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Abstract The success of automation and control functions envisioned for smart distribution networks depends on
reliable real-time network supervision. This task is performed by the distribution state estimator, responsible for
processing a set of measurements received by the supervisory control and data acquisition (SCADA) system. In
smart grids, the advanced measurement infrastructure (AMI) allows to collect regular readings of consumer voltage
and power measurements—this can complement the few measurements (coming from the SCADA system) usually
available for monitoring the distribution network and benefit the state estimation process. However, due to commu-
nication bottlenecks, such measurements are available only on an hourly basis. In order to circumvent the lack of
real-time measurements this paper investigates the application of different neural network models—AutoEncoder,
Contractive AutoEncoder, and Variational AutoEncoder—and proposes a methodology to generate AMI pseudo-
measurements to complement SCADAmeasurements when only the latter are available for processing. Simulations
performed with a 34-bus distribution system illustrate the proposed methodology, and the results obtained confirm
its potential for pseudo-measurement provision.
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1 Introduction
The real-time monitoring of electric power distribution net-
works, aided by the state estimation (SE) implemented in
distribution management systems (DMS), is becoming an in-
creasingly important requirement. Lefebvre et al. [2014] ar-
ticulate the SE essentiality for the success of modern automa-
tion/control functions by providing helpful information for
controlling voltage profile, optimal feeder reconfiguration,
and detection of islanding in networks with distributed gen-
eration, among others. However, for such monitoring to be
effective, various challenges need to be overcome, many of
which are different from those encountered in transmission
systems due to characteristics such as:

• Few measurements are available for processing, and
network observability is not achieved without pseudo-
measurements [Mestav et al., 2019];

• The presence of imbalances in the network and loads of
distribution systems;

• Relationships between resistances and reactances are
distinct from those found in transmission systems, es-
pecially in underground distribution networks;

• Communication systems have limitations for transmit-
ting measurements provided by smart meters.

Pseudo-measurements are artificial values obtained, for in-
stance, through system operation historical data, load curve
assessment, and state/measurement forecasting models, gen-
erally accepted as actual measurements when insufficient
data feed SE, i.e., the available measurements do not allow

network observability. Pseudo-measurements typically have
larger errors than real-time measurements.
The smart distribution network paradigm has leveraged ad-

vances in measurement systems and communication infras-
tructure, allowing the acquisition and storage of large data
volumes through digital relays, phasor measurement units
(PMUs), intelligent electronic devices (IEDs), and smart me-
ters.
Through the advanced metering infrastructure (AMI), it is

possible to make available for processing measured quanti-
ties that contribute to improving the quality of the SE pro-
cess. Despite efforts to develop adequate communication
infrastructure, the data transmission capacity has limited
the progress of advanced analysis, automation, and control
functions, particularly those related to real-time operation,
SE included [Li et al., 2011; Gaspar et al., 2023]. There-
fore, most of the time the DMS available measurements are
still insufficient for complete observability and reliable real-
time network monitoring. In this case, the use of pseudo-
measurements presents itself as an alternative to supplement
the data to be processed. Due to the usual unobservability of
distribution grids, alternative solutions have been analyzed
to mitigate this condition.
From the methodological perspective, the methods for re-

constructing missing data can be classified into two broad
groups: statistical analysis-based and machine learning-
based. The former is prevalent (e.g., regression/mean imputa-
tion), being relatively straightforward but somewhat imprac-
tical to face situations of high dimensionality/loss rates; re-
constructed data accuracy is weak. The latter uses a learning
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process to reconstruct effectively missing values, overcom-
ing the limitations of statistical analysis-based methods.
In recent years, with the remarkable development of artifi-

cial intelligence, scholars have increasingly concentrated on
its application in data recovery. An autoencoder-based ap-
proach to providing data in the context of a DMS was pro-
posed in Miranda et al. [2011], focused on recovering infor-
mation related to network topology. When properly trained,
autoencoders perform well in recomposing missing measure-
ments (the input pattern coherent with the real system pro-
duces a similar output with a negligible error). Dehghanpour
et al. [2019] present how relevance vector machine (RVM)
models can be used, in conjunction with game theory, to gen-
erate both pseudo-measurements and their uncertainties. Da-
hale et al. [2020] show how linear power flow and linear pro-
gramming can be combined to obtain the system state. On the
other hand, Mestav et al. [2019] present Monte Carlo simu-
lations and deep neural network models to achieve better re-
sults regarding measurement error detection and the SE over-
all performance.
This paper presents a methodology for providing pseudo-

measurements to complement, whenever necessary, SCADA
measurements. For this purpose, three neural network
models—namely AutoEncoders, Contractive AutoEncoder,
and Variational AutoEncoder—are tested, and their per-
formance is assessed regarding the provision of pseudo-
measurements. The database adopted is formed with
AMI and SCADA measurements. The generated pseudo-
measurements allow for an increase in the frequency of in-
stances where a redundant data set is available for process-
ing, ensuring observability and supervision of the network.
Simulations conducted with a 34-bus distribution system il-
lustrate the application of the proposed methodology, and the
results obtained show the potential of the models adopted for
generating high-quality pseudo-measurements for SE.

