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Abstract. The field of computer architecture is highly specialized and demands skilled expertise. Large Language Mod-
els (LLMs) can support this process by improving the quality of project development. Moreover, they can be employed
as training tools, progressively enhancing individual skills and facilitating the identification of suitable components to
address specific architectural gaps. In this work, we propose the use of an LLM combined with the Retrieval-Augmented
Generation (RAG) technique to expand the model’s knowledge and assist in identifying components of computer archi-
tectures. Experimental results indicate that LLMs can successfully identify some architectural components, while also
revealing significant opportunities to refine the proposed methodology and advance research in architecture design sup-

ported by LLM:s.
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1 Introduction

Computer production evolved exponentially from the 1970s
decade, with incremental ratings of up to 50%, after the intro-
duction of microprocessors, which utilize thousands of tran-
sistors in a single integrated circuit [Hennessy and Patterson,
2011]. However, as complexity increases, more specializa-
tion is required from individuals to develop new architectures
for processing devices, enabling them to fulfill the computa-
tional power needed to process the available data quantity,
e.g., text processing of social networks. Although they are
specialists and, therefore, a scarce workforce that requires
absorbing many field contents, assistance tools can comple-
ment their specialization.

In terms of the techniques of such a tool, the capacity
for natural interaction with human beings is primordial. For
this purpose, algorithms that aim to manipulate human natu-
ral language depart from models that used statistics to predict
the next word from a text before recent large language mod-
els (LLM) [Rajaraman, 2023]. The latter can interact with
humans using refined dialogue and general knowledge. Ad-
ditionally, those language models can be modified to be used
as specialized tools, which work beyond the scope of the di-
alog, helping humans perform tasks that require complex de-
mands, for instance, hardware synthesis [Xu et al., 2024],
drug discovery [Brahmavar et al., 2024], software engineer-
ing and code generation [Chen et al., 2021], among others.

RAG is a technique that consists of using external docu-
ments (retrieval) to increase some language models’ capacity
(augment), without intensively and explicitly retraining them
to generate new knowledge and improve answers based on the
documents provided as input (generate) [Lewis et al., 2020].
RAG is also widely discussed in the literature [Fan et al.,
2024] for its benefits and extensive application, particularly
in conjunction with LLM, which is known for its ability to

improve model capacity at a low resource cost. Since the op-
posite of it would be fine-tuning, a technique that retrains a
model to improve its knowledge in specific topics, or even re-
trains the model as a whole, would significantly increase the
model’s cost. As such, our paper uses the RAG technique,
using external information about an architecture that is dis-
cussed later in the paper.

Considering that artificial intelligence (AI) does not
have rights or responsibilities, a human must interact and in-
terfere, whenever necessary, with the knowledge production
process and with the results of those agents to assume respon-
sibility [Barmer et al., 2021]. In that way, human beings need
to evaluate the information and content provided by artificial
intelligence tools.

Although tools that utilize Al algorithms can create re-
sponsibilities for humans, they can also bring benefits, such
as those observed in the scope of hardware development. For
instance, in scenarios where designers must specify and list
the requirements for computer architecture, the devices can
become complex. The designer can face difficulties using or
choosing components! that can be used in his project. For
that reason, the implementation of the assistance tools for
that scope expands the capabilities of architects and com-
puter engineers to develop more robust devices and to pro-
vide assistance from Als that can manipulate more informa-
tion and also perform repetitive tasks faster and cheaper [Al-
sager et al., 2024].

Thus, this work proposes the use of Retrieval-
Augmented Large Language Models for Computer Architec-
ture Learning and Design Assistance. The main contribution
is a conceptual method that integrates Retrieval-Augmented
Generation (RAG) and Large Language Model (LLM) as a

'A component is all structural and functional parts of a device for pro-
cessing, storage, communication, or connection between the previous or
other devices.
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learning and design assistant to support computer scientists
and engineers on computer architecture issues. This paper
focuses on this integration to identify the necessary compo-
nents for a specific architecture and scenario. Therefore, we
can highlight the benefits for learners and designers as fol-
lows:

* Natural language description instead of architecture and
hardware description languages;

* RAG enhancing comprehension without deep expertise;

* Incorporation of block diagrams in text by the use of
JSON (JavaScript Object Notation) for visualization of
the architecture in relation to its components.

