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Abstract Data analysis is performed to examine, interpret, and extract information from data series, and it includes
applying various methods and techniques to understand patterns and compare data. An approach to compare data
is to use rank metrics that help identify how distinct two data series are when compared to each other according to
patterns, formats, criteria, and dimensions in both data series. Among these metrics, Kendall’s Tau metric stands
out, as it is robust and inexpensive, widely used in analyzing sequences and genomes, to detect errors in flash
memories, and to compare distributions and top-k ranked values. However, a challenge arises when comparing lists
with different lengths or when lists do not share the same elements. This happens, for example, when lists are defined
by top-k elements, commonly called k-list. In this case, there is no guarantee that two k-lists share the same set of
elements. Traditional metrics like Kendall’s Tau are designed to quantify differences only between shared elements
in lists. Recognizing this limitation, a possible solution is to apply the metric to the shared elements of the lists.
Another solution, named the generalization of Kendall’s Tau, proposed by Fagin et al., considers all elements in two
lists. However, this generalization of Kendall Tau is a semi-metric, as it does not satisfy the triangular inequality.
To solve this problem, we propose the Extended Kendall Tau (EKT) metric that meets all the conditions of a metric
and simultaneously considers the distinct elements of the compared lists. The proposed metric was evaluated by
applying conventional Kendall’s Tau and the extended Kendall’s Tau over 40 text files divided into five different
languages (eight files per language). We compared KT and EKT measures within the ”same language” and across
”other language” files for the two scenarios. The results revealed that both methods could accurately identify the
differences between the groups of texts of the ”same language” and ”other language”. However, the numerical results
show that EKT is able to more significantly highlight the difference between groups of texts of different languages.
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1 Introduction
With the growth in the volume and complexity of data avail-
able for research, efficient and effective methods to analyze
information are permanent research subjects. For that, there
are several techniques to discern patterns, trends, and corre-
lations within data series (a sequence of ordered data)[Weiss
et al., 2016; Bewick et al., 2003]. One related problem is data
comparison, which consists of measuring the level of dissim-
ilarity of two or more data series, considering the most di-
verse characteristics shared between the data compared, such
as patterns, formats, dimensions, and value distributions. Us-
ing metrics to measure dissimilarity between data can be
efficient and effective, transcribing complex differences be-
tween data series and converting them into a simple value
that can be evaluated according to parameters and character-
istics established for the problem, which makes evaluation
and decision-making easier.
In data comparison, metrics can establish a relationship be-

tween two data series [Zhou and Liu, 2014]. In this work, we
focus on comparing data sequences, whichwe refer to here as
lists. In a list, each element is characterized by a rank (a posi-
tion in the list), since lists have an ordered sequence between
their elements. Such lists can be obtained directly from the

data or by statistics aggregation [Sculley, 2007]. For exam-
ple, in Bioinformatics, DNA fragments need to be compared
to identify mutations or the presence of a target sequence
[Berger et al., 2020]; in Social Sciences, ranking metrics are
used to study and compare behavioral data [Pal and Michel,
2016] which includes statistics about the population of states
or regions. Several metrics can be used to measure similar-
ity, among which rank metrics such as Cayley [1849] and
Kendall [1938] stand out.

Generally, these metrics compare two lists l1 and l2 con-
sidering the relative position of each of their elements. How-
ever, rank metrics generally require that l1 and l2 have the
same length and share the same set of elements (that is, the
set difference between the set of elements from l1 and the
set of elements from l2 is empty). In Kendall’s Tau metric,
when two lists do not share the same set of elements (that is,
when the set difference is not empty), the different elements
can be ignored to get around that restriction, or another treat-
ment can be applied. Fagin et al. [2003] proposed a gener-
alization to the Kendall’s Tau metric to treat this case, espe-
cially in k-lists problems, which are ordered lists with the
first k elements of a ranked sequence. However, the general-
ized Kendall’s Tau proposal is a semi-metric [Wilson, 1931]
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because the triangular inequality (needed to characterize a
metric) is not satisfied [Copson, 1988].
To address this limitation, in this work we extend the

Kendall’s Tau (KT) distance metric [Kendall, 1938, 1976;
Abdi, 2007] to measure the differences between two lists that
do not necessarily share all elements and such that the trian-
gle inequality property is preserved. We call the proposed
metric Extended Kendall’s Tau (EKT). We chose Kendall’s
Tau metric because it has extensive applicability to k-list
problems, which typically involve lists with the same length
but that do not necessarily share the same elements.
In Kendall’s Tau distance metric, every mismatch between

pairs of elements in the compared lists is accounted for, and
elements that are present in just one list can be disregarded.
We propose modifications to KT to consider items that ap-
pear in just one of the lists, adapting the original definition.
We show that our proposal brings advantages over the orig-
inal Kendall’s Tau metric in cases where one of the lists is
not only a rearrangement of the other but also went through
insertions and deletions.
The remainder of this article is organized as follows. In

Section 2, we present several metrics used in data compari-
son and their applications, including the KTmetric and k-list
problems. In Section 3, we present our proposed extension to
Kendall’s Tau metric. In Section 4, we apply KT and EKT to
five different language sets, each composed of 8 text docu-
ments of the same language, comprising a total of 40 text
documents. We show that: i) for both KT and EKT, it is pos-
sible to identify significant differences between the values
obtained between documents of ”same language” and docu-
ments of ”different language”; and ii) that EKT can be better
than KT for the proposed problem, as it presents a signifi-
cantly greater difference between the values obtained in the
set of documents of ”same language” and the set of docu-
ments of ”different languages.” In Section 5, we present the
conclusions and propose future work on related questions.

