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Resumo. Dispositivos reconfiguráveis, como FPGAs, oferecem grande flexibilidade no desenvolvimento de soluções
de hardware, porém seu ensino apresenta desafios devido à complexidade das ferramentas tradicionais e das linguagens
de descrição de hardware (HDLs). Este trabalho propõe uma abordagem didática para introduzir as principais etapas
do processo de síntese em FPGAs: mapeamento tecnológico, posicionamento, roteamento e geração do bitstream. Para
alcançar esse objetivo, adotou-se uma metodologia com exemplos interativos, recursos visuais e analogias acessíveis para
explicar cada fase, permitindo que o estudante compreenda a ocupação do arranjo de Lookup Tables (LUTs) e os processos
internos do fluxo de compilação. Explorou-se o uso de modelos de linguagem de larga escala (LLMs) para apoiar a criação
de ferramentas visuais em JavaScript, potencializando a aprendizagem ativa e interativa. A principal contribuição deste
trabalho é o unboxing das ferramentas de FPGA, complementando materiais existentes e oferecendo aos iniciantes um
caminho estruturado e intuitivo para compreender o funcionamento interno desses dispositivos e suas ferramentas.
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1 Introdução
Com o avanço da computação e o desafio de desenvolver so-
luções de hardware, FPGAs destacam-se pela flexibilidade
e alto poder computacional ao implementar soluções dire-
tamente em hardware [Boutros and Betz, 2021]. Por serem
reconfiguráveis após a fabricação, esses dispositivos acele-
ram o ciclo de desenvolvimento. O ensino de FPGAs em
cursos de engenharia e ciência da computação possibilita o
desenvolvimento de competência pelos estudantes [da Fon-
seca et al., 2021].

Embora relevante, gera dificuldade de compreensão
para a maioria dos estudantes em relação ao funcionamento
interno de FPGAs e o processo de mapeamento de um pro-
jeto nesses dispositivos. Isso ocorre devido à complexidade
das ferramentas de síntese, ao nível de abstração das lingua-
gens de descrição de hardware (HDLs) e à dificuldade dos
ambientes de desenvolvimento. O ensino tradicional base-
ado exclusivamente em linguagens como VHDL e Verilog,
dificulta a compreensão inicial. Embora as práticas com FP-
GAs favoreçam a aprendizagem ativa e eficaz, ainda há uma
lacuna significativa no ensino, explicar as diferentes etapas
de transformação da descrição de circuitos de hardware até a
geração do bitstream [Navas-González et al., 2023].

FPGAs são formados por um arranjo de blocos reconfi-
guráveis. Cada bloco reconfigurável contém uma tabela ver-
dade denominada lookup table (LUT). Uma LUT possui n
entradas e armazena uma função lógica f(x1, . . . , xn). A
LUT e vantajosa por permitir implementar qualquer função
lógica com até n entradas. O primeiro passo, conhecido
como mapeamento tecnológico, consiste em transformar o
circuito lógico reescrevendo-o apenas com LUTs. Após des-
crito como um grafo de LUTs, o circuito lógico precisa ser

mapeado no FPGA físico, que consiste em uma matriz de
LUTs dispostas em linhas e colunas. A etapa seguinte é o po-
sicionamento, no qual cada LUT do grafo é alocada em uma
posição específica da matriz. O terceiro passo é interconec-
tar as LUTs da matriz para implementar as arestas do grafo,
conectando os fios entre as LUTs. A matriz do FPGA possui
recursos programáveis, como ruas paralelas e cruzamentos,
que devem ser configurados para implementar essas cone-
xões. O quarto e último passo é a programação do FPGA, na
qual os resultados do mapeamento, posicionamento e rotea-
mento são convertidos nos bits de configuração do disposi-
tivo, permitindo que ele execute a lógica desejada.

O objetivo deste trabalho é oferecer uma base para a
compreensão das principais etapas do processo de mape-
amento de um projeto de hardware em FPGA. Explora-se
alternativas didáticas que simplifiquem esse processo, com
exemplos iterativos e recursos visuais que permitem os estu-
dantes compreenderem as tarefas realizadas pelas ferramen-
tas de síntese. Investiga-se o uso de Modelos de Linguagem
de Larga Escala (LLMs) como apoio pedagógico. Esses mo-
delos oferecem tutorias automatizadas, geração dinâmica de
código HDL, explicações conceituais e simulações educa-
tivas [Chu et al., 2025; Alsaqer et al., 2024; Thakur et al.,
2024], podendo complementar o ensino tradicional e poten-
cializar a aprendizagem.

A metodologia abordar cada etapa por meio de exem-
plos iterativos, permitindo aos estudantes a identificação das
tarefas realizadas pelas ferramentas de FPGA, bem como
compreendam sua complexidade. Explorou-se o uso de
LLMs na geração de interfaces visuais interativas em JavaS-
cript, para potencializar o processo de ensino. A transforma-
ção de uma descrição de hardware nos bits de configuração
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de FPGAs envolve, as seguintes etapas: (i) mapeamento tec-
nológico; (ii) posicionamento; (iii) roteamento; e (iv) gera-
ção da configuração em formato binário, o bitstream.

As principais contribuições deste trabalho são:

• Abordagem unboxing, que explica, por meio de exem-
plos simples e recursos visuais, cada passo das ferra-
mentas de FPGA até a geração do bitstream.

• Apresentação clara das etapas de mapeamento tecno-
lógico, posicionamento, roteamento e geração do bits-
tream.

