
Journal of the Brazilian Computer Society, 2024, 30:1, doi: 10.5753/jbcs.2024.3197
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Multiobjective message scheduling for Hybrid Synchronization
in Distributed Simulations
Paulo Comasetto  [Federal University of Fronteira Sul | paulogscomasetto@gmail.com]
Ricardo Parizotto [Federal University of Rio Grande do Sul | rparizotto@inf.ufrgs.br]
Braulio Mello  [Federal University of Fronteira Sul | braulio@uffs.edu.br]

 Computer Science, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Chapecó, SC, CEP 89815-899,
Brazil.

Received: 28 February 2023 • Accepted: 12 November 2023 • Published: 05 July 2024

Abstract One of the essential aspects of distributed simulations is to order events according to a causal consistency
model. Traditionally, implementing causal consistency can be made using a conservative or optimistic approach.
However, traditional techniques are costly in processing time to ensure causality. A promising approach to order
events is a hybrid synchronization approach, where processes can change dynamically between optimistic and con-
servative approaches. Unfortunately, synchronizing processes running a hybrid synchronization is a complex prob-
lem. In this work, we discuss a multi-objective scheduling of hybrid synchronization messages problem. Beyond
that, we propose using a scheduling algorithm to reach an equilibrium between processing and causality violations
and describe how to integrate the algorithm in an existing distributed simulator. The algorithm uses two memoiza-
tion phases, making the scheduling suitable for a dynamic environment. Finally, to demonstrate the feasibility of our
scheduling approach, we implemented it in an existing distributed simulation architecture. Analysis based on the
experiments demonstrates the behavior of the simulation regarding the number of discarding/processed messages
and work performed.

Keywords: Distributed Simulation, Hybrid synchronization, Multiobjetive scheduling

1 Introduction
Synchronization is one of the fundamental aspects in exer-
cising distributed simulations Taylor [2019]. Traditionally,
synchronization can be made optimistically or conserva-
tively Jefferson and Barnes [2017]. In its conservative (syn-
chronous)manner, the simulation processes evolve in time us-
ing a time barrier defined by lookahead strategies. In the op-
timistic (asynchronous) version, the processes advance with-
out any time barrier and use global virtual time (GVT) as
a lower barrier to rollback operations. However, an entirely
conservative approach can create idleness and reach dead-
locks. On the other side, an optimistic approach can suffer
from cascade rollbacks. A promising approach is a hybrid
system, where processes composing a distributed simulation
can interoperate between optimistic and conservative mecha-
nisms Perumalla [2005].

Recently, the hybrid synchronization paradigm motivated
several different new approaches for synchronization. The
UVT approach Jefferson and Barnes [2017] makes processes
change dynamically between conservative and optimistic
methods during the simulation. Differently, Hybrid PDES
Eker et al. [2021] changes the entire simulation synchroniza-
tion mode. Yet, another approach enables conservative and
optimistic processes to run simultaneously during the simu-
lation Junior et al. [2020]. We focus mainly on the third ap-
proach, essential to provide properties such as composability.
However, the abstractions here can be helpful for the other
techniques because they can deliver out-of-order messages
while migrating between different synchronization mecha-

nisms.
Unfortunately, synchronizing processes interoperating be-

tween different synchronization approaches is a challenging
problem. Specifically, the communication between conser-
vative and optimistic processes can create events out of or-
der and imprecise results Junior et al. [2020]. For example, a
conservative process, receiving a message from an optimistic
process, must discard messages that violate causality. How-
ever, discarding messages leads to another open problem on
hybrid synchronization: Which messages can be discarded
without compromising simulation results’ accuracy or useful-
ness? On the other hand, if an optimistic process rolls back
its state and discards messages from conservative processes,
it compromises more than the accuracy but also the simula-
tion performance. We argue that achieving hybrid synchro-
nization without compromising causal consistency is impos-
sible. Still, new strategies are necessary to reduce the number
of consistency violations and produce results with higher pre-
cision.

In this work, we investigate the problem of schedulingmes-
sages in distributed simulations. We argue that it is possible
to find the closest point between two objectives by message
scheduling approaches: lowest causality violation and high-
est processed work. Specifically, we investigate simulations
that can work using hybrid synchronization, focusing on re-
ducing the number of consistency violations. We describe
the problem as a scheduling problem with multiple goals:
(i) minimizing causality violations and (ii) maximizing the
sum of work performed by the events processed. We devise
an approach that intercepts messages in their reception and

https://orcid.org/0009-0006-4067-3199
mailto:paulogscomasetto@gmail.com
https://orcid.org/0000-0001-8913-5486
mailto:rparizotto@inf.ufrgs.br
https://orcid.org/0000-0003-3430-809X
mailto: braulio@uffs.edu.br

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

schedules them using a dynamic programming algorithm that
outputs an equilibrium between these two goals. Specifically,
we leverage past executions of the scheduling and move the
scheduling weights to the Cartesian plan to assign a schedul-
ing plan.

Unlike our previous work Parizotto and Mello [2022],
which only evaluated our algorithm numerically, in this ex-
tended version, we integrate the proposed algorithm into
the DCB (Distributed Cosimulation Backbone) architecture
Mello andWagner [2002] to demonstrate the behavior of our
solution under distributed simulation conditions. We ran syn-
thetic simulation models in the simulator and compared the
results with the traditional LTF scheduling policy. Finally,
we analyzed the experiments’ results regarding the number
of messages scheduled, the number of discarded messages,
the work performed, and the algorithm’s runtime. Unlike ex-
isting work on scheduling synchronous approaches, we fo-
cus on scheduling in hybrid scenarios. This brings new prob-
lems when synchronous and asynchronous processes com-
municate or when the simulation changes from one synchro-
nization mode to another.

