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Abstract Clustering is an unsupervised task employed when there is no prior knowledge about the structure and
information contained in the data. Nowadays the amount of information and the dimensionality of data increased.
Due to this, several datasets contain samples that can be clustered in different ways, presenting different partitions.
Classical algorithms tend to obtain a single partition per execution and also require information like the number of
clusters. Immuno-inspired algorithms were developed to reduce some of these drawbacks. They can find alternative
solutions without knowing the number of clusters, but high dimensionality reduces their performance leading to low
convergence rates. Information Theoretic Learning (ITL) uses statistical information of the data regardless of prior
knowledge of the structure of these data and the dimensionality involved. Applied in several papers for clustering,
ITL-based algorithms tend to present good performance for this task. This paper presents an immuno-inspired
ITL-based algorithm (ITL-aiNet) capable of finding and maintaining high-quality and diverse solutions for datasets
regardless of their dimensionality and structure. Real-world image and document datasets of varying dimensions
were used in the experiments, allowing different ways of clustering. The results were evaluated using external
indices. The proposed approach was capable of maintaining high-quality and diverse solutions, compared to other
strategies found in the literature. The indices used to measure the quality and diversity of solutions indicated that
the algorithm is capable of finding and maintaining good solutions. Solutions that have greater diversity than other
algorithms in some datasets and higher quality in others.
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1 Introduction

With the increase in the use of the Internet of Things and the
spread of Big Data, different data sources became available,
and several high-dimension datasets emerged. So, new pos-
sible interpretations of these data are expected [Wang et al.,
2019; Chikhi, 2016].
Consider that a person can be photographed in various po-

sitions with different cameras, or that the same news can be
published in multiple media with different languages. Al-
though they may appear differently, these datasets can still
represent the same subjects depicted from multiple perspec-
tives [Fu et al., 2020].
Another example are web pages, which can be character-

ized by both the textual content they contain and the inter-
connected pages accessible through hyperlinks [Chao et al.,
2021]. Although distinct, these web pages might share the-
matic connections representing identical content. Moreover,
they may address diverse subjects and establish links with
other pages.
In the recent literature, this type of information that refers

to instances where the same entity (data) can be analyzed
from different viewpoints are known as multi-view data.
Novel automated methodologies are being explored to un-
veil this array of interpretations within datasets, aiming to
enhance comprehension and reveal potential associations

among the constituent elements of a given database [Fu et al.,
2020].
Clustering appears as an option for finding multiple al-

ternative information about the data. The first challenge of
clustering is finding structures and patterns among data. So,
methods are required to quantify this data and find relation-
ships to form cohesive clusters between samples with similar
characteristics and dissimilar from other clusters with differ-
ent samples [Cunha et al., 2017].
Distance measures, such as the Euclidean distance, are

commonly used to calculate the similarity between objects
in datasets. But, it is well-known that these measures do not
work well on high dimensions [Araújo et al., 2013].
With Information Theory (IT) concepts, it is possible to

obtain information directly from the data, based on their sta-
tistical properties [Araújo et al., 2013]. Shannon conceptual-
ized IT to analyze messages transmitted over noisy channels,
and since then, it has been used in several fields that require
data analysis.
So IT was created to help study the theoretical issues of

how to optimally encode messages according to their statisti-
cal structures. However, it goes beyond this area, contribut-
ing to digital communications by: (i) assisting in determining
the transmission capacity of a channel; (ii) data compression
with lossless compression algorithms like Huffman and lossy
compression based on entropy coding; and (iii) in cryptogra-
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phy to measure the strength of algorithms and keys, among
other applications [Cover and Thomas, 2005].
IT has also contributed to data mining tasks leading to a

field of research named Information Theoretic Learning (ITL
– [Principe, 2010]). Employing ITL in clustering is useful
to find partitions, independently of the dataset dimension.
But the task of finding partitions with diversity is complex
since the algorithm must maintain not only one possible so-
lution but multiple solutions [Kontonasios and De Bie, 2015].
The number of clusters in a partition is another challenge for
many algorithms.
Several clustering algorithms in the literature consider the

possibility of alternative solutions with different strategies
[Aggarwal and Reddy, 2014]. Some examples, likeMinCEn-
tropy [Vinh and Epps, 2010], obtain an alternative partition
for a given dataset and are based on Information Theory con-
cepts. However, it requires a pre-definition of the number of
clusters.
Other strategies, such as the Multiple Independent Sub-

space Clusterings (MISC) [Wang et al., 2019], aim to find
different subspaces among the attributes of the objects and,
for the subspaces found, present a feasible solution. This
method is limited by high computational cost when the num-
ber of attributes is high due to the calculation of matrix-based
subspaces for each alternative clustering.
The bee-inspired multiobjective optimization (cOptBees-

MO) algorithm uses swarm intelligence to find better parti-
tions through mechanisms inspired by food resource explo-
ration of bee colonies. The “bees” in the algorithm search for
regions with better possibilities to generate clusters and the
objects are associated with the closest bee. It is a dynamic
algorithm with a limitation on the maximum number of pos-
sible clusters [Cunha et al., 2017].
[Orouskhani et al., 2020] shows a complex network-based

algorithm proposed to attempt to determine central nodes to
find better clustering configurations and, through node re-
combinations, it tries to generate offspring solutions from the
initial one.The algorithm has high complexity because it is
based on graph and matrix calculations to find the best con-
nections between nodes. Another algorithm based on matrix
computations is [Wan et al., 2023]. In this algorithm, differ-
ent matrices are combined to form a consensus matrix and
find a new clustering for this matrix.
In this way, being aware of the difficulties currently en-

countered in the literature, such as finding the number of
clusters automatically and working with spaces of different
shapes and dimensions, this paper proposes a new clustering
algorithm based on a model of artificial immune networks
[de Castro and Von Zuben, 2002].
The algorithm, named ITL-aiNet, searches for and main-

tains multiple feasible, diverse, and high-quality solutions.
Therefore, ITL-aiNet uses ITL to overcome the drawbacks
of evaluating new structures directly from the data [Zhang
et al., 2013]. Besides, ITL-aiNet methods search for an ideal
number of clusters for each alternative partition found.
In the context of Artificial Immune Networks for cluster-

ing, ITL can be used to assess the quality of the population.
Mutation operators can also benefit from ITL concepts so
that the number of clusters can be modified dynamically, and
the best possible configuration for each candidate solution in

the population can be identified.
Thus, this paper addresses the drawbacks found in previ-

ous algorithms through the use of bioinspired strategies and
ITL concepts. We assess partitions using concepts from In-
formation Theory and bring new methods (operators based
on ITL concepts) to cluster objects from datasets. The con-
tributions of this work can be summarized as:

• First, the development of a new algorithm that automat-
ically searches for better data partitions, dynamically
changing the number of clusters.

• The proposed algorithm uses ITL concepts in new oper-
ators that adjust previously formed clusters.

• Finally, a new clustering assessment index was pro-
posed, based on the Silhouette criterion, incorporating
the statistics of the input data.

This paper is organized as follows: basic concepts of In-
formation Theory and Artificial Immune Networks are dis-
cussed in Section 2. Detailed implementation of the pro-
posed clustering algorithm is described in Section 3. Section
4 shows the experimental methodology adopted in this paper.
The experimental results are presented and discussed in Sec-
tion 5. Finally, the conclusion and future works are shown
in Section 6.

