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Abstract The Routed DEVS (RDEVS) formalism has been introduced recently to provide a reasonable formaliza­
tion for the simulation of routing processes over Discrete Event System Specification (DEVS) models. Due to its
novelty, new software tools are required to improve the Modeling and Simulation (MS) tasks related to the RDEVS
formalism. This paper presents the mapping between constrained network models obtained from textual specifica­
tions of routing processes and RDEVS simulation models implemented in Java. RDEVSNL context­free grammar
(previously defined) is used to support the textual specification of a routing process as a constrained network model.
Such grammar is based on a metamodel that defines the syntactical elements. This metamodel is used in this paper
as a middleware that allows mapping constrained network model concepts with RDEVS simulation models. From
such a constrained network model template, RDEVS Java implementations are obtained. The proposal is part of a
work­in­progress intended to develop MS software tools for the RDEVS formalism using well­known abstractions
to get the computational models through conceptual mapping. Using these tools, modelers can specify simulation
models without needing to codify any routing implementation. The main benefits are i) reduction of implementation
times and ii) satisfactory simulation model correctness regarding the RDEVS formalism.
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1 Introduction

A formalism provides a set of conventions for specifying a
class of objects in a precise, unambiguous, and paradigm­free
manner. The Discrete Event System Specification (DEVS) is
a modular and hierarchical Modeling and Simulation (M&S)
formalism based on systems theory that provides a general
methodology for the construction of reusable models [Zei­
gler et al., 2018]. The Routed DEVS formalism (RDEVS)
employs the “embedding routing functionality” strategy over
DEVS models to provide routing capability from the simu­
lation model conception. Such a DEVS extension was pre­
sented by Blas et al. [2017] as a subclass of the classic DEVS
[Zeigler et al., 2018] including routing features to the atomic
model capabilities by adding the routing model. Through this
new simulation model, the formalism act as a “layer” above
DEVS that provides routing functionality without requiring
the user to “dip down” to DEVS itself for any functions.
AlthoughRDEVS is based onDEVS, it is a new formalism

that emerges from theM&S community to address new types
of problems. Due to its nature, RDEVS simulation models
can be executed using DEVS simulators. However, structural
differences between DEVS and RDEVS simulation models
imply that DEVS modeling tools cannot be used to define
RDEVS models. The core of RDEVS is to abstract the event
flow into a new type of discrete­event model (i.e., the routing
model) that arrange events independently from the domain
behavior of components using a routing policy. The routing
policy is isolated from the domain behavior (i.e., the essential

model). This feature allows the reuse of the formalized be­
havior in several routing models. All routing models together
define a network model. A single network model can support
different settings only by changing the routing policies at­
tached to its routing models. The novelty of RDEVS struc­
tural features promotes the need to develop new software
modeling tools that i) help practitioners with RDEVS spec­
ification tasks and ii) take advantage of DEVS simulators
as execution engines. Hence, modeling tools based on high­
level abstractions are preferred to promote implementation­
independent modeling.
Aiming to build these software tools, we employ a two­

level modeling strategy to get RDEVS simulation models.
At the first level, we use a high­level description to define
an abstraction model. Then, we employ a routing process
definition as a standard formalization that can be mapped to
RDEVS models. A routing process is a system of interact­
ing components in which the operation of an element (i.e.,
a routing process component) and the routing of its outputs
depend on what is happening throughout the process [Alsha­
reef et al., 2022]. That means interactions between compo­
nents depend on local information and external data derived
from the process structure. As shown later in this paper, for
RDEVS models, local information is related to component
behavior, and external data is attached to routing functions.
Hence, routing processes provide a formalization definition
for RDEVS simulation models.
In this context, network theory is a useful technique to

model relationships between entities defined as nodes con­
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nected by a set of links [Newman et al., 2011]. A particular
case of network models is constrained network models (i.e.,
restricted networks). When routing processes are defined as
a network of related entities, constraints are required to get
reasonable definitions. As shown later in this paper, these
models are defined as constrained network models.

This paper presents an approach in which textual specifi­
cations of constrained network models are translated to Java
implementations of RDEVS simulation models. The objec­
tives are i) to provide a transformation process between con­
strained network models and RDEVS simulation models by
a routing process description and ii) to develop a new M&S
software tool using Eclipse technology that supports both the
textual specification of routing processes as constrained net­
work models and the transformation process described at i).
By achieving both objectives, we provide a solution in which
modelers can describe a highlevel routing situation as a con­
strained network textual description based on a Context­Free
Grammar (CFG) and then get the related RDEVS simulation
model implementation.

Following the two­level modeling strategy, we combine
a constrained network model (i.e., a high­level description)
with a routing process definition (i.e., a formalization­level
description) to describe an accurate transformation that al­
lows obtaining Java code (i.e., a low­level implementation)
for RDEVS models. We use the CFG named RDEVS Nat­
ural Language (RDEVSNL) to define the structure of the
constrained network models. Such a CFG has been proposed
in previous work to offer a textual definition of routing sit­
uations using constrained network models and is supported
by a metamodel that acts as a representation of routing pro­
cesses. From an instance of such a metamodel, in this pa­
per, we show how Java code can be obtained using Eclipse
technology [The Eclipse Foundation, 2022a]. As a result, we
present an Eclipse plug­in that extends the RDEVSNL Edi­
tor tool with the transformation process used to map a meta­
model instance (i.e., a routing process) to Java classes. The
template used to create these classes is based on the RDEVS
Java Library. Hence, the main contributions of the paper are
the two­level modeling approach used to support the devel­
opment process and the software tool.

The remainder of this paper is organized as follows. Sec­
tion 2 presents the RDEVS formalism introducing the Java
Library used at the core of the transformation process. Sec­
tion 3 details the implementation­independent modeling ap­
proach used to build the proposal. It includes a description
of previous work devoted to the textual specification that
supports constrained network models. It introduces the meta­
model used to map a routing process with a constrained net­
work model instance. From this metamodel, Section 4 details
the transformation process developed from the high­level de­
scription obtained as a metamodel instance (i.e., a routing
process) to the low­level implementation (i.e., Java classes
for RDEVS implementations). It includes proof of concepts
developed following the example presented by Blas et al.
[2021] and two real­life scenarios modeled with RDEVS for­
malism taken from Blas et al. [2022]. Section 5 discusses our
results and their relationship with other proposals. Section 6
is devoted to conclusions.

2 The RDEVS Formalism
The RDEVS formalism is an adaptation of Classic DEVS
that adds routing features to the models by introducing a new
modeling level: routing behavior [Blas et al., 2022].
DEVS models are designed to provide behavior and struc­

ture definitions through atomic and coupled models, respec­
tively. In RDEVS, three types of models are formalized: es­
sential, routing, and network models. These models take ad­
vantage of DEVS modeling levels by partitioning the be­
havior into two distinct modeling levels: domain behavior
and routing behavior. The RDEVS essential model defines
a DEVS atomic model that specifies a domain behavior (i.e.,
the primary behavior of a component). The routing model
defines a container of an essential model that uses a rout­
ing policy to manage its inputs and outputs (i.e., it adds a
routing behavior over a domain behavior). Finally, the net­
work model defines a set of routing models coupled all­to­all
to leave the routing functionality to routing policies (i.e., it
describes a structure over routing behaviors). Based on the
use of routing policies, RDEVS simulation models provide
an accurate formal specification of routing processes using
three modeling levels: domain behavior, routing behavior,
and structure.
Centered in the M&S framework of DEVS [Zeigler et al.,