2 Motivation
The hybrid synchronization problem has been presented as a
challenge in distributed simulation. Proposed approaches to
synchronize optimistic and conservative logical processes do
not solve the problem concerning the balance between avoid-
ance causality violation and the sum of processed work. That
is, how to define the set of discarding messages with the low-
est impact on the time violation and precessed work?

We study the Distributed Co-Simulation Backbone (DCB)
Mello and Wagner [2002] as a representative example of a
distributed simulator and present the challenges for synchro-
nization in the context of the DCB architecture. These chal-
lenges are not limited to the DCB but are present in any dis-
tributed simulation system that uses hybrid synchronization.
Specifically, we focus on how DCBmanages and delivers the
simulation messages to processes. DCB keeps an input list
of messages and uses the message 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 to establish
the delivery. Each process has several attributes described
by the user, defining how the process runs over time. These
attributes represent a temporal restriction that must be satis-
fied so that messages do not violate causality. DCB processes
simulationmessages using a scheduler that deliversmessages
when the process is at its initial time. To this end, the sched-
uler (1) selects between all the messages in the scheduler
queue and ranks them based on its virtual time; (2) sched-
ules the message for the virtual time of the process. However,
this strategy can process a set of messages that is not optimal
according to the number of violations and the amount of com-
putation performed.

Figure 1 exemplifies a scenario with three processes in a
simulation. In the example, 𝑃0 is conservative, and 𝑃1 and
𝑃2 are optimistic. Process 𝑃2 is at 𝐿𝑉𝑇 = 15 and already
processed the message 𝑚1, and it will soon process 𝑚2. How-
ever, 𝑃2 receives a message𝑚3 from the conservative process
that has to be processed before the current time of 𝑃2. Rolling
the state back would enable the process 𝑃2 to process the yel-

Virtual time

P2

P1

P0

GVT = 10

LVT = 20

LVT = 15

Optimistic

Lookahead = 20

 Snapshot

LVT = 10Conservative

m1

m2

m3

Figure 1. An example of time diagram

low message. However, processing 𝑚3 implies leaving the
two other messages without processing because of their be-
ginning and end times (presented in more detail in Figure 2).

We advocate that we can identify such situations during
the message scheduling. Then, we have proposed a scheduler
that can choose the subset of the current messages, provid-
ing more precise results and avoiding unnecessary rollbacks.
In addition, it avoids an increased number of discarded mes-
sages.

M3M1
M2

[20, 30]

[10, 35]

time

M3

M2

M1

Process

[30, 35]

Squeduler Queue

M3

M1
M2

A) Normal Solution
 (M1 and M2 cannot be processed)

B) Feasible Solution
(discards M3 to process both M1 and M2)M2

time
Process

M3

M2

M1
Squeduler Queue Squeduler Queue

Figure 2. Message scheduling scenarios

Figure 2 shows two message scheduling scenarios consid-
ering the example of Figure 1. In scenario A), the standard so-
lution schedules 𝑚3 first. However, the system can not sched-
ule other messages in the queue because of the message’s
virtual time limits. In scenario B), discarding message 𝑚3 al-
lows us to schedule both 𝑚1 and 𝑚2, which reduces the num-
ber of causality violations related to scenario A.

Such an example comparing two simple scenarios shows
that the sum of work of the messages 𝑚1 and 𝑚2 is less than
that of 𝑚3. However, reducing the causality violations is an
advantage during the simulation. Therefore, in this work, we
propose using a scheduling algorithm to dynamically select
a subset of messages that finds an equilibrium between the
number of causality violations and the maximum processing
time.

3 Problem Definition
We consider as input a set of 𝑛 messages 𝑚1, ...𝑚𝑛 with vari-
able processing times. A message 𝑚𝑖 must start its process-
ing specifically in virtual time 𝑡𝑖 and finish in 𝑑𝑖 units of vir-
tual time. Messages are processed by one single process, that
composed a distributed simulation, and every process runs
one message each time. We want to find a subset of messages
that achieves the two following objectives.

• (1) Minimize the number of causality violations: In
the conservative version, each causality violation means
a message that the system can not process. In the op-
timistic version, each causality violation triggers roll-
backs that consume simulation resources and make a
message not to be processed. Thus, this goal aims to

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

minimize the number of causality violations and, as a
consequence, maximize the number of messages pro-
cessed.

• (2) Maximize the virtual time sum of complete mes-
sages: This goal is related to the need of choosing sub-
sets of messages that contributes more to the simulation
precision. Thus, the priority is given to subsets of mes-
sages that maximize the sum of processed virtual time.

Messages

Work

d

utopic
 point

Figure 3. Scheduling plan with messages-work.

However, these two goals create a dichotomy: a subset of
messages can satisfy the first goal, but another completely
different subset of messages satisfies the second goal. Figure
3 present a plane messages-work. The green point represents
a subset of messages that optimizes the number of messages
beingmade. The blue point represents the subset of messages
that would optimize only the work being made. Finally, we
point (𝑤, 𝑚) is a utopic point that would optimize both mes-
sages and work 1. However, this point is not feasible in a sce-
nario where messages conflict. In this work, we aim to pro-
vide ways to find the closest point to the one with the highest
amount of messages and the highest amount of work made.

3.1 Synchronization constraints
In this work, we are proposing a solution based on scheduling
methods to deal with the dichotomy discussed above. Before
presenting our proposed based scheduling solution, this sec-
tion points some basic causality constraints of conservative
and optimistic logical processes.