2 Related Work
In this section, we review metrics that can be applied to com-
pare two lists of elements and quantify the differences be-
tween them. For that, there are basically two types of metrics:
i) correspondence metrics, which establish a correlation be-
tween two lists, l1 and l2, based on the comparison of each of
their elements; and ii) rank metrics, which establish a hierar-
chy in the position occupied by the elements that are present
in the compared lists.

Correspondence Metrics. Hamming [Hamming, 1950;
Bookstein et al., 2002] distance measures the discordance
between two data strings (or lists). For this reason, this met-
ric is often used to measure the error rate in data transfers
[MacKay, 1999], machine learning [Norouzi et al., 2012],
and genomes [Kruskal, 1983]. The Longest Common Sub-
sequence (LCS) algorithm [Wagner and Fischer, 1974; Hunt
and MacIlroy, 1976; Bakkelund, 2009] is useful to natural
language recognition [Lin and Och, 2004] and also defines a
dissimilarity metric often used to measure the differences be-
tween two sequences of characters. The LCS metric is used

to help distinguish differences between DNA strands [Shyu
and Tsai, 2009] on genomic bases, in data compression [Cor-
mode and Muthukrishnan, 2005], and detection of similar or
plagiarized text [Elhadi and Al-Tobi, 2009].
The edit distance (ED)metric measures the number of edit-

ing operations (inclusion, deletion, and replacement) that is
needed to transform a list l1 into another list l2. This met-
ric is similar to LCS, and the following equation gives the
relationship between them: ED(l1, l2) = |l1| + |l2| − 2 ×
LCS(l1, l2). Edit distance is often used to measure the level
of similarity between words and establish a correlation be-
tween them. Its applications are extensive, ranging from tem-
poral data analysis and data visualization [Sridharamurthy
et al., 2018] to spelling correction [Kukich, 1992] and neuro-
science [Gillette et al., 2015].
Although correspondence metrics are useful in many ap-

plications, some of the problems that require analysis of dis-
similarity between different data series are better analyzed
by correlation coefficients or rank metrics, in which the data
source is converted into a distribution of ordinal data, formed
by categories or partitions, normalized, arranged in lists, and
compared using a set of rules.

Rank Metrics. Rank metrics are flexible and can be applied
directly in two sequences of ordered data (in the same way as
the edit distance), or to ordered lists derived from the distribu-
tion of a statistical variable. In the latter case, the elements of
the lists being compared represent statistical classifications
derived from the original data. At the same time, classifica-
tion metrics applied to lists of ordered statistical data have
the advantage of being less sensitive to outliers and errors
in the source data since the comparison between elements
represents the comparison of data groups and not the values
of individual data items. This approach is used to compare
data series when the source data maintains the same nature,
type, and format and is classified according to dimensions
and classifications shared between both data series.
One of the first rank-based metrics, Spearman’s ρ [Spear-

man, 1904] is treated as a correlation coefficient (similar to
Pearson coefficient [Pearson, 1895]), but, unlike it, can be
associated with a normalized metric value between 0 to 1.
This metric measures the dissimilarity between lists through
the sum of the difference square between the ranks of each
element present in two lists and helps to identify monoton-
ical trends. Its applications include digital image process-
ing [Nalepa and Gwiazda, 2019], machine learning and nat-
ural language processing [Galley et al., 2015], and ecology
[Almeida-Neto et al., 2008]. In the same way, Spearman’s
Footrule [Spearman, 1906] measures dissimilarity by sum-
ming rank differences between elements in two lists. Its ap-
plications include journal classification [Bar-Ilan, 2010], and
election bribery [Baumeister et al., 2019].
Another metric that uses the ranking concept is the Cayley

distance [Cayley, 1849; de Lima and Ayala-Rincón, 2012;
Fligner and Verducci, 1986], which measures the minimum
number of permutations between two elements to transform
one sorted list into another. In this metric, the distance in
rank position between the permuted elements is neglected in
the calculation – only the total permutations matter. For this
reason, the metric is equivalent to the minimum permutation
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Table 1. Example of values, maximum values, and normalized values in several rank metrics calculated between l1 = [’b’, ’a’, ’c’, ’d’, ’x’,
’y’, ’z’] and l2 = [’b’, ’c’, ’z’, ’d’, ’x’, ’y’, ’a’]. The normalized form to l1 is l̂1=[1, 2, 3, 4, 5, 6, 7] and l̂2= [1, 3, 7, 4, 5, 6, 2]. ”Value” is the
absolute distance calculated for the presented metric; ”maximum value” is the largest possible value between these two lists for the metric.
The normalized value is defined by value/maxvalue.

