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Abstract Smart city platforms provide several services to facilitate the development of applications. Such platforms
typically manage several applications, deal with a large volume of data, and serve many devices and users that gen-
erate a high volume of requests. The large number of requests to handle and the complex operations to perform
often cause overloads on the platform, degrading the quality of service provided to users and applications. In this
context, monitoring the underlying computational infrastructure in which smart city platforms and applications are
deployed and the platform operations is essential. The monitoring process can allow for examining fluctuations
in the behavior of the platform’s components to detect performance degradation and overloads (including unfore-
seen ones), contribute to avoiding interruptions in the platform’s services, and increase its scalability to assimilate
significant amounts of requests, devices, and users. This paper presents a strategy and architecture to enable the non-
intrusive monitoring of operations on smart city platforms and their underlying infrastructure. The proposal covers
monitoring at multiple levels and is based on the aspect-oriented programming (AOP) paradigm so that it is possible
to monitor the platform’s operations without intervening in the platform’s implementation or generating coupling
regarding monitoring. This paper presents the implementation of the monitoring architecture and its instantiation in
the context of Smart Geo Layers (SGeoL), a platform that has been used in several real-world smart city applica-
tions. This paper also reports the results of computational experiments to evaluate the performance of the proposed
monitoring architecture for response time to requests, CPU usage, and RAM utilization. The obtained results show
an evident increase in response time with the number of simultaneous requests and a significant correlation between
the response time and the CPU utilization in the deployment of the monitoring architecture.

Keywords: Smart cities, Platform, Monitoring, Aspect-oriented programming

1 Introduction

Smart cities can be understood as urban spaces that rely on
modern Information and Communication Technologies and
data to offer a better living environment for those in the
city (citizens, companies, visitors) while providing better ser-
vices and responding to several environmental, economic,
and social challenges [ISO, 2019]. Technological develop-
ment in recent years and the emergence of ubiquitous com-
puting, cyber-physical systems, and the Internet of Things
transformed smart cities into fully connected environments
supported by many applications and software systems [Cav-
alcante et al., 2017].

Smart city platforms arise as integrated environments sup-
porting developers in designing, implementing, deploying,
and managing smart city applications [Santana et al., 2017],
besides serving several users such as citizens, government
agencies, and companies. These platforms are based on mid-
dleware offering reusable distributed services to users and ap-
plications, seamlessly integrating devices and systems, and
handling various demands across the city.
The literature presents several platforms proposed to ad-

dress challenges in developing and deploying applications

and services for smart cities [Santana et al., 2017]. Nonethe-
less, the scalability of these solutions has not been the fo-
cus of research in this context [Del Esposte et al., 2019].
Scalability is an essential concern for smart city platforms
as they must deal with a growing number of users, devices,
services, and applications. They also store and process large
volumes of data related to the city and need to support thou-
sands of requests from users and applications using their ser-
vices. Furthermore, the workload requested by the platform
may be variable according to the characteristics of applica-
tions, users, and the city. Despite all these facets, smart city
platforms need to maintain their operations at an acceptable
quality of service.

Monitoring the operation of a smart city platform and its
underlying computational infrastructure involves examining
fluctuations in the behavior of the platform’s components to
detect performance degradation and anomalies. This can help
detect overloads (including unforeseen ones), avoid an inter-
ruption of the platform’s services, and increase its scalability
to assimilate significant amounts of requests, devices, and
users. Automated monitoring can also support the fast iden-
tification of bottlenecks and promptly trigger actions, e.g.,
(re)allocation of resources in the underlying infrastructure
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to better accommodate the current demand for the platform.
However, the existing monitoring strategies for smart city
platforms are intrusive. For open-source platforms, they need
to have their source code modified to support monitoring, im-
plying a non-negligible development effort.
Our previous work [Solino et al., 2022] introduced a strat-

egy based on aspect-oriented programming (AOP) [Kicza-
les et al., 1997] to support monitoring smart city platforms.
In our strategy, AOP enables continuous monitoring of the
platform’s operation and the use of resources from its un-
derlying computational infrastructure without intervening in
its implementation or generating coupling to the monitor-
ing architecture. This paper goes a step further by propos-
ing an architecture to continuously monitor the operations
of a smart city platform and its infrastructure. It is worth-
while emphasizing that our purpose is to provide a compre-
hensive monitoring solution able to cover both the platform
operations and the underlying infrastructure supporting it.
This is an important contribution from our work, consider-
ing that most existing proposals focus on monitoring infras-
tructure elements such as virtual machines and containers,
andmonitoring application-level components requires signif-
icant changes to the platform’s source code.
We implemented the architecture relying on the AOP-

based strategy and validated it with Smart Geo Layers
(SGeoL) [Pereira et al., 2022], a real-world georeferenced
platform for smart cities that integrates heterogeneous data
from different domains of a city. This paper also reports com-
putational experiments to evaluate the monitoring architec-
ture’s performance, which we have not done so far. These ex-
periments considered scenarios with different workloads and
measured response time to requests, CPU usage, and RAM
utilization. The obtained results showed an evident increase
in response time with the number of simultaneous requests
and a significant correlation between the response time and
the CPU utilization in the deployment of the monitoring ar-
chitecture.
The remainder of this paper is structured as follows. Sec-

tion 2 provides the background to this work. Section 3
presents our AOP-based monitoring architecture and the con-
sidered metrics. Section 4 details the implementation of the
proposed monitoring architecture. Section 5 presents and
discusses the evaluation results. Section 6 discusses related
work. Section 7 brings final remarks.

2 Background
This section provides some background about virtualizing
and monitoring cloud-based environments (Section 2.1),
monitoring approaches for smart city platforms (Section 2.2),
and AOP (Section 2.3).

