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AbstractDeep features have outgrown hand-sketched features in many applications. The availability of pre-trained
deep feature extractors helps to overcome one of the deep learning main drawbacks, which is the need for large vol-
umes of data for training. Multiple Instance Learning (MIL) has become an attractive solution for video surveillance
literature once it allowsworkingwithweakly labeled bases. This work evaluates a video anomaly detection approach
based on the MIL paradigm combining deep features with shallow Neural Networks. For computational efficiency,
we apply Principal Component Analysis (PCA) for dimensionality reduction before classification. We performed
the experiments from a set of I3D (Inflated 3D) features, which corresponds to the ShanghaiTech benchmark dataset,
and the MLP and SVM shallow classifiers achieved competitive results.
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1 Introduction

The huge amount of video data, generated by a large num-
ber of surveillance cameras in different locations worldwide,
makes human monitoring efforts more challenging. Man-
ual surveillance can also become a tedious and erroneous
activity, which motivates the need for automatic monitor-
ing approaches. Law enforcement agencies have limitations
in capturing or avoiding abnormal activities due to monitor-
ing manual limitations. Once unusual events occur inconsis-
tently andwith low probability in real-world surveillance sce-
narios, the manual searching of these ones in massive video
streaming is a difficult task. Various anomaly detection tech-
niques can suffer from high false alarm rates, showing lim-
ited performancewhen they need to deal with real-life scenar-
ios. Anomaly detection based on deep learning algorithms is
comparatively reliable in decision making and is also able to
reduce human laborious activities. Ullah et al. [2021].
Automated Surveillance Systems primarily aim at detect-

ing suspicious or unusual activities, behaviors or irregular
events in a scene. Such systems implicitly assume that ca-
sual activities should be anomalous because they are poten-
tially suspicious Roshtkhari and Levine [2013]. In addition,
surveillance systems provide functionalities that allow oper-
ation by autonomous systems or without human intervention.
They also enable the detection and anticipation of events or
object behaviors in order to generate alerts for unexpected ac-
tivities. The video surveillance area is multidisciplinary, in-
volving other research fields such as pattern recognition and
analysis, signal processing, distributed systems, and commu-
nications. Video security applications have increasingly in-
tegrated advances in computer vision, signal processing, and
artificial intelligence. The main purpose of applied research
in video surveillance has been to move towards the interpre-
tation of video scenes, observation, and prediction of objects

in a scene based on captured information by cameras Shidik
et al. [2019]. The use of video surveillance cameras has been
widespread in a variety of places, such as streets, intersec-
tions, banks, and shopping malls.
Anomaly detection is a crucial task in many domain appli-

cations, such as intrusion detection, frauds, and video surveil-
lance Li et al. [2021]. The manual processing of the infor-
mation produced by surveillance cameras demands exces-
sive manpower, which makes it relevant to automate video
anomaly detection Kamoona et al. [2020]. Due to the sub-
jectivity in anomalies definition, it may be difficult to spec-
ify once it depends on the location and situation and varies
widely in content and duration Wan et al. [2020]. Context
understanding is fundamental since an anomalous activity in
a given occurrence can be normal in another one Rao et al.
[2017]. A rare situation denotes an anomalous event, so it
has a low occurrence probability among most normal events.
This fact makes the obtention of anomalous representants a
difficult task since most of the data reflect normal behavior
patterns Rao et al. [2017]. The binary and unary classifica-
tion paradigms are typically used in video anomaly detection
approaches presented in the literature.
Weakly supervised learning mitigates the difficulties as-

sociated with the instance labeling task, which is a laborious
stage during the construction of predictivemodels. For exam-
ple, an individual can take a surveillance video and classify
each frame as abnormal or normal, as illustrated in Figure 1.
This paradigm is usually formulated as a multiple instance
learning problem (MIL) Wan et al. [2020]. MIL is a useful
approach, especially in situationswhere the knowledge about
label categories and training examples are incomplete Ali
and Shah [2008]. In MIL, there are bags which contain mul-
tiple instances instead of individual ones to represent each
pattern in a dataset. A bag could have normal or anomalous
labels and they are used to build a predictive model with an
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appropriate machine learning technique, as illustrated in Fig-
ure 2. Recent works have shown the performance efficiency
of the MIL approach in detection and recognition tasks Tian
et al. [2021].

Figure 1. Frame level Video Labeling: Each frame is labeled individually
as normal or anomalous

The extraction of representative characteristics from orig-
inal data is an essential aspect for the adequate performance
of anomaly detection methods Ribeiro et al. [2018]. Hand-
crafted features can suffer from limited adaptability, once
they can be very representative in some scenarios and not
perform well in other ones. Their design specification is also
a limiting factor, once researchers usually project these fea-
tures for a specific purpose, such as the use of motion and
appearance information to represent the main characteristic
of a given scene Al-Dhamari et al. [2020].
Deep learning approaches have achieved remarkable re-

sults in different application domains, such as image classi-
fication, object detection, voice processing, and anomaly de-
tection Pawar and Attar [2019]. Unsupervised deep learning
methods have been applied for model learning and feature ex-
traction once distinct spatiotemporal handcrafted attributes
(such as color, optical flow, and texture, commonly used in
anomaly detection procedures) do not produce good general-
ization Kamoona et al. [2020]. Researchers proposed many
deep learning-based classification methods and feature ex-
traction approaches in recent years Perera and Patel [2019].
The construction of a deep learning model from scratch