This paper is organized as follows. Section 2 presents
the background, Section 3 discusses related work, Section 4
details the methodology, Section 5 describes the results, and
Section 6 provides the conclusions.

2 Background
2.1 Large Language Models

The programs that utilize Natural Language Processing
(NLP) are capable of understanding, processing, and gener-
ating results in the language of human beings [Zhou et al.,
2020]. According to Wang et al. [2024], the language models
evolved from the statistical models, inferring, through prob-
abilistic means, the next word. Moving forward in history,
these models started to be implemented with neural networks
and also other pre-trained models to develop new models. It
is common practice for models to utilize massive datasets due
to the current computational power available for their train-
ing. Consequently, it results in large language models that
possess generalist capacities and can interact with users on
various subjects with a certain depth.

The transformers are a machine learning model archi-
tecture that uses an attention mechanism to correlate tokens
and the relation between them. On the other hand, tokens
are preprocessed data such as words, sets of words, numbers,
symbols, and punctuation. In this manner, the connection be-
tween tokens and the weight of their relations, determined by
the transformer’s structure, generates outputs for the model
relative to the task being trained for. Transformers have high
parallelization as an advantage, and are faster for training and
have a more efficient structure than those that use recurrence
and convolutional networks [Vaswani et al., 2017; Russell
and Norvig, 2022].

2.2 Retrieval-Augmented Generation

Lewis er al. [2020] present a technique called Retrieval-
Augmented Generation (RAG) that is capable of updating
language models without the need to retrain them, which is
an advantage over update methods, such as fine-tuning, that
require intensive training to update the model’s parameters.
Furthermore, the technique involves utilizing pre-trained
parametric models in conjunction with a non-parametric
model that contains an embedding vector for documents, pro-
viding knowledge of a specific domain area. These models
are accessed and used to complement the model’s answer to a
question, eliminating the need for the initial model to acquire
new knowledge through pre-training.
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Additionally, models that utilize RAG have lower up-
date costs. Although they do not make drastic changes to the
model, as is done in fine-tuning, which is more expensive to
retrain, it has more intrinsic changes in the structure of the
model, compared to the RAG technique [Ling et al., 2024].

2.3 Domain specialization

LLMs are models capable of interacting with their users
by answering questions on various subjects. However, they
do not have enough depth to answer particular questions,
which can cause these models to suffer hallucinations in their
responses by producing false factual knowledge [Perkovié
et al., 2024] or even outdated knowledge [Gao et al., 2024].
To remedy this deficiency, ways are necessary to deepen and
enhance LLM knowledge, such as using techniques that add
knowledge to the model, intrinsically or externally.

Ling et al. [2024] present a domain-specialization tax-
onomy in LLMs, grouping multiple techniques that aggre-
gate knowledge to the model, such as external knowledge,
prompt manipulation, and fine-tuning modeling. Among
them, each one has its benefits and disadvantages. How-
ever, among these approaches, the one with the lowest train-
ing cost is the one that leverages external knowledge, such
as RAG and prompt manipulation. Beyond that, even though
prompt manipulation has reduced cost, it does not allow for
increasing the LLM’s knowledge and RAG, especially con-
sidering the domain specialization information. On the other
hand, the fine-tuning technique, although expensive due to
its computational costs for new training, may not be as ef-
fective and may yield regressive results, such as knowledge
forgetfulness. Thus, analyzing the literature and the costs in-
volved in improving an LLM, external knowledge stands out
as a key factor in the domain specialization of LLMs.

To execute the language models, it is possible to use the
Ollama tool®. It allows interaction with the model through
messages from a command terminal or using an application
interface (API) or even through a set of programming lan-
guage libraries, such as for Python (e.g., LangChain® e Ol-
lamaPython®).

3 Related Work

Chang et al. [2023] presented a framework named ChipGPT,
which involves the use of LLMs to generate logical hardware
designs from natural language descriptions, starting from the
premise that code creation and optimization are performed
only by Als. In this way, methods are used for learning in
context, without the need to modify the existing model, as the
research core is to have a prompt manager that helps improve
the input and refine prompts. Finally, the proposal yielded
promising results, enabling a seamless flow to generate chip
designs using natural language.