2 Theory: modeling and methods
Clustering is an unsupervised task that can be applied to sev-
eral fields, in particular pattern recognition, image segmenta-
tion, and trend detection [Aggarwal and Reddy, 2014]. The
main focus of clustering is, given a dataset of N objects, or-
ganizing these objects into K clusters, putting similar objects
into the same cluster and different objects into distinct clus-
ters [Zhang et al., 2013].
Real-world datasetsmay present several characteristics for

each object, which allows them to be clustered in different
ways. In image datasets, for example, data objects may be
clustered according to their shapes, colors, positioning, etc
[Wang et al., 2019], as shown in Figure 1. Algorithms must
be prepared to search for multiple feasible partitions that rep-
resent the different aspects of such datasets.

Figure 1. Image samples of the ALOI dataset [Geusebroek et al., 2005].

Several methodologies are used to obtain diverse parti-
tions of datasets. The Unguided Generation [Aggarwal and
Reddy, 2014] methodology runs algorithms with different in-
put parameters and combines their results.
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Clustering for Alternatives with Mutual Information
(CAMI) [Dang and Bailey, 2010] is one example of Un-
guided Generation. It generates two clusterings per exe-
cution maximizing the likelihood of both partitions and, at
the same time, minimizing the Mutual Information between
them using a Gaussian mixture of models.
Other algorithms use subspace search strategies, like

MISC [Wang et al., 2019]. It tries to find subspaces between
high-dimension spaces and one partition is found in each sub-
space. Some strategies employ the use of constraints, where
a preliminary partition is presented and an alternative solu-
tion is sought as in theConstrained Orthogonal Average Link
Algorithm (COALA) [Bae and Bailey, 2006]. This type of
strategy imposes the need to know the previous partition.
Other strategies use the same algorithm to search for alter-

native partitions, with different inputs yielding different out-
comes, as shown in Ferraria et al. [2023]. Thus, an example
is the use of vector quantization to find different prototypes
in data to be used as input data to the algorithms [Hossain
et al., 2013].
For this type of strategy, there is the problem of the algo-

rithm used for the vector quantization, which is generally the
K-Means. This kind of algorithm is known to work well in
elliptical data distribution.

2.1 Information Theoretic Learning for clus-
tering

A common problem for many data analysts lies in how to
extract information contained in datasets [Principe, 2010].
Such information may provide new perspectives about the
studied subject. One approach that inherently tries to tackle
this problem is clustering, which has a multitude of different
approaches in the literature.
One of these approaches is Information Theoretic Learn-

ing, which presents mechanisms that obtain data information
directly from their statistical properties. Therefore, ITL al-
lows the identification of new relationships of data samples
[Principe, 2010].
As the name suggests, ITL is based on Information Theory,

which has descriptors to quantify the information contained
in data samples. One of the most well-known descriptors is
entropy.
Information Entropy was originally proposed by Shannon

[1948], and its concept was later expanded by different au-
thors [Rényi, 1961; Havrda and Charvát, 1967]. It can be
seen as a measure of uncertainty associated with a random
variable, so it evaluates how much of an event is due to ran-
domness [Araújo et al., 2013].
Renyi generalized Shannon’s Entropy including a free pa-

rameter (α) [Principe, 2010]. So, given a stochastic variable
−→x with probability density function (PDF) f(−→x ), α ≥ 0,
and α ̸= 1, Renyi’s Entropy can be defined as in Equation 1
[Araújo et al., 2013].

HR(−→x ) = 1
1 − α

log

∫
fα(−→x )d−→x . (1)

Renyi’s Entropy has been used in clustering algorithms
with α set to 2 [Zhang et al., 2013]. Thus, it is known as
Renyi’s Quadratic Entropy. The PDF f(X) can be estimated

directly from the data, with non-parametric approaches such
as the Parzen Window [Silva et al., 2015], as depicted in
Equation 2. Symmetric Gaussian Kernel is usually adopted
as the Parzen Window Gσ [Zhang et al., 2013], and σ is its
covariance.

f(−→x ) = 1
N

N∑
i=1

Gσ(−→x − −→xi) (2)

where N is the number of samples of the dataset, Gσ is a
Gaussian function with σ covariance.
Substituting Equation 2 into Equation 1 and considering

α = 2 (Renyi’s Quadratic Entropy), we get Equation 3. The
argument of the logarithm is the quadratic information poten-
tial estimator (V (X)), given in Equation 4 [Principe, 2010].

HR(X) = −log

∫
f2(−→x )d−→x

= −log

∫ (
1
N

N∑
i=1

Gσ(−→x − −→xi)

)
(

1
N

N∑
i=1

Gσ(−→x − −→xj)

)
d−→x

= −log

 1
N2

N∑
i=1

N∑
j=1

G2σ(−→xi − −→xj)

 (3)

V (X) = 1
N2

N∑
i=1

N∑
j=1

G2σ(−→xi − −→xj) (4)

where X = {−→x1, ..., −→xN }, −→xi ∈ Rd and i = 1, .., N is a set
of N objects of a dataset in a d-dimensional space. V (.) can
be used as the Information Potential Estimator of a dataset
but also as a cluster or pairwise estimator of objects.
Besides the quadratic information potential estimator,

other descriptors were developed for clustering. Two of them
are the Cross Information Potential (CIP) [Principe, 2010]
and the Differential Entropy Clustering [Jenssen, 2010;
Principe, 2010]. The CIP was already used as a clustering
index by Principe [2010], Araújo et al. [2013], and Borges
and Coelho [2018].
The Differential Entropy Clustering descriptor uses en-

tropy in a way so that an object that is not yet labeled can
be assigned to a particular cluster. To illustrate how it works,
consider Figure 2, in which C1 and C2 are distinct clusters
with independent objects. A new data object x must be clus-
tered into C1 or C2.
In this context, Differential Entropy Clustering proposes

that x must be assigned to the cluster that presents the lowest
entropy after x is assigned to it. So, if x is wrongly assigned
to C2 its entropy increases more than C1. Therefore x must
be assigned to C1. Equation 5 shows the general case, with
Ck clusters.

H(Ci + −→x ) − H(Ci) ≤ H(Ck + −→x ) − H(Ck), ∀k (5)
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Figure 2. Using Differential Entropy Clustering to decide whether object x
should be assigned to cluster C1 or C2.

where Ck(k = 1, ..., K) is a set of clusters, K is the number
of clusters, i is one of the clusters in the partition (i ̸= k) and
H(Ck) represents the entropy of cluster Ck. So if object −→x
is correctly assigned to a cluster i, the entropy of this cluster
will increase less than the entropy of all other clusters in K.

