
Journal of the Brazilian Computer Society, 2024, 30:1, doi: 10.5753/jbcs.2024.3061
This work is licensed under a Creative Commons Attribution 4.0 International License.

Mapping RDEVSNLbased Definitions of Constrained Network
Models to Routed DEVS Simulation Models
Clarisa Espertino [Universidad Tecnológica Nacional FRSF | cespertino@frsf.utn.edu.ar]
María Julia Blas [INGAR CONICET & UTN | mariajuliablas@santafeconicet.gov.ar]
Silvio Gonnet [INGAR CONICET & UTN | sgonnet@santafeconicet.gov.ar]

Instituto de Desarrollo y Diseño INGAR, CONICET Universidad Tecnológica Nacional, Avellaneda 3657, Santa Fe,
3000, Argentina

Received: 15 December 2022 • Accepted: 19 April 2023 2023 • Published: 27 March 2024

Abstract The Routed DEVS (RDEVS) formalism has been introduced recently to provide a reasonable formaliza
tion for the simulation of routing processes over Discrete Event System Specification (DEVS) models. Due to its
novelty, new software tools are required to improve the Modeling and Simulation (MS) tasks related to the RDEVS
formalism. This paper presents the mapping between constrained network models obtained from textual specifica
tions of routing processes and RDEVS simulation models implemented in Java. RDEVSNL contextfree grammar
(previously defined) is used to support the textual specification of a routing process as a constrained network model.
Such grammar is based on a metamodel that defines the syntactical elements. This metamodel is used in this paper
as a middleware that allows mapping constrained network model concepts with RDEVS simulation models. From
such a constrained network model template, RDEVS Java implementations are obtained. The proposal is part of a
workinprogress intended to develop MS software tools for the RDEVS formalism using wellknown abstractions
to get the computational models through conceptual mapping. Using these tools, modelers can specify simulation
models without needing to codify any routing implementation. The main benefits are i) reduction of implementation
times and ii) satisfactory simulation model correctness regarding the RDEVS formalism.

Keywords: Discrete Event System Specification, Metamodeling, Contextfree grammar, Modeling and Simulation.

1 Introduction

A formalism provides a set of conventions for specifying a
class of objects in a precise, unambiguous, and paradigmfree
manner. The Discrete Event System Specification (DEVS) is
a modular and hierarchical Modeling and Simulation (M&S)
formalism based on systems theory that provides a general
methodology for the construction of reusable models [Zei
gler et al., 2018]. The Routed DEVS formalism (RDEVS)
employs the “embedding routing functionality” strategy over
DEVS models to provide routing capability from the simu
lation model conception. Such a DEVS extension was pre
sented by Blas et al. [2017] as a subclass of the classic DEVS
[Zeigler et al., 2018] including routing features to the atomic
model capabilities by adding the routing model. Through this
new simulation model, the formalism act as a “layer” above
DEVS that provides routing functionality without requiring
the user to “dip down” to DEVS itself for any functions.
AlthoughRDEVS is based onDEVS, it is a new formalism

that emerges from theM&S community to address new types
of problems. Due to its nature, RDEVS simulation models
can be executed using DEVS simulators. However, structural
differences between DEVS and RDEVS simulation models
imply that DEVS modeling tools cannot be used to define
RDEVS models. The core of RDEVS is to abstract the event
flow into a new type of discreteevent model (i.e., the routing
model) that arrange events independently from the domain
behavior of components using a routing policy. The routing
policy is isolated from the domain behavior (i.e., the essential

model). This feature allows the reuse of the formalized be
havior in several routing models. All routing models together
define a network model. A single network model can support
different settings only by changing the routing policies at
tached to its routing models. The novelty of RDEVS struc
tural features promotes the need to develop new software
modeling tools that i) help practitioners with RDEVS spec
ification tasks and ii) take advantage of DEVS simulators
as execution engines. Hence, modeling tools based on high
level abstractions are preferred to promote implementation
independent modeling.
Aiming to build these software tools, we employ a two

level modeling strategy to get RDEVS simulation models.
At the first level, we use a highlevel description to define
an abstraction model. Then, we employ a routing process
definition as a standard formalization that can be mapped to
RDEVS models. A routing process is a system of interact
ing components in which the operation of an element (i.e.,
a routing process component) and the routing of its outputs
depend on what is happening throughout the process [Alsha
reef et al., 2022]. That means interactions between compo
nents depend on local information and external data derived
from the process structure. As shown later in this paper, for
RDEVS models, local information is related to component
behavior, and external data is attached to routing functions.
Hence, routing processes provide a formalization definition
for RDEVS simulation models.
In this context, network theory is a useful technique to

model relationships between entities defined as nodes con

https://orcid.org/0009-0004-6720-112X
mailto:cespertino@frsf.utn.edu.ar
https://orcid.org/0000-0001-9629-6763
mailto:mariajuliablas@santafe-conicet.gov.ar
https://orcid.org/0000-0003-3024-4754
mailto:sgonnet@santafe-conicet.gov.ar

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

nected by a set of links [Newman et al., 2011]. A particular
case of network models is constrained network models (i.e.,
restricted networks). When routing processes are defined as
a network of related entities, constraints are required to get
reasonable definitions. As shown later in this paper, these
models are defined as constrained network models.

This paper presents an approach in which textual specifi
cations of constrained network models are translated to Java
implementations of RDEVS simulation models. The objec
tives are i) to provide a transformation process between con
strained network models and RDEVS simulation models by
a routing process description and ii) to develop a new M&S
software tool using Eclipse technology that supports both the
textual specification of routing processes as constrained net
work models and the transformation process described at i).
By achieving both objectives, we provide a solution in which
modelers can describe a highlevel routing situation as a con
strained network textual description based on a ContextFree
Grammar (CFG) and then get the related RDEVS simulation
model implementation.

Following the twolevel modeling strategy, we combine
a constrained network model (i.e., a highlevel description)
with a routing process definition (i.e., a formalizationlevel
description) to describe an accurate transformation that al
lows obtaining Java code (i.e., a lowlevel implementation)
for RDEVS models. We use the CFG named RDEVS Nat
ural Language (RDEVSNL) to define the structure of the
constrained network models. Such a CFG has been proposed
in previous work to offer a textual definition of routing sit
uations using constrained network models and is supported
by a metamodel that acts as a representation of routing pro
cesses. From an instance of such a metamodel, in this pa
per, we show how Java code can be obtained using Eclipse
technology [The Eclipse Foundation, 2022a]. As a result, we
present an Eclipse plugin that extends the RDEVSNL Edi
tor tool with the transformation process used to map a meta
model instance (i.e., a routing process) to Java classes. The
template used to create these classes is based on the RDEVS
Java Library. Hence, the main contributions of the paper are
the twolevel modeling approach used to support the devel
opment process and the software tool.

The remainder of this paper is organized as follows. Sec
tion 2 presents the RDEVS formalism introducing the Java
Library used at the core of the transformation process. Sec
tion 3 details the implementationindependent modeling ap
proach used to build the proposal. It includes a description
of previous work devoted to the textual specification that
supports constrained network models. It introduces the meta
model used to map a routing process with a constrained net
work model instance. From this metamodel, Section 4 details
the transformation process developed from the highlevel de
scription obtained as a metamodel instance (i.e., a routing
process) to the lowlevel implementation (i.e., Java classes
for RDEVS implementations). It includes proof of concepts
developed following the example presented by Blas et al.
[2021] and two reallife scenarios modeled with RDEVS for
malism taken from Blas et al. [2022]. Section 5 discusses our
results and their relationship with other proposals. Section 6
is devoted to conclusions.

2 The RDEVS Formalism
The RDEVS formalism is an adaptation of Classic DEVS
that adds routing features to the models by introducing a new
modeling level: routing behavior [Blas et al., 2022].
DEVS models are designed to provide behavior and struc

ture definitions through atomic and coupled models, respec
tively. In RDEVS, three types of models are formalized: es
sential, routing, and network models. These models take ad
vantage of DEVS modeling levels by partitioning the be
havior into two distinct modeling levels: domain behavior
and routing behavior. The RDEVS essential model defines
a DEVS atomic model that specifies a domain behavior (i.e.,
the primary behavior of a component). The routing model
defines a container of an essential model that uses a rout
ing policy to manage its inputs and outputs (i.e., it adds a
routing behavior over a domain behavior). Finally, the net
work model defines a set of routing models coupled alltoall
to leave the routing functionality to routing policies (i.e., it
describes a structure over routing behaviors). Based on the
use of routing policies, RDEVS simulation models provide
an accurate formal specification of routing processes using
three modeling levels: domain behavior, routing behavior,
and structure.
Centered in the M&S framework of DEVS [Zeigler et al.,