The GVT is used as lower or upper barrier depending on
the synchronization approach of the logical processes on hy-
brid synchronization scenarios. Each logical process man-
ages the evolution of its own time, called Local Virtual Time
(LVT), according to the GVT. Conservative logical processes
use the GVT and lookahead strategies to define the LVT up-
per barrier, and the timestamp of received messages must be
greater than the GVT. Lookahead is a safe time-frame ahead
of the GVT, in which LPs will neither generate nor receive
new events. Such requirements avoid causality violations be-
tween conservative processes. However, as wementioned ear-

1in this work, we use optimum point and utopic point interchangeably

lier, optimistic processes are not subject to these time con-
straints. Specifically, causality errors may occur in messages
sent from conservative processes to optimistic ones.

Assuming that an optimistic process 𝐴 sends a message
𝑚𝑡 to a conservative process 𝐵, where 𝑡 is the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 of
𝐴(𝑚𝑡), the following condition must be satisfied to prevent
causality violations on 𝐵:

𝐿𝑉𝑇 (𝐵) ≤ 𝑡 (1)

In this scenario, considering the use of the GVT to cal-
culate 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑, and also considering that the advance of
𝐿𝑉𝑇 (𝐵) is limited to 𝐺𝑉𝑇 + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑, for the same sce-
nario of processes 𝐴 and 𝐵 above, we assume that:

𝑡 ≥ 𝐺𝑉𝑇 + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 (2)

and

𝐿𝑉𝑇 (𝐵) ≤ 𝐺𝑉𝑇 + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 (3)

As a result, there is no communication constraint be-
tween optimistic and conservative when 𝐿𝑉𝑇 (𝐴) ≥ 𝐺𝑉𝑇 +
𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑. However, even using mechanisms such as
promises implemented by lookahead strategies, rollbacks are
still a problem and can break the assumption. Since these
operations are not present in the behavior of conservative
processes, the temporal constraints of conservative processes
prevail over the optimistic. Thus, assuming that 𝐴(𝑚𝑡) is sent
to 𝐵 and

𝐿𝑉𝑇 (𝐴) ≤ 𝐺𝑉𝑇 + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 (4)

We consider that 𝐴(𝑚𝑡) may violate the causality of 𝐵,
and thus, we consider this part of the problem of this work.
The next section describes our proposed method for the pre-
viously mentioned dichotomy in the context of hybrid syn-
chronization of distributed simulations.

4 Solving the Scheduling Problem
This section presents, firstly, the main assumptions consid-
ered for scheduling messages in the input messages queue
of the Logical Processes. Next, we present a method capa-
ble of finding a balance between minimizing the causality
violations and the amount of work in cooperation between
optimistic and conservative logical processes. Our proposed
method allows for optimizing messages and work according
to the problem definition discussed in section 3.

4.1 Assumptions and Overview
The scheduling method analyzes the messages’ input queue
before delivering messages to the simulation processes. We
assume that the set 𝐶 of non-processed messages, defined
by 𝐶 = (𝑚1, 𝑚2, ..., 𝑚𝑖), is known. We also assume that we
know the received messages since the last consistent check-
point of an optimistic process. In addition, all these mes-
sages are ordered in a non-decreasing order according to their
timestamps. The starting virtual time (timestamp) is defined
by 𝑡𝑖 , and the amount of work is defined by 𝑑𝑖 units of vir-
tual time, as specified in section 3. Therefore, 𝑚(𝑡𝑖) gives

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

the timestamp of the message 𝑖, and 𝑚(𝑑𝑖) gives its work. By
using dynamic programming, our proposed method finds a
subset of messages that reach an equilibrium between causal-
ity time violations and the amount of work, as previously dis-
cussed. Then, given a set C of input queuemessages, the algo-
rithm identifies the next consistent message to be delivered
to the Logical Process.

LVT

40

1 7

5 9

2 12

14

1411

9

m4

m3

m2

m1

m5

m6

p(m1) = 0

p(m2) = 0

p(m3) = m1

p(m4) = 0

p(m5) = m3

p(m6) = m3

Figure 4. 𝑝 () function (adapted from: Kleinberg and Tardos [2006]).

Our solution is based on two main functions: the function
p first identifies a subset of messages which are overlapped
and outputs a subset of the next subsequent message. The
function utp outputs a value for the best scheduling plan ac-
cording to the highest amount of work and messages. These
two functions are used in a scheduling algorithm inspired by
the Kleinberg and Tardos [2006]). Our scheduling algorithm
memorizes the computed weights (including the utp outputs
for each message) during two phases: (1) the computation of
a new scheduling plan and also (2) between multiple execu-
tions (i.e., between the arrivals of different messages). Next,
we discuss the details of this algorithm.

4.2 Computing and Memorizing 𝑝.
The first of them is the 𝑝() function Kleinberg and Tardos
[2006]. Given a set 𝐶 of queued messages, 𝑝(𝑚𝑖) identifies
the closest lower-timestamped and non-overlapping message
of 𝑚𝑖 from 𝐶. Figure 4 shows a scenario with queued mes-
sages where: given the set 𝐶 = (𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6),
then 𝑝(𝑚5) = 𝑚3 is true because 𝑚(𝑡5) ≤ 𝑚(𝑑3), means
a non-overlapping message. Further, 𝑝(𝑚4) has no lower-
timestamped with a non-overlapping message, then 𝑝(𝑚4) =
0.

Before scheduling and delivering a new message to an LP,
we memoize the 𝑝() of all messages in the input queue. This
memoization strategy saves processing time since 𝑝() does
not always change after receiving a message. There are two
scenarios where p() changes: (1) When the set of messages
is static in the queue; or a new message has the largest
timestamp between the others already enqueued. However,
this is only sometimes valid in a distributed simulation
environment. The arriving queue receives unordered mes-
sages and can discard messages due to causality violation.
In addition, scheduling a message to a Logical Process can
change another message’s memorized values. Because of
that, we need to define rules to change the memorized values

LVT

40

1 7

2 12

14

1411

9

m4

m2

m1

m5

m6

p(m1) = 0

p(m2) = 0

p(m4) = 0

p(m5) = m2

p(m6) = m2

Figure 5. Memoization of 𝑝 () before 𝑚3 arrives

in such situations. We argue that only messages with the
timestamp of the new/delivered message must have their 𝑝()
calculated, justifying the memoization strategy. Therefore,
we proposed the following memoization strategy.

