
Submission date: 28/Apr/2017
Resubmission date: 22/Dec/2017
Camera ready submission date: 06/Mar/2018

Section: survey

1st round notification: 09/Apr/2018
Available online: 12/May/2018

Publication date: 30/Jun/2018

DBaaS Multitenancy, Auto-tuning and SLA Maintenance in
Cloud Environments: a Brief Survey

Vinicius da S. Segalin1, Carina F. Dorneles1, Mario A. Dantas2

1Departamento de Informca e Estattica - INE/CTC
Universidade Federal de Santa Catarina (UFSC)

Caixa Postal 476 – 88040-900 – Florianis – SC – Brazil

2Universidade Federal de Juiz de Fora (UFJF)
Juiz de Fora – MG – Brazil

vinicius.segalin@posgrad.ufsc.br, carina.dorneles@ufsc.br,

mario.dantas@ice.ufjf.br

Abstract. Cloud computing is a paradigm that presents many advantages to
both costumers and service providers, such as low upfront investment, pay-per-
use and easiness of use, delivering/enabling scalable services using Internet
technologies. Among many types of services we have today, Database as a Ser-
vice (DBaaS) is the one where a database is provided in the cloud in all its
aspects. Examples of aspects related to DBaaS utilization are data storage,
resources management and SLA maintenance. In this context, an important fea-
ture, related to it, is resource management and performance, which can be done
in many different ways for several reasons, such as saving money, time, and
meeting the requirements agreed between client and provider, that are defined
in the Service Level Agreement (SLA). A SLA usually tries to protect the cos-
tumer from not receiving the contracted service and to ensure that the provider
reaches the profit intended. In this paper it is presented a classification based
on three main parameters that aim to manage resources for enhancing the per-
formance on DBaaS and guarantee that the SLA is respected for both user and
provider sides benefit. The proposal is based upon a survey of existing research
work efforts.

1. Introduction

The service oriented computing paradigm known as cloud computing has been growing
quickly in the past years and changing the way computing is perceived and used by people
and corporations [1]. Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) are the most popular paradigms in the cloud nowadays
and are already consolidated on the market [2]. However, they can be extended to other
types, such as Database as a Service (DBaaS) [3]. The latter, in the same manner as
the traditional database, presents several complex questions to be worked on. In this

Cite as: Segalin, V. S., Dorneles, C. F. and Dantas, M. A. (2018). DBaaS Multitenancy, Auto-tuning and SLA Maintenance in Cloud
Environments: a Brief Survey. iSys: Revista Brasileira de Sistemas de Informa (Brazilian Journal of Information Systems),
11(2), 30-42.



31

scenario, the resources and performance can reach the ideal level for each situation using
the advantages the cloud provides, like elasticity, pay-per-use and low upfront investment.

The importance of considering performance and resource management aspects in
DBaaS and the need for a continuous research for effective solutions become clear in
the recent emergence of numerous initiatives and applications. One of the first initiatives
in DBaaS field worried about the emerging scenario of enterprise services using multi-
tenant databases [4]. At that time, the experiments showed database vendors did not
support well multitenancy and would need to enhance their products to better handle
new requirements regarding databases as a service. Years later, some works tried to find
the best way to manage resources among tenants [5, 6, 7], since DBMSs had already
consolidated multi-tenant products and handled well this model. Although researches
regarding multitenancy are far from complete, much work has been done with different
focuses to complement the model and improve DBaaS performance.

Cloud computing uses Virtual Machines (VMs) to host the hired service [9], and
many works [10, 11, 12, 13, 14, 15, 16, 17, 7, 18, 19] focus on finding different approaches
for virtualization, implying that it limits the performance serving as a bottleneck. Other
works [17, 20, 21, 7, 6, 5, 22] try to solve the issue of auto-tuning. These works state
that the workload coming from the cliente may vary at any time, and if the cloud is not
prepared for this variation, performance might decay, and as a consequence, the SLA will
get compromised, harming either the client or the provider.