2018], RDEVS models can be executed using DEVS simu­
lators. Such a framework shows how M&S activities are re­
lated by using four conceptual entities [Zeigler and Nutaro,
2016]: i) the source system as the real/virtual environment to
be modeled, ii) the model as the set of instructions for gen­
erating data comparable to the data observable in the system,
iii) the simulator as the computation specified in the model,
and iv) the experimental frame as the conditions under which
the source system is observed. In this way, it emphasizes the
notion of model and simulator as two independent entities
linked by the simulation relationship when a model is exe­
cuted on a computational environment (i.e., a simulator). Fur­
thermore, starting from theM&S framework, RDEVS can be
seen as a subclass of DEVS for modeling new types of prob­
lems [Blas et al., 2018].
DEVS extensions can be classified as variants or sub­

classes. The variants of DEVS refer to the subset of DEVS
extensions in which the alternative formalism models a new
type of system that, previously, could not be modeled with
the original formalism. This is the case with Dynamic Struc­
ture DEVS, an extension that allows modeling systems with
dynamic structures [Barros, 1997]. On the other hand, sub­
classes refer to the subset of DEVS extensions in which the
alternative formalism improves the solution of a simulation
scenario by applying DEVS models in a meaningful way.
This is the case with RDEVS, an extension of DEVS de­
signed to handle routing information in DEVS models. Such
an extension improves the M&S of routing scenarios as a
general mechanism that can be applied in distinct domains
(e.g., supply chain, network protocol communications, and
software architectures) [Blas and Gonnet, 2021; Alshareef
et al., 2022; Blas et al., 2022]. The RDEVS capability of
defining routing processes as a high­level abstraction for any
domain (Section 3.1) provides a solid basis for mapping do­
main concepts with RDEVS models. Since RDEVS is a sub­



Mapping RDEVSNL­based Definitions of Constrained Network Models to Routed DEVS Simulation Models Espertino et al. 2024

class of DEVS, the model entity of RDEVS formalism can
be seen as a subclass of the DEVS model entity.
In conceptual modeling theory, the subtyping used to rep­

resent class­subclass dependence reflects the concepts at a
more detailed specification level [Parsons and Wand, 1997].
Hence, any subclass of the DEVS model must be more spe­
cific than the DEVS model. For RDEVS, introducing a new
modeling level is the core of such a specification. Given that
the RDEVS model entity inherits a base set of the superclass
properties (i.e., the properties of the DEVSmodel entity), the
simulator used for its execution could be the same (i.e., the
DEVS abstract simulator can execute RDEVSmodels). How­
ever, due to the modeling level distinction between DEVS
and RDEVS formalisms, newmodeling strategies are needed
to support the specification of RDEVS models.
One way to do this is by using abstraction models to de­

sign formalization descriptions that allow getting the compu­
tational models (i.e., executable implementations) through
conceptual mapping. This is the modeling approach called
“implementation­independent modeling” presented in Sec­
tion 3. For RDEVSmodels, such an approach is supported by
the RDEVS Java Library (Section 2.2) to get RDEVS com­
putational models.

2.1 Simulating Routing Processes
A routing process is a system of interacting components in
which the operation of an element and the routing of its
outputs depend on what is happening throughout the pro­
cess. As this is a general definition, routing processes can be
found in several domains, such as, for example, manufactur­
ing and network communications. In this type of abstraction,
the main objective of simulation studies is analyzing object
flows among components (e.g., data or resources) along with
components and system overall performance.
Depending on the domain, the routing process specifica­

tion may contain different types of components. However,
even when all components can be distinct among each other,
each component type operates independently. This means
that the internal operation of components can be defined as a
black box that is independent from the structure of the rout­
ing process itself. Since routing depends equally on the oper­
ative description of the component and process structure, the
component can decide the output destinations. Hence, com­
ponents can take decisions about routing such as i) alternate
the routing of its outputs to avoid congestion, ii) block the
routing of its outputs from entering to a precise sector of pre­
defined components, and iii) accelerate/decelerate the pro­
cessing of its inputs (to produce faster/slower outputs) when
knowing that downstream nodes are free/busy.
When routing processes are defined using models, several

formalisms can be applied. For example, Petri nets have been
used for modeling manufacturing systems [Kahraman and
Tüysüz, 2010]. Such models can be later used in a simula­
tion environment to study how the model works [Gehlot and
Nigro, 2010]. DEVS models can be also used for the same
purpose. However, when comparing the use of DEVS­based
solutions with RDEVS­based solutions, RDEVS formalism
reduces the modeling complexity. As explained in Blas et al.
[2022], the reusability and flexibility of the RDEVS­based

solutions, along with model designs with low coupling and
high cohesion, are the main benefits of using RDEVS instead
of DEVS.
When getting RDEVSmodels from a routing process spec­

ification, the following statements are valid: i) the network
model structures a routing process functionality as a compo­
sition of routing models; ii) the routing model represents the
routing functionality of a component included in the routing
process; and iii) the essential model describes the internal op­
eration of a routing process component (i.e., the component
behavior). Hence, each RDEVS model belongs to a model­
ing level and plays a role in a routing process specification
(see Table 1).
The advantages of employing RDEVS for the M&S of

routing situations are the following: i) the modeler does not
need to dip down to DEVS itself to add routing functionality
to models, ii) existing DEVS atomic models can be used to
structure routing processes, iii) RDEVS and DEVS models
can be combined to define complex M&S scenarios where
routing processes interact with other types of phenomena,
and iv) DEVS simulators can be used to execute RDEVS
models.

Table 1. Routed DEVS simulation models, modeling levels, and
routing processes. For simplicity, we consider a routing process as
a set of linked components.

RDEVS Model Modeling Level Role in
Routing Process

Essential model Domain behavior Component
(behavior)

Routing model Routing behavior
Component
(routing
functionality)

Network model Structure
Process
(routing
functionality)

2.2 The RDEVS Library
As stated before, the RDEVS formalism is a subclass of
DEVS. This means that existing implementations of DEVS
can be used to support RDEVS implementations. From this
perspective, a Java library was developed using DEVSJAVA
[Sarjoughian and Zeigler, 1998] as the underlying M&S
layer.
DEVSJAVA is a software tool implemented in Java

that supports defining models in DEVS formalism through
an object­oriented conceptualization. By extending DEVS­
JAVA, the RDEVS library provides a solution for implement­
ing RDEVS simulation models in Java and, later, executing
these models using the DEVSJAVA engine.
Figure 1 illustrates the main classes of the RDEVS library

using a UML class diagram. As the figure shows, all the
concepts included in the formalism were defined as Java
classes. For example, the library includes a Java class for
each type of RDEVSmodel defined in the formalism (i.e.,Es­
sentialModel, RoutingMode, and NetworkModel). Relation­
ships are used to denote dependencies among classes. Then,
for example, the library defines the routing policy of a rout­
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ing model as the RoutingFunction linked to the Routing­
Model definition as the delr property of the related Omega
class (which is linked to the model by the w property). More­
over, the NetworkModel class is related to one instance of
InputTranslationFunction class through the Tin property to
define the transformation of input events to input events with
identification (i.e., instances of the IdentifiedEvent class).
A similar strategy is used to relate the NetworkModel with
the OutputTranslationFunction. The IdentifiedEvent class is
used to denote the structure of events managed by the models
with routing functionality.

The diagram includes a few operations for the classes that
represent RDEVS simulation models. These operations are
added to illustrate how the library supports the behavioral
definition of routing processes. Considering the modeling
levels detailed in Table 1, the classes defined in the library
support the structure definition (i.e., the set of classes allows
implementing the NetworkModel class using accurate rout­
ing model definitions). The routing behavior level is sup­
ported by the set of operations defined as “final” in Routing­
Model. These operations (e.g., delext(), delint(), and out())
are implemented as Java code in the library and cannot be
changed in further subclasses. In this way, the library en­
sures the correctness of the routing functionality defined at
the core of the RDEVS formalism. Finally, the operations
defined as “abstract” in the EssentialModel class support the
domain behavior. As with any abstract element, these oper­
ations require a Java implementation in further sub­classes
to define the behavioral specification of routing components.
Since the behavioral specification of such components is part
of the domain problem, the RDEVS library only provides the

interface required for their simulation.
The Java classes detailed in the library are designed as ex­

tension points for building RDEVS implementations. An ex­
tension point is the definition of the provided interface for ex­
tensions [Klatt and Krogmann, 2008]. That is, an extension
itself of the classes that represent RDEVS simulation mod­
els is an implementation of the RDEVS model according to
the extension point defined in the library. Hence, the library
includes extension points configured for designing explicit
RDEVS simulation models as reusable components slated
for executing the routing simulation without any other con­
sideration.