2.1 Virtualizing and monitoring cloud-based
environments

Smart city platforms are typically deployed in virtualized
cloud-based computational infrastructures. The traditional
deployment of cloud applications through virtualization
based on virtual machines (VMs) generates performance

overhead and prevents this type of virtualization in high-
performance computing environments. This limitation led
to container-based virtualization, considered a lighter alter-
native to VMs [Bhardwaj and Krishna, 2021]. Containers
are isolated environments where users can deploy applica-
tions and all the dependencies (libraries, binaries, and ba-
sic configurations) required for proper execution. Therefore,
container-based virtualization is faster for handling computa-
tional resources and can meet the increasingly dynamic, vari-
able workload [Taherizadeh and Stankovski, 2019]. Other
benefits are reduced consumption of CPU and memory re-
sources, speed of deployment, and the ability to scale con-
tainers to meet the growing demand.
Monitoring a Cloud Computing environment inherits tra-

ditional monitoring techniques like network traffic and com-
puter resources. However, it tends to be more complex as
multiple entities need to bemonitored, including the use of re-
sources of the VM infrastructure (processor, RAM, disk, and
network), software layers and databases, and entities related
to the user experience. It is necessary to monitor all these
entities simultaneously to coordinate the use of resources
in the Cloud Computing environment according to the de-
mand of applications [Ma et al., 2013]. Monitoring primar-
ily focuses on infrastructure metrics such as CPU load and
RAM consumption. In addition to these metrics, application
metrics should also be considered when deciding whether to
scale any resource in cloud computing environments [Kam-
pars and Pinka, 2017]. The infrastructuremetricsmust be pre-
processed and combined with the application metrics before
performing the required operations to scale the resources.
According to Coutinho et al. [2015], the most used met-

rics in Cloud Computing environments move toward re-
sources, e.g., CPU usage and RAM utilization, the former
being the most common metric. It is also possible to notice
that the transfer rate (represented in requests per second or
megabytes per second) remains among the most used. Al-
though energy use is not widely used, some works in the lit-
erature attempt to use it for energy-saving purposes in Cloud
Computing environments.

2.2 Monitoring approaches for smart city
platforms in Cloud Computing environ-
ments

From existing work in the literature (see Section 6), we pro-
pose a framework for classifying monitoring approaches for
smart city platforms and their respective underlying infras-
tructure in Cloud Computing environments. Our framework
comprises four groups, as illustrated in Figure 1. Location
refers to where the monitoring occurs, whether in a single
centralized node or distributed across multiple nodes. Lev-
els refer to the number of objects considered in monitoring,
whether VMs, containers, or applications.Coordination is re-
lated to whether themonitoredmetrics are combined or not to
adjust resources supporting the platform operation. Intrusive-
ness defines whether the approach requires modifications in
the application’s code.

Distributed monitoring approaches run the monitoring
components into the components to be monitored, and each
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Figure 1. A classification framework for monitoring approaches.

component is responsible for monitoring itself. Therefore,
the monitored components can independently identify faults
and take action to fix them. On the other hand, centralized
monitoring approaches have a central element responsible
for the monitoring process. In this case, it is possible to use
distributed monitoring agents to collect data from each com-
ponent to be monitored, and such agents send the data to the
central monitoring component.

Single-level monitoring uses only one-level metrics, e.g.,
CPU, memory, disk, and network usage metrics of contain-
ers. The level is defined according to the object to be mon-
itored. If only containers are monitored, then the monitor-
ing approach is at a single level, even if multiple metrics
from that level are used. Single-level monitoring approaches
are typically easier to implement and deploy as they require
less effort from developers and operators. In turn,multi-level
monitoring approaches use metrics focusing on more than
one level, for example, container metrics (CPU usage and
others) and application metrics (application response time
and others). Containers and the application are monitored,
i.e., two levels are monitored using metrics from both levels.

Coordinated monitoring approaches aim to use monitor-
ing metrics in a coordinated way to carry out some adjust-
ment action. In a coordinated monitoring approach that lever-
ages CPU usage and disk usage, it is possible to scale a
container through CPU usage and track disk usage to verify
if new containers can scale. Uncoordinated monitoring ap-
proaches tend not to use monitoring metrics in a coordinated
way, i.e., metrics are used individually to perform some ad-
justment action. In this case, containers can be scaled accord-
ing to the CPU usage, but metrics are not combined to cover
some particularities that can happen in a Cloud Computing
environment. Some specific situations that cannot be over-
come through uncoordinated monitoring approaches are (i)
disk growth upon increasing the number of containers and (ii)
allocating more CPU as application response time increases.

Intrusive monitoring approaches do not concern tangling
the application code with the monitoring code. For this rea-
son, they generally have a more significant coupling in the
monitoring code with the monitored element code, which
generates dependencies. These approaches are also more
challenging to maintain as the monitored element code be-
comes more complex when mixed with the monitoring code.
In non-intrusive monitoring approaches, the monitored ele-
ment code is separate from the monitoring code. In this case,
it is possible to decouple the application code and ease the
maintenance of themonitoring code since it will not bemixed

with the application code.

2.3 Aspect-oriented programming
Aspect-Oriented Programming (AOP) [Kiczales et al., 1997]
proposes a solution for the modularization and composition
of concerns that are transversal to several parts of a system,
the so-called cross-cutting concerns. A cross-cutting concern
refers to a particular part of a program that affects many
other parts. Consequently, its implementation is dispersed in
several components responsible for the basic functionalities
of the system (base code), thereby violating basic principles
of software design. Common examples of cross-cutting con-
cerns are logging, authentication, exception handling, and
persistence. AOP enables separating the basic functionalities
of an application from the cross-cutting concerns, increasing
its reusability and fostering its maintenance and readability.
The AOP abstractions for representing cross-cutting con-

cerns are aspects, join points, pointcuts, and advices. Aspects
implement and encapsulate cross-cutting concerns through
instructions about where, when, and how they are invoked.
An aspect promises greater modularity by avoiding tangling
the code of the system’s functionalities with the code of the
cross-cutting concerns. Join points are well-defined places in
the structure or execution flow of a programwhere behaviors
defined by aspects can be inserted. Pointcuts combine a set
of join points with objects and methods affected by one or
more cross-cutting concerns [Kiczales and Mezini, 2005].
An advice is a set of operations performed when join