2018], RDEVS models can be executed using DEVS simu
lators. Such a framework shows how M&S activities are re
lated by using four conceptual entities [Zeigler and Nutaro,
2016]: i) the source system as the real/virtual environment to
be modeled, ii) the model as the set of instructions for gen
erating data comparable to the data observable in the system,
iii) the simulator as the computation specified in the model,
and iv) the experimental frame as the conditions under which
the source system is observed. In this way, it emphasizes the
notion of model and simulator as two independent entities
linked by the simulation relationship when a model is exe
cuted on a computational environment (i.e., a simulator). Fur
thermore, starting from theM&S framework, RDEVS can be
seen as a subclass of DEVS for modeling new types of prob
lems [Blas et al., 2018].
DEVS extensions can be classified as variants or sub

classes. The variants of DEVS refer to the subset of DEVS
extensions in which the alternative formalism models a new
type of system that, previously, could not be modeled with
the original formalism. This is the case with Dynamic Struc
ture DEVS, an extension that allows modeling systems with
dynamic structures [Barros, 1997]. On the other hand, sub
classes refer to the subset of DEVS extensions in which the
alternative formalism improves the solution of a simulation
scenario by applying DEVS models in a meaningful way.
This is the case with RDEVS, an extension of DEVS de
signed to handle routing information in DEVS models. Such
an extension improves the M&S of routing scenarios as a
general mechanism that can be applied in distinct domains
(e.g., supply chain, network protocol communications, and
software architectures) [Blas and Gonnet, 2021; Alshareef
et al., 2022; Blas et al., 2022]. The RDEVS capability of
defining routing processes as a highlevel abstraction for any
domain (Section 3.1) provides a solid basis for mapping do
main concepts with RDEVS models. Since RDEVS is a sub

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

class of DEVS, the model entity of RDEVS formalism can
be seen as a subclass of the DEVS model entity.
In conceptual modeling theory, the subtyping used to rep

resent classsubclass dependence reflects the concepts at a
more detailed specification level [Parsons and Wand, 1997].
Hence, any subclass of the DEVS model must be more spe
cific than the DEVS model. For RDEVS, introducing a new
modeling level is the core of such a specification. Given that
the RDEVS model entity inherits a base set of the superclass
properties (i.e., the properties of the DEVSmodel entity), the
simulator used for its execution could be the same (i.e., the
DEVS abstract simulator can execute RDEVSmodels). How
ever, due to the modeling level distinction between DEVS
and RDEVS formalisms, newmodeling strategies are needed
to support the specification of RDEVS models.
One way to do this is by using abstraction models to de

sign formalization descriptions that allow getting the compu
tational models (i.e., executable implementations) through
conceptual mapping. This is the modeling approach called
“implementationindependent modeling” presented in Sec
tion 3. For RDEVSmodels, such an approach is supported by
the RDEVS Java Library (Section 2.2) to get RDEVS com
putational models.

2.1 Simulating Routing Processes
A routing process is a system of interacting components in
which the operation of an element and the routing of its
outputs depend on what is happening throughout the pro
cess. As this is a general definition, routing processes can be
found in several domains, such as, for example, manufactur
ing and network communications. In this type of abstraction,
the main objective of simulation studies is analyzing object
flows among components (e.g., data or resources) along with
components and system overall performance.
Depending on the domain, the routing process specifica

tion may contain different types of components. However,
even when all components can be distinct among each other,
each component type operates independently. This means
that the internal operation of components can be defined as a
black box that is independent from the structure of the rout
ing process itself. Since routing depends equally on the oper
ative description of the component and process structure, the
component can decide the output destinations. Hence, com
ponents can take decisions about routing such as i) alternate
the routing of its outputs to avoid congestion, ii) block the
routing of its outputs from entering to a precise sector of pre
defined components, and iii) accelerate/decelerate the pro
cessing of its inputs (to produce faster/slower outputs) when
knowing that downstream nodes are free/busy.
When routing processes are defined using models, several

formalisms can be applied. For example, Petri nets have been
used for modeling manufacturing systems [Kahraman and
Tüysüz, 2010]. Such models can be later used in a simula
tion environment to study how the model works [Gehlot and
Nigro, 2010]. DEVS models can be also used for the same
purpose. However, when comparing the use of DEVSbased
solutions with RDEVSbased solutions, RDEVS formalism
reduces the modeling complexity. As explained in Blas et al.
[2022], the reusability and flexibility of the RDEVSbased

solutions, along with model designs with low coupling and
high cohesion, are the main benefits of using RDEVS instead
of DEVS.
When getting RDEVSmodels from a routing process spec

ification, the following statements are valid: i) the network
model structures a routing process functionality as a compo
sition of routing models; ii) the routing model represents the
routing functionality of a component included in the routing
process; and iii) the essential model describes the internal op
eration of a routing process component (i.e., the component
behavior). Hence, each RDEVS model belongs to a model
ing level and plays a role in a routing process specification
(see Table 1).
The advantages of employing RDEVS for the M&S of

routing situations are the following: i) the modeler does not
need to dip down to DEVS itself to add routing functionality
to models, ii) existing DEVS atomic models can be used to
structure routing processes, iii) RDEVS and DEVS models
can be combined to define complex M&S scenarios where
routing processes interact with other types of phenomena,
and iv) DEVS simulators can be used to execute RDEVS
models.

Table 1. Routed DEVS simulation models, modeling levels, and
routing processes. For simplicity, we consider a routing process as
a set of linked components.

RDEVS Model Modeling Level Role in
Routing Process

Essential model Domain behavior Component
(behavior)

Routing model Routing behavior
Component
(routing
functionality)

Network model Structure
Process
(routing
functionality)

2.2 The RDEVS Library
As stated before, the RDEVS formalism is a subclass of
DEVS. This means that existing implementations of DEVS
can be used to support RDEVS implementations. From this
perspective, a Java library was developed using DEVSJAVA
[Sarjoughian and Zeigler, 1998] as the underlying M&S
layer.
DEVSJAVA is a software tool implemented in Java

that supports defining models in DEVS formalism through
an objectoriented conceptualization. By extending DEVS
JAVA, the RDEVS library provides a solution for implement
ing RDEVS simulation models in Java and, later, executing
these models using the DEVSJAVA engine.
Figure 1 illustrates the main classes of the RDEVS library

using a UML class diagram. As the figure shows, all the
concepts included in the formalism were defined as Java
classes. For example, the library includes a Java class for
each type of RDEVSmodel defined in the formalism (i.e.,Es
sentialModel, RoutingMode, and NetworkModel). Relation
ships are used to denote dependencies among classes. Then,
for example, the library defines the routing policy of a rout

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

ing model as the RoutingFunction linked to the Routing
Model definition as the delr property of the related Omega
class (which is linked to the model by the w property). More
over, the NetworkModel class is related to one instance of
InputTranslationFunction class through the Tin property to
define the transformation of input events to input events with
identification (i.e., instances of the IdentifiedEvent class).
A similar strategy is used to relate the NetworkModel with
the OutputTranslationFunction. The IdentifiedEvent class is
used to denote the structure of events managed by the models
with routing functionality.

The diagram includes a few operations for the classes that
represent RDEVS simulation models. These operations are
added to illustrate how the library supports the behavioral
definition of routing processes. Considering the modeling
levels detailed in Table 1, the classes defined in the library
support the structure definition (i.e., the set of classes allows
implementing the NetworkModel class using accurate rout
ing model definitions). The routing behavior level is sup
ported by the set of operations defined as “final” in Routing
Model. These operations (e.g., delext(), delint(), and out())
are implemented as Java code in the library and cannot be
changed in further subclasses. In this way, the library en
sures the correctness of the routing functionality defined at
the core of the RDEVS formalism. Finally, the operations
defined as “abstract” in the EssentialModel class support the
domain behavior. As with any abstract element, these oper
ations require a Java implementation in further subclasses
to define the behavioral specification of routing components.
Since the behavioral specification of such components is part
of the domain problem, the RDEVS library only provides the

interface required for their simulation.
The Java classes detailed in the library are designed as ex

tension points for building RDEVS implementations. An ex
tension point is the definition of the provided interface for ex
tensions [Klatt and Krogmann, 2008]. That is, an extension
itself of the classes that represent RDEVS simulation mod
els is an implementation of the RDEVS model according to
the extension point defined in the library. Hence, the library
includes extension points configured for designing explicit
RDEVS simulation models as reusable components slated
for executing the routing simulation without any other con
sideration.

3 ImplementationIndependent Mod
eling Approach

Abstraction creates a conceptual model by extracting only
those elements needed for addressing a modeler’s con
cerns. M&S software tools with such a feature reduce the
knowledge required for building discreteevent simulation
models (here, RDEVS models), and modeling tasks can
be performed by anyone that understands the problem
domain through the proposed abstraction. On the other hand,
formalization makes it easier to work out the implications of
an abstraction and implement them in reality [Zeigler et al.,
2018]. As previously stated, the RDEVS formalism is de
signed to level out the modeling effort of routing processes
modeled in DEVS. Hence, routing processes can be used as
formalization descriptions of highlevel routing abstractions.

Figure 1. UML class diagram of the Java classes included in the RDEVS library. Classes highlighted in gray belong to the DEVSJAVA package.

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

Figure 2. (a) Independentimplementation twolevel modeling approach.
(b)How the twolevel modeling approach was used for graph model abstrac
tions [Blas and Gonnet, 2021]. (c) How the twolevel modeling approach is
used in this paper for constrained network model abstractions. Step 1 was
presented in Blas et al. [2021] and is described briefly in Section 3.1. Step
2 is the contribution of this work.