demands high amounts of data, processing time, and compu-
tational resources, besides the fact that annotation of massive
data is costly and time-consuming. To deal with these chal-
lenges, the transfer learning concept allows the use of a CNN
network built on a particular dataset for a specific task and
then fine-tune this model for a new task in a different scope
Al-Dhamari et al. [2020]. Different studies have used deep
features to detect anomalous activities in videos Ullah et al.
[2021]. Basically, researchers could implement the concept
of transfer learning by updating the weights of an original
pre-trained network with new training datasets by continu-
ous backpropagation, or by using the pre-trained network as
a deep feature extractor by replacing the final fully connected
layer by a new classifier algorithm Al-Dhamari et al. [2020].
The high layer activations of convolutional neural network
architectures have proved to be strong visual features so re-
searchers have investigated the use of CNN-based represen-
tations for image and video for many tasks such as video
summarization, classification, and video and image retrieval
Otani et al. [2016].
Support vector machine (SVM) is extensively used in

many applications, such as regression analysis, outlier detec-
tion, and statistical classification, and is considered an ubiq-
uitous method in the machine learning community. SVM
is able to solve linear and nonlinear classification problems
by the use of various kernel functions. SVM requests very
few patterns for training, and combines good training impact

and good detection accuracy for new examples with the same
characteristics during the test step Al-Dhamari et al. [2020].
In our study, we consider anomalous activity detection as

a binary classification problem in which deep features con-
taining visual and temporal information are fed into a ma-
chine learning supervised estimator to make it learn about
the difference between abnormal and normal activities. We
applied the widely used supervised machine learning classi-
fiers SVM (Support VectorMachine) ? andMLP (Multilayer
Perceptron) ? algorithms. We applied the MIL approach,
so the training phase uses only video labels. We construct
and evaluate our approach with a previously preprocessed
and publicly available set of deep features extracted with
deep neural network Inflated 3D (I3D) for the benchmark
dataset ShanghaiTech. We employ the Principal Component
Analysis (PCA) method as a linear manifold approach for
dimensionality reduction and performance enhancement of
anomaly detection models.
Our proposal mitigates existing challenges in video

anomaly detection. Firstly, to deal with subjectivity inher-
ent to video anomaly definition and the difficulties in dis-
tinguishing normal and anomalous patterns (due to noise,
variations, and low interclass variance), we employ transfer
learning capabilities from the use of pre-processed features
extracted from a deep network for better representativeness.
To build predictive models robust to sparsity existing in the
used video anomaly dataset, we maintain the proportional-
ity between training and testing partitions as the original pro-
cessed dataset. Since anomalous behaviors are diverse, we
estimate 95% confidence intervals over randomized training
data to guarantee the appropriate choice of the best-evaluated
models trained over diversity on training data. Finally, label-
ing video data is a laborious activity for humans, mainly in
massive video data. Multiple Instance Learning sounds con-
venient to lead with the incomplete knowledge about video
training data.
The contributions of our proposed research can be summa-

rized as follows:

• Present a performance comparison between a gradi-
ent descent-based optimization technique (MLP) and
a quadratic programming optimization-based method
(SVM) for the purpose of abnormal detection. We evalu-
ate the generated models from distinct metrics and with
a high confidence level of 95% for the considered per-
formance metrics.

• Combine a non-linear SVM classifier and the represen-
tation power of I3D deep features to build a robust and
competitive estimator.

• Compare our results with two previous state-of-the-art
studies Wan et al. [2020] and Kamoona et al. [2020] on
the application of MIL paradigm and binary classifica-
tion for video anomaly detection. From the evaluation
and comparison of the proposed approachwith two stud-
ies in the literature, we achieve promising results.

This work extends the study published in Pereira andMaia
[2021] by the inclusion of the SVM algorithm in our testbeds.
Also, our experiment results were statistically reliable since
we evaluated the generated models considering a high con-
fidence level of 95% with a t-student distribution. Unlike
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Figure 2. Normal and Anomalous Weakly Labeled Videos: An anomalous video contains at least one anomalous frame instance

previous work, this experiment configuration ensures better
confidence in generated results. Besides, we considered dis-
tinct combinations of I3D deep features to verify the perfor-
mance of machine learning algorithms MLP and SVM when
trained with features built from RGB, Optical Flow individ-
ually, and both derived deep features.
This work is organized as follows: Section 2 presents

some relevant research associated with video anomaly de-
tection in the context of the MIL paradigm. Section 3 de-
scribes the methodology to build and evaluate our proposed
approach. In section 4, the achieved results are presented and
discussed. Section 5 presents the conclusions and directions
for future research.

2 Related Work
This section is a brief review of some research studies related
to our work to contextualize the present topic in the literature.
Recent surveys which expand the coverage of this section
can be found in Suarez and Naval Jr [2020] and Nayak et al.
[2020].
In Al-Dhamari et al. [2020], the authors present a video

anomaly detection framework based onVGGNet and BSVM.
Human motion feature extraction from RGB video frames in
complex and noisy surveillance scenarios is done by transfer
learning. To deal with lighting effects on the performance
of the proposed abnormal detection approach in the data pre-
processing step, the authors apply illumination normalization
using the histogram equalization technique to control light-
ing conditions. The Gaussian filter technique is also used
to remove unwanted small objects. A convolutional neural
network (CNN) based on Visual Geometry Group network
19 (VGGNet-19) pre-trained model was applied to extract
high-level descriptive features, once it performs other ex-
perimented pre-trained CNN networks such as GoogleNet,
ResNet50, AlexNet, and VGGNet-16. A Binary Support
Vector Machine (BSVM) technique is used to establish the
anomaly event detection model. The framework was evalu-
ated on UMN and UCSD-PED1 benchmark datasets in terms
of accuracy, AUC, and EER evaluation metrics. The authors
reported better performance of the proposed approach com-
pared with classical frameworks. Experiments accomplished
an accuracy and AUC of 97.44% and 0.9795 for the UMN
dataset, and 86.69% and 0.7987 for the UCSD-PED1 dataset,
respectively. Experimental results also show that VGGNet-
19 outperforms in accuracy the handcrafted descriptors, ori-
ented gradients, background subtraction, and optical flow.
Ullah et al. (2021) present an intelligent anomaly detec-

tion framework which can operate in surveillance networks
with lesser time complexity. The authors apply a deep spa-
tiotemporal feature extraction by using a pre-trained ResNet-
50 residual network (ResNet), which is built on the ImageNet
dataset. Amulti-layer bi-directional long short-termmemory