3 Implementation­Independent Mod­
eling Approach

Abstraction creates a conceptual model by extracting only
those elements needed for addressing a modeler’s con­
cerns. M&S software tools with such a feature reduce the
knowledge required for building discrete­event simulation
models (here, RDEVS models), and modeling tasks can
be performed by anyone that understands the problem
domain through the proposed abstraction. On the other hand,
formalization makes it easier to work out the implications of
an abstraction and implement them in reality [Zeigler et al.,
2018]. As previously stated, the RDEVS formalism is de­
signed to level out the modeling effort of routing processes
modeled in DEVS. Hence, routing processes can be used as
formalization descriptions of high­level routing abstractions.

Figure 1. UML class diagram of the Java classes included in the RDEVS library. Classes highlighted in gray belong to the DEVSJAVA package.
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Figure 2. (a) Independent­implementation two­level modeling approach.
(b)How the two­level modeling approach was used for graph model abstrac­
tions [Blas and Gonnet, 2021]. (c) How the two­level modeling approach is
used in this paper for constrained network model abstractions. Step 1 was
presented in Blas et al. [2021] and is described briefly in Section 3.1. Step
2 is the contribution of this work.

Figure 2(a) shows the independent­implementation mod­
eling approach used in this paper. As the figure details, the
high­level description is supported by the formalization­level
description (i.e., a routing process specification) to define the
two­level modeling strategy. Then, the routing process spec­
ification can be translated into a low­level implementation
based on Java.

Figure 3. Implementation of the RDEVSNLmodeling language using a syn­
tax (composed of an abstract syntax and a concrete syntax) and semantics.
To simplify, the CFG and the modeling language receive the same name.
When we refer to the CFG, we mean the textual definition through the con­
crete syntax.

Following this approach in Blas and Gonnet [2021], we ab­
stract the routing process definition into a high­level abstrac­
tion designed as a graph model based on nodes and edges
(Figure 2(b)). Instead of using a modeling language, we de­
fine a graphical representation based on i) two types of nodes
(one for the component behavior and the other for the com­
ponent routing functionalty) and ii) two types of links (one
for the routing path and the other for linking the component
behavior with its routing functionality). The graph represen­
tation is detailed in a metamodel that supports the instantia­
tion of valid routing processes. Hence, the abstractions are
mapped to the roles presented in Table 1 to define RDEVS
equivalences through themodeling levels. Then, we present a
plug­in for Eclipse [The Eclipse Foundation, 2022b] that sup­
ports the graphical modeling of routing situations (through
metamodel instantiation) as the core specification of RDEVS
models. The simulation models obtained from the routing
process definition were deployed as Java classes that extend
the RDEVS Library. These classes together define the com­
putational model attached to the abstraction defined through
the graph. In this way, modelers can have RDEVS models
without codifying any routing implementation (i.e., they only
must define a routing situation graphically as a set of nodes
connected by links).
Network theory is a useful technique to model relation­

ships between entities [Newman et al., 2011]. A network con­
sists of nodes connected by a set of links. Such a represen­
tation has been widely adopted for modeling studies in sev­
eral fields. For example, in the social network domain, it was
used by Borgatti and Halgin [2011]. In software engineering,
network theory was used to evaluate systems/software issues
[Pan, 2011; Wen et al., 2007; Zakari et al., 2018].
Aiming to continue using abstractions to define routing

processes, we developed a textual representation based on
network theory [Blas et al., 2021]. The textual representa­
tion was designed as a CFG used to define constrained net­
work models through a metamodel template. This previous

Figure 4. Production rule of the nonterminal symbol “network”.

Figure 5. Syntax diagram of the nonterminal symbol “network”.
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Table 2. Examples of syntactical expressions allowed in the context­free grammar RDEVSNL.

Primary Building Block
Allowed Sentences

(English version)

Allowed Sentences

(Spanish version)

Network

•The A node is part of C network.
•The C network includes B node.
•The A and B nodes are part of a C
network.

•El nodo A es parte de la red C.
•La red C incluye al nodo B.
•Los nodos A y B son parte de la red C.

Materialize

•The A node performs the behavior of D
component.
•The B node materializes D component.
•The D component defines the bahavior
of A and B nodes.

•El nodo A ejecuta el comportamiento del
componente D.
•El nodo B materializa al componente D.
•El componente D define el
comportamiento de los nodos A y B.

Edges

•The A node sends outputs to B node.
•The E and F nodes receive inputs from the
B node.
•The connections are: A with B, B with E
and B with F.

•El nodo A envía salidas al nodo B.
•Los nodos E y F reciben entradas
desde el nodo B.
•Las conexiones son A con B, B con E y B con F.

work is described briefly in Section 3.1. Following the two­
level modeling approach, this paper uses such a constrained
network model template as a high­level abstraction of rout­
ing processes to get RDEVS computational models (Figure
2(c)). The constrained network model defined over a textual
specification is translated to a set of Java classes designed
following the RDEVS Library (Figure 1) using the transfor­
mation detailed in Section 4.

3.1 Defining Routing Processes based on Con­
strained Network Models

We defined a new modeling language named RDEVSNL
to specify a routing process using a constrained network
model abstraction (i.e., to perform step 1 of the independent­
implementation approach described above). The RDEVSNL
was named “RDEVS Natural Language” in similarity with
“DEVS Natural Language” (DEVSNL) [Zeigler and Nutaro,
2016].
DEVSNL is defined as a “constrained natural language

specification of DEVS models”. Indeed, it is defined as an
Extended Backus­Naur Form (EBNF), a meta­syntax nota­
tion for CFGs. A CFG is defined as a set of recursive rules
used to describe a context­free language. Hence, due to the
CFG definition, the processing of the textual expressions de­
fined in DEVSNL does not involve any natural language rea­
soning (i.e., it does not involve dealing with, for example,
natural language ambiguity). It only requires the text speci­
fication to satisfy the defined rules (without considering any
context between them). Aswewill describe later, RDEVSNL
is also based on a CFG. Hence, natural language ambiguity
is not an issue to be solved.
A modeling language is commonly defined using three

components: abstract syntax, concrete syntax, and seman­
tics Krahn et al. [2007]. The abstract syntax identifies mod­
eling concepts materialized in concrete syntaxes (that are
frequently specified using visual/textual elements). Usually,
concrete and abstract syntaxes are developed first, and then
the semantics is designed to define the meaning of the lan­
guage [Harel and Rumpe, 2004]. In this way, semantics de­

fines the meaning of the abstract syntax in terms of concepts
already well­defined and well­understood in the semantic do­
main. Figure 3 depicts how the RDEVSNL language has
been designed (i.e., how each component was developed).
As the figure shows, the concrete syntax is defined through

the CFG named RDEVSNL (as the overall language). Since
metamodeling is a popular method to define the abstract syn­
tax of languages [Sprinkle et al., 2007], we use a conceptual­
ization of a routing process through a metamodel that struc­
tures constrained network models. We consider that when
modeling a routing process as a network, nodes define com­
ponents, and links denote interactions between them. The se­
mantics of the language is out of the scope of this paper.