Figure 2(a) shows the independentimplementation mod
eling approach used in this paper. As the figure details, the
highlevel description is supported by the formalizationlevel
description (i.e., a routing process specification) to define the
twolevel modeling strategy. Then, the routing process spec
ification can be translated into a lowlevel implementation
based on Java.

Figure 3. Implementation of the RDEVSNLmodeling language using a syn
tax (composed of an abstract syntax and a concrete syntax) and semantics.
To simplify, the CFG and the modeling language receive the same name.
When we refer to the CFG, we mean the textual definition through the con
crete syntax.

Following this approach in Blas and Gonnet [2021], we ab
stract the routing process definition into a highlevel abstrac
tion designed as a graph model based on nodes and edges
(Figure 2(b)). Instead of using a modeling language, we de
fine a graphical representation based on i) two types of nodes
(one for the component behavior and the other for the com
ponent routing functionalty) and ii) two types of links (one
for the routing path and the other for linking the component
behavior with its routing functionality). The graph represen
tation is detailed in a metamodel that supports the instantia
tion of valid routing processes. Hence, the abstractions are
mapped to the roles presented in Table 1 to define RDEVS
equivalences through themodeling levels. Then, we present a
plugin for Eclipse [The Eclipse Foundation, 2022b] that sup
ports the graphical modeling of routing situations (through
metamodel instantiation) as the core specification of RDEVS
models. The simulation models obtained from the routing
process definition were deployed as Java classes that extend
the RDEVS Library. These classes together define the com
putational model attached to the abstraction defined through
the graph. In this way, modelers can have RDEVS models
without codifying any routing implementation (i.e., they only
must define a routing situation graphically as a set of nodes
connected by links).
Network theory is a useful technique to model relation

ships between entities [Newman et al., 2011]. A network con
sists of nodes connected by a set of links. Such a represen
tation has been widely adopted for modeling studies in sev
eral fields. For example, in the social network domain, it was
used by Borgatti and Halgin [2011]. In software engineering,
network theory was used to evaluate systems/software issues
[Pan, 2011; Wen et al., 2007; Zakari et al., 2018].
Aiming to continue using abstractions to define routing

processes, we developed a textual representation based on
network theory [Blas et al., 2021]. The textual representa
tion was designed as a CFG used to define constrained net
work models through a metamodel template. This previous

Figure 4. Production rule of the nonterminal symbol “network”.

Figure 5. Syntax diagram of the nonterminal symbol “network”.

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

Table 2. Examples of syntactical expressions allowed in the contextfree grammar RDEVSNL.

Primary Building Block
Allowed Sentences

(English version)

Allowed Sentences

(Spanish version)

Network

•The A node is part of C network.
•The C network includes B node.
•The A and B nodes are part of a C
network.

•El nodo A es parte de la red C.
•La red C incluye al nodo B.
•Los nodos A y B son parte de la red C.

Materialize

•The A node performs the behavior of D
component.
•The B node materializes D component.
•The D component defines the bahavior
of A and B nodes.

•El nodo A ejecuta el comportamiento del
componente D.
•El nodo B materializa al componente D.
•El componente D define el
comportamiento de los nodos A y B.

Edges

•The A node sends outputs to B node.
•The E and F nodes receive inputs from the
B node.
•The connections are: A with B, B with E
and B with F.

•El nodo A envía salidas al nodo B.
•Los nodos E y F reciben entradas
desde el nodo B.
•Las conexiones son A con B, B con E y B con F.

work is described briefly in Section 3.1. Following the two
level modeling approach, this paper uses such a constrained
network model template as a highlevel abstraction of rout
ing processes to get RDEVS computational models (Figure
2(c)). The constrained network model defined over a textual
specification is translated to a set of Java classes designed
following the RDEVS Library (Figure 1) using the transfor
mation detailed in Section 4.

3.1 Defining Routing Processes based on Con
strained Network Models

We defined a new modeling language named RDEVSNL
to specify a routing process using a constrained network
model abstraction (i.e., to perform step 1 of the independent
implementation approach described above). The RDEVSNL
was named “RDEVS Natural Language” in similarity with
“DEVS Natural Language” (DEVSNL) [Zeigler and Nutaro,
2016].
DEVSNL is defined as a “constrained natural language

specification of DEVS models”. Indeed, it is defined as an
Extended BackusNaur Form (EBNF), a metasyntax nota
tion for CFGs. A CFG is defined as a set of recursive rules
used to describe a contextfree language. Hence, due to the
CFG definition, the processing of the textual expressions de
fined in DEVSNL does not involve any natural language rea
soning (i.e., it does not involve dealing with, for example,
natural language ambiguity). It only requires the text speci
fication to satisfy the defined rules (without considering any
context between them). Aswewill describe later, RDEVSNL
is also based on a CFG. Hence, natural language ambiguity
is not an issue to be solved.
A modeling language is commonly defined using three

components: abstract syntax, concrete syntax, and seman
tics Krahn et al. [2007]. The abstract syntax identifies mod
eling concepts materialized in concrete syntaxes (that are
frequently specified using visual/textual elements). Usually,
concrete and abstract syntaxes are developed first, and then
the semantics is designed to define the meaning of the lan
guage [Harel and Rumpe, 2004]. In this way, semantics de

fines the meaning of the abstract syntax in terms of concepts
already welldefined and wellunderstood in the semantic do
main. Figure 3 depicts how the RDEVSNL language has
been designed (i.e., how each component was developed).
As the figure shows, the concrete syntax is defined through

the CFG named RDEVSNL (as the overall language). Since
metamodeling is a popular method to define the abstract syn
tax of languages [Sprinkle et al., 2007], we use a conceptual
ization of a routing process through a metamodel that struc
tures constrained network models. We consider that when
modeling a routing process as a network, nodes define com
ponents, and links denote interactions between them. The se
mantics of the language is out of the scope of this paper.

3.1.1 The RDEVSNL ContextFree Grammar for Con
strained Network Models

The CFG named RDEVSNL was presented in Blas et al.
[2021]. It is based on a constrained network model to ap
proach the definition of routing processes. It abstracts the def
inition of this type ofmodel into textual representations using
nodes and links to describe their structure. That is, it allows
describing a routing scenario using notions of network theory
(i.e., nodes and links as structural components of a network).
Such a definition allows for building a textual specification
of a constrained network model that can be verified to ensure
syntactical correctness.
Two distinct versions of the syntax were developed, one in

English and the other in Spanish. Then, modelers can choose
to define the constrained network model according to their
preference. Both grammars were specified and implemented
using ANTLR4 [Parr, 2022].
In the English specification, three primary building blocks

can be identified i) network, ii) materializes, and iii) edges.
Network is the main block used to define a constrained net
work model. As an example, Figures 4 and 5 show, respec
tively, the production rule and syntax diagram of this symbol.
When a RDEVSNL specification is used to structure a

routing process, a network is defined to model the overall
constrained networkmodel. Such a networkmodel is defined

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

over a set of nodes. Each node denotes a routing compo
nent. Therefore, a network is specified using a name and it
always includes a list of nodes. The sentences from the net
work block (Figures 4 and 5) allow us to define an identifier
and describe the list of nodes that are part of the network.
This can be done in a unique specification (e.g., “the A and
B nodes are part of a C network”) or in multiple text lines
(e.g., “the A node is part of the C network”; “the C network
includes the B node”).
In a routing process, each component exhibits an internal

operation and defines the behavior of a node or list of nodes.
Sentences from the materializes block can be used to define
the behavior that each node will execute, which is associated
with the internal operation of a routing component (e.g., “the
D component defines the behavior of A and B nodes”; “the
A node performs the behavior of D component”).
Links define directed interactions between nodes. The

grammar enables the definition of these interactions in multi
ple ways, using sentences from the edges block. For example,
the modeler can use the following expressions: “the A node
sends outputs to the B node” or “the B and E nodes receive
inputs from the A node”.
Table 2 summarizes the main syntactical expressions in

cluded in RDEVSNL. For more details regarding the gram
mar design, refer to Blas et al. [2021].
The RDEVSNL Editor. As previously mentioned, the

RDEVSNL grammar (i.e., both English and Spanish defini
tions) was implemented using ANTLR4. Based on such an
implementation, a plugin for the Eclipse platform was de
veloped to allow modelers to use the grammar for defining
constraints network models. Such an editor was presented
along with the grammar in Blas et al. [2021].
The software tool is basically a text editor that allows

specifying constrained networkmodels using the RDEVSNL
grammar and a “wizard” for creating files with the “*.rde
vsnl” extension (i.e., to store textual specifications). It pro
vides writing aids during the edition (such as syntax high
lighting and typing suggestions) using the language selected
by the modeler.

Figure 6. An example of a network model composed of five nodes. For the
node labels, the letter identifies the component type.

Figure 7 shows an example of the network model defined
in Figure 6. Such an example is defined in both languages
(i.e., English and Spanish) to show how the grammar sup
ports both types of specification for the same model. Later,
we will discuss why this model is not defining a routing pro
cess (i.e., it is not structured as a correct constrained network
model). Besides, in Section 4.1, we include a screenshot (Fig
ure 12) with another English specification of a constrained
networkmodel that defines a correct routing process. Such an
example is based on the one presented by Blas et al. [2021].