rank metric description value max value norm. value
Spearman’s Footrule abs. difference between ranks 10 24 0,4167
Spearman’s ρ sqr difference between ranks 42 224 0,1875
Cayley permutations (selection sort) 2 6 0,3333
Kendall’s Tau adjacent permutations (bubble sort) 8 21 0,3810

operations using the Selection Sort algorithm [Jadoon et al.,
2011]. It is used to rank modulation in flash memories [Jiang
et al., 2009; Chee et al., 2014], to evaluate dissimilarity in ge-
nomics [Moulton and Steel, 2012] and cloud storage [Yang
et al., 2019].
Kendall’s Tau distance [Kendall, 1938, 1976; Abdi, 2007;

Fligner and Verducci, 1986], which at first glance may
seem very similar to Spearman’s ρ [Gilpin, 1993; Monjardet,
1998], considers the sum of discordant pairs in two normal-
ized lists. The intuition for that is as follows. Given two lists
of length n, l1 and l2, with l1 = [’a’, ’b’, ’c’, ’d’] and l2 =
[’a’, ’c’, ’d’, ’b’], we normalize one of them and write the
other as a function of the normalized form of the first one.
(A list l′ is called normalized when each element is replaced
by its position on the corresponding original list l. For exam-
ple, for l1 = [’a’, ’b’, ’c’, ’d’], the corresponding normalized
list is l′

1 = [0, 1, 2, 3].) The second list is written in terms of
the normalized form of l′

1, so l′
2 = [0, 2, 3, 1]. In the normal-

ized form, for each element l′
1[i] ∈ l′

1 and l′
2[j] ∈ l′

2, with
i, j = 0, 1, ...n and j > i, the discordant pairs are those
where l′

1[i] ≥ l′
2[j] and the sum of discordant pairs is the ab-

solute value for Kendall’s Tau metric. In this case, there are
two discordant pairs, which are l′

1[1] ≥ l′
2[3] ⇒ 1 ≥ 1 and

l′
1[2] ≥ l′

2[3] ⇒ 2 ≥ 1.
More intuitively, we can understand this metric as the num-

ber of transpositions of adjacent elements to transform one se-
quence into another. This procedure results in the same num-
ber of permutations that happen in the bubble sort algorithm.
It minimizes the number of adjacent movements of elements
in the list since the elements, after being moved, maintain
their final position until the end of the algorithm execution.
Like the other rank metrics, Kendall’s tau distance has appli-
cations in machine learning and natural language processing
[Galley et al., 2015], in flash memories and information the-
ory [Zhang and Ge, 2015; Buzaglo and Etzion, 2015; Chee
et al., 2014].
To exemplify the ranked metrics we discuss in the Section,

Table 1 shows the different distances for l1= [’b’, ’a’, ’c’,
’d’, ’x’, ’y’, ’z’] and l2=[’b’, ’c’, ’z’, ’d’, ’x’, ’y’, ’a’]. In
the Table, ”Value” is the absolute distance calculated for the
presented metric, ”max value” is the largest possible value
calculated for a specific metric, given the length n of the lists.
The normalized value is defined by value/maxvalue.

Kendall’s Tau for Distinct Sets. Kendall’s Tau metric and
other rank metrics are defined for the cases where the two
compared lists (l1 and l2) share the same set of elements.
Therefore, it becomes a challenge to deal with cases in which
it is not possible to have a complete match between the ele-

ments of the lists. The naive method to deal with this prob-
lem is disregarding distinct elements, calculating the metric
only for the intersection of the sets of elements of both lists.
This procedure, although simple, can miss significant dissim-
ilarity between the lists, especially when the number of dif-
ferent elements is considerable. To overcome this problem,
[Fagin et al., 2003] proposed a generalization of Kendall’s
Tau metric, in which the values for this metric are calculated
over the entire set πl1 ∪ πl2 , πl1 = {l1[i]|i = 0, 1...n} and
πl2 = {l2[j]|j = 0, 1...m}, but the proposal may violate
triangular inequality and thus is a semi-metric. Despite that,
it is interesting because it considers the dissimilarity intro-
duced by elements that belong exclusively to one of the two
lists. Sculley [2007] proposed establishing a similarity iden-
tification and a correspondence between distinct elements
to overcome this problem. By using similarity to match ele-
ments, the value of the metric may be influenced by incorrect
matches. Also, this does not solve the problem of comparing
lists with different sizes.

k-lists. Problems involving k-lists (ordered lists with the top
k elements according to any arbitrary criteria) are types of
problems in which Kendall’s Tau metric is widely used, and
the presence of distinct elements between lists cannot be sim-
ply ignored. Problems involving k-lists consist of compar-
ing the first k elements in two or more lists. As the top k
elements of a list are unlikely to be the same as those of an-
other list, dealing with distinct elements can be imperative.
Kendall’s Tau metric is widely used in k-lists: in computing,
k-list problems are found in page ranking systems [DeWitt,
2004], in data mining [Xiong et al., 2006], in machine learn-
ing [Collas and Irurozki, 2021], in recommendation systems
[Schröder et al., 2011], locality-sensitive hashing (LSH) [Pal
and Michel, 2016] and search engines [Hong et al., 2011].

