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Abstract The adoption of security systems based on computer vision for violence detection has the potential to
significantly improve safety in various public and private properties. However, developing these systems can be
extremely challenging.We can choose to use classification models to identify violence in images or also use object
detection models to identify firearms, which may indicate robbery. Additionally, when developing such systems
focused on private environments, we encounter specific challenges, such as obtaining appropriate datasets to train
the algorithms. Many publicly available datasets for violence detection consist of outdoor images, with elements
such as streets and cars, which do not adequately reflect the nuances and unique characteristics of private properties.
In this work, we evaluate both learned and handcrafted features to classify videos as ’violence’ or ’non-violence’
across a variety of datasets, including a new dataset composed exclusively of closed-circuit television (CCTV) im-
ages. Additionally, we propose a new dataset for firearm detection in CCTV images and conduct some experiments
using YoloV8. In this way, we hope to provide a clearer insight into the possible decisions when developing a
security system for indoor environments.
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1 Introduction

As the number of surveillance cameras installed at indoor en-
vironments worldwide increases, the urgency for real-time
video-content analysis also grows. Once supervising multi-
ple monitors during long hours is an unsuited task for hu-
man agents, many computer vision algorithms have been
proposed during the last decade for detecting abnormal and
potentially dangerous situations, such as: (i) people disobe-
dience to virtual fence [Delgado et al., 2014; Chen et al.,
2012]; (ii) loitering [Coşar et al., 2016; Arroyo et al., 2015];
(iii) crowd panic [Krausz and Bauckhage, 2012; Zhang et al.,
2019]; (iv) seniors falling [Lu et al., 2018; Rougier et al.,
2011]; and others.
In the security sector, systems for detecting assaults in real-

time can allow the development of automatic alerts inform-
ing potential risk situations directly to security agents. For
example, detection of firearms [Grega et al., 2016; Olmos
et al., 2018] can suggest an assault in progress. However,
there are many more characteristics to consider, such as peo-
ple in a panic, running, surrendering, fighting, or dragging
furniture. Unfortunately, according to our current knowl-
edge, there are not many available datasets that only include
indoor footage with violence that possess thementioned char-
acteristics above.
Previous works on violence detection were built upon

video clips of fights extracted from: (i) action movies
[Nievas et al., 2011]; (ii) matches of the National Hockey
League (NHL)[Nievas et al., 2011], (iii) real-world crowds
[Hassner et al., 2012; Setti et al., 2017]; (iv) fighting sports

[Soomro et al., 2012]; (v) real-world pedestrians [Blunsden
and Fisher, 2010]; or (vi) real-world criminals [Sultani et al.,
2018; Cheng et al., 2020]. None of the (i)-(v) datasets are
suited for training methods to detect indoor violence. Futher-
more, current datasets based on real-world criminal actions
(vi) also contains outdoor scenes involving cars, streets, and
other elements that introduces unnecessary features to the de-
sign of indoor violence detection systems. Thus, we propose
a new benchmark for detection of real-world Assaults at In-
door Environments: the AIE dataset1. Our dataset is com-
posed of 700 video clips of surveillance cameras installed at
bank correspondents, convenience stores, retail stores, and
others. There are video clips with only regular customers,
and other ones with attacks where criminals use guns oc-
cluded from the footage, melee weapons, handguns, rifles,
machine guns, or no guns at all. In addition, as mentioned
earlier, detecting firearms can be crucial to identifying ongo-
ing violent events. With that in mind, we have created the
Firearm Detection at Indoor Environments (FDIE) dataset2,
consisting of 2213 selected images annotated with bounding
boxes highlighting different types of firearms.
We not only proposed these two new datasets but also con-

ducted experiments with them. To understand the challenges
in training a Deep Learning (DL)model on the detection data,
we turned our focus to one of the most popular detection
frameworks, YOLO (You Only Look Once) [Redmon et al.,
2016]. Developed by JosephRedmon and others, YOLOwas
first introduced at CVPR 2016. This framework revolution-

1Download at: https://www.kaggle.com/arnaldovitor/aie-dataset
2Download at: https://www.kaggle.com/arnaldovitor/fdie-dataset

https://orcid.org/0000-0002-0300-3341
mailto:arnaldovitorbarros@gmail.com
mailto:arnaldovitorbarros@gmail.com
https://orcid.org/0000-0002-4624-6714
mailto:luis-filipe.pereira@ufape.edu.br
mailto:luis-filipe.pereira@ufape.edu.br