Another situation that may cause problems to both sides of the cloud service is
the misunderstanding from the service contracting party (the costumer) [8, 23]. In this
case, one can hire a service that finds suitable for the occasion when, in fact, it is not, and
ends up hiring a service that does not meet the requirements and causes monetary loss for
client and server. In this scenario, the big issue is how to separate cloud users from the
details of compute resources behind a cloud management service.

This paper presents a survey of some important works on performance and re-
source management in DBaaS described in literature and provides a qualitative analysis
about them. As a result of our literature analysis, we present a brief discussion about
existing works and a taxonomy that explains their common and specific features. We ex-
pect the survey to be helpful to a researcher who is designing new approaches or who is
looking for a library of approaches.

The existing works are organized through a high level classification, in three cat-
egories we consider relevant to the topic. These categories are still in research and in
development to improve the way resources are attributed to each customer in order to
improve its performance and generate more profit to the provider. The first one, regard-
ing multitenancy, discusses some ways of handling multiple customers within the same
software instance, such as using private virtual machines to each tenant, or sharing the
machines, but isolating the tenants in a table level. The second category discussed in this
overview is the automatic tuning of the cloud database in order to achieve its maximum
potential with the least interference possible from the user. The last one is about different
types of approaches to guarantee SLA maintenance other than worrying with multitenancy
and auto-tuning, providing the user a higher-level SLA proposal, or performing query se-

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



32

Figure 1. Classification of resource management and performance for DBaaS

lectivity in order to obey SLA conditions. To illustrate the categories mentioned above,
we propose a taxonomy, presented in Figure 1, which will be used as a guide to present
the related approaches.

This paper is organized as following. Section 2.1 discusses multitenancy in order
to escape from the traditional VM approach. Some studies to improve auto-tuning and
prevent SLAs to be broken are discussed in Section 2.2. Section 2.3 presents different
approaches to guarantee SLA still not mentioned in previous sections. Section 3 discusses
challenges and suggests future research directions, while Section 4 concludes this survey.

2. Multitenancy, Auto-Tuning and SLA Maintenance
In this section, we present existing proposals that aim at developing solution on DBaaS
focusing on multitenancy architecture, autotuning task or SLA guarantee.

2.1. Multitenancy
Multitenancy is a software architecture in which a single instance of a software application
serves multiple customers, and each customer is called a tenant. There are several types
of multitenancy providing different levels of isolation[24, 4], and for each isolation level a
different abstraction will be given to the tenant. In this section, some of these approaches
will be addressed.

2.1.1. Private Virtual Machine

Using a private virtual machine to host database tenants provides total isolation among
them, since it virtualizes the machines where the databases are hosted on and it works for
the tenant as it had a physical machine for itself. Each virtual machine hosts only a single
database giving total isolation across tenants, isolating its data and resources, providing
security to it, with the drawback of performance overhead and waste when the system
is underutilized. Private VM can be used for each tenant in order to provide database
replicas more easily and address the challenges of provisioning shared-nothing replicated
databases in the cloud [25]. This scheme, where each tenant runs its own virtual machine,
is used by SmartSLA [5], a cost-aware resource management system to intelligently man-
age the resources in a shared cloud database system. Amazon RDS[26] uses this approach
to provide a fully-managed SQL database service. According to Amazon’s RDS pages,
Amazon Relational Database Service is a web service that makes it easy to set up, operate,
and scale a relational database in the cloud, and is one of the most used database services
in the world.