3 Extended Kendall’s Tau

The previous section presented several metrics that can be ap-
plied to compare data sequences and pointed out their main
differences. Although these metrics can be useful in many
cases [Schober et al., 2018], rank metrics can only be prop-
erly applied when all elements of the ordered sequences are
present in both lists so that l2 \ l1 = l1 \ l2 = ∅. In real situa-
tions, this condition may not be satisfied, and to work around
this problem, Cicirello [2020] proposes that lists with differ-
ent elements should be treated by removing these elements,
leaving only the common elements. This approach avoids the
problem of calculating rank metrics for different-sized lists
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and does not interfere with how the metric’s value is calcu-
lated. However, differences introduced by the removed ele-
ments will not be measured, so the metric’s value may not be
adequate to compare such lists.
To solve this problem, we propose an extension that con-

siders transforming one compared list into the other, that is,
transforming l1 into l2 by: i) removing exclusive elements
from l1; ii) transforming the new l1 into a sub-sequence of
l2; iii) and finally, inserting the missing elements to complete
l2 in the proper order. This extension can be generalized to
different order metrics, but we chose Kendall’s Tau because
this metric considers each movement between adjacent ele-
ments to transform one list into the other, thus establishing a
more robust relationship between the positions of elements in
the lists and the value of the metric. Furthermore, Kendall’s
Tau minimizes the number of adjacent moves, as its calcula-
tion is identical to the number of sorting moves that are done
by the bubble sort algorithm [Astrachan, 2003]. In this way,
we can describe Kendall’s Tau as a count of the bubble sort
operations to turn l1 → l2 when the lists are formed by the
same elements, as mentioned in item ii).
Kendall’s Tau [Kendall, 1938, 1976] can be mathemati-

cally described as follows. Let l1 = {a1, a2, ..., an} and
l2 = {b1, b2, ..., bn} be two lists whose elements have an
ordering relation. For each pair of elements (ai, aj) in l1 and
(bi, bj) in l2 where i < j, we calculate a discordant pair if:
(ai > aj and bi < bj) or (ai < aj and bi > bj). We write
this as τ((ai − aj) · (bi − bj)) where τ is an indicator func-
tion that is 1 if (ai, aj) and (bi, bj) are discordant pairs or 0
otherwise. The Kendall Tau distance dkt(l1, l2) between the
two lists l1 and l2 with length n is then the total number of
discordant pairs. Mathematically, this can be expressed as:

dkt(l1, l2) =
n−1∑
i=1

n∑
j=i+1

τ((ai − aj) · (bi − bj)) (1)

To add steps i) and iii) into the original Kendall’s Tau al-
gorithm, we must also consider that the insertion/removal
method of elements must preserve a metric model under the
space of ordered lists, complying with the following condi-
tions [Choudhary, 1993]:

C1. coincidence: m(l1, l2) = 0 ⇔ l1 = l2, for every l1, l2 ;
C2. symmetry: m(l1, l2) = m(l2, l1), for every l1, l2 ;
C3. triangle inequality: m(l1, l3) ≤ m(l1, l2) + m(l2, l3) ,

for every l1, l2, l3 .

To meet the symmetry criteria (C2), the removal and inser-
tion of distinct elements from the lists must be performed in
the inverse order; that is, elements should be removed from
list l1 (item i) from lowest to highest rank position, while the
insertion order of elements (item iii) must be from highest to
the lowest rank. The total removal distance drem and total
insertions distance dins are represented in Equations 2 and 3
below:

drem =
nl1∑
i=1

δ(l1[i] ∈ l1 \ l2) · i (2)

dins =
nl2∑
i=1

δ(l2[i] ∈ l2 \ l1) · i (3)

where nl1 and nl2 are the length of list l1 and l2, respectively,
and δ is an indicator function that equals 1 when the condi-
tion is true and 0 otherwise. Thus, Kendall’s Tau extended
distance dekt can be written in the form:

dekt = dkt + drem + dins (4)

For normalization, we must consider the maximum value
z that can be obtained in the disarrangement between three
sets: the set of size n1 containing the common elements of
l1 and l2, the set of size n2 containing the inserted elements,
and the set of size n3 containing the removed elements:

z = n1 · (n1 − 1)
2

+ n1 · nt + nt

2
+ n2

t

2
− n2 · n3 (5)

For ease of writing, we represent nt = n2 + n3, and the
extended Kendall’s Tau distance in normalized form is given
by:

d̂ekt(l1, l2) = 1
z

· (dkt + dins + drem) (6)

Kendall’s Tau metric between two lists l1 and l2 establishes a
measure directly linked to the concept of the smallest number
of adjacent movements between elements to transform a list
l1 into l2. This property is closely related to the idea of this
metric itself and its definition in Equation 1 and guarantees
that this transformation occurs in the same way when trans-
lated into an algorithm (in this case, bubble sort). To ensure
the same condition using the presented removal and insertion
criteria, the removal must be carried out before the insertion
of elements to transform one list into another, always from
the highest to the lowest rank position, and in a symmetri-
cal way, the insertion must be carried out after the removal,
from the lowest to the highest rank position. The procedure
prevents redundant moves, resulting in fewer adjacent inser-
tions, removals, and moves.
As an example, suppose two lists: l1=[2, 65, 21, 42, 6,