• Uso de uma metodologia baseada em exemplos iterati-
vos, permitindo ao estudante identificar as tarefas exe-
cutadas pelas ferramentas de FPGA.

• Desenvolvimento de um site com material introdutório
que complementa o conteúdo já disponível em cursos e
materiais online.

• Exploração de LLMs como ferramenta auxiliar para ge-
ração de interfaces visuais interativas em JavaScript,
promovendo novas formas de aprendizagem.

Este artigo está organizado da seguinte forma: Seção 2
contextualiza conceitos fundamentais de FPGAs. Seção 3
descreve um website iterativo e introdutório sobre FPGAs.
A Seção 4 apresenta como um circuito lógico combinacio-
nal de portas lógicas é transformado em um grafo de LUTs.
As Seções 5 e 6 destacam como aprender sobre posiciona-
mento e roteamento iterativo usando o Google Colab. A Se-
ção 7 descreve os trabalhos relacionados. A Seção 8 aborda
as conclusões do trabalho.

2 Fundamentos
Para contextualizar o trabalho, esta seção apresenta conceitos
de uma arquitetura básica do FPGA (Seção 2.1) e o fluxo
das etapas internas das ferramentas de FPGA (Seção 2.2).
Embora esse conteúdo básico já esteja disponível em vários
materiais didáticos, existem muitas lacunas sobre como cada
parte funciona e quais são suas complexidades.

2.1 Arquitetura FPGA

Figura 1. C: Conectores, L: LUTs e S: Switches.

A Figura 1 apresenta a arquitetura clássica dos FPGAs,
ilustrando três componentes fundamentais: os blocos lógi-
cos configuráveis (LUTs ou Lookup Tables), os segmentos
de interconexão organizados em múltiplos barramentos, e os

elementos programáveis de chaveamento (switches) que es-
tabelecem as conexões entre os segmentos de fios.

A reprogramabilidade do FPGA manifesta-se em duas
dimensões principais. Primeiro, na funcionalidade lógica:
cada LUT pode ser reconfigurada para implementar qual-
quer função booleana com granularidade de bit, permitindo
a implementação de circuitos digitais arbitrários. Segundo,
na conectividade: os elementos de chaveamento podem ser
reprogramados após a fabricação para estabelecer diferentes
padrões de interconexão entre os segmentos de fios, determi-
nando como os sinais são roteados através do dispositivo.

É fundamental distinguir que o roteamento em FPGAs é
estático e baseado em circuitos dedicados, contrastando com
o roteamento dinâmico por troca de mensagens encontrado
em redes de computadores ou Networks-on-Chip (NoCs).
Uma vez programado, cada caminho de sinal permanece fixo
durante a operação do circuito.

2.2 Ferramentas
O processo das ferramentas para implementar um circuito
lógico em FPGA (a partir da descrição do projeto) consiste
nas seguintes etapas sequenciais [Chen and Chang, 2017],
ilustrado na Figura 2:

Figura 2. Processo ferramentas implementar circuitos lógicos em FPGA.

Otimização lógica: Constitui a primeira etapa, reali-
zando a minimização das funções booleanas e flipflops, tem-
porização e no uso de FPGA heterogêneos, de blocos de me-
mória RAM e unidades lógico-aritméticas a nível de pala-
vra. Esta fase visa otimizar área, atraso ou uma combinação
de ambos, reduzindo a complexidade lógica e preparando o
circuito para as etapas subsequentes.

Mapeamento tecnológico: Transforma as funções bo-
oleanas otimizadas, em geral representadas por um grafo,
em um circuito composto por blocos lógicos específicos do
FPGA. Esta etapa também realiza otimizações direcionadas,
seja minimizando o número total de blocos lógicos neces-
sários (otimização de área) ou reduzindo o número de blo-
cos lógicos nos caminhos críticos temporais (otimização de
atraso).

Posicionamento (placement): Seleciona a localização
específica para cada bloco lógico dentro da matriz do FPGA.
O objetivo principal desta etapa é minimizar o comprimento
total das interconexões necessárias, considerando a proximi-
dade física entre blocos que precisam se comunicar.

Roteamento (routing): Conecta os recursos de inter-
conexão disponíveis no FPGA com os blocos lógicos distri-
buídos pela ferramenta de posicionamento. Esta etapa esta-
belece os caminhos físicos que transportam os sinais desde
onde são gerados até onde são utilizados, completando a im-
plementação física do circuito.
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3 Desmistificando o FPGA
Como material introdutório, propôs-se um Website simples
e interativo, desenvolvido sem a necessidade de codificação
e baseado em descrições em linguagem natural, com apoio
de recursos visuais e analogias. Esse material está descrito
na Seção 3.1. A Seção 3.2 apresenta o conteúdo de outros
websites de introdução ao FPGA, que são complementares à
proposta apresentada. O objetivo é fornecer uma abordagem
introdutória, permitindo ao estudante começar a construir os
conceitos que servirão de base para a compreensão do unbo-
xing das ferramentas de FPGA.

3.1 Primeiros passos em FPGA
Para desmistificar o universo dos FPGAs e torná-lo acessível
a um público amplo, desde estudantes da área até entusiastas
de tecnologia, foi desenvolvida uma ferramenta didática em
formato de website interativo e autoexplicativo, ilustrada na
Figura 3. A missão da ferramenta é demonstrar que, com o
uso de analogias adequadas, é possível compreender o poder
do hardware reconfigurável.

Figura 3. Página inicial do site.