points are reached. Each advice usually has a pointcut asso-
ciated with it, determining the join points where this advice
will be executed. Advice statements can be of three types: (i)
before, to execute the advice when a join point is reached,
e.g., before invoking a method; (ii) after, to execute the ad-
vice when control returns through the join point, i.e., after
invoking a method; and (iii) around, to execute the advice
when the pointcut is reached, with precise control over when
the affected method should be executed.
While the application code base is implemented using a

traditional programming language, aspects are implemented
using an aspect-oriented language such as AspectJ [Kiczales
et al., 2001], an extension of the Java programming language
to AOP, or, more recently, the AOP-powered Spring Frame-
work1. Listing 1 presents a simple code example to manage
a list of registered employees for a company that must log
when a new employee has been added. Following the AOP
paradigm, the code responsible for the business logic (i.e.,
managing employees) should be separate from the code as-
sociated with logging. The EmployeeService class represents
the base code implemented in Java to add an employee to
the registry (line 4) and retrieve the list of registered employ-
ees (line 8). Logging (lines 13–24) is an aspect associated
with the logging operations, specifically to execute some op-
erations when the addEmployee method is called. A named
pointcut called logAddEmployee (line 14) is declared within
the aspect to define the method invocation that will be the
target of the aspect, namely the addEmployee method in the
EmployeeService class. Two advices are also declared within

1https://spring.io/projects/spring-framework

https://spring.io/projects/spring-framework
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1 public class EmployeeService {
2 private List<String> employees = new

ArrayList<String>();
3
4 public void addEmployee(String name) {
5 employees.add(name);
6 }
7
8 public List<String> getEmployees() {
9 return employees;
10 }
11 }
12
13 public aspect Logging {
14 pointcut logAddEmployee(String name) : call(

void base.EmployeeService.addEmployee(
String)) && args(name);

15
16 before(String name) : logAddEmployee() {
17 System.out.println("Adding employee " +

name);
18 }
19
20 around(String name) : logAddEmployee() {
21 proceed();
22 System.out.println("Employee " + name + "

added");
23 }
24 }
Listing 1. Example of base code to be intercepted by aspect code
implemented in AspectJ

the aspect in association with the pointcut. The before ad-
vice (lines 16–18) executes before executing the captured
join point, in this case, the body of the addEmployeemethod.
The around advice (lines 20–23) surrounds the join point, but
it forces executing the addEmployee method with the pro-
ceed call (line 21) before the execution of its action (line 22).
The execution of this code will display when the employee
is about to be added and when this operation has been com-
pleted.
AOP encompasses a weaving process that combines the

code defined by the aspect with the base code, injecting the
advice at the defined join points. Figure 2 illustrates theweav-
ing process in AOP. An aspect is implemented separately
from the base code of the application that will be affected
by the pointcuts defined in the aspect. The pointcuts are de-
fined to intercept a set of join points in the base code, be-
ing the interaction between it and the aspect defined through
the advice. To carry out the composition process, a weaver
identifies which join points will be intercepted by the defined
pointcuts and produces a composite code resulting from the
insertion of the code contained in the advice defined by the
aspect in the base code of the application.
Given that the base code and the aspect are defined sep-

arately and that the base code does not need to know the
aspect code, AOP is quite suitable for situations in which
a particular cross-cutting concern needs to be inserted into
the application, but an intrusive approach should be avoided
as it modifies the base code. These characteristics motivated
the choice of AOP to implement the monitoring strategy for
smart city platforms in this work.

Figure 2. AOP abstractions and the weaving process.

3 Non-Intrusive Monitoring for
Smart City Platforms

Our monitoring strategy and architecture consider monitor-
ing metrics about the operation of containers and machines
deployed in the computational infrastructure supporting a
smart city platform, including measurements of CPU and
RAM usage. Aiming at providing a more comprehensive
monitoring solution able to cover both the platform and the
underlying infrastructure supporting it, our proposal also al-
lows monitoring of the platform’s execution, e.g., monitor-
ing the execution time of its internal operations. The non-
intrusive continuous monitoring represents the central con-
tribution of this work compared to existing proposals in the
literature, which are intrusive in the sense they require modi-
fications in the original implementation of the smart city plat-
form [Araujo et al., 2019; Casalicchio, 2019; Taherizadeh
and Stankovski, 2019]. It is also worth mentioning that we
do not consider coordinated monitoring since coordination is
related to implementing an auto-scaling mechanism, which
is out of the scope of this work.
This section describes our monitoring strategy and the pro-

posal of an architecture to realize it. Section 3.1 describes the
considered monitoring levels and the metrics for each level.
Section 3.2 presents our monitoring architecture.

3.1 Monitoring levels and metrics
Continuous monitoring of a hardware/software infrastruc-
ture involves the levels that will be monitored and the mea-
surements of the respective metrics that will be collected at
each level. The number of levels may vary depending on the
components to be monitored. The levels are associated with
the object being monitored, the VMs, and the containers of
Cloud Computing environments. Moreover, it is important to
consider the application executing inside a container running
on a physical machine or a VM.
The three primary levels for monitoring used by Casalic-

chio [2019] and Taherizadeh and Stankovski [2019] aiming
at monitoring infrastructures of Cloud Computing environ-
ments are (i) the host level, being a physical machine or a
VM, (ii) the container level, and (iii) the application level.
The host level generates absolute usage metrics, which pro-
vide consumption information close to the actual consump-
tion performed on the machine hosting the entire infrastruc-
ture. The container level is responsible for generating relative
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Figure 3.Monitored levels considered in this work.

usage measures, which do not provide information about the
actual consumption of the machine but only show the rela-
tive consumption of each container. The application level is
responsible for generating usage measures for a specific ap-
plication, for example, the number of requests made to the
application or its response time.
Figure 3 illustrates the levels considered in our monitoring

strategy. Regarding the underlying infrastructure supporting
the platform,metrics aremonitored at two levels, the host and
the containers, if used. The host and container levels collect
CPU usage, RAM utilization, disk usage, and network band-
width metrics. In turn, platform-level monitoring can collect
metrics such as the time spent executing a particular internal
platform operation, e.g., queries to access data managed by
the platform.
There are several approaches and tools (including open-

source ones) available to accomplish both host and container
monitoring levels, such as Elasticsearch2, Prometheus3, and
NetData4. Monitoring at such levels is usually performed by
deploying monitoring agents responsible for collecting the
desired metrics. These agents can send the monitored metrics
to a database server, a messaging service, or another mon-
itoring service. The monitoring solutions available in some
studies in the literature consider metrics such as CPU, RAM,
network, and HTTP requests, among others [Abranches and
Solis, 2016; Matsumoto et al., 2019; Narayana et al., 2020].
These works monitor the host and container levels, but none
considers metrics related to monitoring the internal operation
of the platform, thereby a differential of this work compared
to the state of the art.