5, 12, 35] and l2 =[2, 65, 32, 21, 12, 5, 6, 35]. Note that
{l2} \ {l1} = {32}, and {l1} \ {l2} = {42}. To turn l1 into
l2, we remove the 4th element (42) in l1 from right to left,
with four movements (and shift elements from right to left to
occupy the position of the removed element). The resulting
list is [2, 65, 21, 6, 5, 12, 35] and 4 movements in the re-
moval step. Now, we insert the 3rd element of l2 (32) into l1,
from left to right, in the third position, calculating the num-
ber of adjacent movements that are needed for this operation.
In this case, starting before the 1st position, the total number
of movements is 1 + 1 + 1 = 3 in the insertion step, and
the resulting list is [2, 65, 32, 21, 6, 5, 12, 35]. Finally, we
calculate Kendall’s Tau (Eq. 1) - which is equivalent to cal-
culating the total number of bubble sort moves, transforming
l1 into l2. In this procedure, the 7th element (12) changes to
the 5th position with twomovements, and the 6th element (5)
changes to the 5th position, with one movement. The total of
adjacent movements is the not-normalized distance from l1
to l2, which in this example is 4 + 3 + 2 + 1 = 10.
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Normalization ensures that the metric value is within the
range [0, 1]. The normalization factor z for two lists l1 and
l2, with sizes m and n respectively, and one set of common
elements nc is given in equation 5, with z = 37. Then ˆdekt =
10
37 = 0.27027.
Our proposed extension does not consider absolute val-

ues of the ranks but the relative ranks between elements. It
doesn’t matter whether the elements in both lists are sorted
(ascending or descending) by relevance, value, or any other
feature. As long as the same criteria are used to sort both of
the lists, the metric value is preserved. However, when intro-
ducing the concept of insertion and removal of elements, we
establish a direction to apply the procedure, considering the
importance level and hierarchical order. To avoid problems
in applying the method, by default, we consider insertions
and removals from the left, and we consider that the lists are
sorted in an ascending way in terms of pertinence.

4 Results
This section compares results in applying the original
Kendall’s Taumetric and the extended proposal in a language
dissimilarity identification problem. We show that by apply-
ing a rank metric, we can (i) effectively identify dissimilari-
ties between languages and (ii) increase the efficiency when
we use the extended Kendall’s Tau metric to consider lists
containing distinct elements. Tomeet this goal, our work was
directed towards a simple problem that implies reduced list
lengths since the complexity and volume of information are
out of the scope of this work.

Table 2. Group statistics for the eight documents we selected for
each language.

Idiom letters words phrases pages
ge 898214 163979 8016 534
es 708431 117281 7208 480
en 3209103 677922 36830 2455
it 452194 79848 4380 292
pt 3600734 559119 36790 2453
Total 8868676 1598149 93224 6215

In this evaluation, we search for 40 documents written in
5 different languages, forming a set of 8 text documents for
each language. The chosen languages were Portuguese (pt),
English (en), Italian (it), German (get), and Spanish (es), and
the documents were selected in an ad-hoc way, without inten-
tion as to content, date, or author, in digital public libraries
and public repositories in different countries. All documents
were available in PDF format, converted to plain text using
an OCR algorithm, and checked during conversion.
To prepare the texts for subsequent analysis, we removed

characters that were not relevant and standardized the text
to avoid the distinction between uppercase and lowercase
to make the analysis simpler. Characters removed comprise
control codes, spaces, unusual symbols, accents, and other
non-alphabetic characters. Table 2 shows some statistics
about the collected documents. Even with great variability
in the volumes of data collected per language, the smallest
number of letters per language is close to half a million (Ital-

Table 3. There are five ”same language” sets (pt-pt, sp-sp, ge-ge,
it-it, en-en) and ten ”different languages” sets (ge-pt, sp-pt, en-pt,
it-pt, ge-it, sp-it, en-it, ge-en, sp-en, ge-sp). In ”same language,” we
combine 8 lists 2 by 2. In ”different language,” eight lists in one
language combine with eight lists in another language.

sets combinations total
same language 5

(8
2
)

= 28 140
different languages

(5
2
)

= 10 8 · 8 = 64 640
total 780

ian), and individual samples are well distributed per docu-
ment. The original documents and the source code we used
in our analysis are available at https://github.com/dew-
uff/EKT/.
An associated list was generated for each document: the

elements in these lists are the text characters ordered accord-
ing to their frequency in the respective document. To calcu-
late all KT and EKT distances, firstly, we form all pairs of
lists out of the 40 lists without caring about the order, accord-
ing to condition C2 in Section 3, which represents a total of(40

2
)

= 780 pairs of lists. These pairs of lists can be catego-
rized as: “same language” (group 1) and “different language”
(group 2).
The total number of pairs of lists of group 1 is obtained by

choosing a pair of lists among the eight in the same language,
forming 28 possible combinations for each language. Since
there are five language sets, the total number of list pairs is
28 · 5 = 140.
The sets of group 2 are formed by choosing two lists cor-

responding to different languages, among 5, in a total of ten
different-language combinations. In each of the ten combina-
tions, eight lists of one language are compared with the other
eight lists of another language, resulting in 10 · 8 · 8 = 640
pairs. In Table 3, we see the description of the formed pairs,
the number of combinations, and the pairs formed in each
combination. For each pair, we calculate KT and EKT dis-
tances.
Table 4 and Table 5 show examples of calculated KT and