Figure 7. Specification of the network model defined in Figure 6 using the
RDEVSNL Java editor developed. (a) The textual specification using the
English grammar. (b) The textual specification using the Spanish grammar.

3.1.2 From Constrained Network Models to Routing
Processes: Verifying the Network Model Struc
ture

As previously stated, network theory proposes modeling a
system as a set of nodes connected by links. Both nodes and
links can have distinct meanings in a distinct context. When
modeling a routing process, nodes define components, and
links denote interactions between them. However, not just
any network model defines a routing process.
By using RDEVSNL we can ensure a correct definition of

a network model in which: 1. A network is composed of a set
of nodes. 2. Nodes may (or may not) be connected between
them using links. 3. Nodes may (or may not) have a behavior
attached.
However, the CFG by itself is only useful to verify syntac

tical correctness. A textual specification can be syntactically
correct but may not define a correct network model (case
1). Moreover, a textual specification can be syntactically cor
rect and define a correct network model, but such a network
model may not define a constrained network model that can
be mapped to a routing process (case 2).
For case 1, take as an example the following definition:
“The N1 and N2 nodes are part of the N network. The N1

node performs the behavior of the N2 component. The N2
and N3 nodes receive inputs from the N4 node.”
The example follows all syntactical rules defined in Ta

ble 2 (i.e., it is syntactically correct for the CFG supporting
RDEVSNL). Here, the network is defined as N. In sentence
#1, two nodes are defined as components of the network iden
tified as N : nodes N1 and N2. However, if N2 is the identifier
of a node, then N2 cannot be defined as the behavior of N1
(this is the case of sentence #2). Moreover, if N is composed
of N1 and N2, then N2 cannot be connected to N3 and N4
(as defined in sentence #3). Hence, even when the example
is syntactically correct, the definition does not make sense.
For case 2, take as an example the definition of Figure 7(a).

This example follows the syntactical rules defined in Table 2
and does not present the problem detailed for case 1 (i.e., it
is a correct network model). However, such a network model
cannot be mapped to a routing process since it is not a cor
rectly constrained network model (e.g., the node C3 stands
isolated from the others). To solve both issues (cases 1 and
2), we use a metamodel.
A metamodel is a model which defines the used language

to design a model [OMG, 2002]. Due to their expressiveness,
metamodels are powerful modeling tools to ensure the struc
tural correctness of a model. They allow validating themodel

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

instantiation regarding the set of rules defined at the meta
modeling level. Figure 8 presents a metamodel as a UML
class diagram [OMG, 2017] that describes a routing process
using the elements of a network model (detailed as stereo
types). This metamodel is an improved version of the meta
model defined in Blas et al. [2021] as an instance of the meta
metamodel described to structure network models. This new
version includes: i) the NLSpecification concept, ii) the be
havior defined as a concept instead an attribute (i.e., theCom
ponent Type) and its associations, and iii) new Object Con
straint Language (OCL) constraints (described below).
A specification (NLSpecification) includes a Routing Pro

cess. Each Routing Process is identified by a routingPro
cessName. The network model used to structure a Routing
Process is defined over a set of nodes (Node), where each
of them denotes a Component and executes the behavior of
a Component Type. Each Component Type is identified by
a behaviorName, while each Component is identified by a
nodeName. The process is composed of a set of Interactions
(Link) between Components. For each Interaction, a Compo
nent acts as a source (i.e., the node from which the interac
tion takes place) and anotherComponent acts as a destination
(i.e., the node to which the interaction is intended).

Figure 8. Metamodel used to structure the routing process definition from
a constrained network model specification. Stereotypes are used to indicate
the networkmodel component towhich the routing element refers. The notes
highlighted in gray detail OCL constraints included in the model to obtain
a routing process from a network model definition (see Table 3).

The metamodel of Figure 8 is restricted with OCL con
straints [OMG, 2014] to ensure the network model defines a
routing process. These constraints were designed to provide
integrity to the metamodel as a template for defining prop
erly network models that act as routing processes as follows:
i) at least one nodemust be identified as initial, ii) at least one
node must be identified as final, iii) nodes cannot be isolated,

iv) multiple links cannot connect the same pair of nodes, v)
selflinks are not allowed, vi) a component must execute a
single behavior, and vii) a single routing process must be de
scribed in an NL specification. Table 3 summarizes these
constraints formally using OCL expressions. Constraints i)
to v) were proposed originally by [Blas et al., 2021]. Con
straints vi) and vii) are introduced here as an improvement of
the previous metamodel version.
When following these constraints, the network model pre

sented in Figure 6 (and specified in Figure 7) cannot be used
as a routing process specification since it does not satisfy the
following rules: i) the node C3 is isolated constraint iii),
and ii) the node N2 interacts with itself (i.e., it has a self
interaction) constraint v).

Table 3. OCL constraints (defined as invariants) used to get the
“constrained network model”.
Id OCL Constraint

i

context RoutingProcess
invariant existsStartingComponent:
self.component → select(c | c.inputLink
→size()=0 and c.outputLink → size() >0)
→ size() >0

ii

context RoutingProcess
invariant existsEndingComponent:
self.component → select(c | c.inputLink→size()
>0 and c.outputLink →
size() = 0) → size() >0

iii
context Component
invariant notIsolated:(self.inputLink → size() +
self.outputLink → size()) >0

iv

context Component
invariant multipleInteractions: self.outputLink →
forAll(e1,e2 | e1<>e2 implies e1.destination <>
e2.destination)

v
context Interaction
invariant notSelfInteraction: self.source<
>self.destination

vi
context Component
invariant singleBehavior:
self.behavior → size() = 1

vii
context NLSpecification
invariant singleSpecification: self.routingProcess →
size() = 1

Including the Metamodel in the RDEVSNL Editor. To
instantiate routing processes from constrained network mod
els, the metamodel illustrated in Figure 8 was developed as
an Ecoremodel using EMF [EclipseModeling Project, 2022].
EMF project is a modeling framework and code generation
facility for building software tools and other software appli
cations based on a structured datamodel. Hence, EMF allows
getting a data model specification of the routing process def
inition for further instantiation and validation. Since this is
Java technology, the Ecore model was embedded in the RDE
VSNL Editor plugin to provide an abstract syntax validation
process.
When the validation option for a specification is activated,

the RDEVSNL syntax analysis is executed over the current
content of the “*.rdevsnl” file. Then, the parser tries to rec

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

ognize the structures of sentences from a stream of tokens
given by the actual specification. If the analysis is successful
(i.e., all the sentences that the modeler used to create the spec
ification are valid), using the tokens identified by the parser,
an instance of the Ecore metamodel is automatically gener
ated (i.e., the editor instantiates the defined metamodel fol
lowing the parsing of the textual specification). Afterward,
the metamodel’s concepts, relationships, multiplicities, and
OCL restrictions are verified over the obtained instance.
If no issues are found, the textual definition of the con

strained network model is in correspondence with a valid
routing process. This means that such a definition can be
translated to Java code with the aim to obtain the RDEVS
models attached (Section 4). On the contrary, if the textual
definition has issues, the modeler will visualze an error mes
sage and a list with more details in the Problems view of
Eclipse (having the possibility to fix its specification and
check the new content).

4 Generating Java Implementations
based on Routing Process Descrip
tions

The routing elements defined in the metamodel of Figure 8
can be related to the RDEVS modeling levels presented in
Table 1. Such relations can be defined as follows:

• Rel #1) a Routing Process is attached to an RDEVSNet
work Model,

• Rel #2) a Component is attached to an RDEVS Routing
Model, and

• Rel #3) a Component Type is attached to an RDEVS Es
sential Model.

How these metamodel elements are defined in terms of
their properties and associations in an instantiation model de
termines how the RDEVS models should be designed. Take
as an example the instance model defined in Figure 9. In this
instantiation, a copying service composed of three devices
is modeled as a routing process. Devices are two scanners
(placed at offices 1 and 2) and one printer shared by both of
fices. Each Scanner (Scanner Office 1 and Scanner Office 2)
is modeled as an instance of Component type that material
izes the Scanner defined as an instance of Component Type.
For the printer shared by both offices, a Component instance
is defined (i.e., Shared Printer) materializing the Printer de
fined as an instance of Component Type. Interactions are de
fined as follows: i) from Scanner Office 1 to Shared Printer,
and ii) from Scanner Office 2 to Shared Printer. The overall
routing process is defined through the Copying Service (in
stance of Routing Process). Such an instance is defined over
Scanner Office 1, Scanner Office 2, and Printer.
Following the modeling levels presented in Table 1 and

the relations defined above, the RDEVS models required to
simulate such a process are:

• TwoRDEVSEssentialModels for defining Scanner and
Printer, respectively.

• Three RDEVS Routing Models for defining Scanner
Office 1, Scanner Office 2, and Shared Printer, respec
tively.

• One RDEVS Network Model for defining the Copying
Service.

