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Abstract.
Computer organization and architecture teaching has historically been supported by didactic simulators, notably associ-
ated with the MIPS architecture, whose simplicity favored the understanding of fundamental concepts. However, the rise
of the RISC-V architecture, conceived as an open, modular, and extensible model, has reshaped the educational land-
scape, demanding new pedagogical approaches. Beyond being fundamental for the initial understanding of concepts such
as pipelining, memory hierarchy, and instruction execution, simulation also provides a means to explore multiple abstrac-
tion levels and validate designs against a formal reference model. This dual role reinforces conceptual learning and fosters
a more practical and applied educational experience. In this context, integration with simulation tools that provide sup-
port at multiple abstraction levels significantly enhances the exploration of fundamental aspects in the teaching–learning
process of computer organization and architecture, while also assisting in the design of complex digital systems. This
article presents a didactic–methodological approach that articulates different abstraction levels, ranging from functional
and RTL simulation to validation and testing, considering a reference model integrated with the tools. Such an approach
fosters interactive experimentation and customization of the RISC-V ISA and brings the teaching process closer to profes-
sional practice in computer engineering. A comparative analysis of existing simulators and a description of the proposed
methodology highlight that combining simulations at different abstraction levels strengthens student training, offering a
robust, modern, and contemporary learning ecosystem aligned with computing demands. Finally, the article discusses
the results of applying this teaching approach during one semester of the Computer Engineering program at UFPE.
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1 Introduction
Since the genesis of computer engineering, teaching com-
puter organization and architecture has been one of the essen-
tial pillars for training professionals capable of understanding
and designing digital systems at multiple levels of abstrac-
tion. Despite its relevance, it is an area that has historically
presented didactic challenges due to the gap between theoret-
ical formulation and its practical realization in real architec-
tures. In this context, simulators have been consolidated over
the past decades as a widely disseminated didactic strategy,
enabling students to explore, in an accessible and interactive
way, the internal functioning of processors, low-level instruc-
tion execution, pipeline organization, and memory hierarchy
principles.

Classical tools based on the MIPS architecture, such
as SPIM Larus [1990], MARS Vollmar and McIver [2005],
RARS Stanford [2019], and Jupiter Moraes [2020], have
played a crucial role in this process, allowing classroom prac-
tice with register visualization, program debugging, and ISA
exploration in a controlled environment.

However, although fundamental, such tools remain re-
stricted to the conceptual space of simulation, focusing on
the functional model, limiting themselves to reproducing ab-
stract models that, while useful for initial understanding, do
not provide students with the concrete experience of dealing

with a real computing system. In other words, simulation is
necessary but insufficient for consolidating deep and consis-
tent learning when it only addresses the verification of high-
level functionalities of the studied architecture.

The advent of the RISC-V architecture Waterman et al.
[2017], open, modular, and extensible in nature, has fostered
new pedagogical possibilities by allowing exploration in sim-
ulated environments and the analysis of non-functional as-
pects important in real hardware implementations. At the
same time, modern simulators have emerged — such as Ripes
Thor [2019], BRISC-V Mishra et al. [2019], WebRISC-V
Fisler [2020], and CompSim Esmeraldo et al. [2023] — that
expand the scope of didactic visualization and, in some cases,
offer support for FPGA synthesis, bringing learning closer to
the concrete space of physical implementation. This feature
is crucial, as it allows students to experience simulated be-
havior and the performance, limitations, and specificities of
architectures effectively implemented in reconfigurable hard-
ware.

Additionally, simulation tools that allow different ab-
straction models and consider non-functional aspects, such
as RTL level and timing, significantly complement the teach-
ing–learning process by bringing activities closer to real
hardware implementation. In this sense, traditional low-level
simulation tools such as ModelSim (Intel/Altera) Ramachan-
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dran [2007] have played a central role in the materialization
of digital projects, enabling students to implement, test, and
validate processors close to the real hardware level. Although
widely disseminated, such environments present complex
and often challenging interfaces for pedagogical use in the
early stages of learning. This reinforces the need for solu-
tions that reconcile the didactic simplicity of simulators with
the practical depth of synthesis tools, reducing the fragmen-
tation of the teaching–learning process.