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



33

2.1.2. Private DB Instance

Similar to the traditional private VM approach regarding to isolation, with a private
database instance there may be multiple database instances within one single physical,
or virtual, machine, and each tenant uses one instance. CasJobs [10] is an example of
private database instance used to allow local analysis to several users, each one consid-
ered as a tenant, on a very large science database. Although it escapes from the private
completely isolated virtual machine approach, private database instance still has a high
performance overhead, limiting the system scalability. Also, it imposes high costs for
maintenance, data backup and hardware, since the number of tenants that can share the
same database is limited by the server. However, this approach presents some improve-
ments comparing to private VM in relation to resource sharing, as now the tenants are
hosted in the same machine and can use the same disk and processing power. A sim-
ilar approach is Private Database, or Shared Process, where multiple databases may be
created within a single instance, saving memory from starting many database instances.
This shared process approach is used by Relational Cloud [11] to provide efficient multi-
tenancy, elastic scalability and database privacy, problems that are not well addressed by
the main database cloud providers. Microsoft Azure SQL Database[27] uses this scheme
to provide a relational database service in the cloud based on Microsoft SQL Server, and
along with Amazon is one of the market leaders nowadays.

Another alternative is a framework [7] that helps balancing multitenancy with
performance-based SLOs (Service Level Objectives). This framework uses the Private
Database Instance approach, but concerning on how to schedule the tenants on each hard-
ware resource in order to guarantee both performance goals and cost reduction for the
provider. An improvement to the Shared Process approach is presented in [18], where a
single database server process hosts databases of different tenants. In this method, service
providers do not give any assurances to a tenant in terms of isolating its performance from
other co-located tenants, not assuring the performance required. In this case, they propose
a mechanism called SQLVM, which is an abstraction for performance isolation built on a
promise of reservation of key database server resources, such as CPU, I/O and memory.
Another work that proposes an enhancement to the Shared Process approach is described
in [19]. The proposal focuses on buffer pool memory, stated as an essential resource for
good performance of a tenant’s workload, since it serves as a cache of database pages.

2.1.3. Private Table

In this approach the tenants share the same database process, but each of them have their
own tables, either in the same schema or not, depending on the system architecture. Using
schemes has a lower complexity over not using them, since the SQL statements can be
the same, only redirecting to the correct schema, and also backup and migration scripts
can be reused. This approach is better than the previous ones at pooling memory, where
studies indicate that it can scale up to thousands of active tenants per server, a two orders
of magnitude improvement over the shared machine approach. Also, private table allows
tenants to share connection pools, enhancing the performance of executing commands

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



34

on the database, with the downside of vulnerability, leaving the security to be handled at
the application layer. Focusing on minimizing SLA violation penalties, [12] adopts this
scheme to propose a solution to the tenant placement problem to maximize the provider’s
profit, and consequently also the customer’s satisfaction. The work presented in [13]
proposes a virtualization advisor through the private table approach to assist with design
and configuration of the cloud such that machine utilization is optimized and service
quality is ensured.

2.1.4. Shared Table

For this approach all the tenants share the same database process and the same tables,
without schema separation. This is the cheapest of all the approaches presented, with the
lowest disk storage and the best pooling resources. It is the most scalable scheme and is
limited only by the number of rows the database can hold, but for every big advantage
there must be a drawback. For this approach security may be easily compromised if, for
example, one table becomes corrupted, causing all the tenants to be affected. Optimization
also becomes a big problem, since all the queries have to deal with data from all the
costumers. Force.com [14] uses the shared table model to deliver robust, reliable, Internet-
scale application to over 50 thousand organization and have become the global leader
in CRM. Megastore [15] is a storage system mixing the scalability of NoSQL to the
convenience of a traditional RDBMS, which uses the shared table scheme in order to
ensure strong consistency and high availability.

2.1.5. Other Approaches

An adaptive database schema design [16] is proposed to serve as a middle ground between
Private Table and Shared Table approaches. The authors state that the former has poor
scalability since it needs to maintain large numbers of tables, and the latter achieves good
scalability at the expense of poor performance and high space overhead, thus an adaptive
schema is needed to find a balance between them to achieve good scalability and high
performance with low space requirement.

Alternative mechanisms must be provided to avoid the performance drawbacks of
VM-based hard isolation, which means allowing for resource sharing when the system is
underutilized, but enforcing quotas when necessary. A solution would be a framework
called DBSeer [17], that automates the throttle of certain transactions or tenants, which is
already done by some database systems, but manually.