3.1.1 The RDEVSNL Context­Free Grammar for Con­
strained Network Models

The CFG named RDEVSNL was presented in Blas et al.
[2021]. It is based on a constrained network model to ap­
proach the definition of routing processes. It abstracts the def­
inition of this type ofmodel into textual representations using
nodes and links to describe their structure. That is, it allows
describing a routing scenario using notions of network theory
(i.e., nodes and links as structural components of a network).
Such a definition allows for building a textual specification
of a constrained network model that can be verified to ensure
syntactical correctness.
Two distinct versions of the syntax were developed, one in

English and the other in Spanish. Then, modelers can choose
to define the constrained network model according to their
preference. Both grammars were specified and implemented
using ANTLR4 [Parr, 2022].
In the English specification, three primary building blocks

can be identified i) network, ii) materializes, and iii) edges.
Network is the main block used to define a constrained net­
work model. As an example, Figures 4 and 5 show, respec­
tively, the production rule and syntax diagram of this symbol.
When a RDEVSNL specification is used to structure a

routing process, a network is defined to model the overall
constrained networkmodel. Such a networkmodel is defined
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over a set of nodes. Each node denotes a routing compo­
nent. Therefore, a network is specified using a name and it
always includes a list of nodes. The sentences from the net­
work block (Figures 4 and 5) allow us to define an identifier
and describe the list of nodes that are part of the network.
This can be done in a unique specification (e.g., “the A and
B nodes are part of a C network”) or in multiple text lines
(e.g., “the A node is part of the C network”; “the C network
includes the B node”).
In a routing process, each component exhibits an internal

operation and defines the behavior of a node or list of nodes.
Sentences from the materializes block can be used to define
the behavior that each node will execute, which is associated
with the internal operation of a routing component (e.g., “the
D component defines the behavior of A and B nodes”; “the
A node performs the behavior of D component”).
Links define directed interactions between nodes. The

grammar enables the definition of these interactions in multi­
ple ways, using sentences from the edges block. For example,
the modeler can use the following expressions: “the A node
sends outputs to the B node” or “the B and E nodes receive
inputs from the A node”.
Table 2 summarizes the main syntactical expressions in­

cluded in RDEVSNL. For more details regarding the gram­
mar design, refer to Blas et al. [2021].
The RDEVSNL Editor. As previously mentioned, the

RDEVSNL grammar (i.e., both English and Spanish defini­
tions) was implemented using ANTLR4. Based on such an
implementation, a plug­in for the Eclipse platform was de­
veloped to allow modelers to use the grammar for defining
constraints network models. Such an editor was presented
along with the grammar in Blas et al. [2021].
The software tool is basically a text editor that allows

specifying constrained networkmodels using the RDEVSNL
grammar and a “wizard” for creating files with the “*.rde­
vsnl” extension (i.e., to store textual specifications). It pro­
vides writing aids during the edition (such as syntax high­
lighting and typing suggestions) using the language selected
by the modeler.

Figure 6. An example of a network model composed of five nodes. For the
node labels, the letter identifies the component type.

Figure 7 shows an example of the network model defined
in Figure 6. Such an example is defined in both languages
(i.e., English and Spanish) to show how the grammar sup­
ports both types of specification for the same model. Later,
we will discuss why this model is not defining a routing pro­
cess (i.e., it is not structured as a correct constrained network
model). Besides, in Section 4.1, we include a screenshot (Fig­
ure 12) with another English specification of a constrained
networkmodel that defines a correct routing process. Such an
example is based on the one presented by Blas et al. [2021].

Figure 7. Specification of the network model defined in Figure 6 using the
RDEVSNL Java editor developed. (a) The textual specification using the
English grammar. (b) The textual specification using the Spanish grammar.

3.1.2 From Constrained Network Models to Routing
Processes: Verifying the Network Model Struc­
ture

As previously stated, network theory proposes modeling a
system as a set of nodes connected by links. Both nodes and
links can have distinct meanings in a distinct context. When
modeling a routing process, nodes define components, and
links denote interactions between them. However, not just
any network model defines a routing process.
By using RDEVSNL we can ensure a correct definition of

a network model in which: 1. A network is composed of a set
of nodes. 2. Nodes may (or may not) be connected between
them using links. 3. Nodes may (or may not) have a behavior
attached.
However, the CFG by itself is only useful to verify syntac­

tical correctness. A textual specification can be syntactically
correct but may not define a correct network model (case
1). Moreover, a textual specification can be syntactically cor­
rect and define a correct network model, but such a network
model may not define a constrained network model that can
be mapped to a routing process (case 2).
For case 1, take as an example the following definition:
“The N1 and N2 nodes are part of the N network. The N1

node performs the behavior of the N2 component. The N2
and N3 nodes receive inputs from the N4 node.”
The example follows all syntactical rules defined in Ta­

ble 2 (i.e., it is syntactically correct for the CFG supporting
RDEVSNL). Here, the network is defined as N. In sentence
#1, two nodes are defined as components of the network iden­
tified as N : nodes N1 and N2. However, if N2 is the identifier
of a node, then N2 cannot be defined as the behavior of N1
(this is the case of sentence #2). Moreover, if N is composed
of N1 and N2, then N2 cannot be connected to N3 and N4
(as defined in sentence #3). Hence, even when the example
is syntactically correct, the definition does not make sense.
For case 2, take as an example the definition of Figure 7(a).

This example follows the syntactical rules defined in Table 2
and does not present the problem detailed for case 1 (i.e., it
is a correct network model). However, such a network model
cannot be mapped to a routing process since it is not a cor­
rectly constrained network model (e.g., the node C3 stands
isolated from the others). To solve both issues (cases 1 and
2), we use a metamodel.
A metamodel is a model which defines the used language

to design a model [OMG, 2002]. Due to their expressiveness,
metamodels are powerful modeling tools to ensure the struc­
tural correctness of a model. They allow validating themodel
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instantiation regarding the set of rules defined at the meta­
modeling level. Figure 8 presents a metamodel as a UML
class diagram [OMG, 2017] that describes a routing process
using the elements of a network model (detailed as stereo­
types). This metamodel is an improved version of the meta­
model defined in Blas et al. [2021] as an instance of the meta­
metamodel described to structure network models. This new
version includes: i) the NLSpecification concept, ii) the be­
havior defined as a concept instead an attribute (i.e., theCom­
ponent Type) and its associations, and iii) new Object Con­
straint Language (OCL) constraints (described below).
A specification (NLSpecification) includes a Routing Pro­

cess. Each Routing Process is identified by a routingPro­
cessName. The network model used to structure a Routing
Process is defined over a set of nodes (Node), where each
of them denotes a Component and executes the behavior of
a Component Type. Each Component Type is identified by
a behaviorName, while each Component is identified by a
nodeName. The process is composed of a set of Interactions
(Link) between Components. For each Interaction, a Compo­
nent acts as a source (i.e., the node from which the interac­
tion takes place) and anotherComponent acts as a destination
(i.e., the node to which the interaction is intended).

Figure 8. Metamodel used to structure the routing process definition from
a constrained network model specification. Stereotypes are used to indicate
the networkmodel component towhich the routing element refers. The notes
highlighted in gray detail OCL constraints included in the model to obtain
a routing process from a network model definition (see Table 3).

The metamodel of Figure 8 is restricted with OCL con­
straints [OMG, 2014] to ensure the network model defines a
routing process. These constraints were designed to provide
integrity to the metamodel as a template for defining prop­
erly network models that act as routing processes as follows:
i) at least one nodemust be identified as initial, ii) at least one
node must be identified as final, iii) nodes cannot be isolated,

iv) multiple links cannot connect the same pair of nodes, v)
self­links are not allowed, vi) a component must execute a
single behavior, and vii) a single routing process must be de­
scribed in an NL specification. Table 3 summarizes these
constraints formally using OCL expressions. Constraints i)
to v) were proposed originally by [Blas et al., 2021]. Con­
straints vi) and vii) are introduced here as an improvement of
the previous metamodel version.
When following these constraints, the network model pre­

sented in Figure 6 (and specified in Figure 7) cannot be used
as a routing process specification since it does not satisfy the
following rules: i) the node C3 is isolated ­ constraint iii),
and ii) the node N2 interacts with itself (i.e., it has a self­
interaction) ­ constraint v).