A construção do website foi realizada a partir de uma
plataforma no-code, ou seja, sem a necessidade de programa-
ção tradicional. A plataforma utilizada, foi o Lovable.ai,
representado na Figura 4, ao qual facilita o desenvolvimento
web ao empregar inteligência artificial para criar aplicações
a partir de descrições em linguagem natural. Os usuários
apenas descrevem a funcionalidade desejada, e a ferramenta
gera o projeto automaticamente. Na Figura 5, observa-se a
simplicidade da interface do Lovable.

Figura 4. Página inicial do Lovable.dev.

Após a geração inicial, a plataforma permite que o de-
senvolvedor realize alterações, adicione imagens e vídeos,

bem como integre APIs ou bancos de dados, oferecendo uma
flexibilidade comparável à programação convencional. A
versão gratuita da plataforma opera com um sistema de cré-
ditos, consumidos a cada comando enviado, mas renovados
diariamente, o que permite a continuidade do desenvolvi-
mento. Com a versão final do website, é possível publicá-
lo com um domínio personalizado, utilizando a hospedagem
fornecida gratuitamente, ou hospedá-lo em um servidor pró-
prio.

Figura 5. Interface do Lovable.dev.

A jornada de aprendizagem no website inicia-se com
uma abordagem histórica sobre FPGA, detalhando os prin-
cipais avanços e inovações ao longo dos anos. Após o con-
texto histórico, a ferramenta explora os componentes funda-
mentais para o funcionamento do FPGA. São abordados con-
ceitos essenciais, como as portas lógicas AND, OR, NOT e
XOR . A Figura 6 ilustra o exemplo da porta AND usando
um exemplo interativo. Em seguida, o conteúdo avança para
componentes complexos, como flip-flops, descrito como uma
peça com memória, responsável por armazenar um estado (li-
gado ou desligado, 1 ou 0).

Figura 6. Exemplo porta lógica AND.

Também é apresentado o conceito de multiplexador, re-
ferido na ferramenta como conector programado, que, em
uma analogia com trens, atua como um trocador de trilhos
programável. Por fim, é apresentada a LUT, descrita como
uma tabela mágica com a capacidade de implementar qual-
quer combinação de portas lógicas. Para facilitar a compre-
ensão, a ferramenta estabelece comparações claras entre o
FPGA e um processador comum (CPU), utilizando analogias
diretas, como demonstrado nas Figuras 7 e 8. Uma dessas
analogias é a da garagem: o processador é comparado a um
carro (hardware), onde se pode trocar o motorista (software),
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mas o veículo permanece o mesmo. O FPGA é análogo a um
Transformer, que se molda e se transforma no veículo ideal
para cada missão. Outra analogia é a da comunicação: para
falar um novo idioma, a CPU utiliza um tradutor (uma ca-
mada de software intermediária), enquanto o FPGA se tor-
naria um falante nativo do idioma.

Figura 7. Comparador FPGA.

Figura 8. Comparador CPU.

O processo de reconfiguração do FPGA é detalhado em
uma seção sobre as Quatro fases da mágica, que explica
passo a passo como FPGAs são projetados e se transformam
em um hardware específico para cada cenário. A ferramenta
também contextualiza a aplicação prática de FPGAs, mos-
trando sua relevância em tecnologias, redes 5G, carros au-
tônomos e entre outras aplicações. Por fim, para consolidar
o conhecimento adquirido, a experiência de aprendizado é
finalizada com um quiz de perguntas e respostas interativo,
ilustrado na Figura 9. Este questionário avalia a compreen-
são do usuário sobre os temas abordados, e ao terminar, exibe
a pontuação com o número de acertos e erros.

Figura 9. Quiz de perguntas e respostas.

3.2 Comparativo com abordagens de
ensino atuais

A maioria dos sites de introdução ou ensino de FPGAs apre-
senta, em geral, uma perspectiva técnica, voltada para um pú-
blico que já possui conhecimento prévio na área. Isso pode
criar uma barreira de entrada para iniciantes. Essa é a princi-
pal diferença da abordagem proposta, que foi pensada desde
o início para ser uma porta de entrada intuitiva, acessível e
divertida para quem está começando.

Dentre os diversos sites disponíveis, pode-se destacar o
FPGA4Fun por sua abordagem prática, oferecendo um repo-
sitório de projetos baseado na filosofia do Aprender Fazendo.
A página inicial está exemplificada na Figura 10. O site uti-
liza projetos lúdicos e criativos, como gerar sinais de vídeo
VGA ou criar pequenos jogos, para despertar o interesse dos
estudantes dinamicamente, diferente dos exemplos teóricos
tradicionais. Essa abordagem pressupõe que o usuário já pos-
sua, no mínimo, uma boa noção da área para compreender os
detalhes de implementação e executar os exemplos em um
FPGA.

Figura 10. Página inicial do site FPGA4Fun.

Apesar de seu grande valor motivacional, a metodologia
do FPGA4Fun apresenta limitações para um ensino formal e
completo. Por se tratar de um compilado de projetos isola-
dos, em vez de uma trilha de aprendizado estruturada, pode
deixar os estudantes um pouco perdidos, sem um caminho
claro a seguir. A ausência de um percurso definido e de me-
canismos de avaliação formal dificulta a construção de um
conhecimento sistemático. Portanto, o aprendizado, embora
prático, corre o risco de tornar-se pontual e focado na re-
plicação de projetos, em vez de fomentar uma compreensão
profunda dos princípios de arquitetura dos FPGAs.