Alsager et al. [2024] conducted a literature review,
where they reviewed using LLM for code production and
hardware. Several works using LLMs to assist hardware pro-
duction in different stages were presented. The authors con-
cluded that the use of LLM for this task is in its early stages
of development, which brings not only many opportunities

Zhttps://github.com/ollama/ollama
3https://python.langchain.com/
“https://github.com/ollama/ollama-python
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for the field of research but also great capability for LLMs to
assist in the designated task.

Similarly, Charfi et al. [2019] developed a hardware de-
sign tool based on ISO/IEEE 42010, which generates hard-
ware from functional requirements expressed in natural lan-
guage. This approach automatically bridges the gap between
requirements and implementation while enhancing support
for developing related tools. The work enhances traceability
and enables the automatic generation of documents. How-
ever, the tool operates at a high level of abstraction, which
may hinder its understanding. However, according to the au-
thor, this abstraction is necessary to facilitate the manipula-
tion of the project’s low-level hardware aspects.

For Xu et al. [2024], the LLMs with RAG can assist in
hardware synthesis when informing code snippets that de-
scribe hardware, even with occult parts, such as in the way
that the model can analyze which is the best complement for
the informed situation. The authors conclude that using the
model to improve the initial prompt and feedback can signif-
icantly improve the quality of the hardware produced.

On the other hand, Li et al. [2025], a review paper on
educational Als that used the RAG technique, cite HiTA [Liu
et al., 2024] as an Al assistant learning platform that ampli-
fies teachers’ lessons, helping them improve their materials
and classes while under teachers’ supervision, generating re-
sults. Similar to the future possibility of using our method-
ology presented in this paper, which allows students to un-
derstand hardware design better, along with lessons in the
classroom.

This paper differs from previous works in that it does
not rely on architecture descriptions that utilize code for
hardware design. Instead, it focuses on diagrams and ar-
chitectural representations closer to human comprehension
and natural language. Leveraging techniques such as RAG
among LLMs enhances knowledge acquisition, allowing
users to better understand the structure with less proficiency
in coding or hardware designing, ideally for students or
to increase professionals’ productivity. Additionally, it re-
duces abstraction related to hardware assembly while assist-
ing users in identifying potential solutions and suggestions
for their architecture at the level of observation of their prob-
lem, whether functional or not.

4 Methodology

Figure 1 presents a general view of the methodology of this
work, and, as it shows, the resources are initialized first,
then the documents are prepared and vectorized, allowing
the search for similarity of the documents to the question.
The prompt is assembled with a question that contains the
architecture with missing components, documents recovered
using RAG (as context), and instructions for the model. How-
ever, before prompt assembly, an architecture was chosen as
the reference in JSON format. Finally, the pipeline is done,
and the model can be prompted, giving an answer that can
be compared with the reference. A human can verify their
similarity and refactor any necessary details on the question
or architecture as often as needed. Furthermore, the steps are
detailed in the following sections.

To improve reproducibility, all the codes and documents
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used, along with the open-source and free tools, are presented
in the paper, and where they can be found.

4.1 Resources Initialization and
Configuration

To carry out the work, resource initialization is necessary,

among them an application server with the LLama 3.2

model’. Then, start® the Python script of the application con-

taining the code for the RAG task and subsequent prompts.

4.2 Knowledge Extraction

In this stage, articles and books are used to extract knowl-
edge about the theory of computer architecture and hardware
projects. For this work, an article [Maciel et al., 2024] and a
book [Hennessy and Patterson, 2011] were used.

4.2.1 Extraction of Architectures from Papers

There must be materials to compare what an LLM can gen-
erate against human capabilities in computer architecture.
However, since there are no consolidated public databases
with available computer architectures and hardware projects,
an example was necessary for this paper. For this task, an ar-
ticle [Maciel et al., 2024] was used as a basis to extract the
architecture proposed by its authors.

However, during the experiments, we observed that the
models required a previously defined format for the LLM to
represent the architecture textually. In this case, we decided
to use JavaScript Object Notation (JSON). It would group all
the components and the communication links between them,
such as displayed by a handmade architecture snippet in Fig-
ure 2 that represents the architecture of Figure 3.

