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Abstract As software evolves, new artifacts are created, modified, or removed. One of these main artifacts gener-
ated in the development of object-oriented software is the class. Classes have a very dynamic life cycle that can
result in additional costs to the project. One way to mitigate this is to detect, in the early stages of the development,
classes that are prone to change. Some approaches in the literature adopt Machine Learning (ML) algorithms to pre-
dict the change-proneness of a class. However, most of these approaches do not consider the temporal dependency
between training instances, i.c., they consider that the instances are independent. To overcome such a limitation,
this study presents an approach for predicting change-proneness based on the class change history. The approach
adopts the sliding window method and is evaluated to obtain six kinds of models, which are derived by using, as
predictors, different sets of metrics: structural, evolutionary, and smell-based. The evaluation uses five systems,
four ML algorithms, and also explores some resample techniques to deal with imbalanced data. Regardless of the
kind of model analyzed and the algorithm used, our approach overcomes the traditional one in 378 (~80%) cases,
out of 420, considering all systems, kinds of models, indicators, and algorithms. Moreover, the results show that
our approach presents the best performance when the set of evolutionary metrics is used as predictors. There is no
improvement when smell-based metrics are added. The Random Forest algorithm with the resampling technique

ADA reaches the best performance among the ML algorithms evaluated.
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1 Introduction

The adoption of iterative and incremental software devel-
opment by the software industry encompasses the genera-
tion of newer software versions and releases over time. As
the systems evolve, they become larger and more complex.
This makes software maintenance expensive and arduous.
Changes in the software can occur due to many reasons,
for instance, accommodation of customers’ demands, quality
improvement, fault corrections, changes in technology, etc.
Thus, managing and controlling changes is critical [Malho-
tra and Khanna, 2019]. However, monitoring equally all the
parts of the code is expensive and resource consuming [El-
ish and Al-Khiaty, 2013]. Hence, the industry has adopted
change-proneness prediction models to identify parts of the
code more prone to change in subsequent versions of the soft-
ware [Malhotra et al., 2021a].

Some models focus on different code segments, such as
packages, files, classes, and methods, according to some im-
portance criterion. However, models for predicting change-
prone code at class-level granularity are the most used and
popular. This is because the class is considered the foun-
dation of an Object-Oriented (OO) software. It contains
everything required to execute only one aspect of a desired
functionality and is a relatively independent and interchange-
able module [Lindvall, 1998]. In this sense, change-prone
classes are those that are likely to change across different

versions of a software product. Predicting these classes in
the early stages of the development is known in the litera-
ture as Change-Prone Class Prediction (CPCP) [Malhotra
and Khanna, 2019].

A class is subject to different kinds of changes along the
software evolution. One of these changes regards the ad-
dition of new functionalities. Classes implementing essen-
tial system features are more likely to change in future ver-
sions. A class becomes more complex and fault-proneness
by adding new functionalities, increasing the probability of
changes to fix bugs. This change process possibly erodes
the original design and reduces the quality of class struc-
ture by introducing smells [Catolino et al., 2020] that are
sub-optimal design and/or implementation choices adopted
by practitioners. Smells also imply the need for refactoring
and future changes to improve the overall quality of the class
structure.

Therefore, efficient solutions to the CPCP problem are es-
sential. They help to plan preventive maintenance operations
to ensure product quality, keep the software operational, al-
locate resources more efficiently, assure customer satisfac-
tion, and, reduce technical debt. This avoids the propaga-
tion of problems to later stages with higher costs. Due to
its importance, the CPCP problem has been a theme of sur-
veys and systematic reviews [Malhotra and Khanna, 2019;
Godara and Singh, 2014; Malhotra and Bansal, 2015]. These
studies show that the most approaches use Machine Learning
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(ML) techniques to derive the prediction models, overcoming
statistical methods [Malhotra and Khanna, 2013]. Current
models use different sets of metrics (dependent variables)
to capture the different CPCP dimensions and characteris-
tics. Most of them are structural-based models [Malhotra
and Khanna, 2019]. However, these metrics are often com-
bined with other metrics, such as the intensity of smells or
anti-patterns [Catolino et al., 2020; Kaur and Jain, 2017; Pri-
tam et al., 2019], and process metrics [Elish and Al-Khiaty,
2013; Al-Khiaty et al., 2017; Catolino and Ferrucci, 2018,
2019; Catolino et al., 2018; Malhotra and Khanna, 2018a,b].
These studies showed that the use of different kinds of met-
rics improves the performance of the ML models in different
degrees, However, studies on the performance of different
kinds of models are required [Malhotra and Khanna, 2019].