(BD-LSTM) architecture is used to boost learning capabili-
ties in order to perform normal and anomalous pattern detec-
tion. The suggested approach is trained by a weakly super-
vised technique to deal with the absence of labeled data. Ex-
periments with different benchmark datasets were performed
to verify the framework functionality within complex surveil-
lance scenarios. The authors reported a significant increase
in accuracy for two of the evaluated datasets compared to
state-of-the-art methods.
In Sultani et al. [2018], the authors proposed a video

anomaly detection approach from the use of a weakly labeled
training dataset. They considered weakly supervised learn-
ing by using MIL approach. Anomaly detection was treated
as a regression problem in which a feature vector is mapped
to an anomaly score. Anomalous and normal surveillance
videos were segmented in clips so that a video (bag) con-
tained multiple segments (instances of a bag). The segment
anomaly scores were generated by a predictive model built
from the training data. To build and evaluate the proposed ap-
proach, the authors considered a large-scale video anomaly
dataset which is composed of multiple anomalous events.
From the obtained results, the proposed approach overcomes
other anomaly detection state-of-the-art approaches in perfor-
mance.
Kamoona et al. (2020) suggested a deep neural network

with an encoding-decoding architecture for anomaly detec-
tion in video surveillance scenarios to allow the capture of
temporal and spatial information of video instances. The
main contribution was to consider the temporal relations
among video instances to treat them as sequential visual
data instead of a set of independent instances. Using a
weakly supervised learning-based framework under the MIL
paradigm, They proposed a cost function which penalizes
incorrect detections by maximizing the average distance be-
tween anomalous and normal predictions. The authors used
the video surveillance benchmark datasets UCF-Crime and
ShanguaiTech to build and evaluate the proposed approach.
A set of spatiotemporal attributes are extracted from each
evaluated video using a C3D network model. The perfor-
mance evaluation of compared models considered ground
truths at the frame level. The achieved results are compet-
itive in relation to the state-of-the-art simulation studies.
Wan et al. (2020) presented the weakly supervised frame-

workAR-NET (Anomaly RegressionNet) for video anomaly
detection. The binary classification-based approach com-
bines Multiple-Instance Learning (MIL) for segment level
classification so that the training stage considers only video-
level labels. The authors also proposed and evaluated the
cost functions Dynamic Multiple-Instance Learning Loss
(DMIL) and Center Loss, which are suggested to learn dis-
criminants for anomaly detection. The pre-trained neural net-
work model Inception-v1 I3D (Inflated 3D) is used as a fea-
ture extractor which receives appearance (RGB) and motion
information (optical flow) as input. The authors compared
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the approach with state-of-the-art literature using the chal-
lenge benchmark dataset ShangaiTech. From the obtained
results, the proposed approach overcomes the compared tech-
niques in performance. Moreover, from a subjective analysis
of this approach in some challenging scenes, the authors con-
clude that the anomaly detection problem is still a challenge
for state-of-the-art models.
The results of the last two research studies Wan et al.

[2020] and Kamoona et al. [2020] were used to compare the
achieved results in our proposed approach since both use the
same benchmark dataset applied in our study. Similar toWan
et al. [2020], our study also evaluates the efficiency of binary
classification andMIL approach for video anomaly detection.
We also verify the impact of the use of the linear manifold
approach PCA to improve the performance of the evaluated
binary classifiers.

3 Methodology
This section describes the main steps for data preparation,
modeling, and evaluation of our proposed video anomaly
detection approach. The stages applied in our research are
briefly described in the following subsections.
In our study, we consider the video anomaly detection

problem in the perspective of binary classification. We de-
scribe this problem as follows: Let X = {xi}n

i=1 a dataset
consisting of n videos. Each video xi has duration ti, so that
T = {ti}n

i=1 is the temporal duration of the dataset. Let
Y = {yi}n

i=1 be the binary labels for each video in dataset
X . A predictive model receives a given video xtest and pro-
duces an inference as a score, probability or class Wan et al.
[2020].

3.1 Data Preparation
The benchmark dataset ShanghaiTech Luo et al. [2017] was
originally proposed for unary classification, once all training
samples are normal instances. The dataset contains captures
at the ShanghaiTech University and describes different con-
ditions of illumination and viewpoints. There are 437 videos
with 130 anomalies among 13 scenes. Figure 3 exemplifies
normal and anomalous situations in the considered dataset.
In Wan et al. [2020], the authors adopted a split of this

dataset present in Zhong et al. [2019] to enable binary clas-
sification and used the pre-trained deep neural network In-
flated 3D (I3D) as a feature extractor. The generated fea-
tures correspond to appearance (RGB) and movement (opti-
cal flow) information. The I3D feature dataset available at
this link1 reflects the previously processed anomaly patterns
from the ShanghaiTech dataset described inWan et al. [2020].
We used these deep features in our experiments. The pro-
cessed dataset as I3D features contains 437 instances, where
330 are normal videos and 107 are anomalous videos. Each
instance in this dataset corresponds to a matrix with dimen-
sion n x 2048 or n x 1024, where n is a variable number
of existing segments and the number of attributes is 1024
(when only appearance features or movement information

1https://github.com/wanboyang/Anomaly_AR_Net_ICME_2020

are considered individually) or 2048 (when both appearance
and movement information are considered).
We evaluate our approach on three feature dispositions of

the ShanghaiTech dataset: I3D features generated with only
RGB (1024 I3D features from RGB data) or Optical Flow
(1024 I3D features from optical flow data) and both (2048
I3D features generated from RGB and Optical flow data) as
summarized in Table 1.