2.2 Artificial Immune Networks

The Immune Network Theory, proposed by Jerne [1974],
states that the immune system of vertebrates works as a self-
organizing network, aiming to maintain its stability. The Im-
mune Network Theory also states that cells of the immune
system can also recognize each other, which may lead to pos-
itive or negative responses. The positive response is a stim-
ulus for cell proliferation, while the negative response may
even suppress the cells of the system [Borges et al., 2012].
These mechanisms can be an interesting inspiration for

the development of algorithms since they present characteris-
tics such as the stimulation of population diversity, learning
(which can be seen as a micro-evolution), and memory [de
Castro and Von Zuben, 2002]. These characteristics are im-
portant for the context of this research.
One of the first immune network-inspired algorithms for

data analysis was aiNet (Artificial Immune Network), pro-
posed by de Castro and Von Zuben [2002] for clustering.
The immune-network model proposed in aiNet was later
expanded and adapted to different problems, such as opti-
mization and biclustering, leading to a broad family of al-
gorithms [de França et al., 2010; Borges et al., 2012; Borges
and Coelho, 2018].
One of these algorithms is the Optimal Clustering Op-

timization aiNet (ocopt-aiNet), developed by Borges et al.
[2012] for clustering and later extended by the Cross In-
formation Potential aiNet (CIP-aiNet) [Borges and Coelho,
2018].
The CIP-aiNet uses CIP as an inter-cluster evaluation func-

tion to assess the partitions. It has the drawback of only eval-
uating the clusters’s separation, not considering their com-
pactness.
So, as the ocopt-aiNet algorithm and its extensions can

maintain solutions with diversity, their structure can be used
as a basis for the development of new techniques for alterna-
tive clustering. Therefore, its details are shown in the next
subsection.

2.2.1 The ocopt-aiNet algorithm

The algorithm starts with a randomly generated initial pop-
ulation, which is evolved through cloning, hypermutation,
suppression, and memory maintenance strategies.
In ocopt-aiNet, each candidate solution is encoded as illus-

trated in Figure 3, for a hypothetical dataset with 15 objects:
each individual is an integer-value array of size equal to the
number of objects in the dataset, and the values in each posi-
tion correspond to the label of the cluster to which that object
must be assigned.

Figure 3. Example of 4 candidate solutions encoded in ocopt-aiNet’s popu-
lation.

Then, the algorithm assesses the individuals using an adap-
tation of the Silhouette Criterion. Commonly, the original
Silhouette Criterion [Rousseeuw, 1987] and its adaptation
use the Euclidean distance as a measure of dissimilarity be-
tween objects. In the ocopt-aiNet’s adaptation, the cluster
center is used, while the original Silhouette uses all the ob-
jects of a cluster. Equation 6 describes the formulation of the
Silhouette Criterion adopted in ocopt-aiNet.

S−→xj
= bq,j − ap,j

max(ap,j , bq,j)
(6)

where S−→xj
is the Silhouette value for object −→xj in cluster p,

ap,j is the distance of object −→xj to the center of cluster p, and
bq,j is the distance between object −→xj and the center of the
closest cluster q where q ̸= p. The average of S−→xj

for all
objects in the dataset represents the Silhouette Criterion of a
specific partition.
ocopt-aiNet maximizes the average Silhouette Criterion

during the search to get better partitions for a given dataset.
Therefore, with a single criterion, it assesses intra- and inter-
cluster distances.
After each individual is evaluated, they are cloned and un-

dergo a mutation process. Each clone is mutated using a
unique mutation operator, and the choice of operators to be
used is made randomly, with probability of occurrence, 25,
25, and 50% for the following operators, respectively:

• Operator 1: increase the number of clusters of the in-
dividual by selecting one cluster, with more than two
objects, and dividing it into two new clusters.

• Operator 2: cluster suppression, which eliminates one
cluster from an individual with more than two clusters.
In this case, the objects belonging to the chosen cluster
are reallocated to the nearest cluster.

• Operator 3: object adjustment occurs in 10% of the ob-
jects, identifying the best cluster that the object should
be assigned to. To do so, the algorithm chooses the clus-
ter with the shortest distance between the object and the
cluster’s center.
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After the application of the mutation operators, each clone
is evaluated and only the best individuals are kept for the
next iteration. This process is carried out until the average
fitness stabilizes. After stabilization, a suppression and in-
sertion process occurs.
The suppression is used when equal individuals in the pop-

ulation are eliminated. For insertion, the algorithm will use
the 10% growth rate for the current population, and at least
1 new individual is created.
Using the structure of the aiNet framework as a basis, it

is possible to develop new operators that are capable of ex-
ploring the search space to find new partitions, in addition
to maintaining solutions with diversity. And, based on In-
formation Theory concepts for cluster evaluation, it is possi-
ble to investigate new structures of the spatial distribution of
datasets.

3 Proposed Approaches
The new algorithm called Information-Theoretic Learning
Artificial Immune Network (ITL-aiNet) has a basic structure
similar to ocopt-aiNet (Section 2.2.1) but modifies the muta-
tion operators, evaluation of solutions, clustering criteria and
maintenance of alternative solutions.
The representation of individuals in the population is sim-

ilar to the one illustrated in Figure 3, and the overall steps of
the new algorithm are given in Algorithm 1.

Algorithm 1 ITL-aiNet algorithm
Input X: Dataset
σ: Kernel size
P: Population size
K: Initial number of clusters
C: Number of clones
I: Number of internal iterations
Z: Number of global iterations.
Output Set of partitions.
1: Create P individuals with K random labels
2: Build a matrixM(i, j)N×N using Equation 4 where i ̸=

j
3: repeat
4: repeat
5: Fitness assessment using the ITL-based Silhou-
ette Coefficient

6: Creation of C clones for each of the P individu-
als

7: Application of mutation operators
8: Fitness assessment of clones through the ITL-
based Silhouette Coefficient

9: Selection of the best individuals
10: until I is reached
11: Evaluation of the affinity between individuals
12: Suppression of individuals with high affinity
13: Creation of new individuals to maintain population

size P
14: until Z is reached
15: Return: Final set of individuals (each corresponding to

a possible partition)

InAlgorithm 1, the initialization of the population with P
individuals occurs randomly with a maximum ofK different
clusters. Matrix MN×N contains the quadratic information
potential estimator V obtained by the evaluation of Equation
4 between all objects.
The fitness value corresponds to the internal quality of the

partition and is given by the new index adapted from the Sil-
houette criterion (further described in Section 3.1), where σ
represents the ParzenWindowwidth. Then,C clones are cre-
ated for each individual in the population and the mutation
operators are applied.
All altered clones are then evaluated with the adapted Sil-

houette and only those individuals with the highest fitness
are maintained in the population for the next iteration.
Once the local iteration is complete, the affinity between

individuals is analyzed, and those with high affinity (simi-
larity) are suppressed, so new randomly created individuals
are inserted into the network, replacing the suppressed ones.
The algorithm will terminate after a given number of global
iterations.
The inclusion of new individuals increases the number of

new candidate solutions up to P . This allows the control of
the size of the population, differently from the ocopt-aiNet,
which has no population size limits. Also, in ITL-aiNet, the
number of iterations is defined by a parameter and no longer
by the convergence of algorithms, which can be difficult to
estimate using a threshold. Section 4.3 depicts a convergence
study of the proposed algorithm.

3.1 ITL-based Silhouette Coefficient
For the adaptation of the Silhouette coefficient, we use
the quadratic information potential estimator (Equation 4).
Therefore, when two samples are compared, the information
potential between them, provided by the symmetric Gaussian
kernel, is obtained.
The proposed index is presented in Equation 7. As in the

original Silhouette, higher values indicate better partitions of
a given dataset.