O site proposto constitui uma síntese inovadora dessas
duas vertentes. Em vez de focar no desenvolvimento de pro-
jetos práticos elaborados, ele visa garantir uma compreen-
são fundamental dos conceitos, oferecendo interatividade e
forte apelo visual por meio de analogias, ao mesmo tempo
em que fornece um caminho de aprendizado guiado, com va-
lidação de conhecimento. Com os conceitos fundamentais
introduzidos sobre os FPGAs, passou-se as etapas seguintes,
para compreender a arquitetura interna em detalhes e fazer o
unboxing dos principais passos das ferramentas de projeto.
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4 Mapeamento em LUTs
Esta seção apresenta uma proposta de ensino do problema de
mapeamento tecnológico de um circuito digital em um grafo
de LUTs que são os blocos básicos do FPGA. O laborató-
rio prático descrito nesta seção foi implementado no Google
Colab, utilizando-se as linguagens Python e Verilog.

A proposta visa demonstrar que o primeiro passo da
síntese é reescrever o circuito digital usando apenas LUTs.
Destaca-se que, neste trabalho, considerou-se apenas a im-
plementação de circuitos combinacionais.

Uma LUT é um bloco de memória reconfigurável de um
bit de largura comn entradas. Ela possui 2n linhas, formando
uma tabela verdade de uma função f(x1, x2, . . . , xn) de n
variáveis. Assim, é capaz de implementar qualquer função
lógica com até n variáveis.

O objetivo do laboratório é compreender como um cir-
cuito é descrito por LUTs e validar o mapeamento por meio
da execução em Verilog. A LUT é o componente básico do
FPGA, que consiste em um grande arranjo de milhares ou até
milhões de LUTs. Para implementar as LUTs, utilizaram-se
módulos de memória em Verilog. Para interligar as LUTs,
empregaremos uma descrição estrutural em Verilog, com vi-
sualização do grafo de LUTs usando o comando print_veri-
log do pacote CAD4U [Canesche et al., 2021].

O laboratório é composto por seis seções. A primeira
seção configura o ambiente, realizando a instalação do Ve-
rilog e dos pacotes complementares no Google Colab [Ca-
nesche et al., 2021]. A segunda seção apresenta um exemplo
de um somador de dois números a e b, cada um de 3 bits,
utilizando uma única memória Figura 11.

Figura 11. Somador de dois números de 3 bits implementado com um mó-
dulo de memória.

Qualquer circuito digital pode ser implementado usando
memória; entretanto, o tamanho da memória cresce exponen-
cialmente com o número de entradas. Os FPGAs resolvem
esse problema utilizando módulos menores de memória in-
terligados. Primeiro, ilustramos um exemplo simples, fácil
de entender e verificar: a soma de dois números a e b. Em
seguida, mostraremos como esse exemplo pode ser refinado,
substituindo um módulo maior por vários menores interliga-
dos.

A Figura 11 mostra a implementação usando uma única
memória, onde o endereço é formado pela concatenação das
entradas a e b. O endereço 1 corresponde a a = 0 e b = 1,
portanto o conteúdo armazenado que representa a soma será
a + b = 0 + 1 = 1 ou 0001 em binário. Já o endereço
24 (ou 011000 em binário) corresponde a a = 011 = 3 e
b = 000 = 0, portanto a soma será 3+0 = 3, como ilustrado
na Figura 11 e na Tabela 1.

As seções três e quatro do laboratório apresentam exem-
plos utilizando LUTs de 3 variáveis, equivalentes a memórias
de 8 linhas com 1 bit cada. A terceira seção demonstra como

Tabela 1. Exemplo de mapeamento da soma a+ b em memória
Endereço a b a+ b
(binário) (binário) (binário) (binário)
000000 000 000 0000
000001 000 001 0001
000010 000 010 0010
001000 001 000 0001
011000 011 000 0011

construir a tabela verdade de um multiplexador 2:1, que é um
circuito de 3 variáveis. A quarta seção ilustra como montar
o mesmo circuito do somador de 3 bits apresentado na seção
dois, agora utilizando LUTs de 3 entradas.

Figura 12. Somador de dois números de 3 bits com 6 LUTs: (a) Cobertura
das portas lógicas; (b) Circuito gerado pelo print_verilog; (c) Simulação.

O primeiro passo é o mapeamento do circuito, substitu-
indo conjuntos de portas lógicas com até 3 entradas por uma
LUT. A Figura 12(a) mostra um somador ripple carry de 3
bits, onde as portas lógicas podem ser cobertas por 6 LUTs
destacadas com retângulos pontilhados. A Figura 12(b) ilus-
tra a saída do comando print_verilog, que gera o esquemático
a partir do código Verilog.

Foram utilizados dois tipos de LUTs: LSi, que imple-
menta a função soma de 3 bits, e LCi, que implementa a
função do vai-um (carry). Este exemplo demonstra que é
possível decompor uma tabela em um grafo de tabelas me-
nores e mostra como as LUTs substituem as portas lógicas.
Em outras palavras, qualquer circuito digital pode ser imple-
mentado como um grafo de LUTs.