Evaluating Methods for Violence Classification and Firearm Detection in Indoor CCTV Environment Silva et al. 2024

ized object detection by introducing a real-time, end-to-end
approach capable of performing detection tasks with a sin-
gle pass through the network. Unlike previous methods that
used sliding windows or two-stage approaches (where the
first stage detected regions with possible objects and the sec-
ond performed classification in those regions), YOLO simpli-
fied the output by using only regression to predict detection
results.
As for the classification data, we compared classical com-

puter vision architectures with new DL models. In classi-
cal computer vision, solutions for detecting violence in im-
ages often utilized handcrafted (HC) features based on op-
tical flow [Gao et al., 2016], appearance [Chen and Haupt-
mann, 2009], or acceleration [Deniz et al., 2014]. These fea-
tures were then encoded into numerical vectors, with each
vector being assigned a label of ’violence’ or ’non-violence’.
Subsequently, machine learning techniques such as Support
Vector Machine (SVM) [Hearst et al., 1998] and Random
Forest [Breiman, 2001] were employed to classify new im-
ages.
One of the most popular classical methods for video

classification is MoSIFT [Chen and Hauptmann, 2009],
which is based on the extraction of keypoints using the
Scale-Invariant Feature Transform (SIFT) [Lindeberg, 2012].
These keypoints represent pixels in an image that are more
distinctive than others. Among the extracted keypoints,
those with optical flow greater than a certain threshold are
selected. These selected keypoints are then associated with
a descriptor composed of the concatenation of SIFT descrip-
tors and Optical Flow Histogram (HoF) [Van Gool, 2008]
descriptors. These descriptors are then used together with
Bag of Visual Words (BoVW) [Csurka et al., 2004] to create
a representation of the images through histograms indicating
the occurrences of certain characteristics. Using MoSIFT,
accuracy rates were reported higher than other more modern
classical methods [Zhou et al., 2017] and even surpassing
methods based on DL [Traoré and Akhloufi, 2020], reporting
accuracy rates close to 94% in detecting violence in scenes
of hockey matches and 89% in fights in crowds.
Although HC features have shown promising initial re-

sults, they have gradually been surpassed by DL based algo-
rithms. The utilization of learned (LN) features has stood out
in various areas such as image classification [Lu and Weng,
2007], object detection [Zou et al., 2019], image segmenta-
tion [Garcia-Garcia et al., 2017]. These features not only
demonstrate high accuracy but also eliminate the complex
task of designing specific feature extractors for images. This
progress is enabled by the convolutional layers of Convolu-
tional Neural Networks (CNNs), which extract relevant pat-
terns through specialized sliding filters. In the realm of vio-
lent scene detection, the application of LN features has led to
precision rates close to 100% in movies and hockey matches
[Zhou et al., 2017; Soliman et al., 2019a; Keçeli and Kaya,
2017].
Despite its advantages, DL methods suffer from a lack of

interpretability, exhibiting behavior similar to a black box
[Lipton, 2018]. Interpretability is a crucial aspect for reliable
intelligent systems, especially in high-risk scenarios such as
violence detection. One way to shed light on the behavior
of a DL model may include the Grad-CAM [Selvaraju et al.,

2017]. This method is model-agnostic, meaning it can be
used across a wide range of CNNs without the need to mod-
ify their architectures. It operates by calculating the gradient
of the last convolutional layer with respect to the CNN out-
put, generating a heatmap that indicates the influence of each
region in the generated prediction. Recent studies evaluating
various eXplainable AI (XAI) techniques in diverse domains
consistently found that Grad-CAMoutperformed other meth-
ods such as LIME and SHAP, providing more reliable and
robust visual interpretations of CNN decisions [Cian et al.,
2020; Varam et al., 2023; Wei et al., 2022].
Although LN features have becomemore popular than HC

features, several researchers have invested efforts to deter-
mine whether it is possible to entirely disregard the classi-
cal approach: i) In a study investigating the skin cancer de-
tection problem, it was found that classical solutions some-
times outperformed DL-based methods [Saba, 2021]. ii) A
similar comparison was conducted in the context of pedes-
trian gender classification [Antipov et al., 2015]. Their
study demonstrated that both approaches had similar perfor-
mance for small and homogeneous datasets, while LN fea-
tures were more accurate in more complex data scenarios.
iii) An extensive comparison between various classical and
Deep Learning-based methods across a broad domain of im-
ages, ranging from butterfly species classification to cancer
detection, revealed instances where HC features were more
suitable [Nanni et al., 2017].
In this study, we examine various aspects encountered