LVT

40

1 7

5 9

2 12

14

1411

9

m4

m3

m2

m1

m5

m6

p(m1) = 0

p(m2) = 0

p(m3) = ?

p(m4) = 0

p(m5) = ?

p(m6) = ?

Figure 6. Memoization of 𝑝 () after arriving 𝑚1 (adapted from: Kleinberg
and Tardos [2006]).

Assuming:

Let 𝐶 = (𝑚1, 𝑚2, ..., 𝑚𝑖) the set of queued messages

Let 𝑛 the arriving or delivering message with 𝑛(𝑡𝑖) and 𝑛(𝑑𝑖);

Then:

for each 𝑚 ∈ 𝐶 where 𝑚(𝑡𝑖) ≥ 𝑛(𝑑𝑖), 𝑝(𝑚) must be
recalculated;

for each 𝑚 ∈ 𝐶 where 𝑚(𝑡𝑖) < 𝑛(𝑑𝑖), 𝑝(𝑚) remains valid.

To better understand how thememorization of 𝑝 works, we
illustrate two scenarios corresponding to the messages in the
queue before and after a newmessage arrives. Figure 5 shows
a scenario before𝑚3 arrives and themessages’ respective 𝑝()
values. After𝑚3 arrives, as shown in Figure 6, we can see that
the memorized values of 𝑝() for the messages 𝑚1, 𝑚2, and
𝑚4 do not change. Conversely, the 𝑝() values of 𝑚5 and 𝑚6
are not valid anymore. They must be calculated again while
calculating 𝑝(𝑚3).

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

4.3 Computing and Memorizing utp.

The second function our scheduling algorithm uses is the utp
introduced in our previous conference paper Parizotto and
Mello [2022]. The utp function defines the notion of utopic
point, and it is used as a parameter to find the sub-set of
queued messages which represent the closest point to the
highest amount of work and the highest amount of messages.
Assuming a set 𝐶 of input queued messages ordered by their
increasing timestamp, and 𝑚𝑖 ∈ 𝐶, then 𝐶𝑖 is the sub-set of
𝑚1,..,𝑖 messages. And, 𝑢𝑡𝑝(𝑚𝑖) defines the utopic point of
𝑚𝑖 .

LVT

40

1 7

5 9

2 12

14

1411

9

w=6

w=4 utp(m1) = (4, 1)

w=4

w=10

w=5

w=3

m1

m2

m3

m4

m5

m6

utp(m2) = (10, 2)

utp(m3) = (14, 3)

utp(m4) = (24, 4)

utp(m5) = (29, 5)

utp(m6) = (32, 6)

Figure 7. 𝑢𝑡 𝑝 () function

Figure 7 shows the same 𝐶 as Figure 4. However, instead
of the 𝑝, it shows each message’s 𝑢𝑡𝑝(). Assuming 𝑤(𝑚𝑖)
the amount of work of the message 𝑚𝑖 , then 𝑢𝑡𝑝(𝑚2) gives
the sum of 𝑤(𝑚1) and 𝑤(𝑚2). The second information gives
the number of messages that belong to the 𝐶2.

LVT

40

1 7

2 12

14

1411

9

w=6

w=4 utp(m1) = (4, 1)

w=10

w=5

w=3

m1

m2

m4

m5

m6

utp(m2) = (10, 2)

utp(m4) = (20, 3)

utp(m5) = (25, 4)

utp(m6) = (28, 5)

Figure 8. Memoization of 𝑢𝑡 𝑝 () function

Memoization procedures are also applied to the 𝑢𝑡𝑝()
function. Whenever a 𝑚 𝑗 message is withdrawn from the set
𝐶𝑖 , or a newmessage𝑚 𝑗 arrives into the set𝐶𝑖 , then 𝑢𝑡𝑝(𝑚𝑖)
must be calculated again. If a new message 𝑚 𝑗 arrives and
𝑗 > 𝑖, then 𝑢𝑡𝑝(𝑚𝑖) remains valid.
Figure 8 illustrates the 𝑢𝑡𝑝() memoization before arriving

𝑚3. Figure 9 shows the impact of the arriving 𝑚3 message
on the 𝑢𝑡𝑝() values of the set 𝐶2 of messages. We can see
that 𝑢𝑡𝑝(𝑚1) and 𝑢𝑡𝑝(𝑚2) do not change. The schedulermust
execute the 𝑢𝑡𝑝() function for the new and existing messages
where 𝑗 > 2.

LVT

40

1 7

5 9

2 12

14

1411

9

w=6

w=4 utp(m1) = (4, 1)

w=4

w=10

w=5

w=3

m1

m2

m3

m4

m5

m6

utp(m2) = (10, 2)

utp(m3) = ?

utp(m4) = ?

utp(m5) = ?

utp(m6) = ?

Figure 9. Memoization of 𝑢𝑡 𝑝 () function after arriving 𝑚3

4.4 Scheduling Algorithm
After describing the essential functions we need to compute
a new scheduling, we discuss how our scheduling algorithm
employs those functions.