1 module l u t ( input [ 2 : 0 ] addr , output ou t ) ;
2 parameter f i l e n a m e = ” f i l e n a m e . t x t ” ;
3 reg [ 7 : 0 ] memory [ 0 : 7 ] ; // *** MEMORY ***
4 // READ
5 a s s i g n ou t = memory [ add r ] ;
6 endmodule
7 module fpga ( input [ 2 : 0 ] a , b , output [ 3 : 0 ] o ) ;
8 wire [ 2 : 0 ] c ;
9 l u t LS0 ({ a [ 0 ] , b [ 0 ] , 1 ’ b0 } , o [ 0 ] ) ;

10 l u t LS1 ({ a [ 1 ] , b [ 1 ] , c [ 0 ] } , o [ 1 ] ) ;
11 l u t LS2 ({ a [ 2 ] , b [ 2 ] , c [ 1 ] } , o [ 2 ] ) ;
12 l u t LC0 ({ a [ 0 ] , b [ 0 ] , 1 ’ b0 } , c [ 0 ] ) ;
13 l u t LC1 ({ a [ 1 ] , b [ 1 ] , c [ 0 ] } , c [ 1 ] ) ;
14 l u t LC2 ({ a [ 2 ] , b [ 2 ] , c [ 1 ] } , o [ 3 ] ) ;
15 endmodule

Listagem 1: Somador de 3 bits com 6 módulos de LUT-3
descrito em Verilog.
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Figura 13. Somador de dois números de 3 bits com 6 LUTs de 3 entradas
(k=3) gerado pelo ABC.

O código Verilog correspondente está apresentado na
Listagem 1, enquanto a Figura 12(c) exibe o resultado
da simulação realizada em Verilog. Para facilitar o uso,
empregou-se uma interface em Python, na qual o testbench é
gerado dinamicamente a partir de botões deslizantes (sliders)
que permitem inserir os valores de a e b. No exemplo, foram
aplicados os seguintes estímulos: 0+0, 3+0, 7+0 e 7+6,
com as respectivas respostas 0, 3, 7 e 13.

A quinta seção apresenta um terceiro exemplo de cir-
cuito: um contador de bits (bitcount). A entrada é um vetor
de 5 bits, e o circuito conta quantos desses bits são iguais a
1, resultando em valores entre 0 e 5. Esse circuito pode ser
implementado com 8 LUTs, aproveitando as LUTs de soma
e de propagação de vai-um.

A última seção trata de um caso avançado, no qual utili-
zamos o software de síntese lógica ABC [Brayton and Mish-
chenko, 2010] para ler qualquer circuito e mapeá-lo em um
grafo de LUTs. Apresentamos dois exemplos: o somador de
dois números de 3 bits e um selecionador de prioridade com
frutas, este último ilustrando também a codificação de obje-
tos e seu mapeamento em circuitos.

Primeiro, gerou-se a tabela verdade no formato PLA
utilizando-se um código em Python. O formato PLA, usado
pelo Espresso, descreve cada função lógica como uma lista
de termos do tipo produto. Cada linha contém, na primeira
coluna, os valores das variáveis de entrada (com 0, 1 ou -
para don’t care) e, após um espaço, uma coluna que especi-
fica quais funções de saída são ativadas por aquele termo.

Considere duas entradas (a, b) e duas saídas (f1, f2). O
formato PLA para este caso pode ser descrito como:

.i 2

.o 2
00 10
01 01
1- 11
.e

Nesse exemplo:

• A primeira linha (00 10) significa a = 0, b = 0, e ativa
apenas f1.

• A segunda linha (01 01) significa a = 0, b = 1, e ativa
apenas f2.

Figura 14. Somador de dois números de 3 bits com 6 LUTs de 4 entradas
(k=3) gerado pelo ABC.

Figura 15. Seletor de frutas com prioridade.

• A terceira linha (1- 11) significa a = 1, b indiferente,
e ativa f1 e f2.

Em seguida, um script no ABC faz a leitura do arquivo
PLA e gera a descrição equivalente em LUTs com K entra-
das. Como exemplo, utilizou-se o caso K = 3, no qual o
ABC encontra uma implementação com apenas 6 LUTs, re-
presentada como um grafo ilustrado na Figura 13. Nos vérti-
ces do grafo observa-se as funções que programam as LUTs
internamente.

O interessante é que o ABC possui diversas opções de
otimização e mapeamento. Basta alterar o valor de K = 4
para obtermos um novo circuito com LUTs de 4 entradas,
ilustrado na Figura 14. Os FPGA comerciais geralmente uti-
lizam valores de K variando entre 4 e 6, e algumas famílias
permitem LUTs de até 8 entradas.

O segundo exemplo é o seletor de frutas: banana, maçã,
laranja e abacaxi, codificados como 00, 01, 10 e 11, respecti-
vamente. Nesse seletor, a banana possui a menor prioridade
em caso de empate, enquanto o abacaxi possui a maior. A
Figura 15 mostra tanto a codificação das frutas quanto o cir-
cuito seletor, que recebe duas entradas (a e b) e produz como
saída a fruta vencedora, de acordo com a prioridade definida.

No exemplo, a entrada a recebe uma laranja e a entrada
b uma maçã. Como a laranja tem prioridade sobre a maçã,
ela aparece na saída. O estudante deve primeiro codificar a
tabela verdade correspondente e, em seguida, usar o ABC
para gerar o circuito e as LUTs.

Neste exemplo, realizou-se primeiro o mapeamento no
ABC para obter o circuito com portas lógicas. Em seguida,
solicitou-se ao ABC o mapeamento em LUTs de 3 entradas,
isto é, com K = 3. O resultado pode ser observado na
Figura 16(a), que mostra as portas lógicas. Utilizou-se co-
res para indicar como cada porta é mapeada em uma LUT.
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Figura 16. Seletor de frutas com prioridade: (a) Circuito com portas; (b)
Mapeamento em LUT K=3.