Nevertheless, there remains a significant gap in the cur-
rent ecosystem: few tools integrate, in a cohesive manner,
the didactic clarity of simulation with the practical depth re-
quired at the lower levels to enable real hardware synthe-
sis. Thus, fragmented environments persist, forcing students
to move between multiple platforms, fragmenting the teach-
ing–learning process and hindering the consolidation of con-
cepts.

In light of this scenario, this work presents a didac-
tic–methodological approach for teaching computer organi-
zation and architecture centered on the RISC-V ISA. The
approach adopts a top-down perspective in which students
develop and test assembly programs in CompSim, then pro-
gressively advance toward understanding and implementing
the underlying microarchitecture in SystemVerilog. Comp-
Sim is extended to act as an integrative tool, supporting the
generation of artifacts such as MIFs (Memory Initialization
Files) Intel Corporation [2023], reference profiles, and the
standardized tb_top.sv testbench enables seamless com-
parison between functional simulation and RTL execution in
ModelSim. This workflow reduces fragmentation, allowing
students to experience the trajectory from ISA to microarchi-
tecture continuously and structured.

Furthermore, the article reports on applying this ap-
proach in the 2025.1 semester of the Computer Engineering
program at UFPE. It discusses the outcomes obtained and
highlights its effectiveness in reinforcing engagement and
conceptual understanding through incremental practice and
integrated validation. Finally, this work paves the way for
future integration that will enable timing-constrained simu-
lation and testing on a real FPGA platform, while consistently
maintaining the same validation strategy across all abstrac-
tion levels.

The text is organized as follows. The next section
presents the state of the art in teaching methodologies for
computer architecture and design. In Section 3, the method
adopted in the computer architecture course at UFPE that
motivated the proposal of this work will be presented. In
Section 4, we describe the proposed methodology in detail.
In Section 5, preliminary results on improving learning are
presented, and in Section 6, we present conclusions and fu-
ture work.

2 State-of-The-Art
The teaching–learning process in Computer Organization
and Architecture has historically been supported by the use of
didactic simulators, which allow the abstraction of the com-
plexity inherent to physical hardware while simultaneously
offering students a controlled environment for experimenta-
tion. The MIPS architecture has traditionally been consoli-

