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Abstract Visual aesthetics is one of the first aspects that users experience when looking at graphical user interfaces
(GUIs), contributing to the perceived usability and credibility of a software system. It can also be an essential success
factor in contexts where graphical elements play an important role in attracting users, such as choosing a mobile app
from an app store. Therefore, visual aesthetics assessments are crucial in interface design, but traditional methods,
involving target user representatives assessing each GUI individually, are costly and time-consuming. In this context,
machine learning models have been demonstrated to be promising in automating the assessment of GUIs of web-
based software systems. Yet, solutions for the assessment of mobile GUIs using machine learning are still unknown.
Here we introduce a deep learning model to assess the visual aesthetics of mobile Android applications designed
with App Inventor. We used a supervised learning approach to train and compare models using three different
architectures. The highest performing model, a Resnet50, achieved a mean squared error of .022. The assessments
of new GUIs showed an excellent correlation with human ratings (ρ = .9), and the Bland Altman plot analysis
revealed 95% agreement with their labels. These results indicate the model’s effectiveness in automating the visual
aesthetics assessment of GUIs of mobile apps.
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1 Introduction

Visual aesthetics is one essential factor in perceived usabil-
ity, interaction, and overall appraisal of graphical user in-
terfaces (GUIs) [Hamborg et al., 2014; Tuch et al., 2012].
It represents an integral part of usability as a GUI quality
and refers to its beauty or pleasing appearance [ISO, 2011;
Tractinsky et al., 2000]. Positive aesthetic responses often
lead to positive interface interactions [Bhandari et al., 2019]
and give users the immediate and long-lasting impression
that a software system is suitable and easy to use [Norman,
2002; Tractinsky et al., 2006; Tuch et al., 2012]. Appealing
GUIs may still compensate for poor perceived usability [An-
derson, 2011; Bhandari et al., 2019; Zen and Vanderdonckt,
2016]. Furthermore, perceived visual aesthetics often deter-
mines if systems will be used or avoided in favor of competi-
tion [Lu et al., 2014; Schenkman and Jönsson, 2000; Tractin-
sky, 2013]. A first impression of the visual design is often
the differentiating factor that becomes decisive in choosing
an app from the myriad of options available in the major app
stores [Bhandari et al., 2019; Miniukovich and De Angeli,
2015].
Although there is considerable research on different as-

pects of visual aesthetics on desktop or web interfaces, it
has received limited attention on mobile GUIs [Bhandari
et al., 2017; Lima and Gresse von Wangenheim, 2021;

Miniukovich and De Angeli, 2014b]. GUIs on mobile de-
vices are essentially different from those on other devices
[Punchoojit andHongwarittorrn, 2017]. For example, mobile
GUIs have changed the traditional interaction models based
on the familiar WIMP (Windows, Icons, Menus, Pointer)
interface style, presenting a novel paradigm with widgets,
touch, physical motion, on-screen keyboards, and sensor in-
formation [Flora et al., 2014]. Touch-sensitive mobile dis-
plays also offer a variety of movements, such as swiping,
pinching, spreading, and flicking. And since fingertips are
usually bigger than mouse arrows, touchable elements need
to be large enough to avoid misselection. In addition, the size
and portability requirements limit what can be displayed at
once on the screen to avoid cluttering, extending it down to
several screens, and requiring scrolling [Rahmat et al., 2018].
Differences are also related to the usage context, as a broader
spectrum of people with different goals typically use mobile
apps anywhere, anytime [Huang, 2009]. Furthermore, mo-
bile device users highly value visual aesthetics because on-
the-go usage implies multiple external distractions for short
but intensive interaction periods [Choi and Lee, 2012]. Those
factors directly influence interaction and interface design on
these devices, demanding even greater attention concerning
interface development [Flora et al., 2014].

The visual aesthetics of mobile GUIs must be adequately
assessed given its importance [Moshagen and Thielsch,
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2010]. A typical approach to assessing visual aesthetics is
to ask target users to indicate their perception of GUIs’ over-
all appearance [Lavie and Tractinsky, 2004; Moshagen and
Thielsch, 2010]. However, this is an expensive and time-
consuming method that demands considerable resources that
might be unavailable to small companies or individual pro-
fessionals [Miniukovich and De Angeli, 2015]. One way to
minimize that effort is by automating assessments of the vi-
sual aesthetic of GUIs to quickly detect and visualize prob-
lematic design aspects [Miniukovich and De Angeli, 2014a].
Automatic assessments are helpful in application develop-
ment, especially in the early stages of the process, because
they demand less effort than traditional assessment methods.
They can also benefit non-professional designers and devel-
opers, considering the significant trend in software technol-
ogy where more and more people with a background in other
domains are developing mobile applications to solve prob-
lems related to their areas [Paternò, 2013]. Software develop-
ment by end-users has become possible through block-based
visual programming languages [Wolber et al., 2015]. For ex-
ample, App Inventor is an intuitive block-based program-
ming environment that allows everyone, even children, to
create fully functional mobile Android apps for smartphones
and tablets. App Inventor has been around for over 12 years,
with over 14.9 million users worldwide [MIT App Inven-
tor, 2022]. However, current automated solutions to assess
applications created with App Inventor are mostly limited
to evaluating computational thinking concepts [Alves et al.,
2019]. Approaches, including the automatic assessment of
GUI aspects, are still scarce and only cover adherence to
style guides [Solecki et al., 2020]. An example is CodeMas-
ter [Gresse von Wangenheim et al., 2018a] for the assess-
ment of the conformity of App Inventor GUIs with Material
Design guidelines in the context of computing education in
K-12 [Alves et al., 2019]. Yet, no automated method that an-
alyzes the visual aesthetics of mobile applications has been
encountered so far.
In a more general context, diverse methods are applied to