Table 3. OCL constraints (defined as invariants) used to get the
“constrained network model”.
Id OCL Constraint

i

context RoutingProcess
invariant existsStartingComponent:
self.component → select(c | c.inputLink
→size()=0 and c.outputLink → size() >0)
→ size() >0

ii

context RoutingProcess
invariant existsEndingComponent:
self.component → select(c | c.inputLink→size()
>0 and c.outputLink →
size() = 0) → size() >0

iii
context Component
invariant notIsolated:(self.inputLink → size() +
self.outputLink → size()) >0

iv

context Component
invariant multipleInteractions: self.outputLink →
forAll(e1,e2 | e1<>e2 implies e1.destination <>
e2.destination)

v
context Interaction
invariant notSelfInteraction: self.source<
>self.destination

vi
context Component
invariant singleBehavior:
self.behavior → size() = 1

vii
context NLSpecification
invariant singleSpecification: self.routingProcess →
size() = 1

Including the Metamodel in the RDEVSNL Editor. To
instantiate routing processes from constrained network mod­
els, the metamodel illustrated in Figure 8 was developed as
an Ecoremodel using EMF [EclipseModeling Project, 2022].
EMF project is a modeling framework and code generation
facility for building software tools and other software appli­
cations based on a structured datamodel. Hence, EMF allows
getting a data model specification of the routing process def­
inition for further instantiation and validation. Since this is
Java technology, the Ecore model was embedded in the RDE­
VSNL Editor plug­in to provide an abstract syntax validation
process.
When the validation option for a specification is activated,

the RDEVSNL syntax analysis is executed over the current
content of the “*.rdevsnl” file. Then, the parser tries to rec­
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ognize the structures of sentences from a stream of tokens
given by the actual specification. If the analysis is successful
(i.e., all the sentences that the modeler used to create the spec­
ification are valid), using the tokens identified by the parser,
an instance of the Ecore metamodel is automatically gener­
ated (i.e., the editor instantiates the defined metamodel fol­
lowing the parsing of the textual specification). Afterward,
the metamodel’s concepts, relationships, multiplicities, and
OCL restrictions are verified over the obtained instance.
If no issues are found, the textual definition of the con­

strained network model is in correspondence with a valid
routing process. This means that such a definition can be
translated to Java code with the aim to obtain the RDEVS
models attached (Section 4). On the contrary, if the textual
definition has issues, the modeler will visualze an error mes­
sage and a list with more details in the Problems view of
Eclipse (having the possibility to fix its specification and
check the new content).

4 Generating Java Implementations
based on Routing Process Descrip­
tions

The routing elements defined in the metamodel of Figure 8
can be related to the RDEVS modeling levels presented in
Table 1. Such relations can be defined as follows:

• Rel #1) a Routing Process is attached to an RDEVSNet­
work Model,

• Rel #2) a Component is attached to an RDEVS Routing
Model, and

• Rel #3) a Component Type is attached to an RDEVS Es­
sential Model.

How these metamodel elements are defined in terms of
their properties and associations in an instantiation model de­
termines how the RDEVS models should be designed. Take
as an example the instance model defined in Figure 9. In this
instantiation, a copying service composed of three devices
is modeled as a routing process. Devices are two scanners
(placed at offices 1 and 2) and one printer shared by both of­
fices. Each Scanner (Scanner Office 1 and Scanner Office 2)
is modeled as an instance of Component type that material­
izes the Scanner defined as an instance of Component Type.
For the printer shared by both offices, a Component instance
is defined (i.e., Shared Printer) materializing the Printer de­
fined as an instance of Component Type. Interactions are de­
fined as follows: i) from Scanner Office 1 to Shared Printer,
and ii) from Scanner Office 2 to Shared Printer. The overall
routing process is defined through the Copying Service (in­
stance of Routing Process). Such an instance is defined over
Scanner Office 1, Scanner Office 2, and Printer.
Following the modeling levels presented in Table 1 and

the relations defined above, the RDEVS models required to
simulate such a process are:

• TwoRDEVSEssentialModels for defining Scanner and
Printer, respectively.

• Three RDEVS Routing Models for defining Scanner
Office 1, Scanner Office 2, and Shared Printer, respec­
tively.

• One RDEVS Network Model for defining the Copying
Service.

Furthermore, the associations defined among instances de­
fine relationships between models as follows:

• The RDEVS Routing Models of Scanner Office 1 and
Scanner Office 2 embed the RDEVS Essential Model of
the Scanner.

• The RDEVS Routing Model of the Shared Printer em­
beds the RDEVS Essential Model of the Printer.

• The RDEVS Network Model of the Copying Service is
composed of the RDEVS Routing Models of Scanner
Office 1, Scanner Office 2, and Shared Printer.

• The Routing Policy of the RDEVS Routing Model of
the Scanner Office 1 is based on the I1 instance of Inter­
action.

• The Routing Policy of the RDEVS Routing Model of
the Scanner Office 2 is based on the I2 instance of Inter­
action.

• The Routing Policy of the RDEVS Routing Model of
the Shared Printer is based on I1 and I2 instances of
Interaction.

Hence, starting from an instantiation, a set of equivalences
can be defined to get RDEVS simulation model implemen­
tations (i.e., the computational models). These equivalences
were used to get the Java classes representing RDEVS mod­
els attached to textual specifications already validated by the
plug­in as metamodel instances. To do this, we follow the
extension points of the RDEVS library by creating new Java
classes using Acceleo [The Eclipse Foundation, 2022a].

Figure 9. Example of a routing situation defined as a constrained network
model obtained as an instance of the metamodel depicted in Figure 8.

Acceleo is a template­based technology that allows the cre­
ation of code generators from any data source available in
EMF format. By defining a generation model for the text­to­
code transformation, the elements defined in the abstraction
model (i.e., the instance of the metamodel) are navigated to
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Figure 10. Definition of the process used to generate the Java code required to support the RDEVS models attached to a NLSpecification (i.e., the file named
“generate.mtl” in Acceleo). Such a process requires other methods implemented as queries by combining Acceleo with Java. Main classes used to support
the simulation models are defined in lines 8 (essential model), 24 (routing model), and 29 (network model).

Figure 11. Industrial routing process proposed in Blas et al. [2021]. Icons
depict machine types.

“write” the corresponding Java classes. The generationmodel
used to get the RDEVS Java classes is presented in Figure 10.
Such a model defines the main template for scrolling through
the content of an NLSpecification (identified as nlSpecifica­
tion in line 4).
It is important to note that the domain behavior (i.e.,

the first modeling level of Table 1) cannot be fully de­
fined from the routing process definition. That is because
the internal behavior of components is not defined in the
constrained network models. Even so, following Rel #3),
each ComponentType defined as part of the nlSpecifica­
tion.routingProcess.behaviour set is used to structure an ex­
tension of the EssentialModel class (lines 6 to 9). The value
of the behaviourName attribute is used to name the new sub­
class by adding “ComponentType” at the beginning. Also,
a new subclass is defined to get an implementation of the
model state as an extension of State.java. This new class uses
the same name convention as the model by adding “State” be­
fore the behaviourName.
According to Rel #2), each Component included in

the Routing Process should define an extension of the
RoutingModel.java class. The set of Components at­
tached to a Routing Process defined in the nlSpecifica­
tion instance is obtained by the association nlSpecifica­
tion.routingProcess.component. For each element included
in such a set, subclasses required to support the attachedRout­
ing Model are created (lines 10 to 26).
Lines 10 to 18 are used to register all Components in the