Algorithm 1: Algorithm to schedule messages
Data: 𝑢𝑡𝑝: the utopic point; 𝑀: the set of know and

ordered messages; 𝑉 : the set of visited
messages

1 Function Receive(𝑘):
2 𝑀 ← 𝑀 ∪ {𝑘}

/* mark all the messages higher than 𝑘 as
not visited */

3 𝑉 ← {𝑎 ∈ 𝑀 |𝑎 < 𝑘}
4 Update 𝑀𝑒𝑚𝑜𝑃
5 Update 𝑀𝑒𝑚𝑜𝑈𝑇𝑃
6 𝑚 ← the last message of 𝑀
7 𝑀𝑒𝑚𝑜[𝑆] ← Scheduling(m)
8
9 Function Scheduling(𝑚):

10 if (𝑚 == 0) or 𝑚 ∈ 𝑉 then
11 return memoS[m]
12 𝑢𝑡𝑝 ← 𝑚𝑒𝑚𝑜𝑈𝑇𝑃[𝑚]

/* 𝑛 is the first message that does not
conflicts with 𝑚 */

13 𝑛← 𝑚𝑒𝑚𝑜𝑃[𝑚]
14 𝑚𝑒𝑚𝑜𝑆[𝑛] ← Scheduling(n)
15 𝑆 ← 𝑚𝑒𝑚𝑜𝑆[𝑛] ∪ {𝑚}
16 𝑉 ← 𝑉 ∪ {𝑚}
17 select the next message, 𝑘
18 𝑚𝑒𝑚𝑜𝑆[𝑘] ← Scheduling(k)
19 𝑇 ← 𝑚𝑒𝑚𝑜𝑆[𝑘]
20 𝑉 ← 𝑉 ∪ {𝑘}
21 return 𝑚𝑖𝑛(Cost(S[k]),Cost(m + S[n]))
22
23 Function Cost(𝑘):
24 return√

(𝑘.𝑤𝑜𝑟𝑘 − 𝑢𝑡𝑝.𝑤𝑜𝑟𝑘)2 + (𝑘.𝑚𝑠𝑔 − 𝑢𝑡𝑝.𝑚𝑠𝑔)2

The algorithm performs a search in the set 𝐶𝑖 of the 𝑚 𝑗

queued messages for selecting a subset of messages that have
the fewer distance to the utopic point. The search performs a
recursive algorithm to reach the sub-set of messages. The al-
gorithm chooses between the two options: whether it is best
to include the message of the corresponding recursion step

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

*
*

new

...
messages visited
by previous executions0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#

#

#m1

m2

m3

m4

m5

m6

m7

m7

(m5, m7) (m6, m7)

(m1, m5, m7)

(a) (b)
Figure 10. Illustration of the definitions of the algorithm 1

with the option with having the last non-overlapping message
(Algorithm 1, lines 13-14) or is best to consider the first over-
lapping message (Algorithm 1, lines 17-18). This choice is
based on which of the options costs approximates more to
the utopic point Kolen et al. [2007]. To compute the cost,
we move the set of messages into Cartesian coordinates into
the Euclidean space and calculate the Euclidean distance be-
tween them: the utopic point to the point that represents the
set of messages being analyzed (Algorithm 1, lines 21-24).
We observe that the scheduling occurs after receiving a mes-
sage 𝑘 , using the costs of previous executions for messages
with lower LVT than 𝑘 . Thus, after receiving a message, only
the messages with a beginning time larger than the end time
of the received message are marked as not visited (Algorithm
1, lines 2-7).

Figure 10 exemplifies a scenario where a new message,
identified in red, arrives in the scheduler. In this scenario, ev-
ery message before the received message was already visited
by previous executions of the scheduling algorithm. In the
last execution, the solution 𝐴∗ was optimal. After receiving
the new message, creating a new scheduling plan is neces-
sary to be closer to the optimum. In this case, the algorithm
orders the newmessage with the previous ones and considers
the subsequent messages the set of messages that still need
to be explored. Conversely, the earlier messages in decreas-
ing order were already visited by the previous execution and
should not be revisited. The reasoning is that receiving the
new message does not change the scheduling plan for these
messages. Thus, we can reuse the scheduling plan from the
previous executions when receiving further messages.

Correctness and Complexity. The proof of the algo-
rithm’s correctness is based on the suboptimal structure of
the problem. The proof is by induction and mirrors the one
from the original weighted interval scheduling problem with
a single objective.

Proof. Sketch: The base case with zero messages is triv-
ially satisfied. Now consider that scheduling(k) is the op-
timal solution 𝑆𝑘 . If k is not in the solution, the solution
scheduling(k-1) is the same as scheduling(k) because kwould
conflict with the solution, including k-1. Otherwise, if k is in
the schedulling solution 𝑆𝑘 , this means that 𝑆𝑘 is a subset of
all the schedulling plans 𝑆0, 𝑆1, ..., 𝑆𝑖−1. Thus, the optimal
solution is the minimum between those two.

Complexity analysis: The algorithm works by iterating
through each message and selecting the optimal message to
schedule based on its Local Virtual Time (LVT). We can an-

alyze the complexity by looking at the following scenarios:

• Message insertion: once we receive a new message, we
insert themessage in a ordered list, andmark subsequent
messages as not visited, which takes O(𝑛).

• Memoization and Assignments: In the scheduling part,
the algorithm retrieves values from previous executions,
selects a message in a list, and performs operations to
memoize computed values, which only takes constant
time O(1).

• Recursive calls: The remainder of the algorithm per-
forms recursive calls to visit earlier messages. Since the
algorithm never revisits a message once it has been se-
lected, the total number of operations necessary by each
recursive call to the scheduling plan is O(𝑛).

The worst-case scenario occurs when a received message
has the lowest LVT compared to all other messages. In this
scenario, we must visit each message at least once. The best-
case scenario occurs when the inserted message has the high-
est LVT in the list, requiring only O(𝑛).

Thus since the algorithm selects the optimal message in
constant time for each iteration, the overall running time of
the algorithm remains linear O(𝑛). We argue this makes the
algorithm efficient and suitable for practical use in schedul-
ing problems with large datasets.