automate visual aesthetics assessments of different kinds of
artifacts [Seckler et al., 2015; Zen and Vanderdonckt, 2016].
These methods aim to analyze how interface features and
layout elements influence users’ perception of visual aesthet-
ics [Kim et al., 2003]. Approaches vary from the simple nu-
merical count of interface elements to more complex algo-
rithms that analyze handcrafted features, such as colorfulness
and symmetry [Miniukovich and De Angeli, 2015; Seckler
et al., 2015; Zen and Vanderdonckt, 2016]. But, by exam-
ining design factors independently, these methods may not
capture the full complexity of visual aesthetics perception of
the whole GUI [Bhandari et al., 2019; Dou et al., 2019]. Fur-
thermore, there is still no consensus on how to consistently
assess GUI visual aesthetics [Lima and Gresse von Wangen-
heim, 2021; Zen and Vanderdonckt, 2016].
More recently, deep learning models have been applied to

quantify the visual aesthetics of the design of GUIs of web-
pages [Dou et al., 2019; Khani et al., 2016; Xing et al., 2021]
following the success of the evaluation of the aesthetics of
photographs [Deng et al., 2017; Lu et al., 2014; Malu et al.,
2017]. Deep learning approaches can automatically extract
high-level features directly from raw input data to predict

the visual aesthetics of images [LeCun et al., 2015; Polyzo-
tis et al., 2017]. Most of these models adopt a supervised
learning approach where they compare their predictions with
the actual labels of the images used in the training phase [Li
et al., 2016]. That way, they can use a backpropagation al-
gorithm to adjust their internal parameters to minimize the
difference between them LeCun et al. [2015]. Those mod-
els typically represent visual aesthetics with discrete values,
such as “ugly” or “beautiful,” or as a numerical value ranging
from [0..1], treating the assessment as either a classification
or a regression task [Kirchner et al., 2015]. Again, research
focusing more specifically on mobile applications is almost
non-existent [Lima and Gresse von Wangenheim, 2021].
Therefore, we propose the deep learning model Appsthet-

ics to quantify the visual aesthetics of GUIs of Android apps
created with App Inventor by adopting a regression-based su-
pervised approach with convolutional neural networks. The
main contributions of our research are:

• A labeled dataset with 820 App Inventor GUI screen-
shots1;

• A deep learning model to automatically quantify the vi-
sual aesthetics of GUIs of Android apps with predicted
aesthetics ratings that strongly correlate with human
user rating data2.

The article is organized as follows. Section 2 reviews re-
lated work. Section 3 presents the methodology followed for
themodel development. Section 4 describes the development
process, starting with how the model was designed, follow-
ing through the steps taken to build the dataset and to train it,
up to the results produced by two training rounds. The model
evaluation, with the correlation and the Bland-Altman analy-
sis, is in section 5. The discussion about those results and how
they compare with human aesthetic perception is in section
6. Finally, section 7 concludes the paper and brings sugges-
tions for future work. This work is an extended and revised
version of an article already published in the IHC 2022 [Lima
et al., 2022c].

2 Related Work
Previous research on user experience, usability, or human-
computer interaction, including GUI visual aesthetics, has
focused on assessing web-based GUIs on large screens such
as desktops or laptops [Lima and Gresse von Wangenheim,
2021]. The assessment of visual aesthetics on mobile GUIs
has typically been extended from how GUIs are assessed
on those screens. Much of this research has focused on
handcrafted features. Miniukovich and De Angeli [2014b]
validated six features for assessing web interfaces (color
depth, dominant colors, visual clutter, symmetry, figure-
ground contrast, and edge congestion) that can help predict
the visual quality of Android [Miniukovich and De Angeli,
2014a] and iPhoneGUIs [Miniukovich andDeAngeli, 2015].
Other studies analyze the correlation between GUI complex-
ity and user-perceived quality in Android applications, even-
tually proposing guidelines for GUI complexity by mining

1Available at https://bit.ly/app-inventor-dataset-v2.
2Available at https://bit.ly/appsthetics-code.

https://bit.ly/app-inventor-dataset-v2.
https://bit.ly/appsthetics-code.
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available Android applications [Alemerien andMagel, 2014;
Taba et al., 2014].
With the advances in machine learning, deep learning ap-

proaches have been introduced to predict GUI visual aes-
thetics [Dou et al., 2019; Khani et al., 2016; Xing et al.,
2021]. Some approaches employ pre-trained networks to re-
duce their training effort. Khani et al. [2016] trained their
model based on the AlexNet architecture using a dataset of
418 website screenshots labeled using a rating according to
their visual aesthetics. They used a hybrid model integrat-
ing convolutional neural networks (CNN) with classical ma-
chine learning techniques. The model uses a support vector
machine to generate the end output with a Gaussian radial
basis function to classify each image’s visual aesthetics as
“good” or “bad.” As a result of the approach, they report an
error rate (root mean squared error) of 34.15%.
Dou et al. [2019] also used a pre-trained CNN (CaffeNet)

to train their model with 398 website screenshots. But unlike
Khani et al., their dataset was labeled with the mean value of
all human ratings received on a 9-point scale, with “1” mean-
ing the lowest visual aesthetics and “9” the highest, rather
than using only two categories. With the label values rang-
ing from 1 to 9, predicting visual aesthetics was treated as a
regression task. Their reported error rate is 20.41%.
Instead of using pre-trained networks, Xing et al. [2021]

trained five distinct models with 38,423 GUI images col-
lected from a popular website for UI designers in China. The
dataset has been labeled using the number of “likes” the
GUIs have received and the number of user “collections”
to which they belong as their visual aesthetics representa-
tions. They achieved the best performance with a Squeeze-
and-Excitation VGGmodel. Although an excellent error rate
of 14.89% predicting “likes” and 25.38% predicting “collec-
tions” is reported, no proposal to unite these two individual
results into one unique visual aesthetics value is presented.
More recently, Bakaev et. al [Bakaev et al., 2022] trained

artificial neural networks (ANNs), that generally need fewer
data, and CNN models based on a modified GoogLeNet ar-
chitecture [Szegedy et al., 2015] for the assessment of visual
aesthetics, complexity, and orderliness of about 2,700 web
GUI from different domains. Whereas the CNNmodels used
the GUI screenshots as inputs, the ANN models received 32
normalized metric scores obtained for the screenshots. When
comparing those models, the ANN performed better than the
CNN, achieving aMSE = .772 (87.86% error) against aMSE
= .968 (98.38% error).
Although the reported error rates in the existing research

seem high, they may be regarded as acceptable because no
other results had been previously published and may serve as
reference points. Dou et al. [2019] suggest treating the task
of predicting visual aesthetics as a regression problem rather
than a classification problem, attributing the performance im-
provements obtained compared to Khani et al. [2016] mainly
to the training model used and the change to regression. De-
spite the success of convolutional neural networks predict-
ing the aesthetic values of photographs, webpages, or GUI
designs, no research on the application of CNNs to assess
mobile GUI visual aesthetics has been found [Lima and
Gresse von Wangenheim, 2021].