dated as a pedagogical reference due to its structural simplic-
ity, instruction set orthogonality, and broad adoption in clas-
sical textbooks. Environments such as SPIM Larus [1990],
MARS Vollmar and McIver [2005], RARS Stanford [2019],
and Jupiter Moraes [2020] have become central tools for aca-
demic practice, providing support for program editing, exe-
cution, and debugging, with features for visualizing registers,
memory, and execution flow. Although effective from a di-
dactic perspective, such tools present significant limitations
regarding ISA extensibility and support for contemporary ar-
chitectures. In recent decades, the emergence of the RISC-
V architecture, conceived as an open, modular, and extensi-
ble ISA, has reshaped the academic and industrial landscape
Waterman et al. [2017]. Unlike MIPS, whose licensing is re-
stricted to proprietary contexts, RISC-V enables free exper-
imentation, fostering the development of innovative simula-
tors. Within this context, tools such as Ripes Thor [2019],
BRISC-V Mishra et al. [2019], WebRISC-V Fisler [2020],
emulsiV Hoover [2020], and, notably, CompSim Esmeraldo
et al. [2023], have emerged, explicitly conceived for ped-
agogical purposes, with support for pipeline visualization,
memory hierarchy, and real-time interactivity mechanisms.
Such simulators align with the need for more dynamic didac-
tic environments, ensuring greater adherence between theory
and practice. In parallel, professional and research-oriented
simulators such as Spike Waterman and Asanović [2017],
the official simulator of the RISC-V Foundation, riscOVP-
sim Ltd. [2019], Whisper Inc. [2019], rv8 Hall [2018], and
gem5 Binkert et al. [2011] have gained ground. These tools
are characterized by high temporal accuracy and support for
multiple ISA extensions, enabling detailed microarchitec-
tural analysis, cache modeling, and integration with hard-
ware prototyping environments. While highly relevant for
scientific investigation, their configuration complexity and
lack of pedagogical interfaces make them less accessible for
introductory teaching. On the other hand, multi-ISA sim-
ulators such as QEMU Bellard [2005] and gem5 Binkert
et al. [2011] have been consolidated as versatile alterna-
tives capable of emulating heterogeneous architectures (x86,
ARM, RISC-V, among others) and supporting custom exten-
sions. Although valuable for advanced experimentation and
research prototyping, their steep learning curve and absence
of intuitive didactic resources distance them from the con-
text of basic academic instruction. The comparative analy-
sis summarized in Table 1 thus highlights the coexistence of
two fundamental axes: on one side, simulators designed for
didactics, and on the other, tools aimed at high-performance
research. However, a gap remains between these extremes,
particularly regarding reconciling pedagogical interactivity,
architectural completeness, and ISA customization capabil-
ity. This observation justifies and motivates the proposition
of innovative approaches, such as CompSim Esmeraldo et al.
[2023], which positions itself as a hybrid alternative, capable
of combining didactic simplicity with the flexibility and ex-
tensibility demanded by emerging architectures.
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Table 1. Comparative analysis of simulation tools for Computer Organization and Architecture education
Tool Arch. Main Purpose Educational Features ISA Extensibility Ease of Use
SPIM MIPS Introductory teaching Program execution, register and memory visualization Fixed ISA (MIPS) Low
MARS MIPS Introductory teaching Integrated IDE, debugging, graphical visualization Fixed ISA (MIPS) Low
RARS MIPS Classroom practice Integration with external projects (JavaFX), online use Fixed ISA (MIPS) Low
Jupiter MIPS Teaching Lightweight JavaScript simulator, browser-based Fixed ISA (MIPS) Low
Ripes RISC-V Teaching architecture Interactive visualization of pipeline and memory Extensible (RISC-V) Medium
BRISC-V RISC-V Design exploration CPU exploration toolbox, supports architectural changes Extensible (RISC-V) Medium
WebRISC-V RISC-V Online teaching Browser-based execution, no installation required Basic ISA (RISC-V) Low
emulsiV RISC-V Lightweight practice Simple simulator for RV32I instructions Restricted ISA (RISC-V) Low
CompSim RISC-V Hybrid (teaching and

practice)
Integrated graphical environment, Pipeline visualization, mem-
ory hierarchy, RTL/FPGA support

Extensible, educational
focus, Extensible (multi-
ISA)

Medium-Low

Spike RISC-V Reference simulator High accuracy, official RISC-V Foundation tool Full RISC-V support High
riscOVPsim RISC-V Research and prototyping Timing accuracy, hardware prototyping integration Multiple RISC-V exten-

sions
High

Whisper RISC-V Research (SiFive) Debugging and detailed analysis Extensible High
rv8 RISC-V Performance and debug-

ging
Fast simulation, debugging support Extension support High

gem5 Multi-ISA Advanced research Detailed modeling, caches, multi-level abstraction Highly extensible Very High
QEMU Multi-ISA Emulation and virtualiza-

tion
Focus on virtualization, not education Extensible (multi-ISA) High

3 Methodological Framework for a
Top-Down RISC-V Processor
Design Approach

Our proposal is based on a top-down approach, in which stu-
dents begin their learning journey in computer architecture
by understanding the RISC-V Instruction Set Architecture
(ISA), exploring it in the CompSim simulation environment
through the writing of assembly programs. They then ad-
vance to implementing a microarchitecture at the Register
Transfer Level (RTL), using SystemVerilog, which is vali-
dated through simulation with the ModelSim tool.