2 AutoEncoder
AutoEncoders (AE) are a class of unsupervised deep learn-
ing models composed of two structures: an encoder and a
decoder [Liu et al., 2017]. The encoding structure is able to
extract relevant features from input data [Liu et al., 2017;
Hinton and Zemel, 1994]. The decoder is responsible for re-
constructing the input data from the extracted features [Liu
et al., 2017]. This is one of the most popular general-purpose
models among those in which both structures (encoder and
decoder) are formed by neural networks [Jabbar et al., 2021].
Neural network models can adapt to a dataset through

a cost function, which aims to measure how far/close the
model is to reproduce the dataset faithfully. In the case of
AEs, the most commonly used cost function is the average of
the Euclidean distances between the expected output and the
reconstruction produced by the model [Jabbar et al., 2021],
according to:

LAE = 1
n

n∑
i=0

||x − fθ(gθ(x))|| (1)

where fθ represents the decoder function and gθ the encoder
function.

Each of these functions (f(θ) and g(θ)) represents a dif-
ferent model structure. The number of layers and neurons
depends on the problem and should be defined by the user.
After applying gθ to the input data, one obtains a new repre-
sentation of the input data (Z), known as the latent space.

2.1 Contractive and Variational AutoEncoder
The AutoEncoders’ traditional objective function has lim-
itations regarding the encoding function rate of variation
and the sampling process from the model’s hidden dimen-
sion. Two classes of models have been developed to address
these needs—Contractive (CAE) and Variational AutoEn-
coder (VAE). Both models modify the typical structure of
the AE and add a regularization term to the cost function.
The Jacobian matrix Frobenius norm of the encoding pro-

cess is added in the Contractive model. In the Variational
model, the Kullback-Leibler divergence is included. Addi-
tionally, the latter model has a sampling process in the en-
coding stage. All of these models can be adopted in various
categories of problems, such as in anomaly detection [Zhang
et al., 2022; Ko et al., 2021], computer vision for informa-
tion retrieval and noise removal in images [Yilmaz et al.,
2022; Xu et al., 2022; He et al., 2022; Vijayalakshmi and
Shanthakumar, 2019], where the model receives a set of in-
puts in which there are faults/missing information in the im-
ages (the goal is to recreate/remove noise from them). The
reconstruction process can be used for generating pseudo-
measurements when there is little information loss (about
20%) and also for reconstructing the topology of the elec-
trical system [Miranda et al., 2011; Krstulovic et al., 2013].

3 Bayesian Optimization
Evaluating the cost functions of an optimization process is
not always easy. Many times, the functions are so com-
plex that assessing a single value can be extremely costly
[Bergstra et al., 2011]. Given this scenario, Sequential
Model-Based Bayesian Optimization (SMBO) models are
valuable allies for solving such problems ([Bergstra et al.,
2011]. This method of optimizing cost functions depends on
two key factors. The first is to obtain a probabilistic model
that, given a set of parameters, can predict the possible out-
come of the cost function [Candelieri et al., 2020]. The sec-
ond factor is a criterion for deciding what should be the next
value of the parameters to be tested [Candelieri et al., 2020].
SMBO optimization works as follows:

1. A random set of parameters is tested;
2. Based on the tested parameters and the obtained re-

sponse when evaluating the cost function, a model is
trained to predict the value of the cost function for a pa-
rameter X;

3. A new set of parameters is selected for testing in order
to optimize the established criterion;

4. Return to step 2 until the established stopping criterion
is reached;

The criterion established for SMBO optimization is de-
termined by the user. However, the case of Expected Im-
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provement (EI) is one of the most commonly used criteria
[Bergstra et al., 2011]. This criterion is presented in Equa-
tion(2):

EI(x) :=
∫ y∗

−∞
(y∗ − y)p(y|x)dy (2)

where y* is an established threshold (usually based on the
performance achieved up to the current iteration), and p is
the outcome of the probabilistic model.
The most commonly used model with SMBO is Gaussian