process used to generate the Java code. Lines 20 to 26 de­
fine the extensions. These extensions are named using the
value of the nodeName attribute adding an appropriate label
to depict the part of the model defined (i.e., “Node”, “Rout­
ingFunctionDefinition”, and “RoutingElement”). For exam­
ple, the routing functionality of a Routing Model is defined
through an extension of the RoutingFunctionElement class.
This extension uses the output links to define available des­
tinations. Accurate sources are defined considering the input
links. In this way, Interactions and Components are used to
define the routing behavior (i.e., the intermediate modeling
level detailed in Table 1).
Finally, using the Routing Process definition and follow­

ing Rel #1), an extension of the NetworkModel class is de­
fined (lines 28 to 31). This class refers to the structure (i.e.,
the final modeling level of Table 1). The name of such an ex­
tension is defined using the value of the routingProcessName
attribute by adding “Network” at the beginning. The exten­
sion is designed to include full couplings among instances of
all classes used to implement routing models.
The “generator.mtl” file described above was included in

the Acceleo project that supports the generation process of
the Java code required for our implementation­independent
modeling approach. Such a project was embedded in the
Eclipse plug­in described in Section 3.1 to allow a direct
translation when the metamodel validation is successfully
verified. In this way, if both the CFG and metamodel pro­
duce a correct constrained network model instantiation, the
Java code that implements the executable RDEVS simulation
models attached to the network specified is automatically cre­
ated.

4.1 Proof of Concepts

Figure 11 shows a routing scenario composed of two types of
machines (which are denoted by the type of icon placed in the
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scenario). The scenario involves five nodes used to connect
inputs to outputs from two distinct paths. Then, Figure 12
presents a screenshot of an alternative textual specification
of the scenario proposed in Figure 11 using the RDEVSNL
Editor. Such a scenario is a valid constrained network model
that can be translated to an RDEVS computational model as
follows.
Take as an example line 1 of Figure 12. This line is syn­

tactically correct according to Table 2. Therefore, during the
RDEVSNL grammar checking, the plug­in creates the fol­
lowing elements:

• i) an instance of RoutingProcess with the attribute rout­
ingProcessName = “RoutingProcess”,

• ii) five instances of Component (each one with the la­
bel ”Machine_1” to”Machine_5” in the attribute node­
Name), and

• iii) five relationships isDefinedOver to link each Com­
ponent to the RoutingProcess.

The same process is performed for the text specification
detailed in lines 2 to 6 to define the instantiation of the meta­
model (presented in Figure 8) attached to the routing situ­
ation (specified in Figure 12). Over the overall metamodel
instantiation, the plug­in automatically runs the Ecore val­
idation process to ensure its correctness. Such a validation
checks concepts, relationships, multiplicities, and OCL con­
straints. In this case, the validation of the Ecore instance cre­

ated by the CFG is completed successfully. Then, the plug­in
creates the RDEVS computational model following the pro­
cess described in Section 4.
Figure 13 presents a screenshot of the Eclipse plat­

form once the creation process is completed, and all
Java classes have been created. In the Project Explorer
(left side of the screen), all Java classes created by the
M&S software tool are listed as part of the Java pack­
age named “rdevsmodels”. Table 3 summarizes the Java
classes created for each one of the elements instantiated
from the metamodel. As the Table shows, several classes
were created for the same metamodel element instantiated
during the transformation (e.g., for the Component named
“Machine_1”, three subclasses are created – NodeMa­
chine1.java_, Machine_1RoutingFunctionDefinition.java,
andMachine_1RoutingFunctionElement.java).
The specification of the NetworkRoutingProcess class is

presented on the right side of the screen (Figure 13). Such
a class is defined as an extension of NetworkModel (line
13). As the yellow box shows, all classes automatically gen­
erated include documentation related to the metamodel ele­
ment from which they are derived. Such documentation in­
cludes the authoring tag that indicates the Java code is auto­
generated from the plug­in. It also includes the date on which
the code was generated. Moreover, the green box highlights
the model methods. In this case, the Java class includes only
one method: the class constructor named NetworkRouting­

Figure 12. Screenshot of the RDEVSNL Editor when implementing the routing situation depicted in Figure 11. Suggestions are provided following the
language configuration. Keywords are highlighted to help the modeler during the edition.

Figure 13. Screenshot of the Eclipse platform once the generation process developed has been executed for the textual specification detailed in Figure 12.
Highlighted boxes refer to the documentation and model attributes definition of the new subclass extending the NetworkModel class.
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Table 4. List of the Java classes obtained for the proof of concepts.
Metamodel Instance RDEVS Java Implementation
Name Type New class “extends”
MACHINE_

TYPEA Component Type ComponentTypeMACHINE_TYPEA.java
StateMACHINE_TYPEA.java

EssentialModel.java
State.java

MACHINE_

TYPEB Component Type ComponentTypeMACHINE_TYPEB.java
StateMACHINE_TYPEB.java

EssentialModel.java
State.java

Machine_1 Component
NodeMachine_1.java
Machine_1RoutingFunctionDefinition.java
Machine_1RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_2 Component
NodeMachine_2.java
Machine_2RoutingFunctionDefinition.java
Machine_2RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_3 Component
NodeMachine_3.java
Machine_3RoutingFunctionDefinition.java
Machine_3RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_4 Component
NodeMachine_4.java
Machine_4RoutingFunctionDefinition.java
Machine_4RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Machine_5 Component
NodeMachine_5.java
Machine_5RoutingFunctionDefinition.java
Machine_5RoutingFunctionElement.java

RoutingModel.java
RoutingFunction.java
RoutingFunctionElement.java

Routing_Process Network Model

NetworkRouting_Process.java
InputTranslation
FunctionRouting_Process.java
OutputTranslation
FunctionRouting_Process.java

NetworkModel.java
InputTranslationFunction.java
OutputTranslationFunction.java

Figure 14. (a) A high­level description of the web architecture proposed
in the case study “AWS Netflix”. (b) The RDEVSNL specification of the
architecture depicted in Figure 14(a).

Process(). All the parameters required to set up the struc­
ture of the network model are created by calling the super()
constructor method (i.e., the constructor defined in the Net­
workModel class). By using instances of all routing model
classes created from other metamodel elements, the parame­

ters of the super() method are defined. In this way, the net­
work model used to simulate the routing process defined in
the metamodel is structured in terms of all nodes (i.e., all
RDEVS routing models) already implemented as Java code.
Furthermore, a video of the software tool operation can be

seen here 1.

4.2 Using the Tool forModeling Real­Life Sce­
narios

To show how the overall software tool supports the M&S
development process for real­life cases, we present two case
studies already analyzed (from the modeling effort point of
view) with the RDEVS formalism in Blas et al. [2022]. Such
cases refer to real­life software architectures obtained from
Amazon Web Services.
The first case study specified is the Multi­Region Re­

siliency of Netflix implemented with Amazon Route 53
(Amazon Web Services [2021a]). A sketch of such an archi­
tecture is presented in Figure 14(a). Following the textual
specification purposed, Figure 14(b) shows the RDEVSNL
definition. Here, each replica of a component is defined as a
node (composing the network) that performs the component
behavior. For example, line 4 details the AWSNetflix network
is composed of two replicas of WATCHDOG named watch­
dog1 and watchdog2. Then, line 8 details that both repli­

1https://www.youtube.com/watch?v=4RbHn4AqRWM&ab_channel=
RoutedDEVSGroup

https://www.youtube.com/watch?v=4RbHn4AqRWM&ab_channel=RoutedDEVSGroup
https://www.youtube.com/watch?v=4RbHn4AqRWM&ab_channel=RoutedDEVSGroup
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Figure 15. List of Java classes created when the translation process is exe­
cuted over the definition detailed in Figure 14(b).

cas use the component namedWatchDog. Finally, Figure 15
shows how the project explorer looks when the translation
process is finished. As this last figure shows, a Java class
is created for each element defined in the specification. All
these classes together provide the structure required to per­
form an RDEVS simulation.