The pedagogical structure integrates theoretical and
practical activities, distributed over the semester in a total
workload of 90 hours, with 60 hours allocated to theoretical
classes and 30 hours to laboratory activities. The plan fore-
sees that, each week, four hours of theory are complemented
by two hours of practice, allowing concepts discussed in class
to be immediately applied and deepened in laboratory activ-
ities. It is worth noting that the division between theory and
practice is not rigid: specific topics required for carrying out
the practical activities may be introduced directly within the
laboratory context.

In the first stage of the course, the focus is on master-
ing the ISA, specifically the basic RV32I subset. Students
develop assembly programs proposed throughout the first
weeks, which progressively explore different instructions of
the set. The activities are structured to suggest and, in some
cases, restrict subsets of instructions, ensuring that students
become familiar with the detailed functioning of each op-
eration. To mitigate the risk that superficial use of genera-
tive artificial intelligence tools negatively impacts learning,
strategies are adopted such as requiring written explanations
about the functioning of each instruction used; applying short
oral tests so that students demonstrate their individual under-
standing during monitoring activities; and comparing differ-
ent solutions, encouraging students to justify their choice of
instructions and control structures.

Once students have consolidated their understanding of
the RV32I instruction set, they move on to the implementa-
tion stage. At this point, an initial RTL-level pipeline ver-
sion implemented in SystemVerilog is made available via a
GitHub repository. This version supports only a minimal

subset of instructions — BEQ, LW, SW, ADD, and AND —
to provide a functional but incomplete base that serves as a
starting point for incremental development.

From this point on, students carry out weekly deliver-
ables, each one responsible for implementing a new group of
RV32I instructions, following the established order:

• Week 1 – Arithmetic, Logic, and Shifts:
– R-Format: add, sub, sll, slt, sltu, xor, srl, sra, or,

and;
• Week 2 – Memory Access:

– L-Format: lb, lh, lw, lbu, lhu;
– S-Format: sb, sh, sw;

• Week 3 – Arithmetic, Logic, and Shifts with Imme-
diates:

– I-Format: addi, slti, sltiu, xori, ori, andi, slli, srli,
srai;

• Week 4 – Branches and Jumps:
– B-Format: beq, bne, blt, bge, bltu, bgeu;
– J-Format: jal, jalr;

• Week 5 – Upper Immediate Instructions and Halt:
– U-Format: lui, auipc;
– the pseudo-instruction halt.

This incremental flow allows students to gradually ad-
vance in the complexity of the instructions, starting with ba-
sic arithmetic and logic operations and progressing to mem-
ory instructions, conditional branches, and function calls.
In this way, students develop a deeper understanding of
the architectural implications of each instruction category,
strengthening their skills in implementing, debugging, and
validating a microarchitecture.

The entire functional simulation process is carried out
using the ModelSim tool. Each deliverable is accompanied
by a set of memory initialization files (MIF) generated by
CompSim, and reference files are also generated by Comp-
Sim, as explained in the next section. These artifacts enable
students to test their implementations in ModelSim, compar-
ing the RTL simulation results with the expected results ob-
tained in the CompSim simulator. This practice provides a
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standardized verification mechanism, guiding students’ anal-
ysis in cases of divergence and making the debugging pro-
cess more systematic and focused. Usually, the formats gen-
erated in the different learning stages are not standardized,
which makes the validation process more difficult for stu-
dents. The technique of comparing standardized output files
allows students, through a simple file comparison, to iden-
tify failure points that can then be debugged through more
detailed waveform analysis, for example. Furthermore, the
adopted approach enables an integrated verification flow, ex-
tending the same procedures to subsequent stages, such as
timing simulations and, later, implementation on reconfig-
urable hardware (FPGA).

4 Integrated CompSim Support for
the Top-Down Approach

Hardware development is challenging, mainly due to the
fragmentation of the tools used throughout the design flow.
For students, the difficulty is even greater, since in addition
to understanding the concepts of computer architecture, they
must also deal with the heterogeneity of platform specifica-
tions and learn how to operate each. The design flow in-
cludes: hardware description in languages such as VHDL or
SystemVerilog, simulators for functional validation, and spe-
cific environments for synthesis and later implementation on
an FPGA. Each stage has distinct interfaces and formats, sig-
nificantly increasing the learning load.