4.3 Document Embedding

Embedded models are applied to create vectors of docu-
ments, which the LLM can use in similarity search, increas-
ing its capability to answer and its assertiveness.

In this stage, the documents from the previous step were
used to feed an embedded generator. However, they undergo
a division process for each file, generating document frag-
ments. This process enables a more efficient transforma-
tion from word sets to numbers. The generator uses a sec-
ond model, specific for embedding, Mxbai’, to create vectors
from documents. In this work, the documents were broken
down into chunks of 1024 parts with an overlap of 256 to-
kens.

4.4 Used Prompt

As presented in Figure 4, a prompt template was necessary
to query the model.

The instructions were delivered to the model, consid-
ering the organizational aspect, restrictions, and reinforcing
critical points, such as where to act and how (including be-
ing a specialist). We included a context section to enhance
the model’s capabilities, boost the idea of domain special-
ization, and consider the possibility of integrating external
documents using the RAG technique. Furthermore, the con-
text is attached to the question, and the answer is awaited at

Shttps://ollama.com/library/llama3.2

%Machine configuration: AMD Ryzen 5600 3.5GHz, 16GB RAM,
NVIDIA RTX 3060TI, SSD 1TB SNV2S1000G, Windows 10

https://ollama.com/library/mxbai-embed-large
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Figure 1. Steps to build and use a prompt

{  “components®:[

{"name":"Xeon", "components":[
{"name":"QPI CTRL", "components":[]},
{"name":"PCIe O CTRL", "components":[]},
{"name":"PCIe 1 CTRL", "components":[1},
{"name":"LLC", "components":[]},
{"name":"CNN Code", "components": [

{"name":"CNN CTRL Block", "components":[]},
{"name":"ReLU", "components":[]},

{"name":"Pooling", "components":[1},
{"name": "Fully Connected", "components":[1},
{"name": "Softmax", "components": [1} 1
— 1},
{"name":"FPGA Arria 10", "components":[
{"name": "FIU", "components": [

{"name":"QPI CTRL", "components":[]},
{"name":"PCIe O CTRL", "components":[]},
{"name":"PCIe 1 CTRL", "components":[]},
{"name":"Cache", "capacity":"64 kb"}

{"name":"CCI-P", "components": (1},
{"name":"AFU", "components":[
{"name":"Convolution Block", "components":[]}

1} f
{"name": "DRAM", "capacity":"64 GB"}

1, "connections": [
{"fror Xeon", "to": "DRAM", "description" },
{"to" on", "from": "DRAM", "description": },
{"from": "Xeon.QPI CTRL", "to": "FPGA Arria 10.FIU.QPI CTRL", "description":

< "QPI (12,8 GB/s)"},

{"from": "Xeon.PCIe 0 CTRL", "to": "FPGA Arria 10.FIU.PCIe O CTRL",
<> "description": "PCIe 0O (16 GB/s)"},

{"from": "Xeon.PCIe 1 CTRL", "to": "FPGA Arria 10.FIU.PCIe 1 CTRL",
< "description": "PCIe 1 (16 GB/s)"},
{"from": "FPGA Arria 10.FIU.QPI CTRL", "to":
< "QPI (12,8 GB/s)"},

{"from": "FPGA Arria 10.FIU.PCIe O CTRL", "to":
< "description": "PCIe O (16 GB/s)"},

"Xeon.QPI CTRL", "description":

"Xeon.PCIe O CTRL",

{"from": "FPGA Arria 10.FIU.PCIe 1 CTRL", "to": "Xeon.PCIe 1 CTRL",
< "description": "PCIe 1 (16 GB/s)"},

{"from": "Xeon.LLC", "to": "Xeon.QPI CTRL", "description": ""},
{"to": "Xeon.LLC", "from": "Xeon.QPI CTRL", "description": ""},

Figure 2. Architecture snippet from Maciel et al. [2024] in JSON format

the end.