5 Experiments and Result
In this section, we present the experiments and results. Our
experiments aim to show the performance of a simulation in
terms of the amount of work and number of causality viola-
tions under different simulation scenarios.

5.1 Workloads
We integrated our proposed solution into the existing Dis-
tributed Co-simulation Backbone (DCB) architecture. The
previous version of DCB utilized the Least Timestamp First
(LTF) scheduling policy, which was used as a point of com-
parison for our proposed solution. To evaluate the perfor-
mance of our solution, we conducted experiments using nine
different model configurations. These models were created
by varying two key parameters: the total simulated time and
the sent message rate. The rate of sent messages refers to the

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

10 20 30 40 50
Message sending rate

25

30

35

40

45

50

55

60
M

es
sa

ge
s p

ro
ce

ss
ed

 (%
) LTF

Proposed algorithm

Figure 11. Messages processed: Increasing rate of sent mes-
sages

10 20 30 40 50
Message sending rate

25

30

35

40

45

50

55

60

W
or

k
pr

oc
es

se
d

(%
)

LTF
Proposed algorithm

Figure 12. Work processed: Increasing rate of sent messages

1000 2000 3000 4000 5000
Total simulated time

31

32

33

34

35

36

37

38

39

M
es

sa
ge

s p
ro

ce
ss

ed
 (%

) LTF
Proposed algorithm

Figure 13. Messages processed: Increasing simulation size

1000 2000 3000 4000 5000
Total simulated time

32

34

36

38

40

42

W
or

k
pr

oc
es

se
d

(%
)

LTF
Proposed algorithm

Figure 14. Work processed: Increasing simulation size

number of messages sent at each LVT in advance of the Log-
ical Processes (LPs). To ensure that our results were statisti-
cally significant, we carefully designed our experiment con-
figurations to consider the possible scenarios that may arise
in a real-world implementation of the DCB architecture. This
involved testing a range of values for the total simulated time
and the sent message rate and analyzing the results to deter-
mine the optimal configuration for our solution.

Table 1 presents the nine configurations used in our exper-
iments. The configurations can be divided into two groups.
Models 1 to 5 have a fixed total simulated time, and the rate of
sent messages increases linearly from 10 to 50. These models
were designed to evaluate the impact of increasing the sent
message rate on two important metrics: the number of causal-
ity violations and the amount of processed work. Models 1
and 6 to 9 have a fixed rate of sent messages, and the total
simulated time increases linearly from 1000 to 5000. These
models were designed to evaluate the impact of the simu-
lation size on the results. The idea was to observe how the
system behaves as the total simulated time increases and to
determine if there is a relationship between the simulation
size, the number of causality violations, and the amount of
processed work.

We evaluated the impact of their proposed solution on the
system by defining four keymetrics: processedmessages, dis-
cardedmessages, processedwork, and discardedwork. These
metrics allow us to evaluate the number of causality viola-
tions and the maximum processing time of the simulation
events. The nine models were executed with the LTF schedul-
ing policy and the proposed scheduling algorithm to compare

Model Total simulated time Rate of sent messagens
1 2000 10
2 2000 20
3 2000 30
4 2000 40
5 2000 50
6 1000 10
7 3000 10
8 4000 10
9 5000 10

Table 1. Models configuration

their effectiveness. The experiments were executed five times,
and the arithmetic average of the replications was used for
analysis to account for any variability and ensure representa-
tive results.

5.2 Changing the Rate
Experiments testing the impact of the increasing 𝑟𝑎𝑡𝑒 of sent
messages scenario show that the proposed algorithm tends to
reduce the performance at the highest 𝑟𝑎𝑡𝑒𝑠. Figures 11 and
12 allow us to observe the results according to distinct 𝑟𝑎𝑡𝑒𝑠
based on messages processed and work processed metrics,
respectively.

The proposed solution processes more messages with
lower 𝑟𝑎𝑡𝑒𝑠. However, the LTF scheduling policy demon-
strated similar effectiveness on the highest 𝑟𝑎𝑡𝑒𝑠 (Figure 11).
Similar results can be observed for the work processed met-
ric. Figure 12 shows that both policies demonstrate related
amounts of work processed on higher 𝑟𝑎𝑡𝑒𝑠. Our solution

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

P() + UTP() UTP() P() None
Memoizations

31

32

33

34

35

36

37

M
es

sa
ge

s p
ro

ce
ss

ed
 (%

)

Figure 15. Messages processed

P() + UTP() UTP() P() None
Memoizations

31

32

33

34

35

36

37

W
or

k
pr

oc
es

se
d

(%
)

Figure 16. Work processed

P() + UTP() UTP() P() None
Memoizations

1

2

3

4

5

6

Sc
he

du
lin

g
tim

e
(m

s)

Figure 17. Scheduling time

presents advantages on lower 𝑟𝑎𝑡𝑒𝑠. Increasing the number
ofmessages in the input queue approximates the performance
of both scheduling policies.

5.3 Impact of Increasing Simulation Size
In this section, we investigate the effect of increasing simu-
lation size on system performance. To isolate the impact of
simulation size, we keep the sent message rate fixed at 10.We
present our results in Figures 13 and 14. These experiments
provide insights into the scalability and help us understand
how it performs as the size of the simulation grows.

Opposed to the results observed on changing the 𝑟𝑎𝑡𝑒, the
performance of the proposed algorithm demonstrated better
effectiveness when the simulation size increased. Figure 13
shows that our solution presents a higher amount of messages
processed than LTF on distinct simulation sizes. Increasing
the simulation size does not affect the performance nega-
tively. We can observe similar behavior of both algorithms
on the graphic in Figure 14. Furthermore, we observe that
the work processed percentage is higher than the messages
processed percentage. Proportionally, our solution is more
effective when considering the objective of maximizing the
virtual time sum of work processed.