3.2 Monitoring architecture
Figure 4 presents an architecture for implementing our mon-
itoring strategy. A monitoring agent collects the metrics for
each monitored element, either the host, container, or plat-
form. The host and container levels respectively concern
absolute and relative usage measurements regarding CPU,
RAM, and disk. The platform level concerns usage metrics
for the smart city platform, specifically the time of database
access operations, time spent for HTTP requests, and transfer
rate. The monitoring agents represent tools that can be used
to collect usage measurements at specific levels. The mon-
itoring manager receives the collected measurements from
the monitoring agent and stores them in a data repository.
Clients can query the data repository to consume stored mea-
surements for further analysis.

2https://www.elastic.co/elasticsearch/
3https://prometheus.io/
4https://www.netdata.cloud/agent/

Figure 4. Overview of the monitoring architecture.

Host and container levels can be monitored using existing
monitoring tools, which serve as monitoring agents. Such
monitoring agents connect to the components that must be
monitored and collect measurements at those levels. Moni-
toring the host and the container levels does not require much
implementation effort since existing open-source monitoring
tools that can be used, such as Node Exporter5, cAdvisor6. To
monitor such levels, it is only necessary to learn the different
monitoring tools to integrate them via connection URIs to
group the metrics to be monitored and sent to the monitoring
manager. The monitoring manager is responsible for storing
the measurements in a database and retrieving them for ac-
tivities after the monitoring.
Using a monitoring agent is not enough to monitor the in-

ternal structure of the platform since this requires knowledge
of such structure. The monitoring agent has the external view
of the platform as an opaque component, thus not having ac-
cess to its internal details. For example, the time spent execut-
ing a given platform operation might be the sum of the exe-
cution times of other operations called by the first one. Mon-
itoring the internal structure makes it possible to know the
time spent in each of these operations individually and iden-
tify which is causing eventual performance degradation, but
this usually requires modifying the platform’s source code.
Modifying the platform’s source to support monitoring is an
intrusive approach since it is necessary to have a more pro-
found knowledge of the platform structure and add the mon-
itoring code at specific points. Our monitoring uses AOP to
collect data about the platform without changing it to include
monitoring directives [Solino et al., 2022].
Even though the implementation of an intrusive approach

could be potentially more straightforward, it is likely to gen-
erate technology lock-in, i.e., becoming confined to a spe-
cific set of technologies, languages, etc. The use of a non-
intrusive monitoring architecture can foster maintainability
as it does not generate coupling to the targeted smart city
platform. Our strategy of relying on AOP is especially ben-
eficial to avoid the monitoring code spreading throughout
the smart city platform’s code, causing code tangling and
scattering, damaging software modularization, and hamper-
ing understandability and maintainability. By avoiding mix-
ing the platform’s code with the monitoring code, AOP al-
lows for the separation of crosscutting concerns, resulting
in systems that are easier to understand and simpler to han-
dle. Using this approach, no modification to the monitored
platform is required, and different monitoring strategies can
be (un)plugged in a non-intrusive way. Therefore, it pro-
vides the flexibility of easily changing the monitoring strat-

5https://github.com/prometheus/node_exporter
6https://github.com/google/cadvisor
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egy when necessary. The non-intrusive approach is hence
useful when the platform source code is inaccessible.

4 Implementation and Validation
We implemented and instantiated our AOP-based monitor-
ing strategy for the SGeoL platform Pereira et al. [2022], a
scalable platform for developing applications for smart cities.
SGeoL offers several functionalities that facilitate the de-
velopment of applications, such as geographic data manage-
ment, context information, and data time series, in addition
to integrating heterogeneous data and visualization of geo-
graphic and analytical information. All these functionalities
are provided by APIs and distributed components deployed
in VMs and containers. It is worth mentioning that we have
considered only SGeoL due to the unavailability of many
open-source platforms. As our AOP-based strategy monitors
platform operations, having the source code is imperative for
instrumentation purposes.
The SGeoL platform deals with a large volume of informa-

tion, mainly geographic data. It performs complex and costly
tasks, such as geographic queries and importing heteroge-
neous data available through files, spreadsheets, or APIs
from other systems. SGeoL has already been overloaded
due to several users, devices, and applications requesting si-
multaneous operations to handle significant amounts of data.
Therefore, it is crucial to monitor platform actions and user
requests to identify possible performance issues. Monitoring
would also make it possible to trigger auto-scaling processes
to avoid overloading the platform’s infrastructure, thus offer-
ing a good experience using its services and avoiding under-
or over-provisioning of computational resources in the infras-
tructure.
This section presents how we instantiated our monitor-

ing architecture to the SGeoL platform to validate the AOP-
based monitoring strategy. Section 4.1 describes the plat-
form components and the components responsible for the
multi-levelmonitoring. Section 4.2 details howwe usedAOP
for monitoring at the platform level while not being intru-
sive to the source code of SGeoL. Section 4.3 presents an
API developed to foster the reuse of our monitoring archi-
tecture. The current implementation of our AOP-based mon-
itoring is publicly available at https://projetos.imd.ufrn.br/
solino/aop-monitoring.

4.1 Instantiating the monitoring architecture
with AOP

Figure 5 shows the monitored components of SGeoL and
the monitoring components. One of the monitored compo-
nents is SGeoL Core, which aggregates the central platform
functionalities and has a significant workload as it provides
information from geographic layers to other applications.
The other monitored components are the relational and non-
relational databases responsible for storing data the platform
handles.
We have used three open-source tools to implement the

architecture for monitoring the underlying infrastructure on
which SGeoL is deployed and runs (host and container).