Table 1. Feature Dispositions of ShanghaiTech Dataset
DISPOSITION DESCRIPTION FEATURES
COMBINE I3D features from RGB

and Optical flow
2048

RGB I3D features from RGB 1024
FLOW I3D features fromOptical

Flow
1024

For each processed video, there is a corresponding cate-
gory label (normal or anomaly) and the labels of each ex-
isting frame of this video. In our research, we applied the
dataset with I3D features to build and evaluate the predictive
video anomaly detection models.
We describe the data preparation for modeling and perfor-

mance evaluation as follows. Initially, we load the dataset
D = {(Xi, yi, yf i)}N

i=1 with N = 437 processed videos.
There are 330 normal (N) video instances and 110 anoma-
lous (A) video instances. Each instance Xi is a matrix n
x 2048 or n x 1024, where n is a variable number of seg-
ments in a given video, yi ∈ {0, 1} is the video label and
yf i = [yf1

i , . . . , yfk
i ] is a sequence of k frame labels exist-

ing in the video. In the last expression, yf i ∈ {0, 1} and k
is a variable number of frames. Then, we partitioned D into
training and test datasets, and we used 75% of data for fur-
ther training with cross-validation. It is relevant to mention
that features obtained from frame sequences are relevant for
anomaly event detection, since it allows to consider the spa-
tiotemporal characteristics of the video Ullah et al. [2021].
By following the described procedures, we build both par-

titions so that we maintain the same proportion of anomalous
and normal instances in training and test partitions as the orig-
inal processed I3D data. The training set contains 247 nor-
mal videos and 80 anomalous ones. The test set contains 83
normal videos and 27 anomalous videos.
We perform the segment level composition of training and

test sets as follows. Initially, we partitioned D into DN and
DA datasets, which represents the video sets of normal and
anomalous classes, respectively. Then, we splitDN andDA

intoDtrain
N , Dtest

N , Dtrain
A eDtest

A . Finally, we compose the
training and test partition asDtrain = {Dtrain

N , Dtrain
A } and

Dtest = {Dtest
N , Dtest

A }.
Then, we arrange the training and test partitions to build

a segment level machine learning predictor and evaluate the
generated model at the frame level, respectively. Each video
inDtrain is then transformed into n new segments with 2048
or 1024 attributes per segment. The new training segment
partition is described as Strain = {(Si, yi)}, where Si is
a video segment and yi is the corresponding segment class,
which is the same label as the video containing this clip.
In order to enable evaluation at frame level, we describe

the test segment partition by Stest = {(Si, yfsi)}, where
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Figure 3. Anomalous Event Examples in ShanghaiTech Dataset Available in Zhong et al. [2019]: Vehicles entering a Pedestrian Zone

yfsi is a sequence of 16 frame labels obtained from yf i. The
training set is composed of 14532 segments (12579 normal
and 1953 anomalous segments, respectively). The test set is
composed of 4983 segments (4422 normal and 561 anoma-
lous segments), respectively. The algorithm 3.1 summarizes
the described procedures for data preparation.
[1] Load the dataset with 437 videos (330N and 107A),

video labels and frame labels Select 247 normal and 80
anomalous videos for training partition Select 83 normal
and 27 anomalous videos for test partition Convert the train-
ing video partition (247N, 80A) in a training segment parti-
tion with 14532 segments (12579N, 1953A) Convert the test
video partition (83N, 27A) in a test segment partition with
4983 segments (4422N, 561A)
Similarly to Wan et al. [2020], we approach the video

anomaly detection task as a weakly supervised problem fol-
lowed by the binary classification, so we consider only video
labels during the construction phase of a predictive model.
In the MIL approach, a positive video (bag) contains at least
one instance of a positive event and a negative bag consists
of only negative examples.

3.2 Modeling and Evaluation
With the prepared, numerically represented, and partitioned
video data, we can build, evaluate and compare I3D feature-
basedmodels for the anomaly detection problem. To perform
the experiments, we use the implementations in the libraries
Scikit-learn Pedregosa et al. [2011], Keras2 e tensorflow3,
available for Python language 4. The choice of these libraries
is due to the efficiency and rapid prototyping in the modeling
and performance evaluation of machine learningmodels. We

2https://keras.io
3https://www.tensorflow.org
4https://www.python.org/

executed all the experiments in a cloud computing service
(Google Colab).

3.2.1 Principal Component Analysis (PCA)

We use Principal Component Analysis (PCA) ? to reduce the
input space with 2048 I3D features to 624 and 205 principal
components which explain approximately 95% and 85% of
total data variance in training data, respectively. In our re-
search, we used the same number of components 624 and
205 related to COMBINE disposition for RGB and FLOW
dispositions of I3D features. According to Zhao et al. [2020]
feature extraction techniques, where PCA is one of the most
widely used, allow the obtention of more compact represen-
tations of the data which include essential information for
decision making.
PCA is a non-supervised approach that aims to rotate the

axes of a data matrix representation space, maintaining the
orthogonality so that when data are projected on these new
axes, the explained data variance is maximized in decreasing
order for some sequence of principal component directions.
PCA components can be computed from different structures
such as covariance or data correlation matrices. This applied
to SVD (Singular Value Decomposition) Saha et al. [2009].
The SVD performs the following decomposition for a cen-
tered data matrix:

Mm x p = Um x m · Dm x p · V T
p x p (1)

where U ∈ Rm x m and V ∈ Rp x p are orthogonal ma-
trices for which their columns correspond to eigenvectors
of M · MT e MT · M , respectively. The diagonal matrix
D is composed of singular elements, which are the squared
roots of eigenvalues λi of M · MT or of MT · M . These
eigenvalues are generally ordered so that λi ≥ λi+1, for
i = 1, 2, . . . , p − 1.
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We used K-fold Cross-Validation in the training data to se-
lect the best predictive model over the k = 5 iterations per
experiment. According to James et al. [2013], the number of
folds in k-fold cross validation such as k=5 and k=10 have
been shown empirically appropriate for the bias-variance
trade-off associated with the choice of k parameter. These
values are associated with the generation of test error rate
estimates which do not suffer from excessively high bias or
high variance.
For the SVM technique, we selected the model with the

lowest balanced accuracy among the k iterations of cross-
validation for evaluation with the test segment dataset. For
the experiments with MLP neural networks, we perform this
selection by the use of the RootMean Squared Error (RMSE)
evaluation metric which is described by:

RMSE =
√

1
n

Σn
i=1

(di − fi

σi

)2
(2)

The following steps summarize the procedures for model
training and evaluation: (1) Load the segment level train-
ing set; (2) Apply the cross-validation procedure to train and
evaluate k predictive models with the training and test par-
titions obtained in each iteration; (3) Select the best model
among the k iterations of the cross-validation. We used the
metrics BACC and RMSE to select the SVM andMLP-based
models, respectively. Finally, (4) we evaluate the best model
with the test set. Since we build the generated models at seg-
ment level, we mapped each predicted test segment output
to the corresponding output frame sequence (each video clip
corresponds to a sequence of 16 frames) to allow evaluation
at frame level and comparison with state-or-art literature.

3.2.2 Multilayer Perceptron (MLP)

The definition of the suitable neural network topology has
been based traditionally on trial and error, heuristics, and
pruning or constructive techniques Stathakis [2009]. In our
experiments, we considered Multilayer Perceptron (MLP)
neural network architectures with one, two, and three layers
and with 64, 128, 256, 512, 1024 and 2048 neurons in each
hidden layer. For a MLP network with a single hidden layer,
the output of each neuron in a hidden layer is specified by

Si
L2 = D(max(0, WL1 · Si + bL1)) (3)

whereD(·) corresponds to Dropout regularization with a rate
of 0.70, which will discard some entries during the training
stage to prevent model overfitting.
The Rectified Linear Unit (RELU) activation function is

specified by y = max(0, x) and was used for the hidden
layer neuron activation. The network output is described by

si = 1/(1 + exp(WL2 · Si + bL3)) (4)

which is represented by a neuron with a sigmoid activation
function. We consider a batch size of 512 and 1000 epochs
in the network training stage for the evaluated MLP archi-
tectures. The Adaptative Moment Estimation (ADAM) opti-
mization technique was employed as a variant of the gradient
descent method.

The cost function Binary Cross Entropy was employed in
the training phase of the neural network binary classification
models and is described by

Hp(q) = − 1
N

N∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi))

(5)
where yi ∈ {0, 1} e p(yi) is the probability of occurrence for
pattern i.

3.2.3 Support Vector Machines (SVMs)

Support vector machines (SVMs) are one of the most accu-
rate and robust techniques in well-known data mining meth-
ods Wu and Kumar [2009]. According to Al-Dhamari et al.
[2020], binary SVM is the most frequently used method to
solve different classification problems and it is able to yield a
good generalization performance by implementing the princi-
ple of structural risk minimization. SVM constructs a hyper-
plane that works as an optimal decision surface to distinguish
data points in the space. The aim is to project data points onto
higher dimensional space where the different categories be-
come linearly separable. SVM offers better generalization
ability than other empirical risk minimization-based classi-
fication techniques since it is based on structural risk mini-
mization Al-Dhamari et al. [2020].
For a linearly-separable binary classification task, the aim

is to find an optimal hyperplane H = wT x + b with a max-
imal separation margin ρ = 2

||w|| , where w and b are the
weight vector and bias, respectively Wu and Kumar [2009].
This is a constrained optimization problem calculated in func-
tion of support vectors and expressed by using Lagrangemul-
tipliers. For linearly inseparable problems, the kernel trick
technique is a common approach which consists to choose
an appropriate kernel function to produce a non-linear input
data transformation in order tomake the problem linearly sep-
arableWu and Kumar [2009].
Different kernel functions like radial basis function (RBF),

linear and polynomial can be used with SVM, which is usu-
ally required to solve quadratic programming (QP) problem
Al-Dhamari et al. [2020]. According to Amraee et al. [2018],
the number of parameters in the RBF kernel is less when com-
pared to the other kernels, which influences the complexity
of model selection. The RBF kernel has the parameter σ
which controls the performance of SVM Al-Dhamari et al.
[2020]:

K(xi, xj) = exp(−||xi − xj ||/2σ2) (6)

Once instances cannot be entirely separated, a common
approach is to apply soft margin optimization by introduc-
ing slack variables to allow the existence of noisy data. The
objective function is expressed by:

min
w,b

1
2

||w||2 + C

n∑
i=1

ξi (7)

which is subject to n restrictions yi(wT xi + b) ≥ 1 − ξi,
ξi ≥ 0, i = 1, ..., n and C is a regularization parameter to
control the trade-off between the number of inseparable data
points and machine complexity. This parameter give us a
trad-off between bias and variance Jabeen et al. [2019].
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3.3 Evaluation Metrics
We consider six different performance metrics to report the
achieved results of each model configuration. Let TP be the
number of true positives, FP the number of false positives,
TN the number of true negatives, and FN the number of false
negatives. For each method and for each experiment, we
computed the following 6 metrics for performance evalua-
tion:

1. Area under Curve (AUC)
2. False Positive Rate (FPR = F P

F P +T N ) or False Alarm
Rate (FAR)

3. Balanced Accuracy (BACC = T P R+T NR
2 )

4. Precision (PREC = T P
T P +F P )

5. Recall (REC = T P
T P +F N )

6. F1-score (F1 = P REC·REC
P REC+REC )

In all our experiments, we compute the confidence levels
for the considered performance metrics considering a high
confidence level of 95% over 10 executions per experiment.
Confidence intervals are often used in model validation

and provides an interval estimate of a population parameter.
Assuming that an unknown population standard deviation σ
is more realistic, this value σ is estimated using the sample
standard deviation s and Student t distribution Petty [2012].
The confidence interval for the population mean µ is given
by the following expression:[

x − tc
s√
n

, x + tc
s√
n

]
(8)

where tc represents the critical value for Student t distribu-
tion for a confidence level c. Another form to represent con-
fidence interval is point estimate ± margin of error. The
point estimate is the sample mean x when we consider the
confidence interval for the population mean µ.

4 Results and Discussion
The main goal of this study is to detect anomalies effectively.
Our work defines model effectiveness as a measure of algo-
rithm performance in terms of considered selected evaluation
metrics (such as accuracy, false alarm rate, and area under
ROC curve) for anomaly detection machine learning-based
models. In this sense, an effective model will be the one
with the best generalization capability for performance eval-
uation experiments on the test data. In this section, we detail
the choice of hyperparameters values used in SVM andMLP
algorithms. We also present a comparison with cutting-edge
methods in order to validate our proposed approach.
As detailed in the previous section, the dataset consists

of 437 videos, being 330 normal videos and 107 anomalous
ones. For the experiments, we maintained this proportional-
ity between training and testing data. For the training set, we
used 247 normal videos and 80 anomalous videos, leaving
83 normal videos and 27 anomalous videos for testing. After
this split, we convert the videos into segments. In training,
we used cross-validation. We repeated the experiments 10
times by randomly selecting test sets.

For each of the six considered metrics, the results in this
section describe the lower and upper bounds of confidence
intervals using the notation sample mean ± margin of error.
In all the experiments, we consider a high confidence level
of 95%. Since the generated models were complex and had
a long running time, we performed only 10 executions per
model in order to estimate confidence intervals.
We repeat the following procedure ten times to estimate

a 95% confidence interval: Firstly, we randomize the train-
ing segments dataset. Secondly, we find and select the best
model in the iterations of the cross-validation step. Thirdly,
we load the test segment partition and evaluate the found
model. Then, we save the performance results. After this
procedure, we compute the confidence intervals for the con-
sidered evaluation metrics.

4.1 Selection of Hyperparameters

We use the experiments in this section to identify the best pa-
rameters for the considered models with different settings. In
order to determine the most suitable number of hidden neu-
rons in each MLP architecture, we evaluate the network for
one, two, and three hidden layers with 64, 128, 256, 512,
1024 and 4048 neurons per hidden layer. We take into ac-
count all I3D features in this experiment (2048 features for
COMBINE disposition and 1024 features for RGB or FLOW
disposition). We could verify that a neural network topol-
ogy with 2048 neurons per hidden layer and only one sin-
gle layer achieves better performance for the three different
dispositions of I3D features. Specifically, with a network
with one single layer and 2048 neurons, we achieve a confi-
dence interval for AUC of 0.9118±0.0033, 0.8874±0.0014
and 0.8404 ± 0.0070 and a confidence interval for FPR of
0.0676 ± 0.0036, 0.0772 ± 0.0041 and 0.0562 ± 0.0049, for
COMBINE, RGB and FLOW I3D features dispositions, re-
spectively.
For the Binary SVMwith RBF kernel, we experiment with

different values for parameter C in SVM optimization. Ac-
cording to Wu and Kumar [2009], the parameter C acts as
a regularization parameter and its value can be determined
either analytically or experimentally. For these experiments,
we reduced each dataset disposition (COMBINE, RGB and
FLOW, respectively) to 205 principal components with the
PCA method. With an SVM model with RBF kernel, an ap-
propriate parameterC of 0.1, 1.0 and 0.5, we achieve a confi-
dence interval for AUC of 0.9194±0.0051, 0.8755±0.0006
and 0.8766 ± 0.0011 and a confidence interval for FPR of
0.0054 ± 0.0002, 0.0626 ± 0.0003 and 0.0021 ± 0.0001 for
COMBINE, RGB and FLOW I3D dispositions, respectively.

4.2 Performance Evaluation

This subsection presents the main performance results ob-
tained from the evaluation of our proposed approach for
video surveillance anomaly detection. Table 2 shows the con-
sidered model configurations in our performance evaluation.
For each disposition of I3D features, we used the appropri-
ate values of parameter C and network topology found in the
previous subsection.
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Table 2. Evaluated Model Settings
METHOD DISP INPUT PARAMS