Our experimental results demonstrate that our proposed
scheduling algorithm enhances message and work process-
ing. The scalability and effectiveness of our approach be-
come apparent through the experiments with increasing sim-
ulation size. Despite the challenges posed by hybrid synchro-
nization in a simulation environment, our algorithm’s perfor-
mance outperforms LTF, as defined in the problem definition
section. Our experiments generate many messages with over-
lapping execution times, leading to a low percentage of mes-
sages and work processed. Adopting a stress testing approach
in the experiments enables us to evaluate the algorithm’s ef-
fectiveness under worst-case workload conditions. In future
work, we aim to assess the scheduling algorithm in a realis-
tic simulation with hybrid synchronization. However, imple-
menting such a simulation is an open problem that needs to
be addressed.

5.4 Impact of Memoization on the Algorithm
To investigate the impact of memoization on the algorithm,
we conducted a set of experiments with and without the
memoization of 𝑝() and 𝑢𝑡𝑝(). We selected model 9 from
Table 1 with a total simulated time of 5000 and a rate of

sent messages of 10 for the experiment. To define the mem-
oization variations, we considered the following scenarios:
only memoizing 𝑝(), only memoizing 𝑢𝑡𝑝(), and turning off
both memoizations. Each variation was executed five times,
and we used the arithmetic average of the replications for
the analysis. Furthermore, we included the results of model
9 with both memoizations active from the previous experi-
ments to provide a comparison baseline. We evaluated the
performance of each variation in terms of message process-
ing, work processing, and virtual time sum. The analysis of
the experimental results revealed the impact of memoization
on the algorithm’s efficiency and effectiveness. The details
of the experimental findings are discussed in this section.

As shown in Figures 15 and 16, removing thememoization
of 𝑢𝑡𝑝() had a higher impact on the performance of the algo-
rithm compared to removing the memoization of 𝑝(). Fur-
thermore, the results indicate that the performance regarding
messages processed and work processed reduced when both
memoization techniques were disabled. This finding suggests
that memoization is crucial for achieving better performance
in the proposed algorithm. We argue that for larger simula-
tions, this performance difference could be more significant
and have a more substantial impact on the algorithm’s overall
performance.

Additionally, we investigated the impact of memoization
on the temporal performance of the algorithm. New exper-
iments were performed to measure the spent “scheduling
time” in milliseconds. These experiments were conducted
with and without the memoization of 𝑝() and 𝑢𝑡𝑝() by us-
ing the same variations as before. The total simulated time
was kept to 5000, as per model 9. However, we increased the
model’s rate of sent messages to 100 to overload the calcu-
lations of 𝑝() and 𝑢𝑡𝑝() functions. Each variation was exe-
cuted five times, and we used the arithmetic average of the
replications for analysis purposes.

Figure 17 shows that when turning off both memoization
yields, the average runtime is 6ms. When re-enabling them,
the scheduling time drops to 2ms. We observed a relative re-
duction of 66.6%. Also, we noticed that the memoization of
only 𝑢𝑡𝑝() substantially reduces the runtime compared to the
memoization of only 𝑝(). Despite the relative reduction ob-
tained, the benefits of using both memoizations are low in
absolute terms. We argue that the temporal difference could
be intensified for more extensive simulations and simulations
with more LPs, representing a more considerable impact on
the algorithm’s execution.

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

Table 2. Comparison with related work

Reference Policies Synchronization
Technique

Santoro and Quaglia [2010] LTF Optimistic

Som and Sargent [1998] Probabilistic
Scheduling Optimistic

Jefferson and Barnes [2017] N/A Hybrid
Junior et al. [2020] N/A Hybrid
Eker et al. [2021] N/A Hybrid

This work Multi-objective
Schedulling Hybrid

5.5 Distributed experiments
Finally, we replicated the execution of all the models present
in Table 1 in a distributed fashion. We used two machines
for these experiments and reutilized the parameters, settings,
and metrics from the parallel simulations already presented.
Moreover, we sought to mitigate issues derived from the dis-
tribution of the models. For instance, network latency and
messages in transit. This decision goal is to assess only the
aforementioned metrics. Overall, the results obtained demon-
strated that the distributed models had similar performance
compared to their parallel counterparts. We reckon that, with-
out alleviating the issues inherent to the distribution, there
could be greater discrepancies in the outcome.

6 Related Work
Scheduling discrete event simulation events is not a new prob-
lem. This problem was explored in discrete simulation con-
texts that operate with only one synchronization mode (ex.,
only synchronous). Traditionally, a data structure is respon-
sible for storing the set of events that have already been re-
ceived but not yet executed. Calendar Queues Brown [1988]
is an example of a data structure used for this purpose.

From these structures, it is possible to use scheduling poli-
cies. For instance, in Santoro and Quaglia [2010] the authors
present a scheduler for optimistic simulation systems. The au-
thors presented an implementation of a policy called Lowest-
Timestamp-First (LTF) that can schedule events in constant
time using a variation of Calendar Queues. Another example
of a scheduling policy is Probabilistic Scheduling Som and
Sargent [1998]. This policy estimates the probability that an
event to be processed will be lost in a future rollback oper-
ation, and then schedules the event based on this estimate.
However, both LTF and probabilistic policy only consider op-
timistic synchronization scenarios.

Recently, hybrid synchronization efforts have attracted
community attention. In particular, unified virtual time
(UVT) Jefferson and Barnes [2017] is a conceptual architec-
ture for hybrid synchronization able to dynamically switch
from conservative to optimistic mode. In Junior et al. [2020]
an architecture for hybrid synchronization is presented and
partially integrated into the DCB, where processes, differ-
ently from switching from conservative to optimistic mode,
adapt their lookahead values and optimistic message can-
cellation techniques to avoid violations of time in the con-
servatives. More recently, Hybrid PDES Eker et al. [2021]
presents a hybrid synchronization system that changes the
synchronization mode of the entire simulation between con-

servative and optimistic modes according to a message distri-
bution estimate.