in the development of violence detection systems. We fo-
cus specifically on the challenges associated with firearm
detection and analyze several video datasets used for vio-
lence classification, eachwith unique characteristics. Instead
of merely considering accuracy rates, we adopt more com-
prehensive approaches, such as visual explanation analysis.
This approach aims to provide valuable insights that can con-
tribute to enhancing violence detection methods.
The article is structured as follows: Section 2 introduces

the AIE and FDIE datasets; Section 3 describes the experi-
ments and parameters used for video classification; Section 4
details the experiments and parameters employed for firearm
detection; Section 5 presents the obtained results and discus-
sions; and finally, Section 6 concludes the paper.

2 Proposed datasets

2.1 AIE Dataset

The proposed dataset for detecting Assaults at Indoor Envi-
ronments (AIE) comprises 700 clips of surveillance cameras
published online, mostly at LiveLeak. Clips of 5 to 10 sec-
onds limited to only ten clips per video were extracted from
each footage to ensure data diversity. We also blurred faces
from the images to ensure people’s privacy. Finally, labels of
’violence’, ’non-violence’ and ’alert’ were assigned to each
video clip. The ’alert’ label can be considered a subcate-
gory of ’violence’ and was applied to 52 videos in the dataset
where violence occurs in a way that is difficult to identify,
even for a human observer, such as when a person has a oc-
cluded weapon.
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Figure 1 shows the distribution of clips in the AIE dataset
with respect to the time length (a), image resolution (b), en-
vironment (c), and weapon used (d). It is shown that most
of the benchmark samples are between 9 and 10 seconds in
length, and they have a resolution of 1280 × 720. Further-
more, 70% of the videos in our benchmark depict environ-
ments of high occurrence of violent assaults: (i) Brazilian
lottery houses - which are banking correspondents - and (ii)
convenience stores worldwide. Besides that, in 26.75% of
the violent clips, no fire gun was imaged.
Footage examples of the AIE benchmark are illustrated

in Figure 2 that shows attacks using a handgun (a), and a
rifle (b). Finally, the characteristics of the state-of-the-art
benchmarks are compared with our AIE dataset in Table 1.
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Figure 1. Distribution of clips in the AIE dataset with respect to the time
length (a), image resolution (b), indoor environment (c), and the weapon
used in the assaults (d).

2.2 FDIE Dataset
The proposed dataset for firearm detection, called the
Firearm Detection at Indoor Environments (FDIE) Dataset,
comprises 2213 frames extracted from the AIE dataset, with
a total of 2312 annotated firearms in YOLO format. This
dataset presents a significant challenge due to the statistics
of the annotated bounding boxes, with an average of 5005
pixels, a minimum of 82 pixels, a maximum of 59673 pixels,
and a standard deviation of 7387 pixels. These statistics indi-
cate a wide variation in the size of the bounding boxes, which
can impact the effectiveness of detection models and require
robust approaches to handle the diversity of sizes and shapes
of firearms present in the dataset. Examples of firearms that
can be difficult to detect are illustrated in Figure 3 and finally,
in Table 2 some of the most popular datasets are compared
with the proposed one.

(a)

´
(b)

Figure 2. Examples of violent clips in the proposed dataset where criminals
attacked with a handgun (a), and a rifle (b).

3 Video classification experiments
To maintain a fair comparison between HC and LN features
we selected a representative method for each of them and
evaluate their performances on different datasets. We also
generated explanations of image classifications using Grad-
CAM [Selvaraju et al., 2017] and BoVW-CAM [da Silva and
Alves Pereira, 2022]. The BoVW-CAM is a method that pro-
vides visual explanations similar to Grad-CAM, but for HC
features based on keypoints, as in the case of MoSIFT.