The current approaches present some limitations. They
do not consider the temporal dependency between the class
changes, i.¢., they consider that all instances used in the train-
ing phase are independent. In our previous study [Silva et al.,
2022], we introduced an ML approach for the CPCP problem
using the Sliding Window (SW) method [Dietterich, 2002]
to overcome this limitation. We proposed an approach con-
sidering that any changes to a class may affect their subse-
quent modifications. We also considered that the changes
often depend on previous changes. Then, the class change
history is considered. The approach was evaluated with four
ML algorithms by using structural, evolutionary, and smell-
based metrics. The use of the SW method significantly
improved the prediction performance compared to the tra-
ditional approach, which consider independent learning in-
stances. However, we did not evaluate the performance of
the approach using different sets of metrics in our previous
study. Such an evaluation is important to better guide devel-
opers using our approach and selecting the best set of metrics
(predictors).

Considering this fact, in the present study, we evaluate our
SW approach to obtain six types of models, which are usu-
ally found in the CPCP literature. The models are derived
by using different sets of metrics (features). We also assess
the importance of these features for the prediction models.
Moreover, we conduct a broader analysis with new indica-
tors and statistical tests. In this way, the main contributions
of this study are as follows:

* We propose a history-based approach for the CPCP
problem: this approach better captures the problem
structure. It allows a better representation, considering
the dependency between the instances obtained from
different releases. This leads to a better performance
than the traditional approaches proposed in the litera-
ture, which consider the instances are independent;

* We evaluate the performance of the approach by adopt-
ing six kinds of models found in the literature. These
models use different sets of features as predictors. In
this way, we can identify the best model for our ap-
proach, and derive some insights on the use of the ap-
proach;

* We provide a replication package containing the imple-
mented code, datasets, and results, available online in
our repository [Silva et al., 2024]. It contains the set of
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scripts used to extract all the metrics as well as scripts
for executing the approach. This allows replication and
future research.

We also present some implications of our results for guid-
ing the research community and practitioners. In short, evo-
lutionary models are the best when the SW method is applied.
The Random Forest algorithm presents the best performance.
Correct detection of change-prone classes can allow develop-
ers to better focus on change-prone classes. This minimizes
the number of future changes, guides the maintenance team,
and efficiently distributes resources and effort. The results of
this study can be used for the early detection of change-prone
classes that can be monitored during software development,
reducing technical debt and decreasing maintenance costs.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the CPCP problem and existing approaches. In
Section 3, we present our history-based approach. Section 4
describes how our evaluation was conducted, the adopted
methodology, and research questions. Section 5 presents and
analyzes the results. Section 6 discusses the main implica-
tions of our findings. Section 7 describes the main threats to
the validity of our results. Section 8 concludes the paper and
proposes future studies.

2 Related Work

The main source of information includes surveys and system-
atic reviews on CPCP [Malhotra and Khanna, 2019; Godara
and Singh, 2014; Malhotra and Bansal, 2015]. The system-
atic review of Malhotra and Khanna [2019] shows that more
than 50% of the studies use structural metrics, and around
25% combine two or more types of metrics. The authors
highlight that ML is a trend adopted in more recent studies.
The studies that are most related to ours are the focus of this
section, which is organized as follows. First, we present the
main ways adopted to decide whether a class changes. Then,
we describe the main sets of features adopted in the litera-
ture, the models generated, as well as some pieces of work
with a goal similar to ours that compare these models. After,
we discuss the main ML algorithms and indicators used in
the existing studies. Lastly, we present some works that are
based on time series that also consider temporal dependency.

2.1 Methods for Computing Class Changes

There are different approaches in the literature to determine
changes in classes. One is based on the number of Source
Lines of Code (SLOC). If the SLOC values of the current
version are different from the values of the previous re-
lease, a change occurred in the class [Malhotra and Khanna,
2019; Kaur and Jain, 2017; Arisholm et al., 2004; Khanna
et al., 2021; Koru and Tian, 2005; Lu et al., 2012; Malhotra
and Khanna, 2021; Martins et al., 2020; Zhou et al., 2009].
Other approaches consider structural changes in the code el-
ements [Bieman et al., 2003; Eski and Buzluca, 2011; Mas-
soudi et al., 2021]. They extract changes comparing the ab-
stract syntax tree between two different versions. This ap-
proach, known in the literature as Fine-Grained Changes
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(FGC), usually uses the ChangeDistiller tool [Fluri et al.,
2007; Gall et al., 2009]. Some studies consider a change
occurs if the number of structural changes is higher than the
median of the distribution of the number of changes experi-
enced by all the classes of the system [Catolino et al., 2020;
Romano and Pinzger, 2011].