Furthermore, the associations defined among instances de
fine relationships between models as follows:

• The RDEVS Routing Models of Scanner Office 1 and
Scanner Office 2 embed the RDEVS Essential Model of
the Scanner.

• The RDEVS Routing Model of the Shared Printer em
beds the RDEVS Essential Model of the Printer.

• The RDEVS Network Model of the Copying Service is
composed of the RDEVS Routing Models of Scanner
Office 1, Scanner Office 2, and Shared Printer.

• The Routing Policy of the RDEVS Routing Model of
the Scanner Office 1 is based on the I1 instance of Inter
action.

• The Routing Policy of the RDEVS Routing Model of
the Scanner Office 2 is based on the I2 instance of Inter
action.

• The Routing Policy of the RDEVS Routing Model of
the Shared Printer is based on I1 and I2 instances of
Interaction.

Hence, starting from an instantiation, a set of equivalences
can be defined to get RDEVS simulation model implemen
tations (i.e., the computational models). These equivalences
were used to get the Java classes representing RDEVS mod
els attached to textual specifications already validated by the
plugin as metamodel instances. To do this, we follow the
extension points of the RDEVS library by creating new Java
classes using Acceleo [The Eclipse Foundation, 2022a].

Figure 9. Example of a routing situation defined as a constrained network
model obtained as an instance of the metamodel depicted in Figure 8.

Acceleo is a templatebased technology that allows the cre
ation of code generators from any data source available in
EMF format. By defining a generation model for the textto
code transformation, the elements defined in the abstraction
model (i.e., the instance of the metamodel) are navigated to

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

Figure 10. Definition of the process used to generate the Java code required to support the RDEVS models attached to a NLSpecification (i.e., the file named
“generate.mtl” in Acceleo). Such a process requires other methods implemented as queries by combining Acceleo with Java. Main classes used to support
the simulation models are defined in lines 8 (essential model), 24 (routing model), and 29 (network model).

Figure 11. Industrial routing process proposed in Blas et al. [2021]. Icons
depict machine types.

“write” the corresponding Java classes. The generationmodel
used to get the RDEVS Java classes is presented in Figure 10.
Such a model defines the main template for scrolling through
the content of an NLSpecification (identified as nlSpecifica
tion in line 4).
It is important to note that the domain behavior (i.e.,

the first modeling level of Table 1) cannot be fully de
fined from the routing process definition. That is because
the internal behavior of components is not defined in the
constrained network models. Even so, following Rel #3),
each ComponentType defined as part of the nlSpecifica
tion.routingProcess.behaviour set is used to structure an ex
tension of the EssentialModel class (lines 6 to 9). The value
of the behaviourName attribute is used to name the new sub
class by adding “ComponentType” at the beginning. Also,
a new subclass is defined to get an implementation of the
model state as an extension of State.java. This new class uses
the same name convention as the model by adding “State” be
fore the behaviourName.
According to Rel #2), each Component included in

the Routing Process should define an extension of the
RoutingModel.java class. The set of Components at
tached to a Routing Process defined in the nlSpecifica
tion instance is obtained by the association nlSpecifica
tion.routingProcess.component. For each element included
in such a set, subclasses required to support the attachedRout
ing Model are created (lines 10 to 26).
Lines 10 to 18 are used to register all Components in the

process used to generate the Java code. Lines 20 to 26 de
fine the extensions. These extensions are named using the
value of the nodeName attribute adding an appropriate label
to depict the part of the model defined (i.e., “Node”, “Rout
ingFunctionDefinition”, and “RoutingElement”). For exam
ple, the routing functionality of a Routing Model is defined
through an extension of the RoutingFunctionElement class.
This extension uses the output links to define available des
tinations. Accurate sources are defined considering the input
links. In this way, Interactions and Components are used to
define the routing behavior (i.e., the intermediate modeling
level detailed in Table 1).
Finally, using the Routing Process definition and follow

ing Rel #1), an extension of the NetworkModel class is de
fined (lines 28 to 31). This class refers to the structure (i.e.,
the final modeling level of Table 1). The name of such an ex
tension is defined using the value of the routingProcessName
attribute by adding “Network” at the beginning. The exten
sion is designed to include full couplings among instances of
all classes used to implement routing models.
The “generator.mtl” file described above was included in

the Acceleo project that supports the generation process of
the Java code required for our implementationindependent
modeling approach. Such a project was embedded in the
Eclipse plugin described in Section 3.1 to allow a direct
translation when the metamodel validation is successfully
verified. In this way, if both the CFG and metamodel pro
duce a correct constrained network model instantiation, the
Java code that implements the executable RDEVS simulation
models attached to the network specified is automatically cre
ated.

4.1 Proof of Concepts

Figure 11 shows a routing scenario composed of two types of
machines (which are denoted by the type of icon placed in the

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

scenario). The scenario involves five nodes used to connect
inputs to outputs from two distinct paths. Then, Figure 12
presents a screenshot of an alternative textual specification
of the scenario proposed in Figure 11 using the RDEVSNL
Editor. Such a scenario is a valid constrained network model
that can be translated to an RDEVS computational model as
follows.
Take as an example line 1 of Figure 12. This line is syn

tactically correct according to Table 2. Therefore, during the
RDEVSNL grammar checking, the plugin creates the fol
lowing elements:

• i) an instance of RoutingProcess with the attribute rout
ingProcessName = “RoutingProcess”,

• ii) five instances of Component (each one with the la
bel ”Machine_1” to”Machine_5” in the attribute node
Name), and

• iii) five relationships isDefinedOver to link each Com
ponent to the RoutingProcess.

The same process is performed for the text specification
detailed in lines 2 to 6 to define the instantiation of the meta
model (presented in Figure 8) attached to the routing situ
ation (specified in Figure 12). Over the overall metamodel
instantiation, the plugin automatically runs the Ecore val
idation process to ensure its correctness. Such a validation
checks concepts, relationships, multiplicities, and OCL con
straints. In this case, the validation of the Ecore instance cre

ated by the CFG is completed successfully. Then, the plugin
creates the RDEVS computational model following the pro
cess described in Section 4.
Figure 13 presents a screenshot of the Eclipse plat

form once the creation process is completed, and all
Java classes have been created. In the Project Explorer
(left side of the screen), all Java classes created by the
M&S software tool are listed as part of the Java pack
age named “rdevsmodels”. Table 3 summarizes the Java
classes created for each one of the elements instantiated
from the metamodel. As the Table shows, several classes
were created for the same metamodel element instantiated
during the transformation (e.g., for the Component named
“Machine_1”, three subclasses are created – NodeMa
chine1.java_, Machine_1RoutingFunctionDefinition.java,
andMachine_1RoutingFunctionElement.java).
The specification of the NetworkRoutingProcess class is

presented on the right side of the screen (Figure 13). Such
a class is defined as an extension of NetworkModel (line
13). As the yellow box shows, all classes automatically gen
erated include documentation related to the metamodel ele
ment from which they are derived. Such documentation in
cludes the authoring tag that indicates the Java code is auto
generated from the plugin. It also includes the date on which
the code was generated. Moreover, the green box highlights
the model methods. In this case, the Java class includes only
one method: the class constructor named NetworkRouting

Figure 12. Screenshot of the RDEVSNL Editor when implementing the routing situation depicted in Figure 11. Suggestions are provided following the
language configuration. Keywords are highlighted to help the modeler during the edition.

Figure 13. Screenshot of the Eclipse platform once the generation process developed has been executed for the textual specification detailed in Figure 12.
Highlighted boxes refer to the documentation and model attributes definition of the new subclass extending the NetworkModel class.

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

Table 4. List of the Java classes obtained for the proof of concepts.
Metamodel Instance RDEVS Java Implementation
Name Type New class “extends”
MACHINE_

TYPEA Component Type ComponentTypeMACHINE_TYPEA.java
StateMACHINE_TYPEA.java

EssentialModel.java
State.java

MACHINE_

TYPEB Component Type ComponentTypeMACHINE_TYPEB.java
StateMACHINE_TYPEB.java

EssentialModel.java
State.java

Machine_1 Component
NodeMachine_1.java
Machine_1RoutingFunctionDefinition.java
Machine_1RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_2 Component
NodeMachine_2.java
Machine_2RoutingFunctionDefinition.java
Machine_2RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_3 Component
NodeMachine_3.java
Machine_3RoutingFunctionDefinition.java
Machine_3RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_4 Component
NodeMachine_4.java
Machine_4RoutingFunctionDefinition.java
Machine_4RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_5 Component
NodeMachine_5.java
Machine_5RoutingFunctionDefinition.java
Machine_5RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Routing_Process Network Model

NetworkRouting_Process.java
InputTranslation
FunctionRouting_Process.java
OutputTranslation
FunctionRouting_Process.java

NetworkModel.java
InputTranslationFunction.java
OutputTranslationFunction.java

Figure 14. (a) A highlevel description of the web architecture proposed
in the case study “AWS Netflix”. (b) The RDEVSNL specification of the
architecture depicted in Figure 14(a).