S′(X) = 1
N

(
N∑

i=1
(Vintra(−→x i) − Vinter(−→x i))

)
(7)

Equation 8 calculates the value of the information poten-
tial of the object −→x i with all objects of cluster c. So, as we
have the average of the information potential between object
−→x i and all objects of its cluster, it represents cluster c intra-
cluster information potential (Vintra).

Vintra(−→xi) = 1
Nc − 1

Nc∑
j=1

G2σ2(−→x i − −→x j) (8)

where Nc is the number of objects in cluster c, −→x i and −→x j

are objects allocated to c, and i ̸= j.
Equation 9 represents the inter-cluster information poten-

tial (Vinter): the average of the information potential of ob-
ject−→x i and all objects of a cluster d (cluster d has the highest
average information potential with object −→xi).
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Vinter(−→xi) = 1
Nd

Nd∑
l=1

G2σ2(−→x i − −→x l) (9)

where Nd is the number of objects in cluster d, −→x l ∈ d, and
−→x i /∈ d.

3.2 Mutation operators
Themutation operators of ITL-aiNet are applied to the clones
generated for each individual in the population, to create, sup-
press, or rearrange clusters.

3.2.1 Cluster Suppression

The first operator aims to delete one cluster from the candi-
date solution and it can only be applied to clones with more
than 2 clusters. This operator randomly selects an existing
cluster in the individual and suppresses it. Therefore, each
object originally allocated to the suppressed cluster must be
reallocated to an existing cluster.
The reallocation process is made according to the Differ-

ential Entropy Clustering given in Equation 5: each object
to be reallocated is evaluated with Equation 5 and inserted
into the cluster that presents the lowest entropy gain.

3.2.2 Cluster Division

The second operator aims to create, through division, new
clusters in a candidate solution, thus it can only be applied
to clusters with more than 2 objects allocated to it. To illus-
trate how this operator works, consider the cluster depicted
in Figure 4a.
Two objects are chosen to form two new clusters. The

first object has the highest information potential among the
cluster and the second object contains the least information
potential to the first selected object. Thus, the algorithm first
selects objectA (red point, Figure 4b) that has the highest av-
erage quadratic information potential compared to the other
objects in the cluster, and B (blue point), which has the low-
est quadratic information potential when compared to A.

A and B are the initial objects of the two new clusters.
For each of the remaining objects, the quadratic information
potential is evaluated with A and B, and the highest value
indicates to which cluster that object must be assigned. In
Figure 4b, the two new clusters are marked in red and blue
lines.
This operator also refines the new cluster generated by B

(blue point). This refinement has a 10% probability of oc-
curring. To implement this local search, we used the process
known as Neighborhood Analysis, adapted from the work of
Zhang et al. [2013].
The neighbors are selected independently of clusters, and

even clusters that were not evaluated by this operator are an-
alyzed. The neighbors of an object are selected based solely
on the criterion of higher Information Potential to the ana-
lyzed object. Once the neighboring objects are found, the la-
bel of each neighbor is checked; if the majority of neighbors
are in the same cluster as the analyzed object, no changes are
made.

(a) Cluster to be divided.

(b) Dividing a cluster.

(c) Local Search.

(d) Final Local Search.
Figure 4. Cluster Division.

Otherwise, if the neighbors belong to a cluster different
than the analyzed object, the cluster label of this object will
be changed to this new cluster. Thus, it does not matter if the
new cluster was one of those currently created or was already
a pre-existing cluster in the partition. With this operation, the
algorithm ensures that the clusters have greater cohesion.

Figure 4c depicts the objects allocated to the new cluster
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generated by the base object B (blue line). This cluster will
be reassessed by the local search process using this Neigh-
borhood Analysis process.
For the ITL-aiNet algorithm, 5 neighbors with the highest

Information Potential are selected. Therefore, in Figure 4c,
the objects in green represent those that are considered neigh-
bors for the analysis of the selected object (brown point).
It is possible to verify that there are more neighbors be-

longing to the cluster delineated by the red line; thus, the se-
lected object should have its label changed to this new cluster.
Figure 4d illustrates the final configuration of the clusters,
where the blue points indicate one cluster and the red points
represent the other cluster formed.
Finally, in case of a tie, the cluster with the highest aver-

age value of information potential with the analyzed object
is selected. To exemplify this case: consider that the object
selected for evaluation has 2 neighboring objects that are in
cluster C, 2 other neighboring objects that are in cluster D,
and 1 neighboring object in cluster E; in the first two cases,
there was a tie between C and D, so the cluster in which the
analyzed object has the highest average information potential
between C and D will be selected.

3.2.3 Cluster Refinement

The third operator aims to refine the clusters presented in a
candidate solution. When this operator is selected, a new step
is started: each object of the dataset has a 10% probability
of being evaluated, regardless of their original clusters, and,
through Differential Entropy Clustering (Equation 5), their
possible reallocation to all other clusters of the solution is
evaluated.

3.3 ITL-aiNet complexity

The evaluation process is dependent on the number N of ob-
jects in the dataset and the population size P . In this process,
sums are used in most calculations. There is no comparison
between individuals in this step, so there is Z × I × P × N2

evaluations.
The step with a longer processing time is the application

of the mutation operators in each of the C clones, which is
dependent on the population size P . In this case, there are
P × C individuals to be mutated and each operator has dif-
ferent complexities:

• In Cluster Suppression, when a cluster c is suppressed,
there are Nc comparisons to be done, with K clusters
still existing in this individual, so the number of compar-
isons is Nc × (

∑K
i=0(Ni)) > N , where (

∑K
i=0(Ni)) +

Nc = N .
• In Cluster Division, there areN2

c comparisons. In the lo-
cal search the number of comparisons isN ′

c ×N , where
N is the number of objects in the dataset and N ′

c is the
number of objects in the new cluster generated through
mutation, which is less than Nc.

• In Cluster Refinement, only 10% of the objects are eval-
uated (Na) and compared to all clustersK in the individ-
ual. The number of comparisons is Na × (

∑K
i=0(Ni)).

The algorithm must compare each individual to its clones.
This step uses the fitness value of each clone, so it per-
forms P × C comparisons. In the suppression, the algo-
rithm compares each individual and each object, so it per-
forms Z × P × N2 comparisons.
The number of individuals is maintained at each itera-

tion, thusworst-case complexity becomes smaller than ocopt-
aiNet’s, which does not have population control.
In summary, the computational complexity of ITL-aiNet is

shown in Expression 10. Regardless of the mutation operator
chosen, its complexity is dominated by the quadratic cost of
computing the evaluation function or comparing individuals
in the suppression step.

O(Z × I × P × N2 + P × C + Z × P × N2) (10)

4 Materials and Methods
This section presents the datasets used in the experiments, the
algorithms compared to the ITL-aiNet, and the assessment
indices. The proposed algorithm was implemented in Java
(JDK 1.8.0) and all the experiments were executed in a PC
with an Intel Core i7-8565U processor (Quad-core CPU), 8
GB of RAM, and Windows 10.