3.1 Selected datasets
To carry out the experiments, in addition to the proposed AIE
dataset, another three sets were used: i) the Hockey Fight
dataset [Nievas et al., 2011], which contains 1000 videos ex-
tracted from National Hockey League (NHL) matches, man-
ually labeled as ’fight’ or ’non-fight’; ii) the Violent Flows
dataset [Hassner et al., 2012], which comprise violent and
non-violent crowd scenes in real-world footage collected
from YouTube and LiveLeak. The total of 246 videos in-
clude street protests, street fights, and stadium, among oth-
ers; iii) the RWF-2000 dataset [Cheng et al., 2020], which is
composed of 2000 videos captured by surveillance cameras
in real scenes and labeled as ’violence’ and ’non-violence’.
These datasets have beenwidely used in several recent works,
such as Vijeikis et al. [2022] and Kang et al. [2021]

3.2 Handcrafted feature extractor
We used the MoSIFT [Chen and Hauptmann, 2009] tech-
nique to obtain a set of feature vectors for each input frame.
This processing is described by the Algorithm 1. First, SIFT
keypoints [Lindeberg, 2012] are computed for each frame in-
put to find regions of interest. Then, a MoSIFT vector of
size 256 is created by concatenating SIFT [Lindeberg, 2012]
and HOF [Van Gool, 2008] descriptors for those regions of
interest which have optical flow greater than a threshold ϵ.
The feature extractor is combined with the BoVW [Csurka

et al., 2004] technique, which involves creating new video
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Table 1. Characteristics of the most used datasets in the literature for automatic violence detection.

dataset # violent # non-

violent

hours

length
resource

release

year

Behave Video [Blunsden and Fisher, 2010] 19 144 2.5 real-world

outdoor
2010

Hollywood [Nievas et al., 2011] 100 100 0.08 movies 2011
Hockey [Nievas et al., 2011] 500 500 0.44 sports 2011

Violent Flows [Hassner et al., 2012] 123 123 0.8 real-world

outdoor
2012

UCF101 [Soomro et al., 2012] 276 13044 27 sports 2012

UCF-Crime [Sultani et al., 2018] 950 950 127.8 real-world

indoor and outdoor
2019

Real Life Violence Situations [Soliman et al., 2019b] 1000 1000 2.92 real-world

indoor and outdoor
2019

Surveillance Camera Fight [Aktı et al., 2019] 150 150 0.18 real-world

indoor and outdoor
2019

CCTV-Fights [Perez et al., 2019] 1000 1000 17.68 real-world

indoor and outdoor
2019

RWF-2000 [Cheng et al., 2020] 1000 1000 2.8 real-world

indoor and outdoor
2020

AIE 400 300 1.83 real-world
indoor

2023

representations through histograms. To generate these his-
tograms, several steps are necessary. Firstly, a subset of
the descriptors must be grouped using a clustering algorithm
such as KMeans [Ahmed et al., 2020], which produces cen-
troids known as visual words. Secondly, a dictionary of vi-
sual words is created using this set of visual words, and all
descriptors extracted from the frames of a new video are as-
sociated with the visual word closest to them. Finally, the
histogram that describes the video is generated by comput-
ing the frequency of occurrence for each visual word across
its frames.
Algorithm 1: The handcrafted feature extractor

Input: frame, next_frame, ϵ
Output: hand_features

hand_features← []
keypoints← SIFT (frame)
for each kp ∈ keypoints do

if opticalF low(frame, next_frame, kp.position) > ϵ

then
hof ←
HOF (frame, next_frame, kp.position)
mosift← cat(hof, kp.descriptor)
hand_features.add(mosift)

end
end

3.3 Learned feature extractor
We fine-tuned a pre-trained VGG-19 [Simonyan and Zisser-
man, 2014]model on the ImageNet [Deng et al., 2009]. How-
ever, unlike MoSIFT, which produces a single feature vec-
tor for each video, this architecture only classifies one im-
age. To address this, we implemented a voting system where

´
Figure 3. Examples of firearms that are difficult to detect due to their di-
mensions.

a video is classified based on the most commonly assigned
class among its frames.

3.4 Experimental parameters

Wedivided the dataset in twoways: to train themethod based
on LN features, 70% of the data were used. To train the HC
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Table 2. Characteristics of datasets in the literature for firearm detection.