Process(). All the parameters required to set up the struc
ture of the network model are created by calling the super()
constructor method (i.e., the constructor defined in the Net
workModel class). By using instances of all routing model
classes created from other metamodel elements, the parame

ters of the super() method are defined. In this way, the net
work model used to simulate the routing process defined in
the metamodel is structured in terms of all nodes (i.e., all
RDEVS routing models) already implemented as Java code.
Furthermore, a video of the software tool operation can be

seen here 1.

4.2 Using the Tool forModeling RealLife Sce
narios

To show how the overall software tool supports the M&S
development process for reallife cases, we present two case
studies already analyzed (from the modeling effort point of
view) with the RDEVS formalism in Blas et al. [2022]. Such
cases refer to reallife software architectures obtained from
Amazon Web Services.
The first case study specified is the MultiRegion Re

siliency of Netflix implemented with Amazon Route 53
(Amazon Web Services [2021a]). A sketch of such an archi
tecture is presented in Figure 14(a). Following the textual
specification purposed, Figure 14(b) shows the RDEVSNL
definition. Here, each replica of a component is defined as a
node (composing the network) that performs the component
behavior. For example, line 4 details the AWSNetflix network
is composed of two replicas of WATCHDOG named watch
dog1 and watchdog2. Then, line 8 details that both repli

1https://www.youtube.com/watch?v=4RbHn4AqRWM&ab_channel=
RoutedDEVSGroup

https://www.youtube.com/watch?v=4RbHn4AqRWM&ab_channel=RoutedDEVSGroup
https://www.youtube.com/watch?v=4RbHn4AqRWM&ab_channel=RoutedDEVSGroup

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

Figure 15. List of Java classes created when the translation process is exe
cuted over the definition detailed in Figure 14(b).

cas use the component namedWatchDog. Finally, Figure 15
shows how the project explorer looks when the translation
process is finished. As this last figure shows, a Java class
is created for each element defined in the specification. All
these classes together provide the structure required to per
form an RDEVS simulation.

A larger case is the Deals Engine Architecture of Expedia
Group Global (Amazon Web Services [2021b]), outlined in
Figure 17. Following the development process used in our
tool, Figure 18 shows both the textual specification (on the
right side of the screen) and the set of Java classes obtained
once the translation process is successfully performed (at the
project explorer shown on the left side of the screen). As a
complement, Figure 18 shows part of the metamodel instan
tiation produced to support such a translation. As Figures 16
and 17 show, mechanisms used to support the software tool
proposed in this paper scale well when different numbers of
nodes, components, and links are used. Moreover, the gen
erated Java code is sound requiring the modeler to complete
the behavioral definitions before executing the actual simu
lation.

Figure 16. A highlevel description of the web architecture proposed in the
case study “AWS Expedia Group”.

5 Discussion
The RDEVSNL Editor has been proposed as an alternative
modeling tool for building RDEVS simulation models. With
the code generation addition, the eclipse plugin defined ini
tially as an RDEVSNL Editor creates the Java classes for the
RDEVS implementation of simulation models designed us
ing a constrained network model defined textually.
Even when building a plugin can seem to be a high cost

for a research project, the benefits obtained are higher. The
advantages of our proposal are i) reduction of implementa
tion times through fast modeling solutions and ii) simula
tionmodel correctness regarding the formalism through well
defined and standardized simulation models.
We promote the use of textual specifications as an alterna

tive to graphical representations for two reasons:

1. Textual specifications following a CFG are always
faster to develop than graphical definitions. Since we
are working with a restricted set of sentences that can
be combined in several ways, the modeler can define a
“dense” constrained network model (i.e., a model with
a lot of nodes and connections among them) using just
a few lines. Such a specification is less time consuming
than, for example, graphical models.

2. For large routing scenarios, graphical models tend not
to be useful due to their size. Instead, as described be
fore, textual specifications allow detailing a large set
of definitions using just a few sentences.

We are now concluding the testing of the transformation
process. All the cases conducted have been successfully
translated into RDEVS computational models when valid
routing processes are defined through constrained network
models. We have tested textual specifications of both small
(until ten nodes in a single network) and large (until 50 nodes
in a single network) models. The time response of all cases
has been acceptable concerning the number of Java classes
autogenerated by the plugin. As the proposal is defined as
a modeling tool, the simulation execution analysis is out
side the scope of the paper. Such an analysis concerns how
RDEVS simulation models are implemented in Java and how
DEVSJAVA supports their execution.
It is important to note that, as explained before, the speci

fication of the abstract operations to be redefined at the sub
class level for Essential Models cannot be derived from the
instance definition. Such a behavioral specification is part

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

Figure 17. How the “AWS Expedia Group” case study (structured as the web architecture presented in Figure 16) can be defined using our software tool to
get the related RDEVS models.

Figure 18. Part of the metamodel instantiated for the case study presented in Figure 17. The XML version of the complete metamodel can be seen at Appendix
A.

of the domain problem and is not included in the constrained
networkmodel specification. Then, themodeler should detail
these operations using Java code or another type of DEVS
modeling specification. Since essential models are defined
as DEVS atomic models, DEVS modeling tools can be used
to achieve the domain behavior specification. For example,
in Dalmasso et al. [2023], the authors present a modeling
software tool that employs enriched UML statecharts for the
graphical representation of the domain behavior modeling
level (exhibit in Table 1). Once the behavioral operations
are defined, their specification should be included in existing
Java classes by writing their code in the appropriate methods.
The main limitation is the use of Java as support for

RDEVS implementations. Until there are new implementa
tions of RDEVS in other programming languages, such a lim
itation cannot be overcome. Still, if new RDEVS Libraries
are developed, only new translation processes should be de
fined. The RDEVSNL grammar and the editor can remain
the same to support the textual specifications of constrained
network models.
The implementationindependent modeling strategy used

to build the plugin allows for providing a more suitable tool
than other software tools currently available. Since it uses
a general abstraction model (i.e., a network model) as the
core definition of the RDEVS simulation models, it allows
themodeler to obtain computational models without the need
to codify the implementation in Java. Moreover, it provides a
more accurate representation of the problem to modelers be
cause they can work with a new level of abstraction. That is
the main difference with other approaches like DEVSModel
ing Language (DEVSML) and DEVSNL (mentioned in Sec

tion 3.1).
DEVSML [Mittal and Douglass, 2012] provides a

platformindependent way to specify DEVS models that are
transformed to platformspecific language implementation in
Java, C++, or any other programming language. On the other
hand, DEVSNL [Zeigler and Sarjoughian, 2017] provides a
natural language specification to understand FDDEVS (Fi
nite Deterministic DEVS) models. These models can be used
to automatically generate DEVS atomic models in Java that
have full capability to express messages and states.
In both cases (i.e., DEVSML and DEVSNL), the mod

eler needs to understand how DEVS models are structured
to build specifications. Instead, in our case, the modeler is
abstracted from the notions of RDEVS formalism and gen
erates an (abstract) constrained network model to represent
a problem (i.e., a routing scenario). Such an abstract model
is used to create the related simulation models in Java. The
separation of concerns between the abstraction model and
the programming language used to support the simulation
model implementations allows a further mapping to other
programming languages. That is the main benefit of using
our implementationindependent modeling strategy.

5.1 Threats to Validity
Given the nature of our proposal, adopting RDEVS models
to test our modeling approach can be seen as a threat to valid
ity. Due to the novelty of RDEVS, no public repository for
RDEVS models is available. Nevertheless, it was possible to
reproduce all those RDEVS examples reported in the litera
ture (Blas and Gonnet [2021]; Blas et al. [2017]; Blas et al.

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

[2022]) and check whether our independentimplementation
modeling approach is valid to generate welldefined RDEVS
simulation models. Consequently, we had to specify the rout
ing process detailed in the original RDEVS models as con
strained network models. Then, we use a textual specifica
tion to define constrained network models that were trans
lated into a set of Java classes designed following the struc
ture of RDEVS Library. To overcome the threat, we made
it evident that original RDEVS models can be correctly ab
stracted as constrained network models and can be trans
formed into a Java implementation of the RDEVS simula
tion model. Finally, additional scalability tests should be per
formed to analyze the space and time overhead introduced
during the model transformation phase.

6 Conclusions and Future Work

The RDEVS formalism provides a formal definition for
the M&S of general routing processes employing the “em
bedding routing functionality” strategy over DEVS mod
els. In this paper, we have presented an implementation
independent modeling approach to build a plugin in devel
opment intended to obtain Java implementations of RDEVS
models from an abstract model defined in a textual specifica
tion. For the textual representation, we propose a contextfree
grammar named RDEVSNL which is based on a constrained
network model. Such grammar has been implemented using
ANTLR4. A metamodel is used to map the textual definition
with routing processes. This metamodel allows a direct map
ping between its concepts and RDEVS simulation models.
Then, Java classes are derived using Acceleo. The RDEVS
library is used as support since it enhances the development
of RDEVS models in Java using some features provided by
DEVSJAVA.

Our proposal is part of a workinprogress intended to de
velop M&S software tools for the RDEVS formalism as a
discreteevent specification for routing processes. Our final
aim is to provide a tool that allows modelers to i) define the
problem domain using wellknown abstractions and ii) get
the computational models attached to such abstraction mod
els through conceptual mapping. Then, modelers will be able
to have simulation models without needing to codify any
routing implementation. Moreover, they can get simulation
models without having programming skills. The plugin pre
sented in this paper is a fundamental part of such research as
an additional feature of the graphical specifications already
defined by Blas and Gonnet [2021].