Metricbeat7 is the monitoring agent responsible for collect-
ing host and container-level metrics, while Filebeat8 collects
platform-level metrics. Collected data are sent to the same
database managed by Elasticsearch9, thus enabling the inte-
gration of monitoring data from various levels and providing
a holistic view of the platform monitoring. We have chosen
these tools because they offer the necessary functionalities to
implement the monitoring strategy and can provide the met-
rics of interest. Furthermore, they are relatively easy to con-
figure and integrate with each other [Bagnasco et al., 2015].
However, our architecture can be implemented using other
tools.

4.2 AOP support for monitoring
For monitoring platform-level metrics relying on our AOP-
based strategy, it is only necessary to know the interfaces
of the operations provided by the platform. Therefore, the as-
pect associated with monitoring can define the join points for
each operation and the respective advices for before and after
calling the monitored operation. Through the weaving pro-
cess, the platform’s source code is used with the definitions
of the monitoring-related aspects. In our monitoring strategy,
the critical operations of the platform are monitored through
join points, one per operation every time it is invoked. For
each join point, there is an advice responsible for collecting
the desiredmonitoring information, such as the time spent ex-
ecuting each operation individually and, consequently, the to-
tal execution time of an operation that involves calling other
operations [Solino et al., 2022].
We used AOP to instrument the SGeoL source code writ-

ten in Java to monitor platform operations and retrieve the
necessary information. For example, Listing 2 shows the im-
plementation of the LayerResourceAspect aspect in AspectJ.
In line 2, the allMethods pointcut is created for all methods
of the LayerResource class. In lines 4–10, an around-type ad-
vice is designed for the allMethods pointcut to compute the
execution time of any method of the LayerResource class,
corresponding to a platform operation. Every time a method
is executed, the execution time is computed and displayed
in the standard output to be captured by Filebeat (the moni-
toring agent) and sent to Elasticsearch. It was unnecessary
to change anything in implementing the original LayerRe-
source class in the source code of SGeoL, thus demonstrating
the benefit of adopting the AOP paradigm to enable monitor-
ing.
The implementation made it possible to validate that (i)

our strategy canmonitor in a non-intrusive way and (ii) it was
possible to obtain metrics from the platform’s internal oper-
ations that are usually not accessible to monitoring agents.
Monitoring has not changed the source code of SGeoL due
to adopting the AOP paradigm. Inserting the aspect shown
in the example in Listing 2 allowed capturing the monitoring
metrics of anymethod of the LayerResource class. Therefore,
using AOP was relevant for implementing the monitoring ar-
chitecture, considering the complexity of this task for smart
city platforms, as is the case of SGeoL.

7https://www.elastic.co/beats/metricbeat
8https://www.elastic.co/beats/filebeat
9https://www.elastic.co/elasticsearch/

https://projetos.imd.ufrn.br/solino/aop-monitoring
https://projetos.imd.ufrn.br/solino/aop-monitoring
https://www.elastic.co/beats/metricbeat
https://www.elastic.co/beats/filebeat
https://www. elastic.co/elasticsearch/
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Figure 5. Overview of the monitoring architecture instantiated to monitor components of the SGeoL platform.

1 public aspect LayerResourceAspect {
2 pointcut allMethods() : execution(public *

LayerResource.*(..))
3
4 around(): allMethods() {
5 Long beginTime = System.currentTimeMillis

();
6 proceed();
7 Long endTime = System.currentTimeMillis

();
8 System.out.println("[monitoring] " +

thisJoinPoint.getSignature() + " " + (
endTime - beginTime));

9 return object;
10 }
11 }
Listing 2. AspectJ implementation of the LayerResource aspect for
monitoring operations of the SGeoL platform

Our monitoring strategy also allowed us to identify the
costliest operations regarding response time on the SGeoL
platform. SGeoL makes dozens of operations available to its
users through its RESTful API, which were monitored us-
ing the implementation of the aspect for accounting for the
time spent by the platform to process them when accessed
by users. The monitoring enabled us to notice that operations
dealing directly with geographic processing and data import
via vector files are the most demanding ones in terms of time.
We also observed that most of the time spent on geographic
processing operations is consumed by calls to the database
that stores geographic data. This information allowed us to
resize the infrastructure supporting this database to obtain
better response times specifically for these operations.

4.3 Monitoring API
The monitoring API was developed in Java using the Spring
Framework10, which has libraries for integratingwith Elastic-
search and Prometheus. This facility enabled the monitoring
agents of both solutions to collect the usage measurements
of the underlying infrastructure composed of VMs and con-
tainers and the smart city platform operations.

10https://spring.io

The monitoring API methods consider a set of param-
eters. The level parameter must be informed to know the
level at which usage measurements should be retrieved. The
possible values for level are host, container, or platform.
The metric parameter must be informed to know the met-
ric that must be retrieved. Possible values are cpu, disk,
memory, network, and time so that it is possible to re-
trieve measurements about the CPU usage, RAM utilization,
disk, and network usage of a host or a container, as well
as the time spent by a platform operation. The parameter
findby[host|container|method] must be informed according
to the level informed, i.e., if the level is for a container, then
the parameter should be findbycontainer.

Monitoring API methods may also have request parame-
ters. The parameter [host|container|method]name refers to
the name of the monitored element according to the level
(host, container, platform). Quantity refers to the number
of measurements to be retrieved by the query to the API.
The Order parameter specifies the order in which measures
should be returned, either ascending or descending. The start
parameter must be informed to specify the timestamp from
which measurements must be retrieved. In conjunction with
the start parameter, the end parameter forms a time interval
for which measures must be retrieved. The agent parameter
provides the monitoring agent for the collected metrics, ei-
ther metricbeat for host and container-level metrics or file-
beat for platform-level metrics.