4.5 Similarities Comparison Between

Extracted Architecture and the One
Generated by the LLM

Firstly, it is necessary to manually define an output model for
the architecture extracted from the papers and the model’s
generated architecture. Then, only then, it will be possible to
have an appropriate comparison between the results.
Questions were used to simplify the work’s scope, pro-
viding a partial answer to the model and enabling it to
identify the necessary components for previously undefined

Xeon FPGA Arria 10

QPI (12,8 GB/s)

PCle 0 (16 GBY/s)

PCle 1 (16 GB/s)

Convolution Block

Softmax
CNN Code

Figure 3. CPU+FPGA architecture for CNN - From: Maciel et al. [2024]

spaces, which had been removed but retained ground truth
for answer verification.

5 Results

After consulting the documents and inserting them into the
prompt template as context, the model was invoked using the
initial prompt. With its response, the answer was analyzed
and evaluated. The interaction between results and humans
is essential, as the verification of results must be valid and
checked to ensure that the demands are met and that the com-
ponents proposed by the LLM are part of the original paper.

5.1 Prompts to Architecture Component
Identification by The Language Model

To perform a comparison of results, an architecture in a pre-
defined format must be extracted from a reference architec-
ture, enabling comparison with the one generated by the
LLM. In this study, the LLM generation used the prompt
shown in Figure 5a to conduct two experiments: the first
loads the model without RAG context, and the second loads
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Prompt Template

1. Assume that you are a computer engineer and an
architecture specialist. Use your knowledge to help
build the given architecture.

2. You can use the context given to you to better un-
derstand the current architecture.

3. If you do not know what to answer, use “N/A”.

4. Replace ??? of the jsonObject below with possible
components and connectivity details of a computer
architecture for the given problem.

5. You can only manipulate the placeholders.

6. Do not modify any other value other than ???

7. Remove any other commentaries.

Question: {question}

Context: {context}

Answer:

Figure 4. Prompt Template

it with RAG context. Figure 5b illustrates the architecture®
missing necessary components, for which the model will%
identify, where placeholders, represented by three question2!
marks (???), were used to indicate where the model can add ,

new components or connection links as needed.

5.2 Comparing Results

Two scenarios are required to compare the results. The
work’s objective is component identification, which was par-
tially achieved since the model did not identify all the miss-
ing components or connections indicated by ten placehold-
ers from the original architecture. The results of the first and
second scenarios are described in the following subsections.

5.2.1 First Scenario (Answer without RAG)

In the first scenario, the initial prompt resulted in the answer
shown in Figure 6. Since the first scenario lacks context from
external documents, it relies solely on its default knowledge
from training and the input question. Although the provided
answer has substitution flaws in the placeholders, some com-
ponents were placed, and some connections were modified.
However, the model replaced a cache memory from the orig-
inal architecture with a deep learning accelerator, adding a
new cache memory.

Also, the connections were limited to altering some
descriptions, introducing what supposedly would be a con-
nection type named ‘LLC’ and ‘cache’ with their respective
transmission speeds. However, there is a mistake in the LLM
knowledge when considering that those are connection types
instead of memory components, such as cache memory, and
also when forgetting some architectural information.

5.2.2 Second Scenario (Answer with RAG)

In the second scenario, the model has context from external
documents, and its answer is shown in Figure 7. The an-
swer included a brief explanation of what the model did, as
shown in Figure 7a. The answer also contains the architec-
ture presented in Figure 7b, in which a component named
AFU, of the original architecture, was removed, and also its
connections were not exactly the same as in the original. In
this case, it was possible to observe the model’s ability to

27
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Initial question prompt

Which are the components and connectivity that can
replace the placeholders for an FPGA and CPU de-
vice that computes a CNN of an intrusion detection
system (IDS)?

(a) Initial question prompt

{  "components":[
{"name":"Xeon", "components": [ {"name":"QPI CTRL",
<+ “components":[]}, {"name":"PCIe 0 CTRL",
< "components": [1},
777,
{"name":"LLC", "components":[]}, 13,
{"name":"FPGA Arria 10", "components":[

", "components": [
"QPI CTRL", "components":[1},
{{"name":"PCIe O CTRL", "components":[1},}