Dataset # images firearm type resource release year
Granada [Olmos et al., 2018] 3000 handguns only non-real world 2018

Monash Guns [Lim et al., 2021] 3459 handguns only partially real-world indoor and outdoor 2021
Shenzen [Qi et al., 2021] 51889 various partially real-world indoor and outdoor 2021

FDIE 2213 various real-world indoor 2024

features method, the same previous training partition was di-
vided into two of the same size, one to build the dictionary
of visual words of the BoVW method and another to train
the classifier. The other partitions in both approaches main-
tained the proportions, 10% for validation and 20% for test-
ing. For the AIE dataset, undersampling was required to bal-
ance the data. We removed 52 examples from the ’alert’ sub-
class and, randomly, 48 examples from the ’violence’ class.
This resulted in a total of 300 images for each of the ’vio-
lence’ and ’non-violence’ classes.
In relation to the hyperparameters of each method, the HC

features-based method employed the K-Means clustering al-
gorithm with 256 visual words to construct the dictionary.
The threshold ϵ in Algorithm 1was 0.5. The Fully Connected
Network used as a classifier was trained for 200 epochs us-
ing the Adam optimization algorithm and the loss function
was the Binary Cross-entropy. On the other hand, the em-
ployed in the LN feature-based method included 200 training
epochs, the use of the SGD optimization algorithm, and the
Categorical Cross-entropy loss function.

4 Object detection experiments

4.1 Model description
The selected object detection model for our experiments is
YOLOv8 [Jocher et al., 2023], which builds upon the ar-
chitecture of YOLOv5 [Jocher, 2020]. YOLOv8 features
an evolved backbone known as the C2f module, a modifi-
cation of the CSPLayer from YOLOv5. This Cross-Stage
Partial Bottleneck integrates high-level features with contex-
tual information, significantly enhancing detection accuracy.
Furthermore, state-of-the-art performance has Mean Aver-
age Precision (mAP) above 90% for firearm detection tasks
[Khin and Htaik, 2024; Rastogi and Varshney, 2024].
We conducted our experiments by fine-tuning three varia-

tions of YOLOv8, all pre-trained on the COCO dataset [Lin
et al., 2014]. The primary difference between them lies
in the number of trainable parameters: YOLOv8n with 3.2
million parameters, YOLOv8s with 11.2 million parameters,
and YOLOv8m with 25.9 million parameters.

4.2 Training setup
The dataset was divided into training, validation, and test sets
in proportions of 70%, 10%, and 20%, respectively. We en-
sured that frames from the same video were not included in
different subsets, preventing any data leakage. The models
were trained for 100 epochs following this strategy: during
the first 10 epochs, we applied mosaic data augmentation
[Hao and Zhili, 2020] to enhance the model’s generalization

ability. In the subsequent epochs, we used more traditional
augmentations such as horizontal and vertical flips, as well
as changes in hue and saturation.

5 Results and Discussions

5.1 Classification accuracy
Table 3 shows the false-positive rates (FPR), false-negative
rates (FNR), and accuracy rates (ACC) obtained in all video
classification datasets evaluated in this work using their re-
spective subsets of the test. It could be expected that LN
features would always be better and this was not the case,
HC features reported better accuracy rates in RWF-2000 and
AIE, which are datasets with violence in the real world and
therefore more challenging. AIE was the most challenging
dataset for both approaches.
It is worth noting that other studies have achieved even

higher accuracy rates, hitting 90% on the RWF-2000 dataset
[Mohammadi and Nazerfard, 2023; Hachiuma et al., 2023],
surpassing our investigation’s results. Nevertheless, this
doesn’t devalue our work. The differences in performance
rates we’ve observed indicate that deep learning models
might face challenges in grasping crucial characteristics,
ones that classical methods can identify. This suggests a
promising avenue for future research: combining these two
distinct approaches.

Table 3. False-positive rate, false-negative rate, and accuracy rate
obtained by the method based on HC and LN features in Hockey,
Violent Flows, RWF-2000, and AIE sets.

Dataset Feature FPR FNR ACC
Hockey Handcrafted 15.7% 10.8% 88.2%
Hockey Learned 18.5% 4.3% 89.5%

Violent Flows Handcrafted 14.8% 34.7% 76.9%
Violent Flows Learned 14.6% 7.2% 88%
RWF-2000 Handcrafted 28.9% 30.1% 69.3%
RWF-2000 Learned 48.3% 30.1% 60.2%

AIE Handcrafted 50.0% 33.3% 58.3%
AIE Learned 61.6% 43.3% 47.5%

5.2 Venn Diagram
Accuracy alone cannot adequately determine the superiority
of one method over another. To ensure a valid comparison, it
is essential that all videos correctly classified by the method
with lower accuracy be encompassed within the set of videos
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correctly classified by the method with higher accuracy. An
effective way to illustrate this issue is through a Venn Dia-
gram comparing the predictions of the methods. Upon ob-
serving the Figure 4, it becomes apparent that in none of the
datasets demonstrates complete overlap between the meth-
ods. Furthermore, the AIE dataset emerges as the most chal-
lenging. Even through the combination of predictions from
both methods, a error rate of 22.50% persists.