3 Research Methodology
Aiming at automating visual aesthetics assessments of App
Inventor GUIs, we developed a deep learning model follow-
ing the machine learning process proposed by Ashmore et al.
[2021] and Amershi et al. [2019].
Requirements analysis. Based on the related work about

different types of GUIs identified through a literature review,
we defined the main objective of the model and the specifi-
cation of its target features, following Mitchell [1997]. This
step also includes the characterization of the input and the
expected outputs, specifying the problem.
Data management. This step includes selecting available

generic datasets for the model pre-training and collecting
GUI screenshots to build the domain-specific dataset. After
the screenshot collection, we cleaned the dataset by remov-
ing duplicates. Adopting a supervised learning technique,
each screenshot was labeled corresponding to its visual aes-
thetics based on human ratings. To ensure that the labels
represent the visual aesthetics perception of the target users,
a central tendency score was computed from the individual
rates that a group of volunteers manually assigned to the GUI
screenshots. We then pre-processed the dataset, resizing col-
lected screenshots to fit the deep learning architecture before
training. It was then split into a training set to train the model
and a validation set to perform an unbiased performance eval-
uation of the chosen model on unseen data. We also reserved
20 screenshots for testing [Ripley, 2007].
Training and performance evaluation. Based on the lit-

erature, we chose an appropriate deep learning framework
and model that has proven effective for this problem type,
volume, and data structure [He et al., 2016; Simonyan and
Zisserman, 2015; Tan and Le, 2020]. We adopted a super-
vised transfer learning approach, which allowed us to start
training from a pre-trained networkwith a generic dataset, ac-
celerating the process and reducing the dependence on a large
number of target-domain data [Iman et al., 2023; Zhuang
et al., 2021]. That is possible because instead of using an
untrained deep learning network, with random weight for its
nodes, we began by selecting a network that had been pre-
trained with a generic but related dataset, reducing learning
costs [Iman et al., 2023]. The training is executed until the
network no longer improves its performance. After transfer
learning, we unfroze the internal features, allowing all net-
work layers to learn. Then, the model went through a new
training phase, called fine-tuning, with the same domain-
specific dataset, to finely adjust all internal features to the
data. A set of hyperparameters (momentum and learning
rates) for the learning algorithm is dynamically selected and
optimized during the fine-tuning process. We trained some
similar model variants with different learning rates to com-
pare and select those with the best results.
We defined the evaluation metric in alignment with the

goals to be achieved and the type of problem faced to evalu-
ate its performance. Performance is measured with the vali-
dation set through the defined metric, allowing it to analyze
its result and make adjustments aiming at its improvement.
Then the model is tested against previously unseen data (test
set).
Model evaluation. To know to what degree the model
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predictions are equivalent to the human assessments, we ex-
ecuted a correlation analysis between the values resulting
from the model and those attributed by the human evaluators.
Furthermore, the correlation analysis allows comparing the
results of this model with those of other works that perform
the same evaluation method. We also analyzed the Bland &
Altman agreement [Bland and Altman, 1986] to measure the
degree of agreement between the two assessment methods
(by the model and by humans) of the visual aesthetics of
GUIs.

4 Appsthetics: A Deep Learning
Model for Assessing the visual
aesthetics of mobile apps

To support the automated assessment of the visual aesthetics
of Android GUIs, we developed a CNN called Appsthetics.
A summary of the development process is in Figure 1.

Figure 1. Summary of the Appsthetics development process.

4.1 Requirements Analysis
Our objective is to develop a deep learning model that learns
from experience E for some class of tasks T and performance
measure P, in which its performance on tasks in T, as mea-
sured by P, improves with E. In this research:

• A task in T is the assessment of the visual aesthetics of
an App Inventor app screenshot with a numerical value
within the interval [0..1];

• Experience E is a labeled dataset of App Inventor app
screenshots, where each label is its degree of visual aes-
thetics within the interval [0..1]; and

• Performance P is the model loss, measured as the mean
squared error (MSE) between the predicted visual aes-
thetics degrees and the actual screenshot labels. As for
the model performance, we aim to achieve a testing er-
ror (MSE) below .03.

The model inputs are screenshots of Android applications
developed with App Inventor and manually labeled by hu-
man raters. We adopted a supervised machine learning ap-
proach to deal with the visual aesthetics assessments and pro-
pose the aesthetics assessment task as a real-valued regres-
sion problem, rather than classification, following Dou et al.
2019. Our goal is to predict continuous scores for the screen-
shot visual aesthetics instead of discrete category labels. The
first reason for our choice is that images are not either beau-
tiful or ugly (or any other category between these two) but
provoke aesthetic experiences in different degrees from per-
son to person. Second, regression has achieved better results
than classification in similar works [Dou et al., 2019]. That
way, the output is a numerical value within [0..1], interpreted
as the visual aesthetics degree, where 0 = “very ugly” and 1
= “very beautiful.”
We selected a high-level CNN framework called fast.ai