"("n;me" :"Cache", "capacity":"64 kb"} 1 3,

", “capacity":"64 GB"}
1, "connections":
{"from": "Xeon", "to": "DRAM", "description": ""},
{"to": "Xeon", "from": "DRAM", "description": ""},
{"from": "Xeon.QPI CTRL", "to": "FPGA Arria 10.FIU.QPI CTRL",
"description": "QPI (12,8 GB/s)"},
{"from": "Xeon.PCIe O CTRL", "to": "FPGA Arria 10.FIU.PCIe O CTRL",
< “description": "PCIe 0 (16 GB/s)"},
777
{"from": "FPGA Arria 10.FIU.QPI CTRL", "to":
< "QPI (12,8 GB/s)"},
{"from": "FPGA Arria 10.FIU.PCIe O CTRL", "to":
< ‘"description": "PCIe O (16 GB/s)"},
777
{"from": "Xeon.LLC", "to": "Xeon.QPI CTRL", "description": ""
": "Xeon.LLC", "from": "Xeon.QPI CTRL", "descriptio:
": "Xeon.LLC", "to": "Xeon.PCIe O CTRL", "description": ""},
{"to": "Xeon.LLC", "from": "Xeon.PCIe O CTRL", "description":

"Xeon.QPI CTRL", "description'":

"Xeon.PCIe O CTRL",

}

77 777, 777,

{"from": "FPGA Arria 10.FIU.QPI CTRL", "to":
<5 "description": ""},

{"to": "FPGA Arria 10.FIU.QPI CTRL", "from": "FPGA Arria 10.FIU.Cache",
<> ‘“description": ""},

77, 777,

1

"FPGA Arria 10.FIU.Cache",

(b) Architecture missing components
Figure 5. Initial question prompt and incomplete architecture

utilize external knowledge to create a component and con-
nect it with full-duplex communication when necessary, as
per the attached documents. However, not all placeholders
were correctly replaced, as in the first scenario, and invalid
connection descriptions were added.

5.3 Experimental Learning

When an extensive quantity of information is fed to the
model, such as the complete architecture description in JSON
format, the model tends to answer with hallucinations, evad-
ing the question, modifying the JSON inadequately, or even
removing it completely and returning a summarization of the
input data (especially the recovered documents from RAG).

To perform this work, limiting the amount of docu-
ments fed to the model was essential to avoid hallucinations.
On the other hand, document snippets were chosen based
on the higher similarity to the question. According to the
LangChain documentation, the similarity search is ranked
from the lowest (best similarity) to the highest score (worst)
on the similarity between document chunks and the question
text. This paper used four fragments of documents with a
similar score of approximately 0.25.

6 Conclusion

This work achieved the objective, as the model identified the
necessary components and connections for the described ar-
chitecture. However, further analysis is needed to assess the
model’s capabilities, limitations, the potential for data leak-
age, and the actual contribution of the changes made to ac-
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{ "components": [
{"name":"Xeon", "components":[
{"name":"QPI CTRL", "components":[1},
{"name":"PCIe 0 CTRL", "components":[1},

{"name":"Cache Controller", "components":[]}, // Added component for
<> cache management
{"name":"LLC", "components":[]}, 13},
{"name":"FPGA Arria 10", "components":[
{"name": "FIU", "components": [
{"name’ PI CTRL", "components":[]},

{"name’ CIe O CTRL", "components":[]}, // Replaced with PCIe 0 CTRL

{"name":"Deep Learning Accelerator", "components":[]} // Added
< component for deep learning acceleration ]
— 1,

13, {"name": "DRAM", "capacity":"64 GB"}

]

"connection:

, "to": "DRAM", "descriptio:
", "from": "DRAM", "description
: "Xeon.QPI CTRL", "to": "FPGA Arria 10.
< "QPI (12,8 GB/s)"},

{"from": "Xeon.PCIe 0 CTRL", "to": "FPGA Arria 10.FIU.PCIe O CTRL",

<> "description": "PCIe 0 (16 GB/s)"},

{"from": "Xeon.LLC", "to": "FPGA Arria 10.FIU.QPI CTRL", "description": "LLC
<~ (4,8 GB/s)"}, // Added connection for LLC

{"from": "FPGA Arria 10.FIU.PCIe O CTRL", "to": "Xeon.LLC", "description":
<> "PCIe 0 (16 GB/s)"},

{"from": "FPGA Arria 10.FIU.Cache", "to": "Xeon.LLC", "description": "Cache

U.QPI CTRL", "description":

{"from": "FPGA Arria 10.FIU.QPI CTRL", "to": "FPGA Arria 10.FIU.Cache",
<> ‘“description": ""}