Observa-se que foram utilizadas duas LUTs com K = 3 e
duas LUTs com K = 2, pois nem sempre é necessário em-
pregar o valor máximo de K.

O problema de mapeamento é NP-completo, e o ABC
aplica heurísticas que realizam tanto a minimização quanto
a cobertura do grafo durante o processo de mapeamento.

Este laboratório ilustra o processo de geração do cir-
cuito e seu mapeamento em LUTs. Com exemplos didáti-
cos que utilizam poucas LUTs, o estudante já pode perceber
como a complexidade do problema cresce à medida que o
circuito se torna maior. Para casos com milhares ou até cen-
tenas de milhares de LUTs, torna-se claro por que o tempo
de execução das ferramentas aumenta significativamente.

Nas próximas seções, será apresentado o processo de
mapeamento das LUTs do grafo em LUTs físicas dentro do
FPGA. Para simplificar a explicação, trabalhou-se com gra-
fos reduzidos e simples que os circuitos reais, que podem
conter LUTs com muitas entradas. O objetivo é compreen-
der o processo de mapeamento físico, que envolve as etapas
de posicionamento e roteamento.

5 Posicionamento
Primeiro, apresentou-se o problema de posicionamento, que
dá sequência ao mapeamento tecnológico. O grafo de LUTs,
obtido a partir do mapeamento, precisa ser posicionado em
uma matriz de LUTs dispostas em linhas e colunas, buscando
minimizar as distâncias entre os nós conectados. Destaca-
se o problema de posicionamento é NP-completo, o que sig-
nifica que, para projetos maiores, a busca por uma solução
ótima pode levar de minutos a horas. Mesmo trabalhando
com exemplos de grafos simples em pequenas matrizes de
LUTs, o estudante começa a compreender como o arranjo de
LUTs que constitui o FPGA é ocupado para implementar um
circuito.

Para facilitar a compreensão dos processos de posici-
onamento e roteamento em matrizes FPGA, desenvoleu-se
uma série de ferramentas didáticas que rodam no sobre o Go-
ogle Colab. A ideia principal consistiu em criar um ambiente
interativo que permite estudantes visualizar, na prática, como
esses processos funcionam internamente em FPGAs.

Para construir as ferramentas visuais, utilizou-se o mo-
delo de linguagem ChatGPT-4.0, que auxiliou na geração dos

códigos. Todo o projeto foi implementado no Google Colab,
com código em JavaScript e o HTML/CSS para estruturar
e estilizar a interface de maneira responsiva, garantindo de-
sempenho suficiente para execução diretamente nos navega-
dores.

A ferramenta de posicionamento funciona da seguinte
maneira: primeiro, é gerado um grafo com nós distribuídos
aleatoriamente. Cabe ao estudante posicionar esses nós ma-
nualmente sobre a matriz do FPGA, utilizando as LUTs dis-
poníveis. A cada posicionamento, calcula-se a distância de
Manhattan entre os nós conectados, o que permite avaliar a
eficiência da alocação do grafo. Quando a posição de dois
nós adjacentes no grafo está correta, a aresta correspondente
muda para a cor amarela, sinalizando ao estudante que aque-
las LUTs estão posicionadas para minimizar a distância entre
elas.

Figura 17. Exemplo da interface da ferramenta de posicionamento mos-
trando a aresta a → d na cor amarela na matriz FPGA com distância de
Manhattan igual a zero.

Essa abordagem interativa, aliada ao uso de ferramentas
visuais e assistência de modelos de linguagem, permite que
o estudante compreenda intuitivamente a complexidade do
problema de posicionamento e comece a construir uma base
sólida para entender o roteamento e a ocupação da matriz de
LUTs em projetos reais de FPGA.

No exemplo da Figura 17, observa-se um grafo simples
com quatro nós (a, b, c e d) e suas conexões, posicionado
sobre uma matriz de LUTs de uma FPGA.

A aresta entre os nós a e d está colorida de amarelo, in-
dicando que essas duas LUTs são vizinhas na matriz e, por-
tanto, a distância de Manhattan entre elas é mínima, contri-
buindo para um custo total de conexão eficiente. As demais
arestas, como b−c e b−d, não estão amarelas, o que significa
que os pares de LUTs correspondentes não são vizinhos e a
distância de Manhattan ainda é maior, aumentando o custo
de interconexão.

O estudante deve interagir com a ferramenta arrastando
e reposicionando manualmente as LUTs b e c sobre a matriz
FPGA, buscando reduzir a distância das conexões. O obje-
tivo é fazer com que todas as arestas do grafo fiquem amare-
las, ou seja, que todos os nós conectados sejam posicionados
como vizinhos na matriz, minimizando o custo total do posi-
cionamento. Essa atividade permite compreender na prática
como o problema de posicionamento influencia a eficiência
do arranjo de LUTs em FPGAs. A Figura 18 ilustra o exem-
plo do grafo com o posicionamento ótimo na matriz de LUTs
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Figura 18. Posicionamento otimizado com distância de Manhattan igual a
zero.

Figura 19. Posicionamento e roteamento dos nós na matriz FPGA com
resolução visual.

simplificada para introduzir a arquitetura física do FPGA.