to develop our machine learning model [Howard and Gug-
ger, 2020]. It is based upon the PyTorch/Torch Python
CNN framework, a good performing, flexible, and research-
oriented CNN framework [Fonnegra et al., 2017]. It offers
ready-to-use and customizable functions to train models,
making it suitable for practitionersmainly interested in apply-
ing pre-existing deep learningmethods [Howard and Gugger,
2020]. Our choice for fast.ai relies on the fact that we are per-
forming research on interface design assessments employing
deep learning techniques rather than advancing state-of-the-
art deep learning technologies.
We executed two training rounds to be sure we were

using the best architecture for our problem. In the first
round, we trained models using residual network architec-
tures (ResNets), including ResNet18, ResNet34, ResNet50,
and ResNet101 [He et al., 2016], with a dataset of 481 screen-
shots. In the second round, we expanded the dataset with 183
new screenshots and trained the best-performing architecture
in the previous round (ResNet50) and two other architectures,
a VGG19 [Simonyan and Zisserman, 2015] and an Efficient-
Net B0 [Tan and Le, 2020], to compare their performances.
Until recently, these architectures have been among those
with the best performance in image recognition tasks [Doso-
vitskiy et al., 2021; Xing et al., 2022].
ResNets employ identity connections that act as shortcuts,

bypassing several layers at once, providing two parallel learn-
ing paths in several network sections, and avoiding the typ-
ical gradient loss of very-deep networks. This architecture
allows for much deeper networks with up to 152 layers. Due
to their design principle, we could choose or design a net-
work with adequate depth for the complexity of the prob-
lem at hand. We chose ResNets mainly because they enable
hyperparameter optimization strategies (HYPOs) especially
developed for these CNN models, allowing faster training
[Smith, 2018; Smith and Topin, 2019].
The VGG19 architecture has achieved high accuracy with

large-scale image recognition [Simonyan and Zisserman,
2015] and significant results with the visual aesthetics assess-
ments of photographs [Lin, 2022; Sakaguchi et al., 2022]. It
uses small 3x3 convolution filters, the smallest possible size
that still captures up/down and left/right. All hidden layers
use ReLU as the activation function. The EfficientNet B0
uses a fixed set of coefficients to scale up width, depth, and
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image resolution uniformly Tan and Le [2020] and overcome
the difficulty of randomly scaling up each of those dimen-
sions by trial and error. The result is performance improve-
ment with less use of computational resources. We selected
EfficientNet B0, which has shown a performance similar to
ResNet50 [Tan and Le, 2020].

4.2 Data Management
To build the dataset, we captured screenshots from apps avail-
able in the MIT App Inventor Gallery and from apps devel-
oped in the context of the Software Quality Group of the
Universidade Federal de Santa Catarina (GQS/INE/UFSC).
The dataset preparation included eliminating duplicates and
images with unacceptable content (commercial, political, re-
ligious, or anti-ethical). We also pre-processed the screen-
shots to reduce and standardize the screenshot sizes (down-
sampling).
Data Collection. Six members of our research group par-

ticipated in the process following a predefined script. As
many apps available in the App Inventor gallery result from
class assignments in K-12, some apps are incomplete or very
rudimentary. Therefore, only apps with at least one visible
component were selected, eliminating blank or unfinished
screens.
After loading each application project into the App Inven-

tor IDE, we used its live test feature to run the GUIs. All
screenshots were captured using Genymotion v.3.1.2 to em-
ulate a Google Pixel device runningAndroid 8.0 - API 26 and
were saved as PNG images with 1080x1920 pixel resolution.
The process resulted in 8,303 screenshots from 1,552 differ-
ent applications. We selected 820 App Inventor screenshots
from this pool to create the dataset. The following criteria
were applied, excluding:

• screenshots in landscape mode;
• screenshots displaying text in alphabets other than the
Latin alphabet;

• screenshots of games, as their interface design signifi-
cantly differs from other types of apps;

• screenshots of unfinished apps (e.g., blank screens and
screens displaying only one element in the upper left
corner or placeholder for text);

• screenshots very similar to others already selected (e.g.,
GUIs containing maps or variations of the same appli-
cation); and

• screenshots displaying unacceptable content.

Furthermore, aiming at creating a balanced dataset, the
screenshots were selected to include those ranging from very
ugly to very beautiful, based on the authors’ perception.
Data Labeling. Due to the lack of a consensus on classifi-

cation scales to assess visual aesthetics as a one-dimensional
construct in literature [Lima et al., 2022a], we conducted an
exploratory study to compare scale alternatives [Lima et al.,
2022b]. In this study, 208 subjects3 rated the visual aesthetics
of ten different mobile GUIs on Likert and semantic differen-
tial scales, with five and seven points each. Participants were

3Approval for conducting this research with human participants was
granted by the Human Research Ethics Committee (CEPSH) at UFSC (Cer-
tificate No. 4.971.708).

randomly divided into four groups. Each group used a differ-
ent rating scale to assess the GUIs. They also responded to
the short version of the Visual Aesthetics of Websites Inven-
tory (VisAWI-S) [Moshagen and Thielsch, 2013], a question-
naire widely used to assess the visual aesthetics of websites,
considered a golden standard. Inter- and intra-examiner re-
liability and agreement were calculated for each scale and
compared with the VisAWI-S to compute its validity.
The study results showed that all four scale types allow

excellent inter-rater reliability, with an intraclass coefficient
(ICC) above .98. The intra-rater agreement was also good,
with Kendall’s coefficient of concordance around Wt = .6.
Although both Likert scales had the highest scores, they
were only slightly higher than the semantic differential scale
scores. Responses with 5-point scales resulted in lower intra-
rater reliability than with 7-point ones, and the 5-point Lik-
ert scale resulted in the lowest intra-rater agreement score
among the others. All four scales showed to be valid when
compared to the VisAWI-S questionnaire and demonstrated
a good correlation with each other when compared two by
two (between .83 and .93). Based on these results, we chose
the 5-point semantic differential scale to label the dataset.
Ten members of our research group participated in the la-