The SLOC method can detect all small changes, such as
a refactoring that renames a variable. However, this method
includes several types of changes, even trivial ones. Thus, it
may not capture the details about the semantics of changes
[Giger et al., 2012]. The FGC method identifies which
type of code structure has changed (loop, control structure,
statement) and can provide detailed information about the
changes. As a drawback, it is more complex to implement
and may ignore small changes. In our study, we adopt the
FGC method, based on other works with goals similar to
ours. These works also evaluate different kinds of mod-
els [Catolino et al., 2020; Romano and Pinzger, 2011]. Thus,
we can compare our results with these existing studies in the
literature.

2.2 Predictors adopted in the studies

Different kinds of models have been investigated in the lit-
erature. They use different types of metrics as predictors.
Structural models use class-based measure metrics such as
size, complexity, coupling, inheritance, and cohesion [Mal-
hotra and Khanna, 2019; Catolino et al., 2020; Godara and
Singh, 2014; Malhotra and Bansal, 2015; Lu et al., 2012;
Malhotra and Khanna, 2021; Khomh et al., 2011; Tsantalis
et al., 2005]. They consider that more complex classes are
more change-prone. Evolutionary models use process met-
rics that capture some evolution aspects of the class, such
as birth date, change frequency, and density [Elish and Al-
Khiaty, 2013; Al-Khiaty et al., 2017; Catolino and Ferrucci,
2018, 2019; Catolino et al., 2018; Malhotra and Khanna,
2018a,b]. Smell-based models use metrics based on the de-
sign and structure quality, such as the intensity of smells or
anti-patterns [Catolino et al., 2020; Kaur and Jain, 2017; Pri-
tam et al., 2019; Khombh et al., 2009].

Other models are based on information extracted from the
class text vocabulary or the class dependency graph. Some
approaches are developer-based and use metrics related to
the number of developers working in a time period, or related
to social and other aspects of their communication [Catolino
and Ferrucci, 2018, 2019; Catolino ef al., 2018, 2017; Giger
etal.,2012; Zhu et al., 2018].

Although several metrics are used and different kinds
of models can be derived, few studies compare their per-
formance by combining different metrics [Malhotra and
Khanna, 2019]. There is also a lack of benchmarks since the
metric values are collected in different contexts and ways.
There is no consensus on the use of structural metrics. Some
conflicting results are reported in the literature [Lu et al.,
2012; Zhou et al., 2009; Tsantalis ef al., 2005]. Tsantalis
et al. [2005] concluded that structural metrics, except class
size, are insignificant features for CPCP. Lu et al. [2012] an-
alyzed the highest number of systems in the literature and
confirmed that size structural metrics have moderate predic-
tion capacity. In contrast, Zhou et al. [2009] indicated that
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size structural metrics present a strong confounding effect
and are not good predictors.

Some studies show that classes with code smells are more
change-prone than classes without smells [Kaur and Jain,
2017; Pritam et al., 2019]. Catolino et al. [2020] report that
code smell-related information improves the performance of
three categories of prediction models: structural, evolution-
ary, and developer-based. The results show that smell inten-
sity is a better predictor than anti-pattern metrics. A com-
bined change prediction model including product, process,
developer-based, and smell-related features presents notably
higher performance than other models. Then, we can ob-
serve conflicting results in studies evaluating the models us-
ing different sets of metrics. The present study contributes to
overcoming this gap by evaluating our approach considering
models based on six kinds of metrics.

2.3 Adopted ML algorithms and indicators

Malhotra and Khanna [2019] provided an overview of CPCP
and showed that several different classification and predic-
tion techniques have been adopted. Logistic regression,
Naive Bayes, Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP), Decision Trees, and Random Forest are
the main algorithms employed and evaluated. The most used
indicators for evaluating the performance of the models are:
accuracy, AUC (Area Under Receiver Operating Character-
istic Curve), recall, precision, and Fl-score. Ensemble al-
gorithms, such as Random Forest, have presented the best
results in most studies [Malhotra and Khanna, 2019]. How-
ever, we observed that these approaches consider that all the
training instances are independent, i.e., no temporal depen-
dency is considered.