Our proposal seeks to mitigate this complexity by cen-
tralizing the processor design workflow in CompSim, which
serves as an integrating environment. Although external
calls to specialized tools are still required, CompSim ensures
that all results are presented in a standardized format, offer-
ing students a continuous environment for the development
flow and facilitating interoperability between tools. Figure 1
illustrates this process.

In Step 1, the student codes the application in RISC-V
assembly language using CompSim’s editor. Once the code
is generated, an iterative cycle begins between Step 2 (high-
level simulation inside CompSim) and Step 2.1 (program re-
finement and validation), until the execution matches the ex-
pected behavior.

After this stage, Step 3 generates essential files for the
next step, in which the processor is implemented in Sys-
temVerilog: (i) MIF files for initializing instruction and data
memories; (ii) reference profiles of memory and registers,
which serve as the basis for validating the RTL simulation re-
sults (golden files); and (iii) the tb_top.sv file, which acts
as the top-level entity of the SystemVerilog testbench, is re-
sponsible for instantiating the microarchitecture developed
in Step 4 and ensuring standardization in the generation of
memory and register profiles.

CompSim also provides direct support for running
ModelSim, which compiles and simulates the SystemVerilog
RTL microarchitecture. The output files obtained in Model-
Sim are generated in a standardized format, enabling their
comparison with the reference profiles. This process is illus-
trated in Steps 5 and 5.1, representing the iterative cycle of
simulation, validation, and correction of the microarchitec-
ture.

Finally, the proposed flow is extensible: in future ver-
sions, the exact mechanisms may be applied to timing sim-
ulations and, subsequently, to implementation on reconfig-
urable hardware. In this latter case, the memory and register
profiles could be obtained via dumping through the JTAG
interface, ensuring consistency of the verification process
throughout all project stages.

4.1 RISC-V RV32I Model for CompSim
CompSim Esmeraldo et al. [2023] is an educational simu-
lator designed to support the teaching of Computer Orga-
nization and Architecture by integrating assembly-level pro-
gramming and processors’ internal operation. It provides a
dedicated assembler and a simulation environment for the
RISC-V architecture, enabling students and researchers to
develop programs, observe the execution of instructions, and
analyze data flow across registers, memory, and functional
units. Conceived as a pedagogical tool, CompSim empha-
sizes accessibility and interactivity while maintaining tech-
nical accuracy, thereby bridging the gap between theoretical
concepts and practical experimentation in modern architec-
tures.

The processor implemented in CompSim adheres to
the RV32I specification, covering 37 core instructions dis-
tributed across the R, I, S, B, U, and J formats, in addition to
the pseudo-instruction halt, which signals the end of simula-
tion. This set encompasses arithmetic, logical, shift, mem-
ory access, conditional branch, and jump instructions, offer-
ing the essential foundation for understanding the RISC-V
architecture. Privileged instructions such as ecall, ebreak,
and CSR-related operations were intentionally omitted, as
the simulator was designed primarily for introductory edu-
cational purposes focused on the user-level ISA.

The correctness of the implementation was ensured
through the RISC-V Architecture Compliance Test SIG
RISC-V International [2023], made available by the RISC-
V Foundation. This suite contains thousands of test cases
that validate the proper generation of bytecodes and the ex-
pected functional behavior of the RV32I instruction set. The
CompSim processor passed 15,411 tests, confirming com-
pliance with the official specification and validating its relia-
bility as a teaching and experimentation tool. Such rigorous
conformance guarantees that students can trust the outcomes
of their experiments, as they accurately reflect the behavior
of real RISC-V processors.