4.1 Datasets
Experiments were performed on 5 datasets with different
characteristics. The first dataset, presented in Figure 5a, is
a synthetic dataset with 1024 two-attribute objects, divided
into four clusters. For this dataset, 4 clusters are expected.
Some alternative solutions must be possible using different
initial parameters, to analyze the maintenance of compact-
ness of known clusters.
The second dataset, named “Flower”, is the set of pixels

of a single image, given in Figure 5b [Wu et al., 2018], in
which the algorithm must be able to cluster the pixels to cre-
ate a sub-image. The RGB values of each pixel are taken as a
single object and converted into black and white pixels. This
results in a dataset of 256 samples and 3 attributes and only
partitions with 2 clusters were analyzed.
This experiment analyzes how algorithms behave in im-

age segmentation. In this case, there are no labels available,
and one possibility would be to verify the segmentation into
background and foreground [Niu et al., 2014].
The third dataset, CMUFace [Dua and Graff, 2017], con-

tains 640 32 × 30 pixel images of 32 different faces, con-
taining 20 images of each face. Three different faces were
manually selected (illustrated in Figure 5c) randomly and
without any prior analysis. These faces feature multiple im-
ages from different positions (straight, left, right, up), with
distinct expressions (neutral, happy, sad, angry), and with or
without sunglasses.
For this dataset, the possible solutions, besides the cluster-

ing of images of the same person, would be the variations
of positions or the differentiation by the existence or not of
sunglasses.
The fourth dataset is the “Amsterdam Library of Object

Images” (ALOI) [Geusebroek et al., 2005]. The original
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(a) Synthetic dataset.

(b) Flower dataset.

(c) Example of the CMUFace dataset.
Figure 5. Illustrations of three datasets of the experiments.

dataset has 1000 objects, with 110,250 images but, here, 9
objects that have similar features between shape and color
were chosen, with 12 images containing different illumina-
tion variations of each object. The 9 objects are presented in
Figure 1. These objects can be clustered either by shape or
color.
Finally, the last dataset is theWebKb 1 dataset. This dataset

corresponds to a collection of 1041 HTML documents from
four universities. These documents were preprocessed and
500 words were maintained, then PCA was applied, keeping
87% of variance, resulting in a dataset with 1041 objects and
100 features. The documents can be clustered based on top-
ics or university names.
In the experiments performed here, the attributes of all

datasets were normalized into [-1, 1].

4.2 Algorithms
To compare the results of the ITL-aiNet with the literature,
we chose well-established algorithms that perform clustering
in different ways, namely the classic K-Means [Jain, 2010],

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

KDAC [Wu et al., 2018], MISC [Wang et al., 2019], the
bioinspired algorithms copt-Bees-MO [Cunha et al., 2017]
and ocopt-aiNet [Borges et al., 2012], and, finally, MinCEn-
tropy [Vinh and Epps, 2010].
The implementation of KDAC, MISC, and MinCEntropy

algorithms, were obtained from their official websites, while
the implementations of ocopt-aiNet and copt-Bees-MOwere
provided by their authors.
The copt-Bees-MO and ocopt-aiNet are based on the

Euclidean distance to evaluate the dissimilarities between
data objects, and ocopt-aiNet uses the Silhouette criterion,
adapted with cluster center distance, to assess the quality of
each proposed partition. MinCEntropy, on the other hand, is
based on Information Theory metrics for clustering quality
evaluation.
Table 1 shows the parameter settings adopted in the com-

parisons for the algorithms that have dataset-dependent val-
ues. The configuration of ITL-aiNet was defined through an
initial set of experiments with all datasets.
Compared to other algorithms, ITL-aiNet has a larger num-

ber of input parameters, but only σ is difficult to adjust. A
sensitivity analysis is carried out on this parameter in Section
4.3.

Table 1. Parameter settings.
Synthetic Flower Face ALOI WebKb

ITL-aiNet

K=10
P=5
C=5
I=50
Z=2
σ=1.4

K=10
P=5
C=5
I=50
Z=2
σ=1

K=10
P=5
C=5
I=50
Z=2
σ=7

K=10
P=5
C=5
I=50
Z=2
σ=10

K=10
P=5
C=5
I=50
Z=2
σ=10

K-Means K={4,2} K=2 K={3,4} K=3 K=4

KDAC K1=4
Ka=2

K1=2
Ka=2

K1=3
Ka=4

K1=3
Ka=3

K1=4
Ka=4

MinCEntropy K1=4
Ka=2

K1=2
Ka=2

K1=3
Ka=4

K1=3
Ka=3

K1=4
Ka=4

K-Means has a single solution as output. In cases of al-
ternative partitions with different numbers of clusters, two
configurations are used. KDAC and MinCEntropy have as
input the number of clusters of the initial and alternative par-
titions to be generated. As ITL-aiNet, MinCEntropy requires
the value σ as input, and for these experiments, we adopted
the recommendation by Vinh and Epps [2010].
The copt-Bees-MO, ocopt-aiNet, and MISC algorithms

were also adjusted as in their original papers [Cunha et al.,
2017; Borges et al., 2012; Wang et al., 2019] for all datasets
studied in this work.
Finally, all experiments were repeated 10 times for all al-

gorithms and datasets, and for diversity and quality analyses,
they were considered as independent experiments. It is im-
portant to highlight that, for each independent experiment,
K-Means was run with its two configurations, so alternative
solutions could be found.

4.3 Sensitivity and convergence analysis
There is one parameter, σ, in ITL-aiNet, which may signifi-
cantly influence clustering. An analysis of the impact of the
variation of this parameter in the proposed Silhouette crite-
rion is shown, considering the configuration of Algorithm

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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(a) Synthetic (the three partitions are shown in Figure 7).

(b) Face.

(c) ALOI.
Figure 6. Silhouette behavior with sigma variation.

1. For these analyses, three datasets that have known parti-
tions were chosen: Synthetic, Face, and ALOI.
Figure 6 shows the behaviors of changing the value of σ

for the Synthetic dataset (Figure 6a), Face dataset (Figure
6b), and ALOI dataset (Figure 6c).
For the Synthetic dataset, three possible partition config-

urations were found by ITL-aiNet: one with 4 clusters and
two with 2 clusters (Figure 7). Considering these three dif-
ferent partitions, it is possible to analyze, through Figure 6a,
that smaller σ values result in more distant curves for dif-
ferent clusterings, and as this value increases, the difference
decreases.
This is due to the increase in the size of the ParzenWindow,

which means that objects that had less information potential
for smaller σ end up increasing their information potential
when σ increases.
Consequently, objects that should be in separate clusters

end up being merged into one cluster. As for the other two
datasets, the curves for different clustering configurations
show greater distances. This occurs due to the different

(a) Partition A.

(b) Partition B.

(c) Partition C.
Figure 7. Partitions found by ITL-aiNet.

shapes of object clusters in these datasets.
The experiments have the parameter σ chosen after the

execution of the ITL-aiNet algorithm with different values,
within the range shown in the graphics of Figures 6.
When the choice of σ led to results close to the maximum

value of Silhouette, the algorithm tended to converge to a
similar solution in all alternative solutions, thus intermediate
values were selected, which increased the search for diverse
solutions.
Figure 8 shows the Silhouette stability (fitness) of ITL-

aiNet in both the 1st global iteration and 2nd global iteration.
The stability of the average fitness value is reached with 40
iterations in all datasets. Thus, the choice of 50 local iter-
ations is consistent with the results found in the Silhouette
stability analysis.