EKT values for list pairs. In the 4 table, we show an example
of a ”same language” set, in this case, with list pairs of texts
in Portuguese. For each KT and EKT metric, 28 values are
generated among the eight lists of ”same language.” In Table
5, we show an example of the “different languages” category,
in this case, English and Portuguese. 64 KT and EKT values
are generated for the 16 lists of these two languages.
To show that the metric effectively detects differences be-

tween languages, we compare the KT and EKT values ob-
tained in group 1 and those obtained in group 2. To make
this analysis more robust, we perform this procedure for each
language separately, as shown in Figure 1. The Figure shows
the groups formed by group 1 and group 2. For every group
from the same language, there are four others from different
languages to compare to. In this way, 5 · 4 = 20 compar-
isons are performed comparing these two groups, according
to Figure 1. The complete set of values can be accessed in
https://github.com/dew-uff/EKT/.
We compared groups of values using the Mann-Whitney

test [Mann and Whitney, 1947] both for KT and EKT mea-
surements. The test is justified because we have sets of dif-
ferent sizes, with 28 and 64 unpaired values for each metric.

https://github.com/dew-uff/EKT/
https://github.com/dew-uff/EKT/
https://github.com/dew-uff/EKT/
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Table 4. An example of a set of KT and EKT distance values ob-
tained within the same language (Portuguese). All groups of the
same language are of the form li − li (pt-pt, sp-sp, ge-ge, it-it, en-
en) and have 28 calculated values for each group.

n pair (li − lista, li − listb) KT EKT
1 pt-list1,pt-list2 0.0683 0.0716
2 pt-list1, pt-list3 0.037 0.037
3 pt-list1, pt-list4 0.0512 0.0555
4 pt-list1, pt-list5 0.0725 0.0716
5 pt-list1, pt-list6 0.0654 0.0671
. . . .
. . . .
. . . .
25 pt-list5, pt-list8 0.0397 0.0397
26 pt-list7, pt-list6 0.0564 0.0545
27 pt-list8, pt-list6 0.0436 0.0429
28 pt-list7, pt-list8 0.0718 0.0718

Table 5. An example of a set of KT and EKT distance values ob-
tained in different languages, in this case, English and Portuguese
(en-pt). All groups of the same language are of the form li−lj , i ̸= j
(ge-pt,sp-pt, en-pt, it-pt, ge-it, sp-it, en-it, ge-en, sp-en, ge-sp), and
have 64 calculated values for each group.
n pair(li − lista, lj − listb) KT EKT
1 en-list1,pt-list1 0.173333 0.271782
2 en-list1,pt-list2 0.156695 0.245902
3 en-list1,pt-list3 0.196667 0.286086
4 en-list1,pt-list4 0.176638 0.268265
5 en-list1,pt-list5 0.162393 0.264817
. . . .
. . . .
. . . .
61 en-list8, pt-list5 0.202279 0.282472
62 en-list8, pt-list6 0.196581 0.285388
63 en-list8, pt-list7 0.196581 0.272383
64 en-list8, pt-list8 0.202279 0.277427

Also, as it is a non-parametric test, it admits the possibility
that the distributions of the distance values are not necessar-
ily normal, which makes our result more robust.

Figure 1. For each language, KT and EKT group values calculated across
lists of the same language (group 1) are compared with the group values
from the other four different languages (group 2). Each language gener-
ates four comparisons between 2 groups of the same language and differ-
ent languages, amounting to 20 comparisons. Comparisons are made using
the non-parametric Mann-Whitney test, ensuring that the comparison can be
performed regardless of normality and variance between groups.

Table 6. Mann-Whitney test for two set values (group 1 vs group
2); measure = KT distance; H0: group 1 (same languages) = group
2 (different languages): all p-values < 10−13.

group 1 group 2 p-value
ge-ge sp-ge 2.9429E-14
ge-ge en-ge 2.8130E-14
ge-ge it-ge 2.9462E-14
ge-ge pt-ge 2.9309E-14
sp-sp sp-ge 2.9389E-14
sp-sp sp-en 2.9356E-14
sp-sp sp-it 3.8185E-14
sp-sp sp-pt 2.9369E-14
en-en sp-en 2.9469E-14
en-en en-ge 3.5467E-14
en-en en-it 5.7920E-13
en-en en-pt 2.9476E-14
it-it sp-it 7.3390E-14
it-it en-it 4.1146E-14
it-it en-pt 2.9476E-14
it-it it-ge 2.9536E-14
pt-pt sp-pt 4.6571E-14
pt-pt en-pt 2.9469E-14
pt-pt pt-ge 2.9376E-14
pt-pt pt-it 2.9630E-14

table[t]

group 1 group 2 U-value p-value
ge-ge sp-ge 0,0 2,9757E-14
ge-ge en-ge 41.0 4,1195E-13
ge-ge it-ge 0.0 2,9838E-14
ge-ge pt-ge 0.0 2,9804E-14
sp-sp sp-ge 0.0 2,9710E-14
sp-sp sp-en 0.0 2,9623E-14
sp-sp sp-it 0.0 2,9751E-14
sp-sp sp-pt 0.0 2,9751E-14
en-en sp-en 0.0 2,9677E-14
en-en en-ge 0.0 2,9730E-14
en-en en-it 0.0 2,9858E-14
en-en en-pt 0.0 2,9818E-14
it-it sp-it 0.0 2,9811E-14
it-it en-it 0.0 2,9865E-14
it-it en-pt 0.0 2,9825E-14
it-it it-ge 0.0 2,9852E-14
pt-pt sp-pt 0.0 2,9764E-14
pt-pt en-pt 0.0 2,9778E-14
pt-pt pt-ge 0.0 2,9771E-14
pt-pt pt-it 0.0 2,9804E-14
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Table 7. Mann-Whitney test for two set values (group 1 vs group
2); measure = KT distance; H0: group 1 (same languages) = group
2 (different languages): all p-values < 10−13.