CompSim was extended to include multiple simulation
models targeting different educational and analytical needs.
The single-cycle model executes one instruction per clock cy-
cle, supporting an initial understanding of the hardware–in-
struction relationship. The dual-cycle model refines this ap-
proach by splitting execution into two stages: instruction
fetch (retrieving the instruction from memory) and instruc-
tion execution (processing the fetched instruction), offering
students a clearer view of the separation between memory ac-
cess and computation. The cycle-accurate model introduces
further temporal fidelity by dividing execution into five clas-
sical stages (Instruction Fetch, Instruction Decode, Execu-
tion, Memory Access, and Write Back). A pipeline-enabled
cycle-accurate model enhances realism by allowing parallel
instruction execution, making it possible to study hazards
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Figure 1. Integrated CompSim Top-Down Approach Flow

addi x1,x0,16
addi x2,x0,32
halt

DEPTH = 65536; -- The size of memory in words
WIDTH = 8; -- The size of data in bits
ADDRESS_RADIX = DEC; -- The radix for address values
DATA_RADIX = BIN; -- The radix for data values
CONTENT -- Start of (address: data pairs)
BEGIN

000: 10010011; -- addi x1,x0,16
001: 00000000;
002: 00000000;
003: 00000001;

004: 00010011; -- addi x2,x0,32
005: 00000001;
006: 00000000;
007: 00000010;

008: 11111111; -- halt
009: 00000000;
010: 00000000;
011: 00000000;

END;

Figure 2. Example of Assembly code and corresponding MIF file generated
by CompSim.

and dependencies. Finally, the behavioral model abstracts
away timing considerations, executing all instructions con-
tinuously and providing a faster functional validation option.
This diversity of models makes CompSim a flexible platform
suitable for introductory education and advanced architec-
tural experimentation.

In addition to instruction execution, the CompSim as-
sembler provides direct support for generating Memory Ini-
tialization Files (MIFs) Intel Corporation [2023], which con-
tain the binary representation of both instructions and data to
be preloaded into RAM. These files are crucial in hardware
design flows, as they allow memory blocks in FPGA-based
implementations to be initialized with the program executed
by the RISC-V processor, ensuring consistency between sim-
ulation and hardware deployment. The generation of MIF
files is carried out by a Python script that performs a func-
tion analogous to that of an assembler: it translates RISC-V
assembly code into machine code, but in this case the output
is a MIF file that can be directly used in simulations. Fig-
ure 2 illustrates the structure of a simple MIF file generated
through this process.

RESET AT 5000
t=75000: x3 <= 0x00000000
t=85000: x4 <= 0x00000000
t=95000: x5 <= 0x00000000
t=145000: x10 <= 0x00000000
t=1355000: x3 <= 0x00000000
t=1365000: x4 <= 0x00000000
t=1375000: x5 <= 0x00000000
t=1425000: x10 <= 0x00000000
t=2635000: x3 <= 0x00000000
t=2645000: x4 <= 0x00000000
...

Figure 3. Excerpt of a register-write golden file produced by CompSim/-
ModelSim.

Furthermore, after each simulation run, CompSim en-
ables the generation of simulation profiles (golden files)
IEEE and Accellera Systems Initiative [2020], which cap-
ture the expected states of memory and processor registers.
Figure 3 illustrates the golden file corresponding to the write
operations performed on the processor registers during sim-
ulation. This artifact records the time-stamped updates of
register values, serving as a reference for validation and com-
parison with the expected behavior of the RISC-V implemen-
tation.

The tb_top.sv file plays a central role in the verifica-
tion flow, acting as the standardized top-level SystemVerilog
testbench that instantiates the developed microarchitecture.
In addition, it is responsible for exposing the interfaces of the
register file and memory — including read, write, data, and
addressing signals — so that they can be appropriately mon-
itored and the corresponding events recorded into standard-
ized golden files. These files are later used for comparison
after simulation, serving as the basis for validating the RISC-
V implementation. Figure 4 illustrates the tb_top.sv file,
showing the interface of the register file and memory made
available at the top level, the instantiation of the architecture
developed during the course, and the process of recording
register write operations into the golden file.