2.1.6. Multitenancy Remarks

Table 1 compares the approaches discussed in this section. The comparison features were
defined based on their importance in a multitenancy software architecture. The table
compares (i) the type of isolation of each approach, whether it is hard, medium or soft,
(ii) the complexity of implementation and deployment, (iii) the disk storage needed, (iv)

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



35

Table 1. Multitenancy approach comparison
Isolation Complexity Disk storage SLA Scheme Main contribution

Dolly Hard Low High PVM Database replication
[25] for big queries

SmartSLA Hard Low High PVM Resource allocation
[5] decision

Amazon RDS [26] Hard Low High PVM World leading
DBaaS

CasJobs Hard Low High PDB Allow local analysis
[10] for big queries

Relational Cloud Hard Low High/Medium X PDB Elasticity and
[11] privacy

Mic. Azure [27] Hard Low High/Medium PDB Competitive prices
SLOs [7] Hard Low High X PDB Performance and

cost reduction
SQLVM Hard Low High/Medium X PDB Reservation of key
[18] resources

Shared Buffer Hard Low High/Medium X PDB Buffer pool memory
[19]

PMAX [12] Medium Medium Medium X PT Maximize profit
DB Virtualization Medium Medium Medium X PT Service quality
[13]

Force.com Soft High Low X ST Robustness
[Weissman et al. 2009]

Megastore Soft High Low X ST Consistency and
[15] availability

Adap. Schema Medium Medium Low Other Scalability and
[16] high performance

DBSeer Soft Medium Medium X Other Resource sharing
[17] among tenants

PVM : Private Virtual Machine
PDB: Private Database
PT: Private Table
ST: Shared Table

if it minimizes SLA violation, and (v) its main contribution. Each approach and scheme
has its advantages and drawbacks, so the client should choose which one to use according
to his business needs.

2.2. Auto-tuning
Database tuning is the activity of making a database application run more quickly [28],
which means the database should response within the least possible time to the client/
application request. To make it possible, the database should be tuned in order to work
together with the request source in a manner that they can make the most of each other’s
capabilities. Therefore, parameters of the database and configuration of the operating
system and hardware must be frequently optimized, preferably in an automatic fashion.
In conventional DBMSs, DBAs have an important work on tuning the databases to achieve
their optimal performance since they have total access and control of it. However, on the

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



36

cloud, with its paradigm of reducing the client burden, neither the DBA nor the tenant
owner have this level of access to the service hired, making the problem of tuning much
harder. With this in mind, the following works propose solutions to auto-tuning in the
cloud to improve the database’s performance and reach both provider and client goals.

2.2.1. Virtual Machine Provisioning

The framework proposed in [20] continuously monitors the database workload, tracks the
satisfaction of the application-defined SLA, evaluates the condition of the action rules
and takes the necessary actions when required, either by scaling out or in. Horizontal
scalability, which means adding and removing computing resources according to the ap-
plication workload and requirements, together with the master-slave replication strategy,
where updates are sent to a single master node and lazily replicated to slave nodes, are
the keys to make the framework able to automatically configure the database service and
avoid SLA violation.

Current solutions for auto-tuning result in heavy performance impact during elas-
tic scaling, and since one of the main reasons for using cloud services is elasticity, this
should be solved. A technique for live migration in a multitenant database is thus pre-
sented, named Albatross [21], where the database cache and state of active transactions
are migrated to ensure minimal impact on transaction execution during migration.

A framework that shows the service provider, how much hardware to provision to
each tenant and how to schedule them based on the tenants workload, their performance
SLOs and the hardware that is available in the server, is described in [7]. With this, it is
promised to achieve hardware provisioning policy, which specifies how many machines
to provision for a given set of tenants, as well as tenant scheduling policy, that finds an
efficient mapping of the tenants to the provisioned machines in order to minimize the
overall cost of doing so.