2.4 Use of dependent instances

Temporal dependency involves extracting meaningful sum-
mary and statistical information from data points arranged
in chronological order. It diagnoses past behavior and pre-
dicts future behavior [Nielsen, 2019]. In general, temporal
dependency between instances is not directly supported by
ML models. Approaches based on time series proposed in
the literature can capture this aspect [Caprio et al., 2001;
Melo et al., 2020]. Caprio et al. [2001] employed ARIMA to
model the problem. Melo et al. [2020] introduced concate-
nated and recurrent representations to capture the temporal
aspect. They evaluated the concatenated representation us-
ing conventional ML algorithms and recurrent representation
with a Recurrent Neural Network (RNN) based on the Gated
Recurrent Units (GRU) architecture.

These two studies used a limited number of independent
variables, with a few structural metrics. They also used the
simple SLOC approach to identify class changes. In a previ-
ous study [Silva et al., 2022], we proposed an approach con-
sidering the dependency between the repository instances to
address this limitation. The difference between related work
and the present study is that we combine distinct kinds of
features. Moreover, we adopt the FGC method to identify
changes in classes. This approach is described in the next
section.
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3 Proposed Approach

The proposed approach adopts the Sliding Window (SW)
method [Dietterich, 2002] to capture the temporal depen-
dency between the instances. First, we identified relevant
metrics to act as predictors reviewing the CPCP literature.
We selected the dependent and independent variables based
on the work of Catolino et al. [2020]. The chosen metrics are
structural, evolutionary, and smell-based. Figure 1 presents
an overview of the proposed approach. After selecting the
metrics in the Data Definition step, we created the dataset
by mining public GitHub repositories. We collected the met-
rics with static analysis tools in the DataSet Creation step.
In the Data Preprocessing step, we built an input repre-
sentation for the ML algorithms and applied some methods
for data normalization and balancing. We used the resulting
dataset to train and test the ML models bluein the ML Model
Building step. In the last step, Prediction, we evaluated the
performance of the ML algorithms by using data science in-
dicators.

1. Data Definition
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Figure 1. Overview of the proposed approach. Adapted from [Silva et al.,
2022]

3.1 Data Definition

The independent and dependent variables were selected
based on the CPCP literature review. The independent vari-
ables comprise metrics from three categories [Malhotra and
Khanna, 2019], which were also used by the traditional ap-
proaches [Catolino et al., 2020]. They are: i) structural:
these metrics are related to internal software quality met-
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rics, which depict structural attributes of Object Oriented
elements. These structural metrics include suites such as
CK [Chidamber and Kemerer, 1994], QMOOD [Bansiya and
Davis, 2002], and others; ii) evolutionary: these metrics are
related to the software evolution from one release to another,
e.g., the birth of a class, amount of changes, frequency of
changes, change density, and so on. It is worth mention-
ing that the changes captured by the evolutionary metrics
are related to a simple SLOC change between two versions,
whereas our approach is able to test longer horizons and
with a more complex change definition; and iii) smell-based:
these metrics capture poor OO design structures, which can
cause source code degradation as code smells [Fowler, 1999]
and anti-patterns [Brown et al., 1999; Lanza et al.,2010]. We
employed two smell-based metrics: density and diversity of
smells. Density calculates the number of smells found in the
class. Diversity calculates the number of types of smells in
the class. Table 1 presents the list of metrics used to create
the set of independent variables for the models.

The dependent variable represents whether a class
changed or not in a period of time that corresponds, in our ap-
proach, to the time between two subsequent releases. In the
present study, releases are official versions of the project that
have been approved. Each release is identified by the project
developers using tags. We considered the FGC method to
decide whether a class has changed in a given context. We
used the same definition as [Catolino et al., 2020; Romano
and Pinzger, 2011] to compute the dependent variable. A
class changes if, in a time period ¢, the number of structural
changes of this class is higher than the median of the distri-
bution of the number of changes experienced by all classes
of the system. To determine if a class changes, we calculate
its number of changes for each pair of commits (¢;, ¢;11) be-
longing to the interval between the releases.