6 Roteamento
Depois do posicionamento, o usuário pode começar o rotea-
mento, esse processo é feito desenhando trilhas de conexão
sobre a trilha central da matriz, arrastando o mouse para criar
os caminhos, as conexões podem ser feitas passando por co-
nectores do tipo C e switches S, ou diretamente entre os co-
nectores e as LUTs que contêm os nós, quando uma conexão
é feita corretamente, a aresta no grafo muda para azul, indi-
cando que o roteamento está de acordo com o grafo original.
É possível apagar qualquer trilha criada clicando duas vezes
sobre ela, o sistema impede que o usuário crie conexões em
LUTs vazias, o que obriga a seguir uma lógica organizada.

O objetivo principal dessa ferramenta é permitir que o
usuário consiga, a partir de um grafo aleatório, realizar tanto
o posicionamento quanto o roteamento dos nós dentro da
FPGA, sempre respeitando as ligações originais e buscando
a menor distância de Manhattan quando possível igual à zero.
A aplicação ainda conta com botões para gerar novos grafos e
para visualizar possíveis soluções, tanto do posicionamento
quanto do roteamento.

Desse modo, ao final do processo de roteamento, o usu-

Figura 20. Interface proposta para o módulo de roteamento via switch bo-
xes.

ário consegue visualizar a correspondência entre as conexões
do grafo original e as trilhas traçadas na matriz FPGA, res-
peitando a lógica estrutural do sistema e as restrições de co-
nectividade impostas pelo ambiente simulado. A mudança
de cor das arestas para azul funciona como indicativo visual
da conformidade entre o grafo e o circuito desenhado, per-
mitindo ao estudante verificar imediatamente a correção das
conexões estabelecidas, essa etapa finaliza a proposta didá-
tica da aplicação, consolidando-se os conhecimentos sobre o
funcionamento interno de uma FPGA por meio de uma ex-
periência interativa e progressiva.

Como melhoria futura, pretende-se implementar na fer-
ramenta um módulo interativo dedicado ao roteamento por
meio dos switch boxes presentes na matriz FPGA, permi-
tindo ao usuário a compreensão prática de como esses ele-
mentos viabilizam a interligação entre pistas horizontais e
verticais. Diferentemente do roteamento atual, que conecta
diretamente as LUTs ou passa por conectores e switches sim-
plificados, essa nova etapa possibilitará explorar a flexibili-
dade do switch box e seu papel na escolha de caminhos alter-
nativos para otimizar a conectividade, reduzindo o congesti-
onamento e mantendo a eficiência do circuito.

A funcionalidade proposta consistirá na criação de ativi-
dades em que o estudante deverá conectar pontos específicos
utilizando unicamente as rotas disponíveis através dos switch
boxes, respeitando as restrições arquiteturais do FPGA. Se-
rão representadas topologias distintas como planar e Wilton
que influenciam diretamente a capacidade de completar as
conexões, estimulando o raciocínio sobre como a escolha da
topologia e do caminho impacta no resultado final. Ao pro-
por diferentes cenários com graus variados de complexidade,
será possível aproximar a experiência do aluno das condições
encontradas em arquiteturas reais, onde a tomada de decisão
no roteamento influencia tanto o desempenho quanto a via-
bilidade do projeto.

Essa abordagem permitirá também simular situações de
congestionamento, em que determinados caminhos estarão
indisponíveis, obrigando o usuário a buscar alternativas por
meio de trilhas menos diretas. Com isso, será possível de-
monstrar claramente como a flexibilidade (Fs) dos switch
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boxes afeta a capacidade de roteamento e como técnicas de
busca, como as utilizadas em algoritmos do tipo Maze rou-
ting ou Pathfinder, podem encontrar a solução ótima. Ao fi-
nal de cada desafio, a ferramenta poderá apresentar o trajeto
correto e compará-lo com a solução encontrada pelo usuário,
reforçando o aprendizado e consolidando-se a compreensão
sobre a importância dos switch boxes no processo de interco-
nexão do FPGA.

7 Trabalhos relacionados
O ensino tradicional de FPGAs consolidou-se como prática
central na formação em engenharia e ciência da computa-
ção, mas ainda apresenta limitações que dificultam a apren-
dizagem prática. A necessidade de dominar linguagens de
descrição de hardware, como VHDL e Verilog, impõe uma
curva de aprendizado acentuada aos estudantes, que frequen-
temente enfrentam obstáculos com a sintaxe e com o alto ní-
vel de abstração exigido no design digital. Além disso, a
dependência de infraestrutura laboratorial com placas físi-
cas restringe o acesso contínuo às atividades experimentais,
o que pode comprometer o envolvimento dos alunos e difi-
cultar a consolidação de conhecimentos práticos.

Enquanto esse cenário evidencia a complexidade do en-
sino convencional, surgiram iniciativas que buscam simpli-
ficar e democratizar o aprendizado de hardware reconfigu-
rável. O MiniFPGA [Moreno-Villalón et al., 2014] repre-
senta uma dessas tentativas, oferecendo um ambiente móvel
para a prática de conceitos de particionamento, roteamento e
uso de LUTs em arquiteturas FPGA reduzidas. Essa proposta
destaca-se por dispensar recursos laboratoriais físicos, favo-
recendo um aprendizado acessível e interativo. Entretanto,
por não ter sido projetada para escalabilidade e por ter sido
descontinuada, sua aplicação prática permaneceu restrita.