The monitoring API allows the client to make relevant
queries to know what is happening in the platform’s under-
lying infrastructure (VMs and containers) and observe the
platform’s behavior regarding the time spent executing its
methods to handle requests. For instance, a request with

/platform/time/findbymethod?
methodname=findlayer&quantity=50
&order=desc&agent=filebeat

retrieves the last 50 measurements of the time spent by the
findlayer method. In turn, a request with

https://spring.io
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Figure 6. Overview of the monitoring architecture instantiated to monitor components of the SGeoL platform.

/host/memory/findwithstartandend?
start=2023-03-10T00:00:00
&end=2023-03-10T23:59:59&hostname=brazil
&quantity=500&order=asc&agent=metricbeat

retrieves the first 500 measurements of RAM consumption
of a machine named brazil for a 24-hour interval on March
10, 2023.

5 Evaluation
This section reports the evaluation of the continuous mon-
itoring of the SGeoL and its underlying infrastructure us-
ing our AOP-based strategy and architecture. Following the
Goal-Question-Metric (GQM) approach [Basili et al., 1994],
our experiments aimed to evaluate the performance of the
continuous monitoring implemented on the SGeoL platform
and its underlying infrastructure. We aimed to investigate the
following question: What is the performance of continuous
monitoring when different workloads are applied to the mon-
itoring API? To answer this question, we have defined three
metrics to be explored in the experiments:

M1: The response time for querying the monitoring API
M2: The CPU usage of the machines in which the platform

components are deployed
M3: The RAM utilization of the machines in which the com-

ponents are deployed

The experiments considered increasing simultaneous re-
quests to overload the monitoring API. This enabled us to
assess the performance of the continuous monitoring upon
increasing the number of requests regarding resource usage
and the time required to process those requests.
Section 5.1 describes the computational infrastructure

used in the experiments. Section 5.2 describes a preliminary
investigation to determine the optimal interval for periodic
monitoring. Section 5.3 presents and discusses the results ob-
tained from the main experiment to assess the performance
of the monitoring API.

5.1 Experimental setup
The computational environment to support the experiments
comprised three VMs, as depicted in Figure 6. The VM iden-
tified as sgeol contained the deployment of the SGeoL Core
and its two databases, as well as the monitoring agents (File-
beat and Metricbeat). The VM identified as monitoring con-
tained the monitoring API, the monitoring manager, and the
Elasticsearch data repository for storing collected measure-
ments. Each of these elements is deployed in an individ-
ual container. The VM identified as the client deployed the
Apache JMeter tool11 that simulates simultaneous client re-
quests to the monitoring API. We also deployed the System
Activity Report (sar) tool in all the VMs to collect CPU us-
age and RAM utilization.

5.2 Preliminary experiment: Setting an opti-
mal periodic monitoring

The preliminary experiment aimed to determine the optimal
interval for periodic monitoring. We chose the optimal inter-
val as the shortest response time (in milliseconds) for queries
made to the monitoring API. The purpose of determining
such an interval is to use it as a fixed parameter in the main
experiment.
In the preliminary experiment, we varied the interval du-

ration between 1 to 30 seconds (with a one-second step) to
make one request to the monitoring API. Following the pat-
terns for querying the monitoring API (see Section 4.3), the
request

/container/cpu/findbycontainer?
containername=sgeol-dm&quantity=1
&order=desc&agent=metricbeat

retrieves a CPU measurement from the container in which
SGeoL Core is deployed, with Metricbeat as the monitoring
agent. While making the request, the SGeoL platform per-
formed a given operation, specifically a geographic query,
to retrieve information about city neighborhoods. This opera-
tion was performed 50 times to intentionally overload SGeoL

11https://jmeter.apache.org

https://jmeter.apache.org
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and allow for capturing monitoring information.
We conducted 20 runs for each tested interval and assessed

the request’s response time to the monitoring API. We also
adopted a significance level at α = 0.05 in the statistical anal-
ysis of the experimental results.
Figure 7 presents the average response time of the monitor-

ingAPI (inmilliseconds) for the intervals tested in the prelim-
inary experiment, namely 1 to 30 seconds. We noticed that
most of the observed average response times remained be-
tween 20 ms and 30 ms (23.5 ms on average, 95% CI [22.65,
24.35]). The interval with the shortest response time was 11
seconds when the average response time was 19.49 ms, 95%
CI [14.22, 24.75].

Figure 7. Average response time of the monitoring API for the tested inter-
vals.

Figure 8. Average response time of the monitoring API for the tested work-
loads.

5.3 Main experiment: Assessing the perfor-
mance of the monitoring API

In the main experiment, we collected measurements of CPU
usage and RAMutilization of each VM during a varied work-
load (i.e., number of simultaneous requests) for SGeoL Core
and the monitoring API. We varied the number of simultane-
ous requests to the monitoring API from 100 to 3,000, with
a step of 100. We also fixed the periodic monitoring interval
to 11 seconds, the optimal interval determined in the prelimi-
nary experiment (see Section 5.2). The request to themonitor-

Figure 9. Average CPU usage of the VMs used in the experiment for the
tested workloads.

Figure 10. Average RAM utilization of the VMs used in the experiment for
the tested workloads.

ing API and the operation performed by the SGeoL platform
were the same as in the preliminary experiment.
The sar tool ran while SGeoL Core and the monitoring

API were overloaded by requests, enabling us to observe the
VM’s resource usage for each applied load. The sar tool col-
lected 180 measurements every ten seconds. The collected
measurements were used to calculate the average CPU us-
age and RAM utilization of each VM at the end of the exper-
iment. For statistical significance, we performed 20 runs for
each tested workload. We also adopted a significance level at
α = 0.05 in the statistical analysis of the experimental results.