3.2 DataSet Creation

In this step, we built the dataset with the independent and
dependent variables of the classes in each release. We used
the Understand! and CK [Aniche, 2015] tools to extract the
structural metrics. The Understand tool is a static code ana-
lyzer that collects product metrics of code elements. The CK
tool calculates class-level and method-level code metrics in
Java projects. We implemented our own tool to calculate the
evolutionary metrics based on Elish and Al-Khiaty [2013].
We used the Organic? tool to extract the smells reported in
Table 1. The implementations and the description of each
metric are available in our repository [Silva et al., 2024]. To
compute the dependent variable, we use the ChangeDistiller
tool. This tool implements a difference algorithm that gener-
ates and compares the abstract syntax tree between the two
versions of a project. A description of the tool and the com-
plete list of changes it identifies are presented in [Fluri et al.,
2007]. Change examples include attribute renaming change,
parameter ordering change, and other methods and class dec-
laration changes. The tool ignores white space-related differ-
ences and documentation-related updates.

Uhttps://www.scitools.com/
Zhttps://github.com/opus-research/organic
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Table 1. Metrics for change-prone classes prediction

Structural Metrics

LackOfCohesioninMethods (LCOM), TighClassCohesion (TCC),
LooseClassCohesion (LCC), CouplingBetweenObject (CBO), Respon-
seForaClass (RFC), FANIN, FANOUT, WeightedMethodsperClass
(WMC), totalMethodsQty, staticMethodsQty, publicMethodsQty,
privateMethodsQty, protectedMethodsQty, defaultMethodsQty,
abstractMethodsQty,  finalMethodsQty,  synchronizedMethodsQty,
totalFieldsQty, staticFieldsQty, publicFieldsQty, privateFieldsQty,
protectedFieldsQty, defaultFieldsQty, visibleFieldsQty, finalFieldsQty,
NOSI, LOC, returnQty, loopQty, comparisonsQty, tryCatchQty, paren-

thesizedExpsQty, stringLiteralsQty, numbersQty, assignmentsQty,
mathOperationsQty, variablesQty, maxNestedBlocksQty, anony-
mousClassesQty, innerClassesQty, lambdasQty, uniqueWordsQty,

modifiers, logStatementsQty, AvgLine, AvgLineBlank, AvgLineCode,
AvgLineComment, AvgCyclomatic, AvgCyclomaticModified, Avg-
CyclomaticStrict, MaxCyclomatic, MaxCyclomaticModified, Max-
CyclomaticStrict, MaxEssential, MaxInheritanceTree, MaxNesting,
PercentLackOfCohesion, RatioCommentToCode, SumCyclomatic,
SumCyclomaticModified, SumCyclomaticStrict, SumEssential.
Evolutionary Metrics

BirthOfClass (BOC), TotalAmountOfChanges (TACH), FirstChange
(FCH), LastChange (LCH), ChangeOccurred (CHO), Frequency-
OfChanges (FRCH), ChangeDensity (CHD), WeightedChangeDensity
(WCD), WeightedFrequencyOfChanges(WFR), AggregatedChange-
SizeNormalizedbyFrequencyOfChanges (ATAF), LastChangeAmount
(LCA), LastChangeDensity (LCD), ChangesSinceBirth (CSB),
ChangesSinceTheBirthNormalizedBySize (CSBS), AgregatedChange-
DensityFrequency (ACDF).

Smells

LazyClass, DataClass, ComplexClass, SpaghettiCode, SpeculativeG-
enerality, GodClass, BrainClass, ShotgunSurgery, LongParameterList,
LongMethod, FeatureEnvy, DispersedCoupling, MessageChain, Inten-
siveCoupling, BrainMethod, RefusedBequest, ClassDataShouldBePri-
vate.

Our model is designed to be independent of the type, mo-
tivation, or intent of changes. Thus, we used structural, evo-
lutionary, and smell-based metrics. Our target is classified
only as changed or not changed. When a class is created, the
possible added code is not considered until it suffers a modi-
fication, as defined by our approach. When this happens, the
dependent variable corresponding to the new class is altered
to capture that change. But, if the creation of a new class is
associated with changes in other classes, for instance, those
resulting from some refactoring, such as Extract Class, these
changes will affect the value of the dependent variable of the
existing classes that were modified.