4.4 Performance metrics
Four indices were used to analyze the obtained results: two
of them for quality analysis of the partitions and two for diver-
sity evaluation. Quality assessment must take into account
the compactness of the clusters (or cohesion) and their sepa-
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(a) Synthetic (σ = 1.4).

(b) Face (σ = 7).

(c) ALOI (σ = 10).
Figure 8. Fitness Stability.

ration from the other clusters in the partition.
With this in mind, the Xie-Beni [Xie and Beni, 1991] and

the Generalized Dunn’s [Bezdek and Pal, 1998] indices were
chosen here. For diversity assessment, the Adjusted Rand
Index (ARI) [Hubert and Arabie, 1985] and the Normalized
Mutual Information (NMI) [Strehl and Ghosh, 2002] were
used.

4.5 Statistical tests
Statistical tests were employed to offer more accurate assess-
ments of the obtained results. These results undergo an anal-
ysis to show that differences found in the evaluated models
are statistically significant.
To determine the statistical significance of variations in the

algorithms’ performance, the Friedman test [Demšar, 2006]
with the corresponding post-hoc tests, was utilized with a sig-
nificance level of α = 0.05.

5 Experimental Results
The results are organized by dataset, and the mean and stan-
dard deviation values for each metric are presented for all
the algorithms. The results are shown in tables and (↓) indi-
cates that lower values are better and (↑) that higher values
are better for each index.
Results in bold highlight the best values. Finally, results in

italic are statistically different when compared to ITL-aiNet.

5.1 Synthetic dataset
Table 2 presents the diversity and quality indices of solutions
found by the considered algorithms when compared with the
known partition (ground truth). In this sense, GD, ARI, and
NMI must be maximum.

Table 2. Synthetic Dataset: mean and standard deviation of diver-
sity and quality metrics, compared to the ground truth.

Ground Thruth
NMI ↑ ARI ↑ XB ↓ GD ↑

ITL-aiNet 1.00±0.00 1.00±0.00 0.01±0.00 40.65±0.00
cOptBees. 0.95±0.07 0.90±0.14 0.06±0.06 24.92±18.48
KDAC 1.00±0.00 1.00±0.00 0.01±0.00 40.65±0.00
K-Means 0.61±0.21 0.48±0.42 0.96±3.02 36.60±12.79
MinCEnt. 1.00±0.00 1.00±0.00 0.01±0.00 40.65±0.00
MISC - - - -
ocopt-aiN. 1.00±0.00 1.00±0.00 0.01±0.00 40.65±0.00

Comparing the best results of the algorithms, ITL-aiNet,
KDAC, MinCEntropy, and ocopt-aiNet found the best solu-
tions in all executions. MISC was not able to find, at any
time, a solution that is similar to the ground truth, as it works
in order to find subspaces.
As the dimension of this dataset is small, MISC could not

obtain the correct partition, so no evaluation was possible.
K-Means is highly dependent on the initialization of its cen-
troids and, as it can get stuck in a local optima, which can be
noticed in the presented results, ARI and NMI values were
high, but not maximum for all runs.
The cOptBees-MO found the ground truth, but not for

all executions: this algorithm has a slow convergence when
the dataset has a large number of samples, which affects its
search for the best solutions, considering a stopping criterion
equal to a maximum number of iterations or convergence.
Table 3 presents the results of the alternative partitions,

considering different solutions. In this case, greater diver-
sity and high quality are expected. Thus, smaller values of
ARI, NMI, and XB are expected, whereas, for the GD index,
higher values are better.
ITL-aiNet exhibits greater diversity than the other algo-

rithms indicating that, as a population-based algorithm, it can
maintain solutions with high diversity for this type of dataset.
The quality is lower compared to algorithms with lower di-
versity due to the larger number of solutions found.
Since the MISC algorithm did not generate more than one

possible solution within each experiment, it was not possible
to analyze diversity per experiment; thus, it does not present
diversity values.
In the statistical test, ITL-aiNet showed significant differ-

ences, in most indices, when compared to the coptBees-MO
and KDAC algorithms.
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Table 3. Synthetic Dataset: mean and standard deviation of diver-
sity and quality metrics, considering alternative clustering solutions.
The best results are in bold and those statistically different from ITL-
aiNet (α = 0.05) are in italic.

Alternative Clustering
NMI ↓ ARI ↓ XB ↓ GD ↑

ITL-aiNet 0.57±0.00 0.17±0.00 0.18±0.00 14.71±0.00
cOptBees-MO 1.00±0.00 0.74±0.23 0.12±0.04 1.69±0.19
KDAC 0.71±0.00 0.50±0.00 0.13±0.00 21.19±0.00
K-Means 0.66±0.14 0.45±0.15 0.62±1.53 19.13±6.53
MinCEntropy 0.67±0.01 0.49±0.00 0.14±0.00 21.18±0.00
MISC - - 0.26±0.00 1.74±0.00
ocopt-aiNet 0.75±0.12 0.47±0.23 0.24±0.43 17.91±9.08

Figure 9 depicts the best alternative clustering obtained
by the compared algorithms. The choice of the best partition
uses the value of the objective function adopted by each al-
gorithm or, in the case of K-Means, the alternative clustering
most frequently found in all executions.
coptBees-MO and MinCEntropy do not maintain the com-

pactness between the known clusters, while the ITL-aiNet,
MISC, K-Means, KDAC, and ocopt-aiNet do not separate
objects of the same cluster, merging different clusters.

5.2 Flower
Table 4 presents the diversity and quality results for the
Flower dataset. In this case, there is no ground truth, so
greater diversity implies better results. It is worth noting
that the ITL-aiNet obtained the highest diversity, consider-
ing both diversity indices (NMI and ARI).
ITL-aiNet presented statistically better performance, in

terms of diversity, than cOpt-Bees-MO and K-Means. Some
algorithms showed low diversitywhen dealingwith this prob-
lem or ended up with low-quality solutions.

Table 4. Flower Dataset: Mean and standard deviation of diversity
and quality metrics. The best results are in bold and those statisti-
cally different from ITL-aiNet (α = 0.05) are in italic.

NMI ↓ ARI ↓ XB ↓ GD ↑
ITL-aiNet 0.11±0.04 0.11±0.33 0.48±0.66 1.07±0.44
cOptBees-MO 0.87±0.29 0.93±0.14 0.38±0.06 1.02±0.08
KDAC 0.90±0.00 0.94±0.00 0.20±0.00 1.53±0.00
K-Means 0.63±0.37 0.56±0.48 0.23±0.02 1.48±0.23
MinCEntropy 0.18±0.24 0.19±0.24 2.12±0.71 0.96±0.19
MISC 0.24±0.04 0.21±0.07 1.62±0.76 0.72±0.26
ocopt-aiNet 0.14±0.02 0.46±0.48 0.26±0.03 1.37±0.22

Figure 10 shows the two best partitions obtained by each
algorithm according to their internal evaluation indices. It
can be seen that ITL-aiNet and ocopt-aiNet separate the flow-
ers from the leaves. cOptBees-MO has two very close clus-
ters, with practically null diversity, as shown in Table 4.
KDAC has a high-quality result, but both the most com-

monly found images, Figures 10e and 10f, show that only
the flowers were found. As K-Means, KDAC, and MinCEn-
tropy found the flowers only. For MISC, Figure 10k, shows
the flowers, while in its alternative clustering, Figure 10l, it
shows the borders of the flowers.