{"from": "Xeon.LLC", "to": "DRAM", "description": "LLC (4,8 GB/s)"}, 1}

1
2
3
4
5
< (1,2 GB/s)"}, // Added connection for cache 6
7
8
9
0

Figure 6. Answer from question prompt without RAG 5

complish the architectural task imposed by the problem. Ad- :
ditionally, it is possible to modify the models used (for ques- |
tion answering and embedding). "

19

20
As for the contribution, we identified the possibility of%

using LLM with RAGs to fill gaps in the hardware designs, »;
allowing it to be further used in an educational environment,
such as classrooms, to help students understand architectural
design and improve the productivity of professionals to fill
gaps in their designs. The paper also proposed a textual de-
scription for hardware designs, allowing an LLM to better
understand an architecture, without the use of images or dia-
grams.

Our work was limited by resource constraints and time
to use more powerful LLMs and more accurate documents to
fulfill gaps in the provided architecture better, and also, the
use of simpler techniques could be a restraining factor.

Finally, we identified significant opportunities to de-
velop specialized language models tailored for hardware
project tasks. As for future work, there is a broad spec-
trum of areas to improve, such as prompt adjustments, us-
ing few-shot techniques with examples, or prompt chaining
to help the model better understand the question and produce
more consistent results without hallucinations. Additionally,
measures should be taken to prevent the model from devi-
ating from the initial question and its constraints. Specifi-
cally about the prompt adjustment, the prompt could contain
instructions as context for the LLM to act as a teacher per-
sona, and explain, for each missing mark, the whys of the
choice for a student, being helpful for professionals to un-
derstand the model’s choice, and also for students to learn
the path for future choices. That suggestion could also im-
prove hallucination problems encountered during the course
of this work. As for the educational path, new cases should
be addressed to explore the methodology proposed, and also
use the method in classes to receive feedback from the stu-
dents and teachers. Furthermore, future research could as-
sess quality through benchmarks, comparing results against
other LLMs, analysis of the generated architecture, or code
synthesis of the architectures.

Souza et al. 2025

Answer with RAG

Here is the updated architecture with placeholders re-
placed: Note: I added the AFU (FPGA-AFU mod-
ule) to the FIU components, as mentioned in the text.
Also, I added a connection between the cache and
AFU components, assuming that the cache is used to
store intermediate results for the AFU processing.

(a) Answer with RAG

{ "components":[

", "components": [

PI CTRL", "components":[1},

CIe O CTRL", "components":[]},

LC", "components":[]}, 1},
":"FPGA Arria 10", "components":[

{"name": "FIU", "components": [

{"name":"QPI CTRL", "components":[1},

CIe O CTRL", "components":[]},

FU", "components":[]}, // Added AFU (FPGA-AFU module)

1,

"description": ""},

"description”: "'},

{"from": "Xeon.QPI CTRL", "to": "FPGA Arria 10.FIU.QPI CTRL",

< "description": "QPI (12,8 GB/s)"},

{"from": "Xeon.PCIe O CTRL", "to": "FPGA Arria 10.FIU.PCIe O CTRL",
< ‘"description": "PCIe O (16 GB/s)"},
{"from": "FPGA Arria 10.FIU.QPI CTRL", "to":
<+ “"description": "QPI (12,8 GB/s)"},
{"from": "FPGA Arria 10.FIU.PCIe O CTRL", "to":
< "description": "PCIe 0 (16 GB/s)"},
{"from": "Xeon.LLC", "to": "Xeon.QPI CTRL", "description": ""},
{"to": "Xeon.LLC", "from": "Xeon.QPI CTRL", "description' },
{"from": "Xeon.LLC", "to": "Xeon.PCIe O CTRL", "description": ""},
{"from": "FPGA Arria 10.FIU.Cache", "to": "FPGA Arria 10.AFU",

< "description": "Cache (64 kb)"},

{"to": "FPGA Arria 10.FIU.Cache", "from": "FPGA Arria 10.AFU",

>+ "description": "AFU (64 kb)"}, 1r

"Yeon.QPI CTRL",

"Xeon.PCIe O CTRL",

(b) Architecture from answer with RAG

Figure 7. Answer from question prompt with RAG
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