Process Regressors (GPR) [Candelieri et al., 2020]. How-
ever, this type of model has some issues associated with cate-
gorical parameters and parameter dimensionality [Candelieri
et al., 2020; Bergstra et al., 2011]. Given this scenario, the
Tree-Structured Parzen Estimator (TPE) emerges as an ex-
cellent option. In the case of TPE, the change made is in
the probabilistic model. Instead of using GPR, the Parzen
Window method is used to obtain probability distributions
[Bergstra et al., 2011]. Furthermore, as there is no prediction
model, two probability distributions are fitted: the first with
the parameters that have achieved the best performance with
respect to the cost function up to the current iteration, and the
second with the remaining parameters [Bergstra et al., 2011].
The remaining process remains the same as established for
SMBO, with only the necessary adjustments made in Equa-
tion (2) for the case with two probability distributions.

4 Proposed Methodology
The AMI in smart grids enables regular readings of voltage
and powermeasurements from consumers, which can benefit
network observability and the SE process as a whole. Mea-
surements from smart meters at the low-voltage level are gen-
erally recorded every 15 minutes or at larger time intervals.
However, due to limitations in the communication system,
AMI measurements are transmited only on an hourly basis.
On the other hand, the time interval for acquiring SCADA
measurements is a few seconds. Therefore, over long time
intervals, only SCADA measurements are available, which
is insufficient to ensure system observability. Although AMI
measurementsmay be abundant, their integration for process-
ingwith SCADAmeasurements requires an appropriate strat-
egy [Huang et al., 2015; Zhao et al., 2020].
The proposed methodology establishes that pseudo-

measurements complement the available SCADA measure-
ments to achieve network observability while AMI measure-
ments are absent. Based on the time instances in which AMI
and SCADA measurements are available, a database is con-
structed, serving as a training set for the three neural network
models described in Section 2. During the training phase,
each model captures the relationships between SCADA and
AMImeasurements. After that, the idea is to reconstruct AMI
measurements when they are unavailable in the DMS , based
on the observed set of SCADAmeasurements,. Thus, one can
increase the frequency at which a redundant data set is avail-
able for processing by SE.
This method is divided into two stages: (i) a model con-

struction (offline), with higher computational cost, and (ii)
pseudo-measurements provision (online), which can be per-

formed in the real-time environment. The following subsec-
tions present each of these stages.

4.1 Model Construction Stage
The dataset used at this stage contains historical records of
both SCADA and AMI measurements, observed when those
measurements are simultaneously available at the DMS dur-
ing system operation (hourly). The model should be trained
to reconstruct all measurements (SCADA and AMI) as out-
put data having only SCADA measurements available at the
input layer. In such layer, the inputs corresponding to AMI
measurements are set to zero. The idea is to provide the
model with capacity to reconstruct missing data (AMI mea-
surements) in the time intervals they are not available.
Several parameters can be modified to obtain the best pos-

sible fit for the available data when building a model. In ad-
dition, depending on the model, the user should adjust a se-
ries of hyperparameters, affecting the entire learning process.
Therefore, it is necessary to carefully adjust the hyperparam-
eters to extract the models’ maximum capacity.
In the offline stage, depicted in Figure (1), the hyperpa-

rameters capable of obtaining the best performance for each
model type are selected. Initially, it is necessary to preset the
number of tests to be performed and the probability distribu-
tion of the hyperparameters. After this definition, the models
are submitted to the training and validation datasets. Using an
adequate metric, the model that presented the best responses
to the validation dataset is selected. From the perspective of
this work, such model is the most suitable to reconstruct the
missing AMI measurements in a DMS.

4.2 Obtaining Pseudo-measurements
The training phase deals with determining the model that
brings more benefits to the distribution system monitoring
through pseudo-measurement provision. The selected model
can then be used in real-time to reconstruct AMI measure-
ments. In Figure (2), the system is considered observable
at the gray time instants since both SCADA and AMI mea-
surements are available. However, in the other time instants,
the DMS receives only the SCADA measurements, and ex-
ecuting SE is impossible due to the lack of observability. In
such situations, the selected model should reconstruct the
AMI measurements, which serve as pseudo-measurements
that complement the SCADA ones and guarantee system ob-
servability. In such scenario, SE and other DMS advanced
functions that depend on observability can be executed.
The pseudo-measurements are obtained every five minutes,
widely accepted as an adequate time interval to track and
monitor system operation condition.When both SCADA and
AMI measurements are available (hourly) it is not necessary
to generate the pseudo-measurements.
Figure (3) illustrates the process of measurement recov-

ery, showing the model operation when there are no avail-
able AMI measurements. As in the model construction stage,
the input vector contains the SCADA measurements that are
observed in real time, with the inputs corresponding to AMI
measurements being set to zero. Using this input dataset, the
model performs the encoding and decoding processes. At the
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Figure 1.Model Construction Stage.