5.3 Face
For the Face dataset, there are different ways of clustering,
two of which were analyzed here, following the experiments

of Vinh and Epps [2010], Wu et al. [2018], and Niu et al.
[2014]. Table 5 presents the diversity and quality results for
the Face dataset compared to the ground truth, and Table 6
considers alternative solutions.

Table 5. Face dataset: Mean and standard deviation of diversity
and quality metrics, compared to ground-truth.

Ground Truth
NMI ↑ ARI ↑ XB ↓ GD ↑

ITL-aiNet 1.00±0.00 1.00±0.00 0.27±0.00 0.06±0.00
cOptBees-MO 1.00±0.00 1.00±0.00 0.30±0.07 0.06±0.00
KDAC 1.00±0.00 1.00±0.00 0.27±0.00 0.06±0.00
K-Means 1.00±0.00 1.00±0.00 0.27±0.00 0.06±0.00
MinCEntropy 1.00±0.00 1.00±0.00 0.27±0.00 0.06±0.00
MISC - - - -
ocopt-aiNet 0.96±0.11 0.94±0.18 0.31±0.12 0.06±0.01

In the comparison with the ground truth (Table 5), it is
possible to observe that, besides the lower quality results of
ocopt-aiNet, all the algorithms found the correct partition.
MISC performs matrix operations to find subspaces and

then runs the K-Means algorithm to find partitions in each
subspace. Given the high dimensionality of this dataset, the
algorithm was not able to finish its iterations, due to insuffi-
cient memory in the computer where the experiments were
made.
For alternative clusterings, the results are different, as

shown inTable 6. The ITL-aiNet achieves less diversity than
most algorithms. The algorithms that obtained greater diver-
sity are MinCEntropy, and KDAC. For quality results, ITL-
ainet performs better than MinCEntropy and KDAC, with a
statistically significant difference compared to these two al-
gorithms.
For this dataset, using a semi-supervised method, i.e., ob-

taining an initial solution and using this solution as a compar-
ison to generate an alternative solution, as MinCEntropy and
KDAC do, brings greater diversity possibilities. But there
are issues in converging to solutions with high quality.

Table 6. Face dataset: Mean and standard deviation of diversity
and quality metrics for alternative solutions. The best results are in
bold and those statistically different from ITL-aiNet (α = 0.05) are
in italic.

Alternative Clustering
NMI ↓ ARI ↓ XB ↓ GD ↑

ITL-aiNet 0.70±0.16 0.73±0.10 0.46±0.04 0.05±0.00
cOptBees-MO 0.88±0.22 0.73±0.18 0.62±0.62 0.05±0.01
KDAC 0.17±0.03 0.11±0.03 1.54±0.07 0.04±0.00
K-Means 0.92±0.01 0.89±0.03 0.52±0.18 0.05±0.01
MinCEntropy 0.04±0.02 0.01±0.02 5.34±3.17 0.04±0.00
MISC - - - -
ocopt-aiNet 0.55±0.11 0.57±0.12 0.56±0.12 0.04±0.00

5.4 ALOI
Table 7 presents the diversity results for the ALOI dataset,
considering shape and color clustering. The quality of all
solutions found is presented in Table 8.
Table 7 shows the comparison between the known color

and shape clusterings with the results found by the algo-
rithms. In this case, the results must be as close as possible
to the ground truth, so they must have ARI and NMI close to
or equal to 1.
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(a) ITL-aiNet. (b) cOptBees-MO. (c) KDAC.

(d) K-Means. (e)MinCEntropy. (f)MISC.

(g) ocopt-aiNet.
Figure 9. Alternative clustering for the Synthetic dataset.

Table 7. ALOI dataset: Mean and standard deviation of diversity
metrics to shape and color clustering. The best results are in bold
and those statistically different from ITL-aiNet (α = 0.05) are in
italic.

Color Shape
NMI ↑ ARI ↑ NMI ↑ ARI ↑

ITL-aiNet 0.32±0.06 0.13±0.04 0.29±0.07 0.09±0.05
cOptBees-MO 0.58±0.05 0.43±0.06 0.25±0.04 0.12±0.04
KDAC 0.38±0.00 0.22±0.00 0.35±0.00 0.24±0.00
K-Means 0.51±0.18 0.34±0.16 0.30±0.12 0.15±0.13
MinCEntropy 0.39±0.09 0.31±0.10 0.25±0.09 0.19±0.09
MISC - - - -
ocopt-aiNet 0.56±0.06 0.29±0.05 0.47±0.10 0.22±0.06

It is possible to verify that the best algorithm was
cOptBees-MO for color, while for shape, on average across
both indices, the best was ocopt-aiNet. This shows that this
dataset may have an elliptical cluster distribution, as both al-
gorithms use the Euclidean distance.
Considering the quality results shown in Table 8, ITL-

aiNet demonstrated that the new evaluation index can effec-
tively assess the partition’s quality, with a high quality re-
sult. Statistically, in terms of quality using the GD index,
only KDAC did not show a significant difference compared

to ITL-aiNet.

Table 8. ALOI dataset: Mean and standard deviation of quality
metrics to shape and color clustering. The best results are in bold
and those statistically different from ITL-aiNet (α = 0.05) are in
italic.

XB ↓ GD ↑
ITL-aiNet 0.34±0.01 0.055±0.001
cOptBees-MO 0.79±0.13 0.031±0.003
KDAC 0.83±0.01 0.034±0.000
K-Means 0.87±0.20 0.032±0.006
MinCEntropy 1.61±0.31 0.020±0.003
MISC - -
ocopt-aiNet 1.70±1.20 0.030±0.004

5.5 WebKb
Table 9 presents the diversity results for the WebKb dataset,
considering clustering by topic and university. The quality
measured is presented in Table 10.
Table 9 shows the comparison between the known topic

and university labels with the results found by the algorithms.
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(a) ITL-aiNet 1st (b) ITL-aiNet 2nd (c) cOptBees 1st

(d) cOptBees 2nd (e) KDAC 1st (f) KDAC 2nd

(g) K-Means 1st (h) K-Means 2nd (i)MinCEnt. 1st

(j)MinCEnt. 2nd (k)MISC 1st (l)MISC 2nd

(m) ocopt 1st (n) ocopt 2nd
Figure 10. Results for the Flower dataset.

In this case, the results must be as close as possible to the
ground truth. Since all the algorithms have a worse perfor-
mance compared with the other datasets, it seems that it is
more challenging to find the correct clustering.

KDAC has better results with NMI and ARI indices con-

sidering the topic labeling but has a worse performance when
the university labeling is considered. For university labeling,
MinCEntropy got better results than the other algorithms, in-
dicating that partitions with this labeling are easily found by
the ITL concepts. ITL-aiNet corroborates that ITL concepts
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Table 9. WebKb dataset: Mean and standard deviation of diversity
metrics to topic and university clustering. The best results are in
bold and those statistically different from ITL-aiNet (α = 0.05)
are in italic.