Together, these artifacts provide an integrated verifica-
tion framework, streamlining the comparison between high-
level simulation and RTL execution results, and supporting a
more robust teaching and debugging process.

5 Results of the Proposed Approach
The proposed approach was employed in the Computer En-
gineering program at UFPE during the 2025.1 semester,
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module tb_top;
// Clock and reset (context)
logic tb_clk, reset;

// Register file interface
logic [4:0] reg_num;
logic [31:0] reg_data;
logic reg_write_sig;

// Memory interface
logic wr, rd;
logic [8:0] addr;
logic [31:0] wr_data;
logic [31:0] rd_data;
...
// Microarchitecture instantiation
riscv riscV (

.clk(tb_clk),

.reset(reset),
// Register file monitoring
.reg_num(reg_num),
.reg_data(reg_data),
.reg_write_sig(reg_write_sig),
// Memory monitoring
.wr(wr),
.rd(rd),
.addr(addr),
.wr_data(wr_data),
.rd_data(rd_data)

);
...
always @(posedge tb_clk) begin : REGISTER

if (reg_write_sig)
$display($time ," REG Write:

reg[%d] value[%d] | [%d] |
[%b]\n", reg_num , reg_data ,
$signed(reg_data), reg_data);

end : REGISTER
...

endmodule

Figure 4. Excerpt of tb_top.sv showing the top-level interfaces of the
register file and memory, and the instantiation of the developed RISC-V mi-
croarchitecture.

in the courses Computer Organization and Architecture
(60h, theory) and Computer Organization and Architec-
ture Laboratory (30h, practice), both offered in the third
semester—the experiment aimed to evaluate the effective-
ness of the proposed approach in improving student perfor-
mance in these courses.

Adopting a top-down teaching approach, which gradu-
ally introduces the complexity of hardware architecture de-
velopment and is supported by an integrated tool, proved to
be a distinctive factor in the teaching and learning process.
By allowing students to begin with a clear understanding of
the functioning of an ISA and the interaction between hard-
ware and software in a modern computing system, while at
the same time centralizing simulation and artifact generation
in CompSim (despite limitations such as the need to exe-
cute ModelSim externally), it was possible to provide greater
clarity in the development flow and consistency in analyzing
the results obtained by the students. This standardization re-
duced the fragmentation of the process and provided learners
with a more guided environment for incremental debugging
and verification of their solutions.

Another relevant aspect was the adoption of weekly par-
tial deliverables, which effectively promoted student engage-
ment. This strategy allowed implementation difficulties to
be addressed gradually, avoiding the cognitive overload com-
mon when all modules are required at the final stages. The in-
cremental nature of the proposal encouraged continuous par-
ticipation and reinforced learning through practice.

The course was structured in two complementary

stages. In the first, the focus was on understanding what an
ISA is, including the discussion of concepts such as CISC,
RISC, and their differences, culminating in practical activ-
ities where students developed assembly programs for the
RV32I ISA of RISC-V and validated them on the CompSim
platform. These programs were designed as didactic exam-
ples that progressively explore the core features of the ISA,
including arithmetic and logical operations, conditional and
unconditional branching, as well as interaction with memory
and simple input/output devices. Through these exercises,
students practiced implementing loops, decision structures,
and data exchange routines, consolidating their understand-
ing of low-level programming and processor behavior. Sub-
sequently, students began to understand how this ISA is im-
plemented in hardware through the microarchitecture, delv-
ing deeper into this study in the theoretical classes. This stage
proved fundamental to understanding the hardware-software
interface of a modern computing system. From this point,
the exploration of the provided base microarchitecture be-
gan, based on the book Computer Organization and De-
sign RISC-V Edition Patterson and Hennessy [2020], which
served as a solid starting point for the proposed implemen-
tations. The first activities consisted of analyzing the func-
tional units that compose the supplied SystemVerilog imple-
mentation, drawing parallels with what had been discussed
in the theoretical classes. Students were encouraged to iden-
tify these functional units in the code, their current limita-
tions, the strategies used for pipeline implementation, and
the handling of hazards studied in class, and to propose ini-
tial ideas for expanding them to support the instructions spec-
ified in the RV32I ISA. At this stage, theoretical aspects of
the SystemVerilog language were also addressed during the
lab sessions, to facilitate students’ understanding of the pro-
vided code and consolidate the integration between theory
and practice.