Hockey Fight

15420 25
1

HC LN

Violent Flows

335 11
1

HC LN

RWF-2000

164118 77
41

HC LN

AIE

3436 23
27

HC LN

Figure 4. Number of videos classified correctly by handcrafted features
(HC) and by learned features (LN).

5.3 Visualization

We generated visual explanations for the ’non-violent’ (Fig-
ure 5) and ’violence’ (Figure 6) class via Grad-CAM [Sel-
varaju et al., 2017] for the LN features based method and
via BoVW-CAM [da Silva and Alves Pereira, 2022] the HC
method. From these images, it is possible to see that both
methods focus on different aspects to generate their classifi-
cations. The HC method evaluates a larger area of objects
classified in the scene, in addition to that, it also focuses on
objects that are in motion. The LN method focuses on image
regions that are more difficult to be understood by human
agents, but that still maximize accuracy.

5.4 Dice Score

To understand how distinct the focus regions of importance
are between the HC and LN features, we transform the vi-
sual explanations of the Grad-CAM and BoVW-CAM into
binary images for the entire test subset of each dataset to cal-
culate the Dice Score (DS) between them [Dice, 1945]. The
findings can be visualized in Table 4. It can be observed that
the results, in general, were considerably low, suggesting a
notable disparity between the characteristics each method fo-
cuses on. An interesting aspect is that the most challenging
datasets (AIE and RWF-2000) showed a lower average DS
when compared to the others.

Table 4. Average (Avg.) and standard deviation (Std.) obtained
by calculating the Dice Score (DS) between the views generated by
Grad-CAM and BoVW-CAM.

Dataset Avg. of DS Std. of DS
Hockey 0.411 0.194

Violent Flows 0.482 0.292
RWF-2000 0.361 0.248

AIE 0.162 0.200

5.5 Object detection results

Table 5 presents the precision (P), recall (R), and mAP ob-
tained with the three models generated in this study on the
FDIE dataset. The model that achieved the best results
was YOLOv8s, demonstrating an precision exceeding 70%,
which is promising considering a real-world environment.
However, the results presented are still not satisfactory for
high-risk scenarios. Our experiments suggest that to achieve
robust performance with this data, it would be necessary to
develop a specialized architecture due to the high variance in
the size of the bounding boxes of the objects.

Table 5. Precision (P), recall (R), and mAP results for three
YOLOv8 model variations on the FDIE dataset.

Model P R mAP
YOLOV8n 0.699 0.318 0.383
YOLOV8s 0.730 0.395 0.455
YOLOV8m 0.690 0.320 0.378

6 Conclusion

In this work, we conducted experiments focused on firearm
detection and video violence classification, and we also pro-
posed two new datasets containing images of indoor environ-
ments for these tasks. In the classification domain, while the
literature indicates that the most modern solutions are based
on learned features, studies have suggested that handcrafted
features capture different aspects of the image that can be
advantageous for classification. We demonstrated that, even
with generally higher accuracy rates, learned features cannot
fully replace handcrafted features, as there are images that
only the classical method classifies correctly. We also ex-
plored the divergence between the areas of interest of each
method in the image domain using Grad-CAM and BoVW-
CAM, and observed that the most relevant regions for each
method are quite distinct.
For detection, we selected a modern object detection archi-

tecture that has shown promising results in firearm detection
in the literature. However, we found that detecting firearms
in CCTV images within our new dataset is significantly more
challenging. Through these experiments, we aim to provide
an initial pipeline and sufficient data to advance research in
the development of intelligent systems for identifying ongo-
ing assaults.



Evaluating Methods for Violence Classification and Firearm Detection in Indoor CCTV Environment Silva et al. 2024

Figure 5. Visualization for ”non-violence” class with Grad-CAM and BoVW-CAM methods.

Figure 6. Visualization for ”violence” class with Grad-CAM and BoVW-CAM methods.
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