SVM-COMB-2048F SVM COMBINE 2048 C = 0.1
SVM-COMB-624F SVM COMBINE 624 (PCA) C = 0.1
SVM-COMB-205F SVM COMBINE 205 (PCA) C = 0.1
SVM-RGB-1024F SVM RGB 1024 C = 1.0
SVM-RGB-624F SVM RGB 624 (PCA) C = 1.0
SVM-RGB-205F SVM RGB 205 (PCA) C = 1.0
SVM-FLOW-1024F SVM FLOW 1024 C = 0.5
SVM-FLOW-624F SVM FLOW 624 (PCA) C = 0.5
SVM-FLOW-205F SVM FLOW 205 (PCA) C = 0.5
MLP-COMB-2048F MLP COMBINE 2048 1L, 2048N
MLP-COMB-624F MLP COMBINE 624 (PCA) 1L, 2048N
MLP-COMB-205F MLP COMBINE 205 (PCA) 1L, 2048N
MLP-RGB-1024F MLP RGB 1024 1L, 2048N
MLP-RGB-205F MLP RGB 624 (PCA) 1L, 2048N
MLP-RGB-624F MLP RGB 205 (PCA) 1L, 2048N
MLP-FLOW-1024F MLP FLOW 1024 1L, 2048N
MLP-FLOW-624F MLP FLOW 624 (PCA) 1L, 2048N
MLP-FLOW-205F MLP FLOW 205 (PCA) 1L, 2048N

In Table 3 we summarize the performance values for the
MLP and SVMmodels. From the results, we can observe the
lower and upper bounds for the 95% confidence interval of
the mean of each evaluated metric. We display the results for
each metric as sample mean (error estimate). We evaluated
each model 10 times for confidence interval estimation. The
evaluated models achieved approximate results for the con-
sidered performance metrics. The SVMmodels obtained the
best results for AUC and FPR metrics. A high AUC shows
better model performance and a lower FAR corresponds to
a more consistent robustness of an anomaly detection tech-
nique.
The SVM models SVM-COMB-2048F, SVM-COMB-

624F, and SVM-COMB-205F models trained with appear-
ance and motion-based deep features obtained better results
for the AUC and FPR metrics. The models SVM-COMB-
624F and SVM-COMB-624F reflect the application of the
PCA technique for data dimensionality reduction as a pre-
liminary step to training a non-linear SVM. Although the
AUC values for MLP models MLP-COMB-2048F, MLP-
COMB-624F, and SVM-FLOW-205F are approximate to
SVM, the percentage of false alarms was high for these ex-
perimented MLP models. We observe that the confidence
intervals of models SVM-COMB-2048F and SVM-COMB-
624F overlap for AUC, which indicates no difference be-
tween these two AUC means. In terms of FPR, we also
observe that the SVM-COMB-2048F model overcomes the
SVM-COMB-624F model with a small difference since they
have the same sample FPR error estimate and distinct FPR
sample means.
The Receiver Operating Characteristics (ROC) graphic

Fawcett [2006] is a useful metric to compare the performance
among different algorithms and presents the balance between
False Positive Rate (FPR) and True Positive Rate (TPR). The
performance of a given classificationmodel is represented by
a point in bi-dimensional space in the ROC graphic. In Fig-
ures 4, 5 and 6 we present the ROC curves for an arbitrary
execution of ten rounds in each evaluated model and in each
dataset disposition (COMBINE, RGB and FLOW).
The ROC curve allows accommodating uncertainty by

making it possible to visualize all performance possibilities
of the estimators Fawcett [2006]. We can observe that the
performance results of the different models are approximate,
and there are regions in the curve where a given test value
has a high positive rate and a lower false positive rate.

Table 3. Performance Evaluation of Binary Classification Models
for a Confidence Level of 95%

AUC FPR BACC PREC REC F1
SVM-COMB-2048F 91.94

(0.17)
0.33
(0.02)

54.03
(0.31)

56.25
(1.62)

8.39
(00.63)

14.59
(1.00)

SVM-COMB-624F 91.94
(0.17)

00.37
(0.02)

52.97
(0.43)

46.32
(2.59)

06.32
(0.89)

11.10
(1.45)

SVM-COMB-205F 91.69
(0.19)

00.51
(0.07)

56.25
(0.54)

57.14
(1.81)

13.01
(1.13)

21.14
(1.46)

SVM-RGB-1024F 90.39
(0.12)

03.94
(0.18)

80.56
(0.33)

45.89
(1.10)

65.07
(0.65)

53.81
(0.83)

SVM-RGB-624F 90.65
(0.15)

04.34
(0.19)

79.13
(0.25)

42.59
(1.01)

62.60
(0.54)

50.68
(0.71)

SVM-RGB-205F 90.47
(0.25)

03.90
(0.18)

78.67
(0.55)

44.69
(1.13)

61.24
(1.13)

51.65
(0.92)

SVM-FLOW-1024F 88.07
(0.23)

00.23
(0.02)

56.75
(0.40)

75.45
(2.07)

13.74
(0.80)

23.23
(1.17)

SVM-FLOW-624F 88.21
(0.27)

00.26
(0.04)

57.01
(0.39)

73.69
(2.09)

14.29
(0.80)

23.91
(1.07)

SVM-FLOW-205F 87.57
(0.27)

00.28
(0.03)

57.38
(0.27)

73.43
(1.77)

15.04
(0.57)

24.95
(0.76)

MLP-COMB-2048F 91.35
(0.31)

07.12
(0.27)

82.30
(0.55)

34.11
(0.79)

71.71
(1.19)

46.21
(0.76)

MLP-COMB-624F 90.77
(0.33)

06.89
(0.26)

80.74
(0.67)

33.77
(0.79)

68.38
(1.41)

45.20
(0.83)

MLP-COMB-205F 91.26
(0.30)

07.84
(0.38)

81.78
(0.81)

31.88
(0.83)

71.41
(1.80)

44.06
(0.85)

MLP-RGB-1024F 82.54
(0.86)

05.35
(0.37)

71.42
(0.47)

31.70
(1.31)

48.20
(1.01)

38.21
(1.00)

MLP-RGB-205F 83.28
(0.54)

05.78
(0.22)

71.83
(0.81)

30.50
(0.44)

49.45
(1.81)