During the semester, 40 students were enrolled simul-
taneously in both courses, with only one taking the labora-
tory course alone, as they had already completed the the-
ory course. The students were encouraged to form teams of
up to four members, forming 11 teams in total. The prac-
tical assignments were delivered weekly and contributed to
strong classroom attendance: the average was five absences
per week, approximately 12% of the total students. The fail-
ure rate did not differ from previous years, comparable to the
best results observed in the last eight semesters, as illustrated
in Figure 5.

It is important to emphasize that there were not two sep-
arate courses in the eight previous semesters: there was only
a 75-hour course in which theory and practice were addressed
within the same context. The final grade was composed of
both theoretical exams and practical projects. Historically,
it was observed that individual exam scores were lower than
group project scores, which may indicate students’ difficulty
in consolidating concepts uniformly, with this effect being
masked by collective assignments. In the 2025.1 semester,
the theory course was assessed exclusively through individ-
ual grades, while the project grade was used only in the labo-
ratory course. Figure 6 presents the approval and failure rates
for the theory and laboratory courses in the 2025.1 semester,
corroborating the previously observed pattern that perfor-
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Figure 5. Approval and Failure Rates over 9 Semesters: Comparing 8 Uni-
fied Editions with the 2025.1 Theory-Only Edition

mance in group-based practical activities tends to be supe-
rior to individual theoretical assessments. Nevertheless, it is
possible to observe that, even without including the project
grade in the composition of the theory course, the success
rate was similar to the best results from previous semesters.
Only three students had divergent outcomes between the the-
ory and laboratory courses, being approved in one and fail-
ing the other. Furthermore, the higher number of failures due
to absences in the laboratory course compared to the theory
course suggests that students who performed poorly on theo-
retical exams likely chose not to complete the group project.

Figure 6. Approval and Failure Rates in 2025.1: Comparing the Theory
Course and the Laboratory Course

The data are still limited in reaching definitive conclu-
sions. However, it is already possible to state that the appli-
cation of the approach did not negatively affect student per-
formance and apparently strengthened class attendance and
engagement through the gradual hardware development car-
ried out in the laboratory sessions. There are still points for
improvement and requirements that have not yet been imple-
mented, which will be incorporated and evaluated in the com-
ing semesters.

The metrics to be monitored include: approval rates,
failure rates due to grades and absences, student attendance
throughout the course, and the variation in scores on theo-
retical exams, which provide a more accurate measure of
students’ understanding of the content covered. These data
will provide a more solid basis for assessing the impact of the

proposed approach on learning and academic performance.

6 Conclusions and Future Works
The results of the proposed approach indicate that it did not
negatively affect student performance. On the contrary, it
contributed to increased participation, as evidenced by the
strong attendance in the laboratory sessions. The gradual
development of hardware, integrated with theoretical discus-
sions, fostered student engagement and allowed knowledge to
be built incrementally, strengthening their understanding of
the hardware–software interface in modern computing sys-
tems.

As future work, we intend to advance the integration of
the tools employed in the hardware development flow within
the CompSim environment, extend the integrated platform
and learning flow to include timing-constrained simulations,
and integrate the platform with FPGA-based execution. We
also plan to expand the implementation to other ISAs of the
RISC-V specification, such as RV32M, and to define and cap-
ture new metrics to monitor student performance throughout
the courses more accurately. Additionally, we are consider-
ing the adoption of alternative open-source simulation tools
to complement or replace proprietary solutions like Mod-
elSim, aiming to enhance accessibility, reproducibility, and
flexibility in academic environments.
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