Figure 2. Example of input/output availability

Figure 3.Measurement recovery.

output layer the reconstructed AMI measurements are the
outputs of interest, to be used as pseudo-measurements. Such
pseudo-measurements complement the real-time SCADA
measurements and guarantee system observability.

5 Simulations and Results
The methodology proposed in this paper is constructed from
a set of measurements used to monitor a distribution sys-
tem. After the construction and selection stages, the best
model is tested and its performance is evaluated using unseen
data. Tests were carried out on a 34-bus distribution network
Soares et al. [2019], for which training and validation data
were generated. These data correspond to measured quanti-
ties that are obtained through a power flow program and the
subsequent addition of a random disturbance. The Figure (4)
presents a flowchart with the data generation, model devel-
opment, and validation steps. The following subsections ex-
plain how each of these steps was developed.

5.1 DataBase Generation
The data used in the tests were generated from simulations us-
ing power flow for three-phase distribution networks, consid-
ering imbalances in both network topology and system loads.
In order to encompass a wider range of operating conditions,
it was assumed that both the power factor and the participa-
tion of the buses in the system consumption could vary by
±5% of the original values. This resulted in the generation of
a larger amount of data, with greater diversity, representing

Figure 4. Flowchart of the employed methodology.

Figure 5. ONS Load Flow Normalized

more realistic situations to be considered by the model in the
training and testing stages.
For the simulation of power flow a load flow available

in the webpage of Brazilian National Operator [ONS - Op-
erador Nacional do Sistema, 2023], was utilized. It repre-
sents the intra-day consumption of the Brazilian Power Sys-
tem (Sistema Interligado Nacional - SIN). The use of this
database was carried out as follows:

1. Data normalization by the maximum value;
2. Linear interpolation for the discretization of the data in

smaller 5-minute intervals;
3. Multiplication the original load value of each bar by the

value obtained in the previous step;

Figure (5) show the load flow avaliable in ONS webpage.
After executing the power flow, it was necessary to trans-

form the exact data generated (true values) into noisy mea-
surements. It was assumed that the measurements are ran-
dom variables, normally distributed, with a mean equal to
the value obtained in the power flow and standard deviation
represented as σ = zflow

100 for power and current measure-
ments, or σ = zflow

300 for voltage measurements. It is worth
noting that zflow is the value obtained when executing the
power flow.
It was considered that there are SCADA measurements

(active/reactive power flows) in branches incident to 10 of
the network buses. It is worth noting that observability can-
not be guaranteed with only such SCADA measurements,
and the provision of additional data is necessary. Buses with-
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out SCADA data are those with load connected and have
AMI measurements: bus voltages and active/reactive power
injections. As mentioned earlier, AMI measurements are not
available for processing with the same frequency as SCADA
measurements, and when unavailable, they must be gener-
ated using the proposed methodology.
Once a database with SCADA and AMI measurements

available for different time intervals is generated, the next
step is to split the database into training, testing, and valida-
tion sets. The training and validation sets are for model train-
ing and selection, while the testing set is used to assess the
overall performance of the model selected by the previous
sets. It is worth noting that those sets were separated accord-
ing to the following criterion: 64% of the data generated for
training, 16% for validation, and 20% for the final testing. In
addition, the model constantly receives 94 SCADAmeasure-
ments, being responsible for reconstructing 165 AMI mea-
surements, representing the provision of more than 63% of
the total number of measurements to the DMS.

5.2 Off-line Stage

The selection of the model structure was performed in this
stage, with several tests being carried out by varying the num-
ber of hidden layers, the number of neurons in each layer,
the dropout rate for each hidden layer of the network, and
the learning rate. The objective was to test different hyper-
parameter combinations and test the model with the lowest
reconstruction error on the validation data. Table (1) presents
the range of the tested hyperparameters.
The selection of the best model can be conducted in sev-

eral ways. As neural network models consume more com-
putational time during training than other models, testing all
possible architectures for AEs becomes impractical. For this
reason, the framework of Akiba et al. [2019] was used to se-
lect the best architecture among a pre-selected set.