Table 2 presents an overview of the scheduling policies
and the respective synchronization algorithms used in related
work. This work complements the hybrid synchronization ap-
proach since our goal is not to propose a new architecture.
We present a scheduling policy for hybrid synchronization
that requires handling more than one objective while choos-
ing the messages it will process.

7 Conclusions
This work presents the hybrid synchronization problem as a
message scheduling problem. We propose a scheduling algo-
rithm that seeks to find an equilibrium between the number of
causality violations and the amount of work done. In addition,
we specify how distributed simulators can use the method in
distributed simulators. We integrated the proposed schedul-
ing algorithm into the DCB architecture. To evaluate its effec-
tiveness, we conducted a series of experiments using a single
simulation model with nine different configurations, varying
the rate of sent messages and the simulation size. For each
configuration, we ran five replications in the simulator. To
compare the performance of our proposed scheduling policy
against the traditional LTF scheduling policy, we executed
the same set of experiments with both policies. We analyzed
the number of messages scheduled, the number of discarded
messages, and the work performed to assess the metrics of
messages processed and work processed. Our results indicate
that our scheduling policy outperforms LTF, particularly on
larger simulation sizes.

Declarations

Acknowledgements
This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Competing interests
The authors declare that they have no competing interests.

References
Brown, R. (1988). Calendar queues: a fast 0 (1) priority

queue implementation for the simulation event set prob-
lem. Communications of the ACM, 31(10):1220–1227.
DOI: 10.1145/63039.63045.

Eker, A., Arafa, Y., Badawy, A.-H. A., Santhi, N., Eiden-
benz, S., and Ponomarev, D. (2021). Load-aware dynamic
time synchronization in parallel discrete event simulation.
pages 95–105. DOI: 0.1145/3437959.3459249.

Jefferson, D. R. and Barnes, P. D. (2017). Virtual time iii:
unification of conservative and optimistic synchronization

https://doi.org/10.1145/63039.63045
https://doi.org/10.1145/3437959.3459249

Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Comasetto et al, 2024

in parallel discrete event simulation. In 2017 Winter Sim-
ulation Conference (WSC), pages 786–797. IEEE. DOI:
10.1109/WSC.2017.8247832.

Junior, E. M., Terra, A., Parizotto, R., and Mello, B. (2020).
Closing the gap between lookahead and checkpointing
to provide hybrid synchronization. In Anais do XLVII
Seminário Integrado de Software e Hardware, pages 104–
115, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sem-
ish.2020.11321.

Kleinberg, J. and Tardos, E. (2006). Algorithm design. Pear-
son Education India. Book.

Kolen, A. W., Lenstra, J. K., Papadimitriou, C. H., and
Spieksma, F. C. (2007). Interval scheduling: A survey.
Naval Research Logistics (NRL), 54(5):530–543. DOI:
10.1002/nav.20231.

Mello, B. A. and Wagner, F. R. (2002). A standard-
ized co-simulation backbone. In SoC Design Methodolo-
gies, pages 181–192. Springer. DOI: 10.1007/978-0-387-
35597-916.

Parizotto, R. and Mello, B. (2022). Multiobjective schedul-
ing of hybrid synchronization messages. In Anais do XLIX
Seminário Integrado de Software e Hardware, pages 49–
57, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sem-
ish.2022.222591.

Perumalla, K. S. (2005). /spl mu/sik-a micro-kernel for paral-
lel/distributed simulation systems. In Workshop on Princi-
ples of Advanced and Distributed Simulation (PADS’05),
pages 59–68. IEEE. DOI: 10.1109/PADS.2005.1.

Santoro, T. and Quaglia, F. (2010). A low-overhead
constant-time ltf scheduler for optimistic simulation
systems. In The IEEE symposium on Computers
and Communications, pages 948–953. IEEE. DOI:
10.1109/ISCC.2010.5546544.

Som, T. K. and Sargent, R. G. (1998). A probabilistic event
scheduling policy for optimistic parallel discrete event sim-
ulation. In Proceedings of the Twelfth Workshop on Par-
allel and Distributed Simulation, PADS ’98, page 56–
63, USA. IEEE Computer Society. Available at:https:
//dl.acm.org/doi/pdf/10.1145/278008.278016.

Taylor, S. J. (2019). Distributed simulation: state-of-
the-art and potential for operational research. Euro-
pean Journal of Operational Research, 273(1):1–19. DOI:
10.1016/j.ejor.2018.04.032.

https://ieeexplore.ieee.org/document/8247832
https://doi.org/10.5753/semish.2020.11321
https://doi.org/10.5753/semish.2020.11321
https://doi.org/10.1002/nav.20231
https://doi.org/10.1007/978-0-387-35597-9_16
https://doi.org/10.1007/978-0-387-35597-9_16
https://doi.org/10.5753/semish.2022.222591
https://doi.org/10.5753/semish.2022.222591
https://ieeexplore.ieee.org/document/1443311
https://ieeexplore.ieee.org/document/5546544
https://dl.acm.org/doi/pdf/10.1145/278008.278016
https://dl.acm.org/doi/pdf/10.1145/278008.278016
https://doi.org/10.1016/j.ejor.2018.04.032

	Introduction
	Motivation
	Problem Definition
	Synchronization constraints

	Solving the Scheduling Problem
	Assumptions and Overview
	Computing and Memorizing p.
	Computing and Memorizing utp.
	Scheduling Algorithm

	Experiments and Result
	Workloads
	Changing the Rate
	Impact of Increasing Simulation Size
	Impact of Memoization on the Algorithm
	Distributed experiments

	Related Work
	Conclusions