Future work is devoted to the development of new repre
sentations for largescale routing processes as new abstrac
tion models to be used as additional features for M&S based
on RDEVS. Moreover, since the RDEVSNL is still not a lan
guage (because the semantics definition is missing), we plan
to define such a component to provide a full modeling lan
guage (by completing the set of elements described in Figure
3).

Declarations

Funding
This work was supported by UTN [Grant Number SIT
CBFE0008464TC].

Authors’ Contributions
Clarisa Espertino performed the development of the M&S software
tool including the conceptual modeling and mapping with RDEVS
implementations. Maria Julia Blas contributed to the conception of
this study and checked the correctness of the computational models
obtained regarding the RDEVS formalism. Espertino and Blas are
the main contributors and writers of this manuscript. Silvio Gonnet
supervised the research project. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ
ence the work reported in this manuscript.

Availability of data and materials
Data can be made available upon request.

References
Alshareef, A., Blas, M. J., Bonaventura, M., Paris, T., Ya
coub, A., and Zeigler, B. P. (2022). Using devs for full
life cycle modelbased system engineering in complex net
work design. In Advances in Computing, Informatics, Net
working and Cybersecurity: A Book Honoring Professor
Mohammad S. Obaidat’s Significant Scientific Contribu
tions, pages 215–266. Springer. DOI: 10.1007/9783030
8704928.

Amazon Web Services (2021a). Aws expedia group. Avail
able at:https://aws.amazon.com/pt/solutions/casestudies/
expedia/ Accessed: June 2021.

Amazon Web Services (2021b). Aws netflix case
study. Available at:https://aws.amazon.com/pt/solutions/
casestudies/innovators/netflix/ Accessed: June 2021.

Barros, F. J. (1997). Modeling formalisms for dynamic
structure systems. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 7(4):501–515. DOI:
10.1145/268403.268423.

Blas, M. J., Espertino, C., and Gonnet, S. (2021). Model
ing routing processes through network theory: A gram
mar to define rdevs simulation models. In Anais
do III Workshop em Modelagem e Simulação de Sis
temas Intensivos em Software, pages 10–19. SBC. DOI:
10.5753/mssis.2021.17255.

Blas, M. J. and Gonnet, S. (2021). Computeraided de
sign for building multipurpose routing processes in dis
crete event simulation models. Engineering Science and
Technology, an International Journal, 24(1):22–34. DOI:
10.1016/j.jestch.2020.12.006.

https://doi.org/10.1007/978-3-030-87049-2_8
https://doi.org/10.1007/978-3-030-87049-2_8
https://aws.amazon.com/pt/solutions/case-studies/expedia/
https://aws.amazon.com/pt/solutions/case-studies/expedia/
https://aws.amazon.com/pt/solutions/case-studies/innovators/netflix/
https://aws.amazon.com/pt/solutions/case-studies/innovators/netflix/
https://doi.org/10.1145/268403.268423
https://doi.org/10.5753/mssis.2021.17255
https://doi.org/10.1016/j.jestch.2020.12.006

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

Blas, M. J., Gonnet, S., and Leone, H. (2017). Routing
structure over discrete event system specification: a devs
adaptation to develop smart routing in simulation models.
In 2017 Winter simulation conference (WSC), pages 774–
785. IEEE. DOI: 10.1109/WSC.2017.8247831.

Blas, M. J., Gonnet, S. M., Leone, H. P., and Zeigler, B. P.
(2018). A conceptual framework to classify the extensions
of devs formalism as variants and subclasses. In 2018Win
ter Simulation Conference (WSC), pages 560–571. IEEE.
DOI: 10.1109/WSC.2018.8632265.

Blas, M. J., Leone, H., and Gonnet, S. (2022). Devsbased
formalism for the modeling of routing processes. Software
and SystemsModeling, pages 1–30. DOI: 10.1007/s10270
021009284.

Borgatti, S. P. and Halgin, D. (2011). On network theory. or
ganization science. Articles in Advance, pages 1–14. DOI:
10.1287/orsc.1100.0641.

Dalmasso, F., Blas, M. J., and Gonnet, S. (2023). Enrich
ing uml statecharts through a metamodel: A model driven
approach for the graphical definition of devs atomic mod
els. IEEE Latin America Transactions, 21(1):27–34. DOI:
10.1109/TLA.2023.10015142.

Eclipse Modeling Project (2022). Eclipse modeling frame
work. Available at:https://www.eclipse.org/modeling/
emf/.

Gehlot, V. and Nigro, C. (2010). An introduction to systems
modeling and simulation with colored petri nets. In Pro
ceedings of the 2010 winter simulation conference, pages
104–118. IEEE. DOI: 10.1109/WSC.2010.5679170.

Harel, D. and Rumpe, B. (2004). Meaningful model
ing: What’s the semantics of” semantics”? Computer,
37(10):64–72. DOI: 10.1109/MC.2004.172.

Kahraman, C. and Tüysüz, F. (2010). Manufacturing system
modeling using petri nets. In Production Engineering and
Management under Fuzziness, pages 95–124. Springer.
DOI: 10.1007/97836421205276.

Klatt, B. and Krogmann, K. (2008). Software extension
mechanisms. Fakultt fr Informatik, Karlsruhe, Germany,
Interner Bericht, 8:2008. Available at:https://sdq.kastel.
kit.edu/publications/pdfs/klatt2008a.pdf.

Krahn, H., Rumpe, B., and Völkel, S. (2007). Integrated
definition of abstract and concrete syntax for textual lan
guages. In International Conference on Model Driven
Engineering Languages and Systems, pages 286–300.
Springer. DOI: 10.1007/978354075209720.

Mittal, S. and Douglass, S. A. (2012). Devsml 2.0: the lan
guage and the stack. SpringSim (TMSDEVS), 17. Avail
able at:https://apps.dtic.mil/sti/citations/ADA556733.

Newman, M., Barabási, A.L., and Watts, D. J. (2011). The
structure and dynamics of networks. Princeton university
press. DOI: 10.1515/9781400841356.

OMG (2002). Meta object facility (mof) specification, ver
sion 1.4. Available at:https://www.omg.org/spec/MOF/1.
4/AboutMOF.

OMG (2014). Object constraint language specification, ver
sion 2.4. Available at:https://www.omg.org/spec/OCL/2.
4.

OMG (2017). Unified modeling language, version 2.5.1.
Available at:https://www.omg.org/spec/UML/2.5.1.

Pan, W. (2011). Applying complex network theory to soft
ware structure analysis. International Journal of Com
puter and Systems Engineering, 5(12):1634–1640. DOI:
10.5281/zenodo.1332884.

Parr, T. (2022). Antlr. Available at:https://www.antlr.org/.
Parsons, J. andWand, Y. (1997). Choosing classes in concep
tual modeling. Communications of the ACM, 40(6):63–69.
DOI: 10.1145/255656.255700.

Sarjoughian, H. S. and Zeigler, B. (1998). Devsjava:
Basis for a devsbased collaborative m&s environ
ment. Simulation Series, 30:29–36. Available at:https:
//citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=6edc00b4669d73aa3cc94de431ed12951f0e5b7f.

Sprinkle, J., Rumpe, B., Vangheluwe, H., and Karsai, G.
(2007). 3 metamodelling: State of the art and research
challenges. In Dagstuhl Workshop on ModelBased En
gineering of Embedded RealTime Systems, pages 57–76.
Springer. DOI: 10.1007/9783642162770.

The Eclipse Foundation (2022a). Acceleo. Available at:https:
//www.eclipse.org/acceleo/.

The Eclipse Foundation (2022b). Eclipse. Available at:https:
//www.eclipse.org/.

Wen, L., Kirk, D., and Dromey, R. G. (2007). Software sys
tems as complex networks. In 6th IEEE International Con
ference on Cognitive Informatics, pages 106–115. IEEE.
DOI: 10.1109/COGINF.2007.4341879.

Zakari, A., Lee, S. P., and Chong, C. Y. (2018). Simulta
neous localization of software faults based on complex
network theory. IEEE Access, 6:23990–24002. DOI:
10.1109/ACCESS.2018.2829541.

Zeigler, B. and Sarjoughian, H. S. (2017). Devs natural
language models and elaborations. Guide to Modeling
and Simulation of Systems of Systems, pages 43–69. DOI:
10.1007/97833196413484.

Zeigler, B. P., Muzy, A., and Kofman, E. (2018). Theory of
modeling and simulation: discrete event & iterative system
computational foundations. Academic press. Book.