A larger case is the Deals Engine Architecture of Expedia
Group Global (Amazon Web Services [2021b]), outlined in
Figure 17. Following the development process used in our
tool, Figure 18 shows both the textual specification (on the
right side of the screen) and the set of Java classes obtained
once the translation process is successfully performed (at the
project explorer shown on the left side of the screen). As a
complement, Figure 18 shows part of the metamodel instan­
tiation produced to support such a translation. As Figures 16
and 17 show, mechanisms used to support the software tool
proposed in this paper scale well when different numbers of
nodes, components, and links are used. Moreover, the gen­
erated Java code is sound requiring the modeler to complete
the behavioral definitions before executing the actual simu­
lation.

Figure 16. A high­level description of the web architecture proposed in the
case study “AWS Expedia Group”.

5 Discussion
The RDEVSNL Editor has been proposed as an alternative
modeling tool for building RDEVS simulation models. With
the code generation addition, the eclipse plug­in defined ini­
tially as an RDEVSNL Editor creates the Java classes for the
RDEVS implementation of simulation models designed us­
ing a constrained network model defined textually.
Even when building a plug­in can seem to be a high cost

for a research project, the benefits obtained are higher. The
advantages of our proposal are i) reduction of implementa­
tion times through fast modeling solutions and ii) simula­
tionmodel correctness regarding the formalism through well­
defined and standardized simulation models.
We promote the use of textual specifications as an alterna­

tive to graphical representations for two reasons:

1. Textual specifications following a CFG are always
faster to develop than graphical definitions. Since we
are working with a restricted set of sentences that can
be combined in several ways, the modeler can define a
“dense” constrained network model (i.e., a model with
a lot of nodes and connections among them) using just
a few lines. Such a specification is less time consuming
than, for example, graphical models.

2. For large routing scenarios, graphical models tend not
to be useful due to their size. Instead, as described be­
fore, textual specifications allow detail­ing a large set
of definitions using just a few sentences.

We are now concluding the testing of the transformation
process. All the cases conducted have been successfully
translated into RDEVS computational models when valid
routing processes are defined through constrained network
models. We have tested textual specifications of both small
(until ten nodes in a single network) and large (until 50 nodes
in a single network) models. The time response of all cases
has been acceptable concerning the number of Java classes
autogenerated by the plug­in. As the proposal is defined as
a modeling tool, the simulation execution analysis is out­
side the scope of the paper. Such an analysis concerns how
RDEVS simulation models are implemented in Java and how
DEVSJAVA supports their execution.
It is important to note that, as explained before, the speci­

fication of the abstract operations to be redefined at the sub­
class level for Essential Models cannot be derived from the
instance definition. Such a behavioral specification is part
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Figure 17. How the “AWS Expedia Group” case study (structured as the web architecture presented in Figure 16) can be defined using our software tool to
get the related RDEVS models.

Figure 18. Part of the metamodel instantiated for the case study presented in Figure 17. The XML version of the complete metamodel can be seen at Appendix
A.

of the domain problem and is not included in the constrained
networkmodel specification. Then, themodeler should detail
these operations using Java code or another type of DEVS
modeling specification. Since essential models are defined
as DEVS atomic models, DEVS modeling tools can be used
to achieve the domain behavior specification. For example,
in Dalmasso et al. [2023], the authors present a modeling
software tool that employs enriched UML statecharts for the
graphical representation of the domain behavior modeling
level (exhibit in Table 1). Once the behavioral operations
are defined, their specification should be included in existing
Java classes by writing their code in the appropriate methods.
The main limitation is the use of Java as support for

RDEVS implementations. Until there are new implementa­
tions of RDEVS in other programming languages, such a lim­
itation cannot be overcome. Still, if new RDEVS Libraries
are developed, only new translation processes should be de­
fined. The RDEVSNL grammar and the editor can remain
the same to support the textual specifications of constrained
network models.
The implementation­independent modeling strategy used

to build the plug­in allows for providing a more suitable tool
than other software tools currently available. Since it uses
a general abstraction model (i.e., a network model) as the
core definition of the RDEVS simulation models, it allows
themodeler to obtain computational models without the need
to codify the implementation in Java. Moreover, it provides a
more accurate representation of the problem to modelers be­
cause they can work with a new level of abstraction. That is
the main difference with other approaches like DEVSModel­
ing Language (DEVSML) and DEVSNL (mentioned in Sec­

tion 3.1).
DEVSML [Mittal and Douglass, 2012] provides a

platform­independent way to specify DEVS models that are
transformed to platform­specific language implementation in
Java, C++, or any other programming language. On the other
hand, DEVSNL [Zeigler and Sarjoughian, 2017] provides a
natural language specification to understand FDDEVS (Fi­
nite Deterministic DEVS) models. These models can be used
to automatically generate DEVS atomic models in Java that
have full capability to express messages and states.
In both cases (i.e., DEVSML and DEVSNL), the mod­

eler needs to understand how DEVS models are structured
to build specifications. Instead, in our case, the modeler is
abstracted from the notions of RDEVS formalism and gen­
erates an (abstract) constrained network model to represent
a problem (i.e., a routing scenario). Such an abstract model
is used to create the related simulation models in Java. The
separation of concerns between the abstraction model and
the programming language used to support the simulation
model implementations allows a further mapping to other
programming languages. That is the main benefit of using
our implementation­independent modeling strategy.

5.1 Threats to Validity
Given the nature of our proposal, adopting RDEVS models
to test our modeling approach can be seen as a threat to valid­
ity. Due to the novelty of RDEVS, no public repository for
RDEVS models is available. Nevertheless, it was possible to
reproduce all those RDEVS examples reported in the litera­
ture (Blas and Gonnet [2021]; Blas et al. [2017]; Blas et al.
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[2022]) and check whether our independent­implementation
modeling approach is valid to generate well­defined RDEVS
simulation models. Consequently, we had to specify the rout­
ing process detailed in the original RDEVS models as con­
strained network models. Then, we use a textual specifica­
tion to define constrained network models that were trans­
lated into a set of Java classes designed following the struc­
ture of RDEVS Library. To overcome the threat, we made
it evident that original RDEVS models can be correctly ab­
stracted as constrained network models and can be trans­
formed into a Java implementation of the RDEVS simula­
tion model. Finally, additional scalability tests should be per­
formed to analyze the space and time overhead introduced
during the model transformation phase.

6 Conclusions and Future Work

The RDEVS formalism provides a formal definition for
the M&S of general routing processes employing the “em­
bedding routing functionality” strategy over DEVS mod­
els. In this paper, we have presented an implementation­
independent modeling approach to build a plug­in in devel­
opment intended to obtain Java implementations of RDEVS
models from an abstract model defined in a textual specifica­
tion. For the textual representation, we propose a context­free
grammar named RDEVSNL which is based on a constrained
network model. Such grammar has been implemented using
ANTLR4. A metamodel is used to map the textual definition
with routing processes. This metamodel allows a direct map­
ping between its concepts and RDEVS simulation models.
Then, Java classes are derived using Acceleo. The RDEVS
library is used as support since it enhances the development
of RDEVS models in Java using some features provided by
DEVSJAVA.

Our proposal is part of a work­in­progress intended to de­
velop M&S software tools for the RDEVS formalism as a
discrete­event specification for routing processes. Our final
aim is to provide a tool that allows modelers to i) define the
problem domain using well­known abstractions and ii) get
the computational models attached to such abstraction mod­
els through conceptual mapping. Then, modelers will be able
to have simulation models without needing to codify any
routing implementation. Moreover, they can get simulation
models without having programming skills. The plug­in pre­
sented in this paper is a fundamental part of such research as
an additional feature of the graphical specifications already
defined by Blas and Gonnet [2021].