Table 1. ange of tested hyperparameters

Hyperparameters Minimum Value Maximum Value
Quantity of Layers 3 12
Number of Neurons 15 240

Dropout Rate 0.01 0.5
Learning Rate 10−5 10−1

The TPE method for optimization of the hyperparameters
[Bergstra et al., 2011] was selected in the library presented
by Akiba et al. [2019]. As a Bayesian method, not all values
are tested and the region with the most significant contribu-
tion is selected. It should be noted that all hyperparameters
were tested as log-uniform distributions. In addition, the acti-
vation function in the hidden layers was kept as GELU, while
the activation function in the last layer was the Hyperbolic
Tangent.
The best model selection was based on minimizing the

mean absolute percentage error of the reconstruction accord-
ing to Equation (3).

5.3 Performance Indicator
Themean absolute percentage error (MAPE) is computed by:

MAPE = 1
n

n∑
i=1

xreal
i − xreconstructed

i

xreal
i

(3)

where xreal
i is the value of the i-th measurement and

xreconstructed
i is the reconstructed value.
AMAPE lower than 3% for power measurements or lower

than 1% for voltage measurements are considered satisfac-
tory since these values represent ±3σ of such random vari-
ables.
MAPE was used in both stages of the proposed method.

In the offline stage, this metric helps to select the best model
hyperparameters. In the second stage, MAPE demonstrates
how the model behaves with data not used during the train-
ing stage. Thus, the error made in the last stage can be under-
stood as the expected error when applying the methodology
in DMS. It is worth noting that this metric presents issues
when real values are zero or very close to zero since MAPE
tends to ±∞, although it does not necessarily mean that the
model is inadequate.

5.4 Results
The developed method was applied to the 34-bus distribution
system [Soares et al., 2019]. Buses 1, 3, 6, 7, 10, 12, 16, 27,
30, and 34 were selected to contain the SCADA measure-
ments, while the remaining buses have AMI measurements,
which most of the time are not available in real-time for SE.
The following subsections present the results of the architec-
ture selection for eachmodel and the performance of themea-
surement reconstruction.

5.4.1 Architecture Selection

In this stage, the framework presented by Akiba et al. [2019]
was used with TPE as the optimizer to find the best possible
architecture for the neural network. It is worth noting that the
goal was to minimize the MAPE of the previously separated
validation data.
For all models, the best result was obtained with 3 hidden

layers and the learning rates were around 10−4. The number
of neurons in each layer and the dropout rate are presented
in Table (2). It is worth noting that the layer with the low-
est number of neurons was selected as the last layer of the
encoding process.

Table 2. Structure selected by the optimization process

Model Layer N. of Neurons Dropout Rate
AE 1 224 ≈ 0.025
AE 2 67 ≈ 0.019
AE 3 79 ≈ 0.010
CAE 1 195 ≈ 0.002
CAE 2 172 ≈ 0.002
CAE 3 66 ≈ 0.005
VAE 1 189 ≈ 0.1801
VAE 2 190 ≈ 0.036
VAE 3 194 ≈ 0.013
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5.4.2 Model Application

After selecting the architecture for each model, their applica-
tion was simulated to evaluate their performance on the test
dataset.
The test set comprises 20% of the total amount of gener-

ated data. This set was not used in any other stage of training.
Therefore, its results are believed to represent the model’s
behavior.
The statistics related to the models are shown in Table 3.

The columns STD, Q1, Q3, P90, and P99 represent the stan-
dard deviation, first quartile, third quartile, 90th percentile,
and 99th percentile, respectively. They refer to the absolute
percentage error made by the model. The Mean column rep-
resents the value obtained by applying (3).
From Table 3, it is possible to observe some characteristics

of the models:

• The voltagemeasurement is themost reliable in all mod-
els;

• The reconstruction with the Variational AutoEncoder
was not satisfactory when compared to the other mod-
els;

• The Contractive AutoEncoder model shows a slight su-
periority over the AutoEncoder;

• The Reactive Power proves to be more difficult to pre-
dict, despite its low robust statistics (median and quar-
tiles);