Zeigler, B. P. and Nutaro, J. J. (2016). Towards a frame
work for more robust validation and verification of sim
ulation models for systems of systems. The Journal
of Defense Modeling and Simulation, 13(1):3–16. DOI:
10.1177/1548512914568657.

https://ieeexplore.ieee.org/abstract/document/8247831
https://ieeexplore.ieee.org/abstract/document/8632265
https://doi.org/10.1007/s10270-021-00928-4
https://doi.org/10.1007/s10270-021-00928-4
https://doi.org/10.1287/orsc.1100.0641
https://ieeexplore.ieee.org/abstract/document/10015142
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://ieeexplore.ieee.org/abstract/document/5679170
https://ieeexplore.ieee.org/abstract/document/1350729
https://doi.org/10.1007/978-3-642-12052-7_6
https://sdq.kastel.kit.edu/publications/pdfs/klatt2008a.pdf
https://sdq.kastel.kit.edu/publications/pdfs/klatt2008a.pdf
https://doi.org/10.1007/978-3-540-75209-7_20
https://apps.dtic.mil/sti/citations/ADA556733
https://doi.org/10.1515/9781400841356
https://www.omg.org/spec/MOF/1.4/About-MOF
https://www.omg.org/spec/MOF/1.4/About-MOF
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.5281/zenodo.1332884
https://www.antlr.org/
https://doi.org/10.1145/255656.255700
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6edc00b4669d73aa3cc94de431ed12951f0e5b7f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6edc00b4669d73aa3cc94de431ed12951f0e5b7f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6edc00b4669d73aa3cc94de431ed12951f0e5b7f
https://doi.org/10.1007/978-3-642-16277-0_3
https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/
https://www.eclipse.org/
https://ieeexplore.ieee.org/abstract/document/4341879
https://ieeexplore.ieee.org/abstract/document/8345264
https://doi.org/10.1007/978-3-319-64134-8_4
https://doi.org/10.1177/1548512914568657

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

A Appendix A

1 <?xml version="1.0" encoding="UTF-8"?>
2 <metamodel:NLSpecification xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:metamodel="

http://www.example.org/metamodel">
3 <routingProcess routingProcessName="n2">
4 <interaction destination="//@routingProcess.0/@component.11" source="//@routingProcess.0/@component

.5"/>
5 <interaction destination="//@routingProcess.0/@component.11" source="//@routingProcess.0/@component

.6"/>
6 <interaction destination="//@routingProcess.0/@component.9" source="//@routingProcess.0/@component

.14"/>
7 <interaction destination="//@routingProcess.0/@component.10" source="//@routingProcess.0/@component

.14"/>
8 <interaction destination="//@routingProcess.0/@component.7" source="//@routingProcess.0/@component.9

"/>
9 <interaction destination="//@routingProcess.0/@component.8" source="//@routingProcess.0/@component.9

"/>
10 <interaction destination="//@routingProcess.0/@component.7" source="//@routingProcess.0/@component

.10"/>
11 <interaction destination="//@routingProcess.0/@component.8" source="//@routingProcess.0/@component

.10"/>
12 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component.7

"/>
13 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component.7

"/>
14 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component.7

"/>
15 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component.7

"/>
16 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component.7

"/>
17 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component.8

"/>
18 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component.8

"/>
19 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component.8

"/>
20 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component.8

"/>
21 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component.8

"/>
22 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component

.12"/>
23 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component

.12"/>
24 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component

.12"/>
25 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component

.12"/>
26 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component

.12"/>
27 <interaction destination="//@routingProcess.0/@component.13" source="//@routingProcess.0/@component

.12"/>
28 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component

.11"/>
29 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component

.11"/>
30 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component

.11"/>
31 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component

.11"/>
32 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component

.11"/>
33 <component inputLink="//@routingProcess.0/@interaction.8 //@routingProcess.0/@interaction.13 //

@routingProcess.0/@interaction.18 //@routingProcess.0/@interaction.24" nodeName="es1" behavi-our
="//@routingProcess.0/@behaviour.0"/>

34 <component inputLink="//@routingProcess.0/@interaction.9 //@routingProcess.0/@interaction.14 //
@routingProcess.0/@interaction.19 //@routingProcess.0/@interaction.25" nodeName="es2" behavi-our
="//@routingProcess.0/@behaviour.0"/>

35 <component inputLink="//@routingProcess.0/@interaction.10 //@routingProcess.0/@interaction.15 //
@routingProcess.0/@interaction.20 //@routingProcess.0/@interaction.26" nodeName="es3" behavi-our
="//@routingProcess.0/@behaviour.0"/>

36 <component inputLink="//@routingProcess.0/@interaction.11 //@routingProcess.0/@interaction.16 //

Mapping RDEVSNLbased Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

@routingProcess.0/@interaction.21 //@routingProcess.0/@interaction.27" nodeName="es4" behavi-our
="//@routingProcess.0/@behaviour.0"/>

37 <component inputLink="//@routingProcess.0/@interaction.12 //@routingProcess.0/@interaction.17 //
@routingProcess.0/@interaction.22 //@routingProcess.0/@interaction.28" nodeName="es5" behavi-our
="//@routingProcess.0/@behaviour.0"/>

38 <component outputLink="//@routingProcess.0/@interaction.0" nodeName="queue1" behavi-our="//
@routingProcess.0/@behaviour.3"/>

39 <component outputLink="//@routingProcess.0/@interaction.1" nodeName="queue2" behavi-our="//
@routingProcess.0/@behaviour.3"/>

40 <component inputLink="//@routingProcess.0/@interaction.4 //@routingProcess.0/@interaction.6" output-
Link="//@routingProcess.0/@interaction.8 //@routingProcess.0/@interaction.9 //@routingProcess.0/
@interaction.10 //@routingProcess.0/@interaction.11 //@routingProcess.0/@interaction.12"
nodeName="web1" behaviour="//@routingProcess.0/@behaviour.2"/>

41 <component inputLink="//@routingProcess.0/@interaction.5 //@routingProcess.0/@interaction.7" output-
Link="//@routingProcess.0/@interaction.13 //@routingProcess.0/@interaction.14 //@routingProcess
.0/@interaction.15 //@routingProcess.0/@interaction.16 //@routingProcess.0/@interaction.17"
nodeName="web2" behaviour="//@routingProcess.0/@behaviour.2"/>

42 <component inputLink="//@routingProcess.0/@interaction.2" outputLink="//@routingProcess.0/
@interaction.4 //@routingProcess.0/@interaction.5" nodeName="cache1" behaviour="//
@routingProcess.0/@behaviour.6"/>

43 <component inputLink="//@routingProcess.0/@interaction.3" outputLink="//@routingProcess.0/
@interaction.6 //@routingProcess.0/@interaction.7" nodeName="cache2" behaviour="//
@routingProcess.0/@behaviour.6"/>

44 <component inputLink="//@routingProcess.0/@interaction.0 //@routingProcess.0/@interaction.1" output-
Link="//@routingProcess.0/@interaction.24 //@routingProcess.0/@interaction.25 //@routingProcess
.0/@interaction.26 //@routingProcess.0/@interaction.27 //@routingProcess.0/@interaction.28"
nodeName="loader1" behaviour="//@routingProcess.0/@behaviour.1"/>

45 <component outputLink="//@routingProcess.0/@interaction.18 //@routingProcess.0/@interaction.19 //
@routingProcess.0/@interaction.20 //@routingProcess.0/@interaction.21 //@routingProcess.0/
@interaction.22 //@routingProcess.0/@interaction.23" nodeName="loader2" behav-iour="//
@routingProcess.0/@behaviour.1"/>

46 <component inputLink="//@routingProcess.0/@interaction.23" nodeName="memcache" behav-iour="//
@routingProcess.0/@behaviour.4"/>

47 <component outputLink="//@routingProcess.0/@interaction.2 //@routingProcess.0/@interaction.3" node-
Name="elasticloadbalancer" behaviour="//@routingProcess.0/@behaviour.5"/>

48 <behaviour component="//@routingProcess.0/@component.0 //@routingProcess.0/@component.1 //
@routingProcess.0/@component.2 //@routingProcess.0/@component.3 //@routingProcess.0/@component.4
" behaviourName="ElasticSearch"/>

49 <behaviour component="//@routingProcess.0/@component.11 //@routingProcess.0/@component.12" behaviour
-Name="Loader"/>

50 <behaviour component="//@routingProcess.0/@component.7 //@routingProcess.0/@component.8" behaviour -
Name="Web"/>

51 <behaviour component="//@routingProcess.0/@component.5 //@routingProcess.0/@component.6" behaviour -
Name="Queue"/>

52 <behaviour component="//@routingProcess.0/@component.13" behaviourName="MemCache"/>
53 <behaviour component="//@routingProcess.0/@component.14" behaviourName="ElasticLoadBalancer"/>
54 <behaviour component="//@routingProcess.0/@component.9 //@routingProcess.0/@component.10" behaviour -

Name="Cache"/>
55 </routingProcess>
56 </metamodel:NLSpecification>

	Introduction
	The RDEVS Formalism
	Simulating Routing Processes
	The RDEVS Library

	Implementation-Independent Modeling Approach
	Defining Routing Processes based on Constrained Network Models
	The RDEVSNL Context-Free Grammar for Constrained Network Models
	From Constrained Network Models to Routing Processes: Verifying the Network Model Structure

	Generating Java Implementations based on Routing Process Descriptions
	Proof of Concepts
	Using the Tool for Modeling Real-Life Scenarios

	Discussion
	Threats to Validity

	Conclusions and Future Work
	Appendix A