A framework that addresses the problem of resource provisioning for databases in
the cloud is described in [6]. With a query workload, the framework is responsible for
continually optimizing the system’s operational cost based on the service provider’s pric-
ing model and the client’s QoS expectation. With this in mind, the proposed framework
identifies a set of infrastructure resources that satisfy the SLA and chooses the one that
will best suit the client’s needs. It also routes, at run-time, incoming queries to specific
machines in order to make the best out of reserved resources.

An SLA-driven dynamic strategy [22] aims to calculate the optimal number of
VMs for future requests subject to the unavailability probability, which is defined as an
SLA metric, below a desired threshold. Although this method is not specifically made for
DBaaS, it is suitable for the case. Experiments show that the strategy achieves its goal of
saving cost and guaranteeing SLA.

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



37

Table 2. Auto-tuning approach comparison
Dynamic
tuning

VM Resource Main contribution

DBseer X Resource sharing among tenants
[17]
Consumer-Centric X X Dynamically database tuning
[20]
Albatross [21] X X Lightweight elastic scaling
SLOs X Cost-optimization for performance
[7] SLOs
Generic framework X X Generic framework for cloud
[6] databases
SmartSLA X X Dynamic resource allocation
[5]
SLA-driven dynamic X X Minimizing the unavailability
[22] probability

2.2.2. Resource Provisioning

Some works, such as [17], state that the current solution for tuning databases in the cloud
is offering one or a small number of fixed configurations to the user to choose from,
which means the user will have to choose, before running his workload, one fixed config-
uration for the database without the possibility of personalizing it. Thus, they propose an
automated solution that achieves workload-specific DBMS tuning by observing multiple
workloads running on a pool of machines, extracting performance/resource characteris-
tics of each workload, and assigning them to a set of different tuned DBMSs, solving
workload-to-DBMS placement and DBMS tuning problems.

SmartSLA [5], a cost-aware resource management system, can intelligently man-
age the resources in a shared cloud database system. They developed two modules. The
first uses machine learning to find the profit margins for each client using different re-
sources available in the provider, such as CPU and memory. The second module dy-
namically adjusts the resource allocations to achieve the optimum profits. With this, it is
said that SmartSLA can achieve optimal resource allocation in a dynamic and intelligent
fashion.

2.2.3. Auto-tuning Scenarios

Table 2 summarizes the approaches discussed in Section 2.2. The comparison features
were defined based on their importance in cloud auto-tuning scenarios. The table shows
if (i) the approach dynamically tunes the database, whether it uses (ii) virtual machine or
(iii) resource provisioning to tune it, and (iv) the approach’s main contribution. Again,
it is the user’s choice to decide which one to use, specially regarding VM provisioning
(scaling out) or resource provisioning (scaling up).

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



38

2.3. SLA maintenance

In previous sections we have discussed two big areas of performance and resource man-
agement in DBaaS: multitenancy and auto-tuning. The former showed a few different
ways of dealing with multitenant databases in the cloud, each of them with different pro-
posals and benefits. The latter talked about ways of tuning the database in the cloud in an
automatic fashion with different objectives, but focusing on guaranteeing SLA. This final
section of the survey addresses different types of approaches also to guarantee SLA, but
in alternative and innovative ways.

2.3.1. Higher-level SLA

A new interface to change the way the client interacts with the provider and chooses
the resources [8] is proposed because, as the authors have stated, the customer’s lack of
knowledge usually results in a poor choice of resources causing problems for himself and
for the provider. For instance, the wrong choice may harm the provider through waste of
resources and financial loss. The client, on the other hand, may suffer with the SLA not
being complied, having a poor performance for his data. To avoid this kind problem due
to misunderstanding they propose a new interface where the client provides the database
schema and basic statistics, and as return their approach shows which kind of query the
client will be able to request with its monetary cost and runtime.