Future work is devoted to the development of new repre­
sentations for large­scale routing processes as new abstrac­
tion models to be used as additional features for M&S based
on RDEVS. Moreover, since the RDEVSNL is still not a lan­
guage (because the semantics definition is missing), we plan
to define such a component to provide a full modeling lan­
guage (by completing the set of elements described in Figure
3).
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A Appendix A

1 <?xml version="1.0" encoding="UTF-8"?>
2 <metamodel:NLSpecification xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:metamodel="

http://www.example.org/metamodel">
3 <routingProcess routingProcessName="n2">
4 <interaction destination="//@routingProcess.0/@component.11" source="//@routingProcess.0/@component

.5"/>
5 <interaction destination="//@routingProcess.0/@component.11" source="//@routingProcess.0/@component

.6"/>
6 <interaction destination="//@routingProcess.0/@component.9" source="//@routingProcess.0/@component

.14"/>
7 <interaction destination="//@routingProcess.0/@component.10" source="//@routingProcess.0/@component

.14"/>
8 <interaction destination="//@routingProcess.0/@component.7" source="//@routingProcess.0/@component.9

"/>
9 <interaction destination="//@routingProcess.0/@component.8" source="//@routingProcess.0/@component.9

"/>
10 <interaction destination="//@routingProcess.0/@component.7" source="//@routingProcess.0/@component

.10"/>
11 <interaction destination="//@routingProcess.0/@component.8" source="//@routingProcess.0/@component

.10"/>
12 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component.7

"/>
13 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component.7

"/>
14 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component.7

"/>
15 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component.7

"/>
16 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component.7

"/>
17 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component.8

"/>
18 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component.8

"/>
19 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component.8

"/>
20 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component.8

"/>
21 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component.8

"/>
22 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component

.12"/>
23 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component

.12"/>
24 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component

.12"/>
25 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component

.12"/>
26 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component

.12"/>
27 <interaction destination="//@routingProcess.0/@component.13" source="//@routingProcess.0/@component

.12"/>
28 <interaction destination="//@routingProcess.0/@component.0" source="//@routingProcess.0/@component

.11"/>
29 <interaction destination="//@routingProcess.0/@component.1" source="//@routingProcess.0/@component

.11"/>
30 <interaction destination="//@routingProcess.0/@component.2" source="//@routingProcess.0/@component

.11"/>
31 <interaction destination="//@routingProcess.0/@component.3" source="//@routingProcess.0/@component

.11"/>
32 <interaction destination="//@routingProcess.0/@component.4" source="//@routingProcess.0/@component

.11"/>
33 <component inputLink="//@routingProcess.0/@interaction.8 //@routingProcess.0/@interaction.13 //

@routingProcess.0/@interaction.18 //@routingProcess.0/@interaction.24" nodeName="es1" behavi-our
="//@routingProcess.0/@behaviour.0"/>

34 <component inputLink="//@routingProcess.0/@interaction.9 //@routingProcess.0/@interaction.14 //
@routingProcess.0/@interaction.19 //@routingProcess.0/@interaction.25" nodeName="es2" behavi-our
="//@routingProcess.0/@behaviour.0"/>

35 <component inputLink="//@routingProcess.0/@interaction.10 //@routingProcess.0/@interaction.15 //
@routingProcess.0/@interaction.20 //@routingProcess.0/@interaction.26" nodeName="es3" behavi-our
="//@routingProcess.0/@behaviour.0"/>

36 <component inputLink="//@routingProcess.0/@interaction.11 //@routingProcess.0/@interaction.16 //
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@routingProcess.0/@interaction.21 //@routingProcess.0/@interaction.27" nodeName="es4" behavi-our
="//@routingProcess.0/@behaviour.0"/>

37 <component inputLink="//@routingProcess.0/@interaction.12 //@routingProcess.0/@interaction.17 //
@routingProcess.0/@interaction.22 //@routingProcess.0/@interaction.28" nodeName="es5" behavi-our
="//@routingProcess.0/@behaviour.0"/>

38 <component outputLink="//@routingProcess.0/@interaction.0" nodeName="queue1" behavi-our="//
@routingProcess.0/@behaviour.3"/>

39 <component outputLink="//@routingProcess.0/@interaction.1" nodeName="queue2" behavi-our="//
@routingProcess.0/@behaviour.3"/>

40 <component inputLink="//@routingProcess.0/@interaction.4 //@routingProcess.0/@interaction.6" output-
Link="//@routingProcess.0/@interaction.8 //@routingProcess.0/@interaction.9 //@routingProcess.0/
@interaction.10 //@routingProcess.0/@interaction.11 //@routingProcess.0/@interaction.12"
nodeName="web1" behaviour="//@routingProcess.0/@behaviour.2"/>

41 <component inputLink="//@routingProcess.0/@interaction.5 //@routingProcess.0/@interaction.7" output-
Link="//@routingProcess.0/@interaction.13 //@routingProcess.0/@interaction.14 //@routingProcess
.0/@interaction.15 //@routingProcess.0/@interaction.16 //@routingProcess.0/@interaction.17"
nodeName="web2" behaviour="//@routingProcess.0/@behaviour.2"/>

42 <component inputLink="//@routingProcess.0/@interaction.2" outputLink="//@routingProcess.0/
@interaction.4 //@routingProcess.0/@interaction.5" nodeName="cache1" behaviour="//
@routingProcess.0/@behaviour.6"/>

43 <component inputLink="//@routingProcess.0/@interaction.3" outputLink="//@routingProcess.0/
@interaction.6 //@routingProcess.0/@interaction.7" nodeName="cache2" behaviour="//
@routingProcess.0/@behaviour.6"/>

44 <component inputLink="//@routingProcess.0/@interaction.0 //@routingProcess.0/@interaction.1" output-
Link="//@routingProcess.0/@interaction.24 //@routingProcess.0/@interaction.25 //@routingProcess
.0/@interaction.26 //@routingProcess.0/@interaction.27 //@routingProcess.0/@interaction.28"
nodeName="loader1" behaviour="//@routingProcess.0/@behaviour.1"/>

45 <component outputLink="//@routingProcess.0/@interaction.18 //@routingProcess.0/@interaction.19 //
@routingProcess.0/@interaction.20 //@routingProcess.0/@interaction.21 //@routingProcess.0/
@interaction.22 //@routingProcess.0/@interaction.23" nodeName="loader2" behav-iour="//
@routingProcess.0/@behaviour.1"/>

46 <component inputLink="//@routingProcess.0/@interaction.23" nodeName="memcache" behav-iour="//
@routingProcess.0/@behaviour.4"/>

47 <component outputLink="//@routingProcess.0/@interaction.2 //@routingProcess.0/@interaction.3" node-
Name="elasticloadbalancer" behaviour="//@routingProcess.0/@behaviour.5"/>

48 <behaviour component="//@routingProcess.0/@component.0 //@routingProcess.0/@component.1 //
@routingProcess.0/@component.2 //@routingProcess.0/@component.3 //@routingProcess.0/@component.4
" behaviourName="ElasticSearch"/>

49 <behaviour component="//@routingProcess.0/@component.11 //@routingProcess.0/@component.12" behaviour
-Name="Loader"/>

50 <behaviour component="//@routingProcess.0/@component.7 //@routingProcess.0/@component.8" behaviour -
Name="Web"/>

51 <behaviour component="//@routingProcess.0/@component.5 //@routingProcess.0/@component.6" behaviour -
Name="Queue"/>

52 <behaviour component="//@routingProcess.0/@component.13" behaviourName="MemCache"/>
53 <behaviour component="//@routingProcess.0/@component.14" behaviourName="ElasticLoadBalancer"/>
54 <behaviour component="//@routingProcess.0/@component.9 //@routingProcess.0/@component.10" behaviour -

Name="Cache"/>
55 </routingProcess>
56 </metamodel:NLSpecification>
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