Topic University
NMI ↑ ARI ↑ NMI ↑ ARI ↑

ITL-aiNet 0.02±0.01 0.03±0.01 0.05±0.02 0.03±0.01
cOptBees-MO 0.01±0.01 0.03±0.04 0.01±0.01 0.01±0.00
KDAC 0.07±0.00 0.09±0.00 0.02±0.00 0.00±0.00
K-Means 0.04±0.01 0.08±0.02 0.01±0.00 0.00±0.00
MinCEntropy 0.07±0.00 0.08±0.01 0.06±0.04 0.04±0.04
MISC 0.02±0.01 0.04±0.01 0.02±0.02 0.00±0.01
ocopt-aiNet 0.02±0.00 0.01±0.01 0.01±0.00 0.00±0.00

can work with the University label.
For the quality results (shown in Table 10) ocopt-aiNet,

considering both indices, achieved the best result. It indi-
cates that, in this dataset, there is a clear separation between
the clusters, as this algorithm utilizes an evaluation index,
the adapted Silhouette, that analyze the objects and the clus-
ter centers.

Table 10. WebKb dataset: Mean and standard deviation of quality
metrics. The best results are in bold and those statistically different
from ITL-aiNet (α = 0.05) are in italic.

XB ↓ GD ↑
ITL-aiNet 59.05±14.42 0.03±0.01
cOptBees-MO 33.49±13.11 0.05±0.01
KDAC 14.89±0.02 0.05±0.00
K-Means 7.77±5.53 0.03±0.01
MinCEntropy 13.12±11.96 0.00±0.00
MISC 21.34±23.60 0.01±0.01
ocopt-aiNet 1.30±1.92 0.85±0.14

5.6 Discussion
Chao et al. [2021] indicate that algorithms dealing with Alter-
native Clustering remain an open area. Thus, in this work it
was proposed the implementation of an ITL-based Artificial
Immune Network algorithm for alternative clustering: ITL-
aiNet.
Considering the Synthetic dataset, which has linearly sep-

arable clusters, it obtained the ideal solution as one output.
This shows that it can find the correct cluster configuration.
ITL-aiNet also obtained the most diverse results in alterna-
tive solutions.
For the Flower dataset, ITL-aiNet presented good results

for diversity, since it had the best results when compared
to the other algorithms. Considering the CMUFace dataset,
ITL-aiNet found the correct solution in all executions of the
experiments.
For alternative solutions though, ITL-aiNet did not obtain

the most diverse results. For the ALOI dataset, ITL-aiNet
was better in terms of color than shape, but its performance
was far from the best ones. Finally, for the WebKb dataset,
which has proved to be the most complex dataset, ITL-aiNet
presented better results for the second category (University),
with the runner up performance.
Table 11 presents the average elapsed time and the number

of solutions (together with the standard deviation) obtained
by the proposed algorithm for each dataset.
It is possible to notice that the WebKb dataset had a sig-

nificant impact on the number of solutions, since it has high

dimensionality and the largest number of objects, which in-
creases the number of possible solutions and comparisons
that must be done.
The number of solutions has low variation for all datasets,

which is due to the population control of ITL-aiNet. The
highest elapsed time was observed for the datasets that have
the largest number of objects, Synthetic and WebKb, show-
ing that the greatest impact on execution times is the number
of objects and not the dimensionality of the samples.

Table 11. Number of solutions and Elapsed Time.
Number of solutions Elapsed time [mm:ss]

Synthetic 2.50±0.71 08:37±00:20
Flower 2.00±0.67 00:13±00:01
ALOI 2.20±0.92 00:01±00:00
CMUFace 2.50±0.53 00:01±00:00
WebKb 4.90±0.32 09:49±00:44

In terms of algorithm complexities:

• MISC = O(D × N(D2 + D × N + I × K + N))
• KDAC = O(N3) + O(I × N2 × D2)
• K-Means = O(N × K × D × I)
• ITL-aiNet =O(Z×X ×P ×N2+P ×C+Z×P ×N2)
• ocopt-aiNet = O(Z∗ × X × P × N2 + P × C + Z∗ ×

P × N2)
• MinCEntropy = O(N2 × D) + O(I × N × (K + N))

where D is the dimension of the dataset, N is the number of
objects, I is the number of iterations of the algorithm, Z is
the number of global iterations, X is the number of internal
iterations, P is the size of the population of candidate solu-
tions, and K is the number of clusters.
The computation complexity of the algorithms used in the

experiments were acquired using data extracted from the ref-
erences of each algorithm. The coptBees-MO algorithm is
the only one that has no reference regarding its complexity.
It can be noticed that KDAC and MISC algorithms are

dependent on the data dimensions since they work to create
different feature matrices (or subspaces) and then calculate
the cluster distributions. Therefore, the larger number of at-
tributes in a dataset, the higher the complexity for these algo-
rithms. The K-Means algorithm has the lowest complexity,
as it has the fewest internal operations.
The MinCEntropy algorithm initially computes the matrix

of information potentials among the objects in the dataset.
After that, it randomly initializes the first candidate solution
and, for each new iteration, updates the cluster labels of the
objects to find the best configuration among them.
The ocopt-aiNet and ITL-aiNet algorithms are very close

in terms of computational complexity. After calculating the
distance matrix (ocopt-aiNet) and the Information Potentials
(ITL-aiNet) among objects, only summations are required.
However, the ocopt-aiNet algorithm depends on the con-

vergence of the average fitness values of the population to
finish (Z∗ and X∗) , which increases its complexity.
Since the number of individuals in ocopt-aiNet’s popula-

tion P is variable, it can increase without restrictions, while
in ITL-aiNet, the number of iterations is predefined and the
number of individuals is not altered during iterations.
Therefore, considering the complexity of the algorithms,

both KDAC and MISC have the highest complexity for data
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with larger dimensions. MinCEntropy and K-Means, on the
other hand, have the lowest complexity due to the fewer num-
ber of operations they perform, and as they progress, the clus-
ter label changes for the objects decreases.
Meanwhile, ITL-aiNet and ocopt-aiNet tend to be more

computationally expensive when the number of objects is
higher.

6 Conclusion
Clustering itself can be considered a complex task, and clus-
tering objects of a dataset in different ways is an actual de-
mand to find new patterns within the same samples. This
work proposed a new bioinspired algorithm based on Jerne’s
immune network theory, on the aiNet framework, and on ITL
concepts: ITL-aiNet.
ITL-aiNet aims to find andmaintain high-quality and alter-

native clustering solutions. Besides, a new clustering valida-
tion index, based on a combination of the Silhouette criterion
with Information Theory aspects, was used as the ITL-aiNet
inner criterion to find new partitions for a dataset.
ITL-aiNet includes adapted mutation operators to use In-

formation Theory concepts, thus being compatible with the
modified Silhouette criterion.
Using different evaluation indices, it was possible to no-

tice that ITL-aiNet maintains high-quality clusters for im-
age datasets. For those datasets with a smaller number of
attributes, the diversity found was better compared to the al-
gorithms used in the experiments.
Therefore, it is possible to conclude that the proposed al-

gorithm can find a good partition configuration regarding di-
versity in datasets with a smaller number of attributes and
achieves better quality as the number of attributes increases.
As for future work, the mutation operators and the new

evaluation criterion proposed here can be adapted to differ-
ent clustering tasks, such as clustering real-time unbounded
data streams. Furthermore, seeking ways to adapt parame-
ter configurations automatically could definitely improve the
overall performance of ITL-aiNet.
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