beling process (50% female), all with degrees in computing-
related areas. None of them reported being colorblind. Four
participants reported having no experience with interface de-
sign, and another had less than one year of experience. The
other five participants had at least two years of experience.
Each participant used their own device to label the screen-
shots in three sessions. In the first two sessions, they la-
beled 600 screenshots that were used in the first training
round (dataset 1). In the last session, they labeled another 220
screenshots that were added to the expanded dataset used in
the second training round (dataset 2). Although three partici-
pants had iOS devices, only onewas unfamiliar with Android
applications.
Participants labeled the screenshots on a 5-point semantic

differential scale (1 = “very ugly”; 5 = “very beautiful”). This
scale type has shown high reliability and validity when used
to rate mobile GUI visual aesthetics [Lima et al., 2022b]. It
also demonstrated a good correlation with the short version
of the Visual Aesthetics of Website Inventory (VisAWI-S)
[Moshagen and Thielsch, 2013], showing a corresponding
validity with only one item, considerably reducing the rating
effort.
We developed an application with App Inventor to oper-

ationalize the rating process. The app enabled participants
to assign a degree of perceived visual aesthetics to each of
the screenshots (Figure 2) during the labeling process. The
app shows each screenshot separately with the respective rat-
ing scale below. The rating process can be interrupted at any
moment, allowing its continuation from where it stopped.
This allowed participants to halt their assessments when-
ever needed or wanted, e.g., due to an external interruption
or fatigue. In addition, it enabled participants to rate the
apps anywhere and anytime, bringing them closer to real-life
users. The responses from this rating process showed excel-
lent inter-rater reliability (ICC(C,10) = .877; 95% CI [.862;
.891]).
To compute the final label of each screenshot, we cal-
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Figure 2. Application developed for the rating process.

culated the median of all ratings as the indicated measure
of central tendency for ordinal scales [Nunnally and Bern-
stein, 1994]. Besides, the median can provide a typical value
that is not as skewed by extremely high or low scores. As
each screenshot received an even number of ratings (10), the
median could result in the intermediate value between two
points on the rating scale. We decided to keep these values
to minimize the loss of granularity from converting the scale
values to the continuous interval [0..1]. Thus, although the
screenshots received ratings on a 5-point scale, their labels
could have nine possible values (five scale points and their
intermediate values). We also computed the average absolute
deviation (AAD) as a measure of dispersion among the re-
sponses [Leys et al., 2013]. A high deviation indicates that
the ratings are spread along the rating scale, allowing us to
interpret that participants disagree about the visual aesthet-
ics of that particular screenshot. Therefore, we removed 97
screenshots that received ratings with a deviation equal to
or greater than 1 from dataset 1 to avoid training our model
with confusing data. In addition, another 22 screenshots (all
with a deviation of .9) were removed to balance the set be-
tween beautiful and ugly images. Applying the same criteria.
17 screenshots were removed from dataset 2. Finally, we nor-
malized the labels to the interval [0..1], where 0 = “very ugly”
and 1 = “very beautiful.”

As a result, dataset 1 contained 481 GUI screenshots and
dataset 2 contained 684 screenshots. All images had labels
indicating their visual aesthetics degrees within [0..1]. We
randomly set aside screenshots with average absolute devia-
tions of .5 or less to form the test set, fairly distributed along
the rating scale. The test set had 15 screenshots in the first
training round, and 20 in the second round. None of these
screenshots took part in the training or validation steps. We
randomly divided the other screenshots using the proportion
of 80% for training and 20% for validation. That way, dataset
1 was split into a training set of 373 screenshots and a vali-
dation set of 93 screenshots, and dataset 2 into a training set
of 532 screenshots and a validation set of 132 screenshots.
For pre-processing, we downsampled the screenshots from
1080x1920 to 448x448 pixels. We performed no other trans-
formations, such as cropping, to avoid distorting image fea-
tures relevant to visual aesthetics perception. The dataset is
available online https://bit.ly/app-inventor-dataset-v2.

4.3 Model Training

To train our models, we used a pre-trained model with Ima-
geNet, one of the largest publicly available general-purpose
datasets [Russakovsky et al., 2015]. Dealing with a regres-
sion problem, we adapted the input layer to the image res-
olution of our dataset, represented by the screenshot vector
and its numeral label. The original output layers representing
a categorical variable with 1,000 values to classify the Ima-
geNet categories (containing 1,000 neurons) were replaced
by a regression layer with a single neuron. Although the
screenshots received ratings on an ordinal 5-point scale, we
aim to predict continuous scores for the screenshot visual aes-
thetics instead of discrete category labels. That is because the
cross-entropy loss function of classification models would
not reflect the distances between different points on the rat-
ing scale. For example, “2” is closer to “3” than it is to “5,”
but the cross-entropy loss would be the same. Also, regres-
sion has achieved better results than classification in similar
works [Dou et al., 2019; Xing et al., 2021]. That way, the
output is a numerical value within [0..1], interpreted as the
visual aesthetics degree, where 0 = “very ugly” and 1 = “very
beautiful.”
The performance quality of a deep learning model indi-

cates how well its predictions match up against the ground
truth [Botchkarev, 2019]. A typical quality measure for re-
gression tasks is the mean squared error (MSE). MSE is the
average of the squares of the errors. i.e., the average squared
difference between the data labels (human rating scores) and
the value of the deep learning model [Aggarwal, 2018]. MSE
values are always non-negative values, with the lower, the
better.
We executed two training rounds, each one with transfer

learning and fine tuning phases. In the first round, we trained
ResNets of varying depths (ResNet18, ResNet34, ResNet50,
and ResNet101) with dataset 1 containing 466 screenshots.
In the second round, we trained the best performing model
of the previous round and to other architectures (VGG19 and
EfficientNet B0) with dataset 2 (664 screenshots) to compare
their performances. The results are presented below.