group 1 group 2 U-value p-value
ge-ge sp-ge 0.0 2.9429E-14
ge-ge en-ge 0.0 2.8130E-14
ge-ge it-ge 0.0 2.9462E-14
ge-ge pt-ge 0.0 2.9309E-14
sp-sp sp-ge 0.0 2.9389E-14
sp-sp sp-en 0.0 2.9356E-14
sp-sp sp-it 4.0 3.8185E-14
sp-sp sp-pt 0.0 2.9369E-14
en-en sp-en 0.0 2.9469E-14
en-en en-ge 3.5 3.5467E-14
en-en en-it 46.5 5.7920E-13
en-en en-pt 0.0 2.9476E-14
it-it sp-it 14.0 7.3390E-14
it-it en-it 5.0 4.1146E-14
it-it en-pt 0.0 2.9476E-14
it-it it-ge 0.0 2.9536E-14
pt-pt sp-pt 7.0 4.6571E-14
pt-pt en-pt 0.0 2.9469E-14
pt-pt pt-ge 0.0 2.9376E-14
pt-pt pt-it 0.0 2.9630E-14

The p-values for the test performed between group 1 and
group 2 for the KT and EKT values are presented in Tables 7
and 8, respectively. As we can see, the tests conducted on
pairs of groups generate very small p-values for both KT
and EKT, and therefore, it is irrelevant to apply the Bonfer-
roni correction [Bonferroni, 1936] in this case. These values
show that we completely reject the hypothesis that group 1
and group 2 distributions could behave similarly in both met-
rics.
There is no closeness between groups 1 and 2 at any indi-

vidualized experiment values for either KT or EKT. As the p-
values of KT and EKT are extremely small and oscillate in a
minimal range (10−13to10−14), we assess that both already
have very high efficiency in differentiating lists from group
1 and group 2, and any gain in this sense would not be signif-
icant for the proposed problem. However, we can measure d
differences between the measures of group 1 and group 2 and
observe whether they significantly differ between the KT and
EKT values. This statistic is called DiD (differences in dif-
ferences) and is generally used in longitudinal analyses and
econometrics [Wing et al., 2018] or when evaluating paired
groups under two different conditions. Our distinct states are
represented by KT and EKT metrics, and paired differences
are obtained between group 1 and group 2.
We calculated the differences in absolute and standardized

values using Cohen’s d [Cohen, 2013] to make the analysis
more thorough. As a standardized measure, Cohen’s d re-
moves any interpretation related to specific orders of magni-
tude of the experiment and minimizes the effects of possible
data outliers on the groups. The absolute differences and Co-
hen’s d are presented in Table 9, where we observe the differ-
ences between groups 1 and 2, representing 20 observations
for each metric. Although the number of observations is rel-
atively low, the differences between groups are significant
and can be observed in a paired way, making it possible to

Table 8.Mann-Whitney test for two set values (group 1 vs group 2);
measure = EKT distance; H0: group 1 (same languages) = group 2
(different languages): all p-values< 10−13.

group 1 group 2 p-value
ge-ge sp-ge 2.9757E-14
ge-ge en-ge 4.1195E-13
ge-ge it-ge 2.9838E-14
ge-ge pt-ge 2.9804E-14
sp-sp sp-ge 2.9710E-14
sp-sp sp-en 2.9623E-14
sp-sp sp-it 2.9751E-14
sp-sp sp-pt 2.9751E-14
en-en sp-en 2.9677E-14
en-en en-ge 2.9730E-14
en-en en-it 2.9858E-14
en-en en-pt 2.9818E-14
it-it sp-it 2.9811E-14
it-it en-it 2.9865E-14
it-it en-pt 2.9825E-14
it-it it-ge 2.9852E-14
pt-pt sp-pt 2.9764E-14
pt-pt en-pt 2.9778E-14
pt-pt pt-ge 2.9771E-14
pt-pt pt-it 2.9804E-14

use the Wilcoxon statistical test [Wilcoxon, 1945], specific
for paired observations. In Table 10, we present the results
of the one-tailed Wilcoxon test for H0: EKT <= KT . For
absolute d values, EKT > KT with p-value 0.004 (< 0.01
). Even when considering Cohen’s d, we confirm the same
result, with a p-value of 0.02 (< 0.05). Table 10 ensures that
the difference between the measures of equal groups and dif-
ferent language groups (group 1 and group 2) are more sig-
nificant when we use the EKT metric.