Bazaar [23], similarly to the previous approach, tries to stop the client from mak-
ing bad decisions regarding the resource choice. The main goal is avoiding resource
waste, so the provider will be able to accept future requests from other tenants. In this
approach the clients submit the specification of their jobs and high-level goals, such as
the job completion time and/or desired cost. The framework will then provide a set of
resource combination that obey the SLA and choose, among them, the one that suits bet-
ter the provider. With this, the client is benefited since the use is simplified and more
intuitive, and the provider has a higher profit.

2.3.2. Query Selectivity

An admission control framework named ActiveSLA [29] allows DBaaS providers,
through a prediction module, to estimate the probability for a new query to finish the
execution before its deadline. Then, based on that, a decision module decides whether
or not to admit the given query into the database system. With this, it is said that Ac-
tiveSLA is able to make accurate and profit-effective admission control decisions to help
the provider to meet the SLA.

iCBS [30] is an optimization of an existing scheduling algorithm called CBS,
which is responsible for making online decisions regarding query scheduling. iCBS can,
thus, help the provider to handle the highly demanding query volumes presented in the
cloud from diverse customers and schedule them in order to minimize the SLA cost.
iCBS takes the query costs derived from the service level agreements (SLAs) between the
service provider and its customers into account to make cost-aware scheduling decisions.

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



39

A vision and initial design for a new workload management framework is pre-
sented in [31], which offers a new grammar to capture performance goals and constraints
for data processing applications. With this new grammar, called XCLang, the authors pro-
pose an extensible query admission control that decides which queries should be allowed
in for execution, aiming to reduce the chance of overload. After the query execution is
allowed by the admission control, query scheduling is responsible for minimizing SLA
violation by routing the queries for execution in different database servers.

Table 3. SLA maintenance approach comparison
Higher-level SLA Resource Query Selectivity Main contribution

Myria [8] X Intuitive interface
Bazaar X X High-level goals to
[23] resource allocation

ActiveSLA X Avoid query rejection
[29] scheduling

iCBS [30] X Optimize CBS
SLA-Driven X Query admission and
[Stamatakis et al. 2014] scheduling

2.3.3. SLA Maintenance Scenarios

In Table 3 we summarize the approaches presented in Section 2.3. The comparison fea-
tures were defined based on their importance in SLA maintenance scenarios. It shows
if the approaches (i) propose a new interface for the service, (ii) optimize resource se-
lection, use (iii) query selectivity, and (iv) their main contribution. The works presented
in this section propose different approaches that could be combined to meet the user’s
requirements, thus one should not need to choose between one of them exclusively.

3. Challenges and Perspectives
Despite performance and resource management is one of the main concerns when it comes
to cloud services, there are several research gaps in this area. Therefore, in this section
we highlight some of the gap aspects.

• Higher-level SLA: as already mentioned in this paper, customers tend to choose
resources badly for their databases in the cloud. Some works [17, 8, 23] point
out this problem and propose solutions, but we consider this matter has not yet
been fully addressed and is a promising challenge, not only for DBaaS, but for
all the other cloud services. Also, as seen in Table 3, no approach proposes a
solution for the problem mentioned above using query admission control or any
other solution for enhancing the performance, thus we consider this a challenge
that can be addressed in the future.

• Auto-tuning: another theme discussed in this paper, we consider auto-tuning a
key task that still has a lot to progress. As stated before, the customer has few
or no access to administrative tasks in a database as a service, such as resource
provisioning and performance control, so they all need to be automated to deal

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



40

with the challenges the cloud benefits propose, such as resource elasticity and
multitenancy. Table 2 shows us dynamic tuning is hardly achieved with resource
provisioning. An idea for the future might be finding an approach that dynamically
tunes the database by provisioning VMs and resource to the tenants as they need.

• Green Cloud: cloud computing can offer energy saving in the provision of com-
puting and storage services [32] by slowing down CPU speeds, turning off entire
machines and scheduling jobs efficiently, for instance, but the constant need for
resources and better performance has become a challenge for energy-aware ser-
vices. Knowing that saving energy is a very important task not only for cloud
services, but for every activity in our lives, this is an important field that must be
addressed in the near future.