Figure 8 presents the average response time of the moni-
toring API (in milliseconds) for the workloads tested in the
experiment, namely 100 to 3,000 simultaneous requests. We
noticed that the response time tends to increase with the num-
ber of requests, which is expected behavior. We also could
identify that the increase in the response time is nearly linear
upon increasing the number of requests.
Figure 9 shows the average CPU usage (in percentage) of

the VMs for the varying workloads of the monitoring API.
The average CPU usage of the VM sgeol was 87.35% on
average (95% CI [87.31, 87.39]) and remained almost con-
stant since the load over the SGeoL platform did not change.
The VM monitoring demonstrated an increasing CPU usage
because the workload of the monitoring API gradually in-
creased from 100 to 3,000 simultaneous requests. The in-
crease in CPU usage was 1% on average for every 100 re-
quests. The VM client also demonstrated an increasing CPU
usage, likely to run the threads responsible for the simulta-
neous requests to the monitoring API and SGeoL. However,
the increase in CPU usage was smaller than the one observed
for VM monitoring.
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Figure 11. Correlation between the monitoring API response time and CPU
usage.

Figure 12.Correlation between themonitoring API response time and RAM
utilization.

Figure 10 shows the average RAM utilization (in percent-
age) of the VMs for the varying workloads of the monitor-
ing API. The average RAM utilization of the VM sgeol was
78.10% (95% CI [77.68%, 78.52%]), increasing by 0.13%.
For the VM monitoring, the average RAM utilization was
95.3% (95% CI [94.44%, 96.16%]), leading us to conclude
that the machine needs to be provided with enough resources
to handle the workload. The VM client had a particular be-
havior regarding RAM utilization. The RAM utilization in-
creased by 1.75% on average for workloads until 1,600 re-
quests, then it decreased and increased again in the scenar-
ios near 3,000 requests. The observed RAM utilization for
the VM client presented a larger variation with a mean of
83.21%, 95% CI [80.48%, 85.94%].

The monitoring API response time and the CPU usage of
the VM in which it was deployed are the metrics that in-
creased the most during the evaluation. We calculated the
Pearson correlation coefficient to quantitatively measure the
relationship between the response time and CPU usage. We
obtained r = 0.9784, indicating a strong positive correlation
(almost linear) between the monitoring API response time
and CPU usage. This behavior can also be observed in the
graph shown in Figure 11.

We also calculated the Pearson correlation coefficient to
quantitatively measure the relationship between the monitor-
ing API response time and the CPU utilization of the VM
in which it was deployed. We obtained r = -0.171, indicat-
ing a weak negative correlation between these two variables.
This behavior can also be observed in the graph shown in
Figure 12.

6 Related Work
Despite several platforms targeting smart cities, a few works
in the literature present an architecture with components ex-
plicitly responsible for monitoring operations. This section
discusses these works and considers some research contri-
butions related to monitoring in Cloud Computing environ-
ments, typically used in the context of smart cities.
FIWARE12 is an open-source platform developed in the

European Community with a set of generic, extensible func-
tional components used in several successful cases related
to smart city applications. Araujo et al. [2019] performed a
performance evaluation of FIWARE on a monitoring infras-
tructure based on Prometheus, an open-source monitoring
and alerting solution for cloud-based environments. The eval-
uation focused on specific FIWARE components: Internet
of Things agents, context management, and a non-relational
database. The authors considered the agents’ CPU and RAM
utilization and the database’s transfer rate as primary metrics
obtained through source code monitoring and instrumenta-
tion tools. The measurements are manually analyzed to iden-
tify the platform’s limits and design a future implementa-
tion of an auto-scaling mechanism. In their work, instrument-
ing the source code for monitoring represents an intrusive
approach since the client libraries provided by Prometheus
require implementation within the application code. Never-
theless, the performed evaluation could assess performance
information and visualize bottlenecks, concluding that the
main limitation of the platform was in the database responsi-
ble for storing data from different Internet of Things devices.
Del Esposte et al. [2019] present an evaluation of the In-

terSCity platform13, an open-sourcemicroservice-basedmid-
dleware to support the development of smart city applica-
tions. Monitoring in InterSCity targets the microservice con-
tainers implementing the platform’s functionalities, specifi-
cally those related to data collection and management, re-
source discovery, and request coordination via a gateway.
The authors evaluated InterSCity through large-scale simu-
lations using the Kubernetes14 container orchestration plat-
form. The Kubernetes monitoring engine considers the CPU
usage of individual containers to analyze platform behavior
and adjust the number of container instances for each ser-
vice. However, monitoring based only on this metric does not
comprehensively demonstrate the behavior of the platform,
so other metrics should be used to obtain a broader view
of the operation of the components of a smart city platform.
The evaluation also showed that InterSCity has an architec-
ture capable of scaling horizontally, but the Kubernetes auto-
scaling mechanism delays allocating new containers, which
can impact the number of failed requests and the response
time.
Casalicchio [2019] studied performance measures to mon-

itor application containers (specifically Kubernetes pods),
considering their CPU usage and the CPU usage on the ma-
chine responsible for their execution. The study was per-
formed on a monitoring infrastructure composed of cAdvi-
sor, Prometheus, and Grafana. Using container and VMmon-

12https://www.fiware.org
13https://interscity.org/software/interscity-platform/
14https://kubernetes.io

https://www.fiware.org
https://interscity.org/software/interscity-platform/
https://kubernetes.io
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Table 1. Comparison of monitoring approaches from related work.

Related work Location Levels Coordination Intrusiveness
Araujo et al. [2019] Centralized Multi-level Uncoordinated Intrusive
Del Esposte et al. [2019] Centralized Single-level Uncoordinated Intrusive
Casalicchio [2019] Centralized Multi-level Coordinated Intrusive
Taherizadeh and Stankovski [2019] Centralized Multi-level Coordinated Intrusive
This work Centralized Multi-level Uncoordinated Non-intrusive

itoring metrics allows for visualizing the platform’s behavior
at these two levels. However, his work did not consider met-
rics at the level of the applications that run inside the contain-
ers, and it is not possible to visualize the internal behavior of
the application’s operations.
Taherizadeh and Stankovski [2019] used a multi-level

approach for monitoring containers and applications. The
container-level monitoring considers CPU, RAM, network,
and disk usage as metrics, and the application-level monitor-
ing considers the response time to requests and throughput.
In their approach, monitoring agents are deployed into con-
tainers together with the application to allow for collecting
monitoring metrics. Nonetheless, the approach is intrusive
as it requires implementing the monitoring components and
deploying them in the application to enable sending measure-
ments to the monitoring agent responsible for data collection.
Table 1 classifies the monitoring approaches used by the