table[t]
Wilcoxon, one-tailored, d-value (KT and EKT)
measure z-value w-value p-value result
Cohen’s d -1,9386 223 0,0262 approximately

normal, signifi-
cantly different
groups

absolute d -2,6506 34 0,0040 n=20, w < 60,
significantly dif-
ferent groups

5 Conclusions
In this article, we propose an extension to the Kendall’s tau
metric. The extension accommodates handling lists with dif-
ferent elements while still preserving the metric properties,
unlike previous extensions proposed in the literature [Fagin
et al., 2003; Sculley, 2007].
Comparison of Kendall’s tau and modified Kendall’s tau

metrics applied to forty documents divided into groups of
eight documents for five different languages proved to be
effective in differentiating documents of the same language
and documents of different languages. In both metrics, the
values obtained in the group of pairs of documents with dif-
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Table 9.Absolute and standardized (Cohen´s d) difference between
mean values on group 1 (same language) and group 2 (different
language).

compared groups absolute d values Cohen’s d values
group 1 group 2 KT EKT KT EKT
ge-ge sp-ge 0.1701 0.1920 13.3087 5.5082
ge-ge en-ge 0.1114 0.1811 9.2520 3.0360
ge-ge it-ge 0.1468 0.1177 11.7628 5.1245
ge-ge pt-ge 0.1739 0.2311 12.1702 4.9695
sp-sp sp-ge 0.1508 0.2035 9.8763 11.8260
sp-sp sp-en 0.1035 0.1438 5.7589 8.7214
sp-sp sp-it 0.1845 0.1682 3.4274 8.3757
sp-sp sp-pt 0.1846 0.1247 3.5886 8.3890
en-en sp-en 0.2117 0.1351 3.9122 6.2865
en-en en-ge 0.1210 0.1149 4.0150 4.7303
en-en en-it 0.0810 0.1204 2.6527 4.4222
en-en en-pt 0.1170 0.2088 4.9538 10.9579
it-it sp-it 0.0558 0.1601 3.5771 6.3979
it-it en-it 0.0978 0.1211 3.7763 4.4547
it-it en-pt 0.1339 0.2094 7.0455 11.0249
it-it it-ge 0.1340 0.1845 8.2820 8.1525
pt-pt sp-pt 0.0454 0.1215 3.1657 7.6649
pt-pt en-pt 0.1239 0.2144 6.6945 14.2463
pt-pt pt-ge 0.1511 0.2394 8.6392 8.0217
pt-pt pt-it 0.0604 0.2107 3.2196 13.8630

Table 10. Wilcoxon test for 20 paired groups of d-values for KT
and EKT as presented in Table 9. The tests were conducted in
two cases: absolute d-values and Cohen’s d-values. Tests present
EKT > KT in d-values in both absolute and Cohen’s d values.

Wilcoxon, one-tailored, d-value (KT and EKT)
measure p-value result
Cohen’s d 0.0262 significantly dif-

ferent groups
absolute d 0.0040 significantly dif-

ferent groups

ferent languages and in the group of pairs of documents with
the same language are significantly different, with a p-value
of less than 1013 for all languages analyzed, which guaran-
tees a robust differentiating power for the methods applied to
the proposed problem. All pairs can be classified with abso-
lute precision as “same” or “different”, and although it is not
possible to assign a priori an absolute value that identifies
the dissimilarities between any pairs, but limits for signifi-
cant EKT values can be previously obtained according to a
set of previously analyzed data.
The difference between the p-values in both metrics oscil-

lated between 1013 and 1014, which are very small values,
even when considering the Bonferroni [Bonferroni, 1936]
correction. Therefore, both metrics are effective in solving
the proposed problem, and, in this case, there is no signifi-
cant improvement in the use of the proposed method.
However, whenwe consider the relative distances between

the values x′ obtained for the set of pairs of a language and
the set of values x obtained for the pairs formed between this
language and a different language, we observe that the differ-
ences (x′ − x) are significantly larger when using Kendall’s

tau extension, even when using these distances in the stan-
dardized form [Cohen, 2013].
We can observe that extended Kendall’s tau considers an

additional component in the calculation of Kendall’s tau dis-
tance, and therefore it is natural that all distances calculated
by the method are greater than or equal to the distances calcu-
lated by Kendall’s tau. However, as the difference between
the two distances is also significantly greater, we claim that
the application of the extended method can better differenti-
ate data samples in terms of their distribution properties. In
practice, the application of Kendall’s tau extension considers
factors such as the occurrence of a letter in only one docu-
ment. This type of phenomenon is also correlated with the
language in which a document is written, as some letters are
particularly used in a given language and not on another.
The study suggests that the application of EKT can be

useful in problems where lists are not guaranteed to have
the same elements without compromising their effectiveness.
Furthermore, this study suggests that the application of EKT
may represent increased value differences between similar
and dissimilar values, which may facilitate a binary recogni-
tion pattern.
Another important aspect to consider is that applications of

KT and EKTmetrics can be done to more complex problems
than the one we show in this work, and that can generate sig-
nificant computational cost. While the purpose of this work
was to show a practical application in which EKTmetric may
be more appropriate, we can also optimize the metric calcu-
lation on much larger lists. This problem can be solved by
applying a more efficient algorithm adapted to measure the
neighboring displacements (bubble sort movements) using a
merge function. This method can reduce the complexity of
the problem from O(n2) to O(n.log n). As the proposed so-
lution in EKT metric also assumes a rank-ordered hierarchy
(from left to right or from right to left), it may be useful to ap-
ply a cut or limit on the length of the lists since the variation
in the order of the elements with little frequency can produce
undesirable random variations in distance values. We plane
to address these issues in future work.
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