Em contraste, o VPR [VPR, 2025], componente cen-
tral do fluxo Verilog To Routing, adota uma abordagem mais
aprofundada e técnica. Sua interface gráfica baseada na bi-
blioteca EZGL possibilita a visualização detalhada da arqui-
tetura FPGA, do floorplan e dos estágios de posicionamento
e roteamento. Embora esse ambiente favoreça a análise vi-
sual e a depuração do fluxo CAD, ele se mantém voltado à
observação e não à experimentação direta, já que não per-
mite ao usuário executar manualmente o posicionamento ou
o roteamento. Assim, o VPR atua de maneira complementar
às abordagens educacionais ao oferecer uma visão técnica
avançada, porém sem a interatividade necessária ao ensino
introdutório.

De forma semelhante à busca por maior interação, o Di-
gitalJS [Materzok, 2019] emprega JavaScript para criar uma
interface gráfica que permite simular códigos em Verilog di-
retamente no navegador, favorecendo a visualização de cir-
cuitos digitais. Essa iniciativa aproxima-se de propostas que
exploram aspectos lúdicos, como o uso de programação em
blocos para o ensino de sistemas lógicos [Castro and Aze-
vedo, 2020]. Ainda que essas ferramentas ampliem a aces-
sibilidade do ensino de lógica digital, seu foco principal per-
manece em conceitos de nível de porta, sem abordar as etapas
internas do fluxo de síntese de FPGAs.

De modo complementar, trabalhos mais recentes [Ca-
nesche et al., 2021; Ferreira et al., 2024a,b] exploram o Go-

ogle Colab como ambiente de aprendizagem ativa para o en-
sino de sistemas digitais e arquitetura de computadores, uti-
lizando linguagens HDL e simulações interativas. Apesar
de promoverem autonomia e experimentação, essas iniciati-
vas não tratam diretamente da estrutura interna dos FPGAs,
o que abre espaço para propostas que tornem esse conheci-
mento mais acessível e visual.

Por outro lado, a introdução dos Modelos de Linguagem
de Larga Escala (LLMs) vem transformando o modo como o
ensino de linguagens HDL é conduzido. Ferramentas basea-
das em LLMs permitem que estudantes descrevam circuitos
em linguagem natural e recebam o código correspondente em
Verilog ou VHDL, encurtando a distância entre a formulação
da ideia e sua implementação [Chu et al., 2025; Thakur et al.,
2024]. Essa abordagem automatizada acelera o processo de
aprendizagem e reduz a dependência da familiaridade com a
sintaxe tradicional.

Além disso, os LLMs têm sido aplicados como agen-
tes tutoriais capazes de oferecer acompanhamento personali-
zado, simulações interativas e explicações adaptadas ao per-
fil do estudante. Enquanto iniciativas anteriores focavam em
ambientes estáticos ou parcialmente guiados, os LLMs pro-
porcionam uma aprendizagem dinâmica e contínua, com fe-
edback imediato e potencial de personalização. Estudos re-
centes [Rama and Truong, 2024; Du et al., 2023] apontam
que, quando utilizados em ciclos iterativos de validação, es-
ses modelos obtêm resultados consistentes até mesmo em
aplicações embarcadas em FPGAs. Dessa forma, observa-
se uma convergência entre metodologias tradicionais de en-
sino e novas abordagens mediadas por inteligência artificial,
fortalecendo o movimento em direção a experiências educa-
cionais mais acessíveis, interativas e integradas.

8 Conclusão

Através deste estudo, conclui-se que o FPGA Unboxing
representa uma contribuição significativa para o ensino in-
trodutório de FPGAs, ao tornar compreensíveis, interativa-
mente e acessível, as principais etapas do fluxo de síntese
mapeamento tecnológico, posicionamento, roteamento e ge-
ração do bitstream. Constatou-se que a abordagem proposta
cumpre o propósito de revelar os mecanismos internos tradi-
cionalmente ocultos pelas ferramentas de desenvolvimento,
proporcionando aos estudantes uma compreensão prática e
visual sobre o funcionamento do hardware reconfigurável.

Conclui-se que a estratégia didática adotada, baseada
em exemplos iterativos, analogias e recursos visuais, con-
tribui para reduzir a complexidade percebida pelos inici-
antes, promovendo uma aprendizagem ativa e significativa.
Verificou-se que a utilização do Google Colab como ambi-
ente de execução facilitou o acesso às atividades práticas,
permitindo que os estudantes experimentassem o processo
de síntese e implementação em FPGAs. Concluiu-se tam-
bém que a integração de modelos de linguagem de larga es-
cala (LLMs) demonstrou ser uma ferramenta eficaz na gera-
ção automática do código da interface gráfica da aplicação,
tornando o desenvolvimento ágil e ampliando o caráter inte-
rativo das experiências propostas. Essa integração reforça o
potencial da inteligência artificial como suporte pedagógico
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na criação de recursos voltados ao ensino de hardware.
Apesar das conclusões alcançadas a partir da análise

da literatura e dos resultados obtidos com a ferramenta,
pretende-se, em estudos futuros, aplicar o FPGA Unboxing
em contextos reais de ensino, buscando coletar feedback de
usuários e aprofundar a investigação sobre seus impactos pe-
dagógicos e sua eficácia na aprendizagem prática.

Por fim, compreende-se que o desenvolvimento deste
trabalho consolidou o entendimento sobre a relação entre te-
oria e prática no ensino de sistemas digitais, evidenciando
que abordagens visuais e interativas podem contribuir para
o fortalecimento da autonomia e da capacidade analítica dos
estudantes. Ainda que de caráter exploratório, o trabalho es-
tabelece uma base concreta para investigações futuras volta-
das à validação empírica da metodologia, com vistas a men-
surar seu impacto pedagógico em contextos reais de ensino
de engenharia.
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