works discussed in this section according to the framework
presented in Section 2.2. All works used a centralized moni-
toring approach since the components do not monitor them-
selves, and they used tools such as Prometheus, Kubernetes,
and JCatascopia [Trihinas et al., 2014] to monitor the desired
components. The advantage of a centralized monitoring ap-
proach is that it allows for easy management of monitoring
data. The centralized monitoring approach also fosters his-
torical analysis of a more extensive set of monitoring data,
which is more difficult in a distributed monitoring approach
because the components monitor themselves and typically do
not have enough resources to store a large amount of data.
Most works use the multi-level monitoring approach since

they consider more than one level. For example, the assess-
ment of the FIWARE platform carried out by Araujo et al.
[2019] monitored infrastructure resources (CPU usage and
RAM utilization) and the transfer rate of the non-relational
database. Casalicchio [2019] monitored the machine and
containers through absolute and relative CPU usage, while
Taherizadeh and Stankovski [2019] monitored the load bal-
ancer to capture the response time of requests made to the ap-
plication and containers. The InterSCity assessment by Del
Esposte et al. [2019] monitored only service containers, so
only one level is monitored. The advantage of a multi-level
monitoring approach is that it enables the user to analyze
various aspects of the environment where the smart city plat-
form runs, i.e., it is a more informed, richer monitoring. How-
ever, more work is required to monitor more levels since it
involves more monitoring tools and, in some cases, signifi-
cant implementation effort.
The analysis of the FIWARE and InterSCity platforms

used an uncoordinated monitoring approach, i.e., the metrics
are not associated with obtaining more advanced monitoring.

On the other hand, Casalicchio [2019] and Taherizadeh and
Stankovski [2019] used a coordinated monitoring approach.
The former used relative and absolute usage metrics to get a
more realistic view of CPU usage across workloads, whereas
the latter used application metrics in conjunction with con-
tainer metrics for more advanced monitoring. The coordi-
nated monitoring approach is more advantageous in some
cases as it would allow scaling the containers through the
CPU and checking if the disk still allows scaling more con-
tainers. However, the code to perform coordinated monitor-
ing tends to be more complex than that for uncoordinated
monitoring.
Finally, all works in this section rely on an intrusive moni-

toring approach since none mentions decoupling, which is an
interesting requirement in developing smart city platforms.
Taherizadeh and Stankovski [2019] used the StatsD proto-
col15 to send the measurements collected at the application
level, so it is necessary to import the protocol libraries into
the application code to implement such an approach. The
other works did not monitor the application level, i.e., they
used monitoring tools only to monitor the machine and con-
tainer levels. The disadvantage of the intrusive monitoring
approach is the tight coupling between the application code
and the monitoring code and its complexity. In addition, it is
advantageous to use the non-intrusive monitoring approach
to separate the concerns of application developers from those
of developers responsible only for monitoring.

7 Final Remarks
This work presented a non-intrusive continuous monitoring
strategy and architecture for smart city platforms. The pro-
posal covers monitoring at multiple levels: host, containers,
and platform. The host and container levels are monitored
using monitoring agents, which can use consolidated, widely
used tools, while the platform level is related to monitoring
platform operations. Monitoring at these three levels consti-
tutes one of the main contributions of this work, considering
that the proposals found in the literature often consider only
the host and container levels and not the internal operation
of the platform.
Monitoring platform operations is performed through an

AOP-based approach, initially introduced in our previous
work [Solino et al., 2022]. Our strategy makes it possible
to collect data necessary for monitoring the platform in a
non-intrusive way, thus relieving developers from a complex,
error-prone task. This is another significant contribution of
this work since AOP makes monitoring modular and decou-

15https://github.com/b/statsd_spec

https://github.com/b/statsd_spec
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pled, and it does not require any modifications in the plat-
form’s source code. In our strategy, each critical operation
of the platform is monitored through join points. For each
join point, there is an advice responsible for collecting the
desired monitoring information, such as the time spent exe-
cuting each operation individually.
The proposed monitoring architecture was implemented

and validated in the context of the SGeoL smart city plat-
form, which has been used in several real-world applica-
tions [Pereira et al., 2022]. Monitoring made it possible to
identify which operations require more processing time to be
attended to, allowing the platform developers and administra-
tors to intervene directly in these operations and on the plat-
form’s underlying infrastructure to improve its performance.
It is worth emphasizing that the strategy was validated in the
context of SGeoL, but it could also be implemented for other
smart city platforms, taking advantage of the facilities of us-
ingAOP tomonitor the computational infrastructure and plat-
form operations.
This paper also reported the results of computational ex-

periments to evaluate the performance of the continuous
monitoring API in scenarios with different workloads. The
experiments considered response time to requests, CPU us-
age, and RAM utilization as metrics. The results showed an
evident increase in response time with the number of simulta-
neous requests. Furthermore, we observed a significant corre-
lation between the response time of the monitoring API and
the CPU usage of the machine in which it is deployed.
The monitoring architecture proposed in this work can

be used as a basis for an auto-scaling mechanism of the in-
frastructure resources used by the platform and the moni-
tored components. Auto-scaling refers to reconfiguring the
allocation of hardware and software resources at runtime to
cope with time-varying environmental conditions and per-
formance requirements [Chen et al., 2018]. An auto-scaling
mechanism automatically and timely adds or removes cloud
resources on an on-demand basis in response to dynamic
workload variations, allowing to overcome the scalability
limitations due to the increase in the number of users, de-
vices, services, and data.
Regarding ongoing and future work, we are integrating our

monitoring strategy into an approach based on the MAPE-
K control loop [Kephart and Chess, 2003] to autonomously
provide elasticity to smart city platforms. MAPE-K is a ref-
erence model for the development of autonomic systems in
different contexts, which includes stages of monitoring, anal-
ysis, planning, and execution of actions, which allow a sys-
tem to manage itself at runtime. With this, it will be possible
to dynamically adjust the underlying computational infras-
tructure that supports the deployment and execution of the
platform according to the workload to maintain the desired
quality of service levels.
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