Round 1
The output layers of the networks were transfer-trained un-

til the validation error stopped improving. We trained two
models for each architecture, one using standard training
(fit) and another using automated hyperparameter optimiza-
tion (fit1cycle), with transfer-learning and fine-tuning phases
[Smith, 2018; Smith and Topin, 2019]. This strategy works
with a varying adaptive learning rate and momentum, where
the learning rate is automatically increased first and then de-
creased while the momentum rate follows the opposite way
[Smith, 2018]. We kept all default parameters and trained for
no more than 100 epochs during transfer learning (see Ta-
ble 1).
In the fine-tuning phase, we employed the same strategy

as in the transfer learning, unfreezing and allowing for the
adaptation of all weights in the network. We determined a
range of optimum learning rates using the method suggested
by Smith and Topin [2019]. It resulted in a different range of
rates for each network. After fine-tuning, all models slightly

https://bit.ly/app-inventor-dataset-v2
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Table 1. Summary of the compared models in the first round

Architectures ResNet18, ResNet34, ResNet50,
ResNet101

Input dimension 448 (pixels) x 448 (pixels)
x 3 (color channels)

Predictive model Regression [0..1]
Learning algorithm Backpropagation

Dataset separation 373 for training (80%);
93 for validation (20%)

Training strategy fit and fit1cycle
Phase Transfer learning Fine tuning
Epochs 100 20
Learning rate .003 range of LRs
Weight decay No No
Best MSE .0306 .0227
Architecture ResNet101 ResNet 50

improved their performance. Given the results presented in
Table 2, ResNet50 trainedwith the fit strategy performed best
(see Figure 3).

Table 2. Best MSE for each model in the first round

Transfer Fine tuninglearning
Architecture Strategy MSE LR MSE

ResNet18 fit .0366 6.3e-07, 3.3e-07 .0359
fit1cycle .0344 4e-06, 1.3e-03 .0320

ResNet34 fit .0310 3.3e-06, 9.1e-06 .0301
fit1cycle .0323 6.3e-07, 7.6e-08 .0323

ResNet50 fit .0381 1e-04, 1e-03 .0226
fit1cycle .0345 1e-05, 1e-04 .0268

ResNet101 fit .0306 3e-06, 3e-07 .0279
fit1cycle .0320 2.7e-06, 2.1e-04 .0271

Figure 3.Train and validation losses for ResNet50 in the first round; transfer
learning (left); fine-tuning (right)

These results demonstrate that the model performed very
well in classifying visual aesthetics. Most classifications
(81.7%) differed by less than one point when converted back
to a 5-point scale. That means that most of the time, it can
classify a “beautiful” GUI somewhere between “very beauti-
ful” and “neither beautiful nor ugly” but never classifies such
a GUI as “ugly,” for example. That is an acceptable result,
considering that even humans have trouble agreeing about
visual aesthetics [Gresse von Wangenheim et al., 2018b].
These good performance results have also been observed

when using the test set, containing only unseen screenshots
without access to their labels for prediction Figure 5. Con-
sidering only this set, the MSE was .0166 and for only two
GUIs the prediction differed by one point when converted to
a five-point scale. The model differed by just half a point on

Figure 4.Validation set: best (top) andworst (bottom) classifications (scores
converted to the 5-point scale in parenthesis)

the visual aesthetics degree of eight GUIs and got the label
right on another five.

Figure 5. Test set: best (top) and worst (bottom) predictions (values con-
verted to the 5-point scale in parenthesis)

Round 2
In this round we expanded the training/validation dataset

with 198 new screenshots and randomly selected 20 screen-
shots for the test set. We trained a ResNet50, which was the
best performing model in the previous round and a VGG19
and an EfficientNet B0. That way, we could compare the per-
formance of the ResNet with that of two architectures that are
widely used for similar tasks. Here, we used the same training
steps (transfer learning and fine tuning) and strategies used
in round 1 (see Table 3).
Again, the Resnet50 model presented the best perfor-

mance when compared with the other architectures (see
Table 4). Although the VGG19 and the EfficientNet B0
showed superior performance when compared with the other
ResNets, in this round the ResNet50 showed lowerMSE than
in the previous round.
The ResNet50 model kept good performance when classi-
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Table 3. Summary of the compared models in the first round

Architectures VGG19, ResNet50,
EfficientNet B0

Input dimension 448 (pixels) x 448 (pixels)
x 3 (color channels)

Predictive model Regression [0..1]
Learning algorithm Backpropagation

Dataset separation 532 for training (80%);
132 for validation (20%)

Training strategy fit and fit1cycle
Phase Transfer learning Fine tuning
Epochs 100 20
Learning rate .003 range of LRs
Weight decay No No
Best MSE .0238 .022
Architecture EfficientNet B0 ResNet 50

Table 4. Best MSE for each model in the second round

Transfer Fine tuninglearning
Architecture Strategy MSE LR MSE

VGG19 fit .027 6.3e-07, 6.9e-05 .0256
fit1cycle .03 6.3e-07, 5.7e-05 .0285

ResNet50 fit .0268 1e-04, 1e-03 .022
fit1cycle .0293 1e-05, 1e-04 .0277

EfficientNet fit .024 1e-05, 1e-04 .0239
B0 fit1cycle .0238 2e-04, 2e-05 .0236

fying visual aesthetics. In this round, 79.5% of the classifica-
tions differed by less than one point when converted back to a
5-point scale, which is very close to the previous round. On
the other hand, the classifications for only five screenshots
(out of 132) differed by one and a half points from their la-
bels (Figure 7, bottom).
The model also had very good performance with the test

set (Figure 8). When converted to a five-point scale, predic-
tions differed by at most one point and were correct for eight
out of twenty GUIs (40%).

5 Model Evaluation
We also evaluated the model to assess how close the visual
aesthetics predicted in our models are to human ratings. That
is typically done by conducting a correlation analysis [Pur-
chase et al., 2011; Miniukovich and De Angeli, 2015; Dou
et al., 2019], which we executed to enable the comparison
of our results to a similar work [Dou et al., 2019]. Although
correlations quantify the degree to which two variables are re-
lated, they do not indicate howmuch they agree. As they only
evaluate the linear association between two sets of observa-

Figure 6. Train and validation losses for ResNet50 in the second round;
transfer learning (left); fine-tuning (right)

Figure 7.Validation set: best (top) andworst (bottom) classifications (scores
converted to the 5-point scale in parenthesis)

Figure 8. Test set: best (top) and worst (bottom) predictions (values con-
verted to the 5-point scale in parenthesis)

tions, they can be inadequate and misleading when assessing
their degree of agreement [Giavarina, 2015]. Thus, we also
used the Bland-Altman (B&A) plot analysis to measure the
degree of agreement between the automatic assessment of
our model and the human ratings [Bland and Altman, 1986].