37.71
(0.69)

MLP-RGB-624F 84.63
(0.59)

05.42
(0.51)

72.26
(0.76)

32.28
(1.37)

49.95
(1.96)

39.12
(0.66)

MLP-FLOW-1024F 87.50
(0.46)

08.20
(0.29)

78.29
(0.43)

28.87
(0.72)

64.79
(0.87)

39.93
(0.73)

MLP-FLOW-624F 88.61
(0.33)

08.42
(0.33)

80.06
(0.35)

29.49
(0.70)

68.53
(0.83)

41.23
(0.65)

MLP-FLOW-205F 88.97
(0.21)

07.58
(0.50)

80.29
(0.44)

31.68
(1.22)

68.16
(1.17)

43.21
(1.02)

Figure 4. ROC Curves for MLP and SVM Models Trained and Evaluated
from I3D Features (RGB + Optical Flow)

Figure 5. ROC Curves for MLP and SVM Models Trained and Evaluated
from I3D Features (RGB)

We also compared our proposed approach with the state-
of-the-art results available inWan et al. [2020] and Kamoona
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Figure 6. ROC Curves for MLP and SVM Models Trained and Evaluated
from I3D Features (RGB + Optical Flow)

et al. [2020] studies, as described in Table 4. A confidence
interval for amean gives us a range of plausible values for the
population mean for the considered evaluation metrics. For
the model SVM-COMB-2048F, we have 95% of confidence
where the interval 0.9194±0.0017 contains the true value of
the mean AUC and that the interval 0.0033±0.0002 contains
the true value of mean FPR.

Table 4. Comparison of Results
Approach AUC (%) FPR (%)

Wan et al. [2020] (MIL Loss +
Center Loss)

91.24 0.10

Wan et al. [2020] (MIL Loss) 89.10 0.21
Kamoona et al. [2020] 89.67 -
Proposed Approach (SVM-
COMB-2048F)

91.94 0.33

We can observe that some of the MLP models are able to
achieve comparable performance results to the state-of-the-
art in terms of AUC. However, this model has yet a high false
alarm rate, when compared to the literature results achieved
by Wan et al. [2020]. A possible explanation is due to the
high capacity (i.e., high complexity) of these literature mod-
els, being capable to perform more complex detection tasks
and generate few false alarms.
In Table 5, we compare anomaly detection results based on

different dispositions of I3D features. We again display the
achieved AUC and FAR rates available in Wan et al. [2020]
for different feature extractors are for comparison to our ap-
proach. We chose the binary non-linear SVM models SVM-
COMB-2048F, SVM-RGB-624F, and SVM-FLOW-205F as
they are the best in AUC in COMBINE, RGB, and FLOW
dispositions of I3D features, respectively For the results
achieved with the proposed approach, we display the sam-
ple means of AUC and FPR, as detailed in the confidence
intervals showed in Table 3. For themodel SVM-RGB-624F-
PCA, we have 95% of confidence that the interval 0.9065 ±
0.0015 contains the true value of the mean AUC and that the
interval 0.0434 ± 0.0019 contains the true value of mean FPR.
Similarly, for the model SVM-FLOW-205F, we have 95% of
confidence that the interval 0.8757 ± 0.0027 contains the true
value of the mean AUC and that the interval 0.0028 ± 0.0003
contains the true value of mean FPR. Furthermore, consid-
ering only the AUC metric, we observe that the achieved
AUC in Wan et al. [2020] is out of the 95% confidence in-
terval of the model SVM-COMB-2048F which indicates our

approach is promising.

Table 5. AUC and FAR for Distinct Dispositions
Wan et al. [2020] Proposed Approach

AUC (%) 91.24 91.94
COMBINE FPR (%) 0.10 0.33

AUC (%) 85.38 90.65
RGB FPR (%) 0.27 4.34

AUC 82.34 87.57
FLOW FPR (%) 0.37 0.28

Our approach presents competitive results in AUC for the
three dataset dispositions. Although the generatedMLPmod-
els are slightly higher in FPR, the SVM models achieved ap-
proximate results. For the SVM-based models, we could ob-
serve a relation between that the use of optical flow-based
features and low FPR rate, when compared to the SVMmod-
els built with only RGB-based features. We also observe
the performance gains when we combine video appearance
and motion information by simple concatenation, which in-
dicates that these concatenated data patterns became more
representative in the SVM algorithm. We conclude that the
combination of a non-linear SVM classifier and the represen-
tation power of I3D deep features is robust and competitive
as compared to the state-of-the-art approaches for the consid-
ered evaluated dataset.

5 Conclusion and Future Work
In this work, we present and evaluate a binary classification
approach that combines dimensionality reduction with PCA
and the MIL paradigm for the video surveillance anomaly
detection problem. We use a set of I3D features that corre-
sponds to the processed benchmark dataset ShanghaiTech for
evaluation and comparison to our approach with state-of-the-
art results. We also observe that the application of the PCA
technique was useful to build competitive models by reduc-
ing the input space from 2048 features to 624 and 205 princi-
pal components, which explains a significant amount of the
variance in training data. For SVM models built with deep
features based on the combination of motion and appearance,
the proposed approach achieved comparable results to the
state-of-the-art literature in terms of AUC and approximate
results in terms of FPR. Our approach is therefore robust to
distinguish between abnormal and normal patterns.
Future directions include the evaluation of other ap-

proaches for feature representations and exploration of the
potential of deep neural network architectures for video
surveillance tasks in the context of weakly supervised ma-
chine learning. We aim to study the underlying character-
istics of deep features as well as the explanations for their
good performance in different video surveillance studies. We
also plan additional experiments with other video anomaly
datasets in order to mitigate possible difficulties when using
large volumes of data.
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