• Resource reservation: the cloud can give us, sometimes, a false impression
of endless resources due to the high processing power and high availability the
providers have. This is not true, though, and users must take that into account be-
fore taking some decisions, such as changing their workload dramatically without
previous warning. When the workload variation is predictable, users can reserve
resources for the moment they will need them, as made by [33, 34, 35].

There are many other challenges regarding DBaaS, mostly non-related to our focus in this
paper, such as security and data management. Researches like [36, 37] expose those and
many other challenges to the future.

4. Conclusions and Future Research

This research work presented a brief survey, and a classification proposal, aiming at pro-
viding a scenario awareness related to parameters, such as multitenancy, auto-tuning and
SLA maintenance. These parameters may improve considerably the performance and the
resource management of DBaaS in cloud configurations taking into account the point of
view from both users and providers. Performance and resource management are impor-
tant questions that must be well addressed in order to have a fully optimized application
running on a database, and when it comes to Database as a Service these questions are
even more important, considering the power the cloud provides. Thus, this survey pro-
poses a taxonomy that covers a few areas to clarify the readers and propose a summary
of what has been done in academy to help service providers and customers to take full
advantage of what the cloud can offer regarding resource management and performance.

References

[1] D. Puthal et al. Cloud Computing Features, Issues, and Challenges: A Big Picture. In In-
ternational Conference on Computational Intelligence and Networks (CINE), 2015,
pp. 116-123.

[2] I. Hashem et al. The rise of "big data" on cloud computing: Review and open research
issues. In Information Systems, Volume 47, January 2015, pp. 98-115.

[3] D. Agrawal et al. A. Big data and cloud computing: new wine or just new bottles?. In
Proceedings of the VLDB Endowment, 2010, pp. 1647-1648.

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



41

[4] D. Jacobs et al. Ruminations on multi-tenant databases. In Datenbanksysteme in Business,
Technologie und Web (BTW), 2007, pp. 514-521.

[5] P. Xiong et al. Intelligent management of virtualized resources for database systems in
cloud environment. In Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering (ICDE). 2011, pp. 87-98.

[6] J. Rogers et al. A Generic Auto-Provisioning Framework for Cloud Databases. In Pro-
ceedings of the 5th International Workshop on Self-Managing Database Systems
(SMDB), 2010.

[7] W. Lang et al. Towards Multi-tenant Performance SLOs. In IEEE 28th International Con-
ference on Data Engineering, 2012, pp. 702-713.

[8] J. Ortiz et al. Changing the Face of Database Cloud Services with Personalized Service
Level Agreements. In Proceedings of the Conference on Innovative Data system
Research (CIDR), 2015.

[9] L. Wang et al. Scientific Cloud Computing: Early Definition and Experience. In ‘10th
IEEE International Conference on High Performance Computing and Communica-
tions (HPCC), 2008, pp. 825-830.

[10] W. O’Mullane et al. Batch is Back: CasJobs, Serving Multi-TB Data on the Web. In
Proceedings of the IEEE International Conference on Web Services (ICWS), 2005,
pp. 33-40.

[11] C. Curino et al.. Relational Cloud: A Database Service for the Cloud. In CIDR, 2011, pp.
235-240.

[12] Z. Liu et al. PMAX: tenant placement in multitenant databases for profit maximization.
In Proceedings of the 16th International Conference on Extending Database Tech-
nology (EDBT), 2013. pp 442-453.

[13] T. Kiefer et al. Private Table Database Virtualization for DBaaS. In Proceedings of
the 2011 Fourth IEEE International Conference on Utility and Cloud Computing
(UCC), 2011, pp 328-329.

[14] C. Weissman et al. The design of the force.com multitenant internet application develop-
ment platform. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data (SIGMOD), 2009, pp. 889-896.