As the error values obtained for the CAE and AE models
were similar, a Kolmogorov-Smirnov test was used to check
for a significant difference in the error committed by themod-
els. The test results are presented in Table (4).
With this result, one can conclude that the Contractive Au-

toEncoder model was the best for this dataset, possibly due
to adding the Jacobian matrix Frobenius norm in the cost
function, considering that the model reduces significant vari-
ations in the encoding function.
The values presented in Table 3 refer to the statistics of

the percentage errors for the tested models. Larger values are
observed for the errors in reactive power measurements and
this is because some of thosemeasurements present high vari-
ability and/or values very close to zero. These are common
caractheristics of reactive power quantities and not only ob-
served in the dataset employed in this paper. The difficulty to
predict reactive power is also reported in related works in the
technical literature [de Souza et al., 2017]. Reactive power
measurements that are difficult to predict are associated with
particular load consumption profiles that are known in ad-
vance. Regarding the proposed approach, such reconstructed
reactive measurements can be discarded and the remaining
ones will be sufficient to provide measurement redundancy
that guarantees state estimation observability.
A relevant analysis regarding the model’s performance is

to understand which measurements have the highest error.
Thus, as there are more measurements than necessary to en-
sure observability, the end-user can remove these measure-
ments from the process to guarantee SE reliability. Figures
(6, 7, and 8) show the 5 measurements with the highest av-
erage errors obtained with the models. Such measurements
correspond to reactive power flows and injections. One ob-

Figure 6. AE highest errors

Figure 7. CAE highest errors

serves that the AE and CAE models have the reactive power
injection at bus 29 (Q29) as themeasurement with the highest
error in the reconstruction. It means that the reactive power
consumption at bus 29 is tricky to predict by these models
with the available data. Therefore, it is possible to exclude the
active/reactive power measurements from this bus, without
compromising observability, i.e., being still able to perform
the SE process.

Figure 8. VAE highest errors Error
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Table 3. Statistics of the mean absolute percentage error for each model

Model Measure Type Mean STD Q1 Median Q3 P90 P99
AE Voltage - AMI 0.005 0.007 0.001 0.003 0.006 0.011 0.035
AE Active P. - AMI 2.142 1.693 0.777 1.810 3.170 4.419 7.049
AE Active P. - SCADA 0.621 0.852 0.163 0.362 0.711 1.374 4.648
AE Reactive P. - AMI 124.033 5073.754 1.383 3.800 7.515 11.651 28.182
AE Reactive P. - SCADA 108.252 5518.151 0.208 0.460 0.879 1.604 9.816
CAE Voltage - AMI 0.003 0.005 0.001 0.002 0.004 0.008 0.024
CAE Active P. - AMI 2.147 1.695 0.768 1.844 3.199 4.399 7.019
CAE Active P. - SCADA 0.557 0.852 0.130 0.293 0.609 1.266 4.542
CAE Reactive P. - AMI 157.650 7219.111 1.358 3.921 7.652 11.719 28.073
CAE Reactive P. - SCADA 88.451 6367.784 0.159 0.356 0.679 1.178 4.781
VAE Voltage - AMI 0.097 0.117 0.022 0.057 0.127 0.231 0.560
VAE Active P. - AMI 6.709 5.925 2.465 5.259 9.298 13.987 28.326
VAE Active P. - SCADA 6.326 5.615 2.228 4.911 8.818 13.367 27.259
VAE Reactive P. - AMI 5823 173535 3.541 7.516 12.953 19.459 4691.135
VAE Reactive P. - SCADA 26882 704357 2.887 6.329 11.718 19.826 119162

Table 4. Kolmogorov-Smirnov Test

Measure Type D P-Value
Active P. - AMI 0.008233 1.18 · 10−34

Active P. - SCADA 0.078901 ≈ 0.0
Active P. - AMI 0.014880 3.06 · 10−112

Active P. - SCADA 0.101475 ¨ ≈ 0.0
Voltage - AMI 0.136935 ≈ 0.0

6 Conclusion

Distribution networks suffer from a lack of available mea-
surements. The use of advanced metering infrastructure be-
comes indispensable to guarantee network observability;
although hindered by the low frequency at which mea-
surements are made available for processing by the com-
munication system. This paper compares three neural net-
work models— AutoEncoder, Contractive AutoEncoder,
and Variational AutoEncoder—aiming to generate pseudo-
measurements to complement SCADA data whenever AMI
measurements are unavailable. Such measurement provision
can be obtained in real time by the neural network previously
trained in an offline environment. Tests were performed on
a 34-bus network, and the results showed that bus voltage
and active branch power measurements were reconstructed
with adequate quality, contrasting with reactive power mea-
surement reconstruction. The proposed models were able to
generate good pseudo-measurements that can be used for
SE when only SCADA measurements are available. Among
them, the Contractive AutoEncoder model presented the best
results.
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