5.1 Correlation Analysis
To evaluate if the trained model performs well on previously
unseen inputs, we analyzed the performance of the learned
model against the test dataset. We measured the strength of
the linear association between the results of the deep learn-
ing network and ground truth based on human assessments
using the Spearman rank correlation (ρ) [Bonett and Wright,
2000]. The choice for Spearman’s rank correlation coeffi-
cient, rather than themore common correlation test Pearson’s
r, is justified by the non-normality of the data [Bryman and
Cramer, 1990]. The numerical value of ρ ranges from −1 to
+1. The closer the coefficients are to −1 or +1, the stronger
the linear relationship is.
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Figure 9. Correlation between labels and predictions in the first round (left)
and in the second round (right) on the validation set

In the first round, the ResNet50 model trained with the
fit strategy showed the best correlation between predictions
and labels (ρ = .87) on the validation set (Figure 9, left). In
the second round, that same model trained with a larger set
(dataset 2) achieved a correlation of ρ = .79. When compar-
ing the performance with a similar work, the correlation in
the first round is on par with Dou et al. [2019], that report a
correlation of r = .85 on the validation set. That work, how-
ever, used a dataset with a normal-like distribution, where
most of the labels are close to the center of the scale and
very few or no labels are close to its ends (Figure 10, left).
Such a dataset can bias the model and improve the chance of
getting the prediction right in the validation set, since it fol-
lows the same distribution. We tried to use datasets that are
as balanced as possible (Figure 10, right). The difficulty was
finding samples on the upper end of the scale (“very beauti-
ful” GUIs). Nonetheless, except for these GUIs, the model
learned to classify all others with the same chance.

Figure 10. Distribution of samples on the validation set in Dou et al. [2019]
(left) and in the second training round (right)

After both training rounds, our models performed very
well predicting the visual aesthetics of the screenshots in the
test set (Figure 11). The ResNet50 model trained with the fit
strategy showed the correlation of ρ = .95 in the first round
and ρ = .9 in the second one (ρ = .9). That is an excel-
lent correlation, considering that the models sere assessing
images that they had not seen before.

Figure 11.Correlation between labels and predictions in the first round (left)
and in the second round (right) on the test set

We also correlated the predictions with the labels on the
set containing the removed screenshots (average absolute de-
viations equal to or greater than 1) in both training rounds.
All models resulted in ρ between .50 and .66, indicating that
our choice to remove those screenshots about which humans
show a higher degree of disagreement on their visual aesthet-

ics was correct.

5.2 Bland-Altman Analysis
As correlation analysis shows the relationship between two
variables, not their differences, we also performed a Bland-
Altman (B&A) plot analysis to assess how they compare [Gi-
avarina, 2015]. The B&A plot analysis describes the agree-
ment between two quantitative measurements by studying
the mean difference and constructing limits of agreement. It
allows us to evaluate a bias between the mean differences
and estimate an agreement interval, within which 95% of
the differences between the first and the second methods fall
[Bland and Altman, 1986]. This analysis does not indicate if
the agreement between the predicted values and the human
ratings is sufficient or if the automated assessment is suit-
able to replace the human one. It only quantifies the bias and
a range of agreement, within which 95% of the differences
between one measurement and the other are included [Giava-
rina, 2015]. B&A recommends that 95% of the data points lie
within ±2 standard deviations of the mean difference.

Figure 12. B&A plot analysis on the validation set in the first round (left)
in the second round (right)

Figure 12 shows the B&A charts for the validation sets. It
can be seen that the average difference between labels and
predictions is zero in the validation set in the first and .01
in the second round. That is an indication of bias absence
predicting visual aesthetics in the validation sets. The confi-
dence interval (CI) is within the expected range. In the first
round, the CI varied from -.3 to .29, and in the second round,
it ranged from -.28 to .3, showing that 95% of the predictions
differ from the labels by just over one point or less on a five-
point scale.

Figure 13. B&A plot analysis on the test set in the first round (left) in the
second round (right)

For the test set, the labels are on average .04 larger than
the predictions in the first round and .05 in the second one
(see Figure 13). This is less than half a point on a 5-point
scale. However, it also shows a slight tendency of the model
to assign a lower degree of visual aesthetics than humans.
The CI in the first round (-.19 to .28) was smaller than in the
second one (-.25 to .34). It shows that 95% of the predictions
differ from the labels by just over one point or less on a 5-
point scale.
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6 Discussion
Automating the assessment of the visual aesthetics of GUIs
is challenging, as different people may rate it differently, and
the optimal computational representation of aesthetics is far
from obvious. And although there exist already first proposal
approaches using deep learning to assess the visual aesthet-
ics of web pages, we evolve the current state of the art by
focusing specifically on mobile GUIs, with different charac-
teristics than web pages.
Regarding performance, the Appsthetics obtained anMSE

below .022, surpassing the assessment of web page GUIs
(MSE = .042) [Dou et al., 2019]. Our model also performed
slightly better than the one assessing GUI designs (MSE =
.0222) [Xing et al., 2021] but predicted visual aesthetics di-
rectly, not indicators of user aesthetic preference. Still, we
achieved that result with a much smaller dataset since we
adopted transfer learning. We agree with Dou et al. [2019]
that formulating the problem as a regression task is a signifi-
cant factor for that performance. Previous informal tests with
classification models also yielded lower performance results.
The evaluation results demonstrate that a convolutional neu-
ral network can learn to predict the visual aesthetics of mo-
bile GUIs based on their screenshots. TheAppsthetics predic-
tions showed an excellent correlation with the human ratings
(ρ = .9), with the B&A plot analysis indicating that more
than 95% of them agree, i.e., 19 out of the 20 outputs are
within the 95% confidence interval. These results outperform
other models assessing web GUIs [Dou et al., 2019; Khani
et al., 2016] in an unprecedented approach for mobile GUIs.
However, the model seems to have trouble predicting the