[15] J. Baker et al. Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In CIDR, 2011, pp. 223-234.

[16] J. Ni et al. Adaptive Database Schema Design for Multi-Tenant Data Management. In
IEEE Transactions on Knowledge and Data Engineering, 2014, pp. 2079-2093.

[17] C. Curino et al. DBSeer: Resource and Performance Prediction for Building a Next Gen-
eration Database Cloud. In CIDR, 2013.

[18] V. Narasayya et al. SQLVM: Performance Isolation in Multi-Tenant Relational Database-
as-a-Service. In CIDR, 2013.

[19] V. Narasayya et al. Sharing buffer pool memory in multi-tenant relational database-as-a-
service. In Proc. VLDB Endow, 2015, pp. 726-737.

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



42

[20] L. Zhao et al. A Framework for Consumer-Centric SLA Management of Cloud-Hosted
Databases. In IEEE Transactions on Services Computing, 2015, pp. 534-549.

[21] S. Das et al. Albatross: lightweight elasticity in shared storage databases for the cloud
using live data migration. In Proc. VLDB Endow, 2011, pp. 494-505.

[22] Y. Ran et al. SLA-driven dynamic resource provisioning for service provider in cloud
computing. In IEEE Globecom Workshops (GC Wkshps), 2013, pp. 408-413.

[23] V. et al. Bridging the tenant-provider gap in cloud services. In Proceedings of the Third
ACM Symposium on Cloud Computing (SoCC), 2012, 14 pages.

[24] F. Chong et al. Multi-Tenant Data Architecture [online]. In
https://msdn.microsoft.com/en-us/library/aa479086.aspx. Accessed: October
2016.

[25] E. Cecchet et al. Dolly: virtualization-driven database provisioning for the cloud. In Pro-
ceedings of the 7th ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments (VEE), 2011, pp. 51-62.

[26] Amazon Relational Database Service (RDS) [online]. In https://aws.amazon.com/pt/rds.
Accessed: October 2016.

[27] Microsoft Azure [online]. In https://azure.microsoft.com. Accessed: October 2016.

[28] D. Shasha et al. Database Tuning: Principles, Experiments, and Troubleshooting Tech-
niques. In The Morgan Kaufmann Series in Data Management Systems. 2002.

[29] P. Xiong et al. 2011. ActiveSLA: a profit-oriented admission control framework for
database-as-a-service providers. In SOCC, 2011, 14 pages.

[30] Y. Chi et al. iCBS: incremental cost-based scheduling under piecewise linear SLAs. In
Proc. VLDB Endow, 2011, pp. 563-574.

[31] D. Stamatakis et al. SLA-driven workload management for cloud databases. In Interna-
tional Conference on Data Engineering Workshops (ICDEW), 2014, pp. 178-181.

[32] J. Baliga et al. Green Cloud Computing: Balancing Energy in Processing, Storage, and
Transport. In Proceedings of the IEEE, 2011, pp. 149-167.

[33] E. Gomes et al. An Advance Reservation Mechanism to Enhance Throughput in an Op-
portunistic High Performance Computing Environment. In IEEE 13th International
Symposium on Network Computing and Applications (NCA), 2014, pp. 221-228.

[34] H. He. Virtual resource provision based on elastic reservation in cloud computing. In
International Journal of Networking and Virtual Organisations, 2015, pp. 30-47.

[35] D. Funke et al. Towards truthful resource reservation in cloud computing. In 6th Interna-
tional Conference on Performance Evaluation Methodologies and Tools (VALUE-
TOOLS), 2012, pp. 253-262.

[36] C. Abadi et al. The Beckman Report on Database Research2014. In SIGMOD, 2014, pp.
61-70.

[37] Q. Zhang et al. Cloud computing: state-of-the-art and research challenges. In Journal of
Internet Services and Applications, 2010, pp. 7-18.

iSys: Revista Brasileira de Sistemas de Informa (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/


