www.xilinx.com/products/design-tools/
vivado.html. Available at: https://www.xilinx.
com/products/design-tools/vivado.html.

Zakai, A. (2011). Emscripten: An llvm-to-javascript
compiler. In ACM Int Conf Companion on Ob-
ject Oriented Programming Systems Languages and
Applications Companion (OOPSLA ’11). ACM. DOI:
10.1145/2048147.2048224.

Zakai, A. and contributors (2025). Emscripten official web-
site. Available at: https://emscripten.org.

https://dl.acm.org/doi/10.5555/513581.513584
https://dl.acm.org/doi/10.5555/513581.513584
https://yosyshq.net/yosys/files/yosys-austrochip2013.pdf
https://yosyshq.net/yosys/files/yosys-austrochip2013.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://doi.org/10.1145/2048147.2048224
https://emscripten.org

	Introdução
	Trabalhos relacionados
	Referencial Teórico
	VeryGA
	Casos de uso
	Retângulos
	Capivara
	Movimentação de Retângulos
	Breakout
	Labirinto

	Resultados
	Conclusão