visual aesthetics of someGUIs on the higher end of the rating
scale. As the B&A plot analysis indicates, the model tends
to assign lower values to screenshots than humans. One rea-
son might be that the training dataset is unbalanced, contain-
ing more “ugly” than “beautiful” screenshots. We detected
that problem after the first training round and tried to miti-
gate it by adding more beautiful screenshots when compos-
ing dataset 2. Nonetheless, the human raters’ preferences did
not reflect the authors’ and the new beautiful GUIs did not
receive the highest ratings from the participants. Also, creat-
ing a more balanced dataset has been complicated because
a large majority of the apps available in the App Inventor
Gallery have rather ugly interface designs, making it diffi-
cult to encounter beautiful designs in larger quantities. De-
spite this bias, the B&A plot analysis also indicates that the
difference is at most one point on the five-point scale for 95%
of screenshots. That means that no GUI labeled as 4 (“beau-
tiful”) received a 2 (“ugly”) from the model or vice versa.
It is also interesting to note the considerable difference

in the correlations of the human assessments with the test
set and with the one containing those GUIs removed from
training due to the high mean absolute deviation in label-
ing. The test set consisted of GUIs on which human raters
expressed a high degree of agreement as to their visual aes-
thetics. When assessing the screenshots from this group, the
results showed a strong correlation with the human ratings
(ρ = .9). The B&A analysis also indicated the agreement be-
tween the two assessment methods. On the other hand, the
correlation between the model results and the set of GUIs ex-

cluded from the training was considerably lower (ρ = .61).
These results show that just as humans have difficulty agree-
ing on the visual aesthetics of some GUIs, so does the deep
learning model as expected. And although it represents an
objective representation of visual aesthetics, it derives from
the GUI properties and human intersubjectivity when rating
them, composed of different subjective evaluations. There-
fore, the deep learning model is susceptible to the same dif-
ficulties humans face when assessing GUIs with conflicting
or confusing aesthetic elements.

Examining the evaluation examples presented in Figure 8,
we can also try to understand which design elements con-
tribute to the visual aesthetics of GUIs. Those that received
the lowest ratings, i.e., GUIs considered “very ugly,” make
heavy use of very saturated colors (A, C, and D). Long pieces
of text also seem to reduce the visual aesthetics ratings (G and
J). On the other hand, GUIs that received intermediate ratings
have large areas of blank space (E, G, and H). Some higher-
rated GUIs also use whitespace, with an additional contrast
between colors much softer than on ugly screens (B, F, and
I). We also observe that a lack of symmetry between the el-
ements seems to contribute to lower visual aesthetics (A, D,
and G). Finally, we noticed that GUIs with fewer large ele-
ments (B and F) receive better evaluations than GUIs with
many small ones (A, C, and D). However, representing just
a superficial analysis of this issue, the automatization of vi-
sual aesthetics can also support such an analysis in detail on
a larger scale with reasonable effort.

Threats to validity. A potential threat to our results study
relates to using a dataset that does not represent the full
spectrum of possible outcomes. To minimize this threat, we
tried to balance the dataset concerning the aesthetic ratings.
Nonetheless, a complete balance was not achieved due to the
small number of App Inventor apps with more beautiful in-
terfaces. Another threat comes from the subjective character
of human classification during labeling. To reduce it, we an-
alyzed the inter-rater agreement of the human responses and
removed those screenshots about which the human raters dis-
agreed on their visual aesthetics. A further threat concerns
labeling many GUIs at once, which can be affected by tired
raters. For that reason, we instructed raters to interrupt la-
beling whenever they felt fatigued to mitigate this threat.
Also, based on related work, we chose well-tested CNN ar-
chitectures that had been used for similar tasks. To reduce
the threat of selecting a model with suboptimal performance,
we trained models with different depths and architectures to
compare their results. Because we had a considerably small
dataset for training deep learning models, we started from
pre-trained models and applied a transfer learning technique
to reduce the risk of overfitting. For evaluation, we selected
appropriate methods following related work and theory to
evaluate correlation and agreement. Concerning external va-
lidity, we used a considerable sample size for evaluation,
with a large variety of application types that allow the gener-
alization of the results. The performance of the deep learning
model was analyzed separately based on a test set that was
not previously used for training or validation and that was
randomly chosen from the dataset.
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7 Conclusion
This article presents an innovative approach to automatically
assess the visual aesthetics of the GUIs of mobile Android ap-
plications developed with App Inventor, adopting deep learn-
ing. To train the model, we built a dataset with 820 GUIs
with visual aesthetics labels based on human raters’ percep-
tions. We trained and compared three different architectures,
with Resnet50 presenting the best performance results (MSE
= .022). Results of the evaluation of the model show that it
can effectively provide aesthetic predictions with high corre-
lation and agreement with human assessments. The proposed
model can be used for effective and efficient visual aesthetics
assessments during the design of GUIs for Android applica-
tions, as well as provide feedback to students in the context of
teaching interface design. It is also another example of how
deep learning technology can support the development pro-
cess in software engineering and interface design. As part
of future work, we intend to expand the dataset to allow a
more detailed analysis of the design factors that influence
the mobile GUI visual aesthetics. We also plan to integrate
the model with the online automatic assessment tool Code-
master, improving the GUI analysis of apps designed in the
context of computing education in K-12. In a complementary
research line, we have plans to understand how an automatic
assessment tool can detect what could be changed in eachmo-
bile GUI to improve their visual aesthetics. For that, we ex-
pect to combine deep learning methods with element-based
techniques to analyze the contribution of objective factors to
the overall visual aesthetics.
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