The values of the independent variables were computed
considering the release before the one in which the depen-
dent variable is calculated, i.e., we computed the indepen-
dent variables in the release R; and the dependent variable
between releases R; and R, 1. Thus, we avoid biases due to
the computation of the change-proneness in the same periods
as the independent ones. Table 2 illustrates how the data is
collected. We supposed the system has only one class, and
only three metrics (M7, My and M3) are extracted. In Re-
lease 0, the metrics values are 1, 10, and 100. But, at this
time, we do not have information about changes. In Release
1, the metric values for the same class are calculated again
as 2, 20, and 200. Now, we can set a Boolean value for the
dependent variable Changed, for which ¢rue represents the
class changed using the FGC approach, and false otherwise.
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Table 2. Example of how metrics are collected by release

Release M; M, Mz Changed
0 1 10 100

1 2 20 200 true
2 3 30 300 true
3 4 40 400 false
4 5 50 500 true
5 2 20 400 false

3.3 Data Preprocessing

In the Data Preprocessing step, we first cleaned the raw
dataset, then we built the data representation that captured
the temporal dependency between the data instances. The
dataset is transformed and balanced before being used by the
ML algorithms. After collecting variables, we performed a
Data cleaning. Cleaning implies identifying and discarding
instances without values for any independent variables. This
may occur due to some errors in the collection tools. Next,
empty values were filled with zero and duplicate rows were
removed [Ilyas and Chu, 2019]. Duplicate data rows could
be useless to the modeling process, if not dangerously mis-
leading during model evaluation. For instance, a duplicate
row or rows can appear in both train and test datasets, and
any evaluation of the model on these rows will be correct and
result in an optimistically biased estimate of performance on
unseen data [Brownlee, 2020]. To finish the data preparation,
we unified the dataset by merging all the metrics collected by
the different tools. The features obtained with each tool were
merged based on the key fields: project name, release hash,
and class name. The scripts to be adopted in this step are
available in our repository. In the end, the values of the fea-
tures were normalized because the metrics were collected in
different scales.

3.4 Build Representation

Then, a dataset is built from the dataset containing the values
of the metrics represented chronologically by employing the
SW method. This allows the ML algorithm to use a window
of size 9, containing data of the previous S releases, as the
source of information. In this way, the analysis is not lim-
ited to a fixed release, and each instance of the dataset may
contain the total or partial history of the class changes. The
SW method works as follows. First, we select metric values
from the versions of a class C for all releases. If the number
of versions (releases) of the class is less than S, the class is
dropped. Then, we select metrics of the S first releases to
create the first instance of the dataset. In the next iteration,
we take the interval of S releases by starting from the second
analyzed release, creating the second instance of the dataset.
This process is repeated until the last release, always follow-
ing the order of the chronological dataset.

4 Evaluation Description

To better illustrate the adopted representation, we use Tables
3 and 4, both of which are derived from Table 2. Table 3
shows the representation adopted by the traditional approach.
In this structure, each instance represents a version of the
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Figure 2. Classes of JUnit system that changed in more than 6 releases

class in a given project release, and each instance contains
the value of the metrics M as the independent variables. The
values collected in Release ¢ predict the dependent variable
Changed in Release 7 + 1. Table 4 shows the new dataset
built by reshaping the original one using the SW method and
S = 2. Instance 0 contains metrics values M7, M, and M3
from Releases 7 and 7 4 1 to predict the dependent variable
Changed from Release 7 + 2, so one step ahead. The process
is repeated by shifting the two boxes simultaneously over the
samples, one step at a time, creating new rows until the win-
dow reaches the end of the table.

Table 3. Dataset used by traditional approaches

Release i Release i+1

Instance M; M, Msj Changed
0 1 10 100 true
1 2 20 200 true
2 3 30 300 false
3 4 40 400 true
4 5 50 500 false
5 2 20 400

Table 4. Representation of Table 3 reshaped with S = 2

Release i Release i+1 Release i+2
Instance M; My Mz M; M, Ms Changed
0 1 10 100 2 20 200 true
1 2 20 200 3 30 300 false
2 3 30 300 4 40 400 true
3 4 40 400 5 50 500 false

In summary, the main difference between the methods is
that the traditional one considers the metric values of a single
release, and, in the SW method, the metric values of the S
previous releases are used in a single structure. The role of

the window is to say how many releases will be aggregated
at a time, i.¢., the size of the metrics history over this period.
In this sense, the change history of the class is considered.

4.1 Motivation for a Change-History Ap-
proach

Figure 2 presents an example of a change history approach
for the CPCP problem. It contains a list of classes of the
JUnit system used in our evaluation, which changed in, at
least, seven different releases. The x-axis contains the dates
of the releases, and the y-axis contains the names of the
classes. Each bubble represents the number of changes of
a class in one release. At the top, we can observe the
org.junit.runners.ParentRunner class changed in the
release of 2009-04-14, did not change in the next release,
and then changed in the subsequent one. After three releases
without any changes, it changed again in a sequence of five
releases. This is a clear case of a change-prone class. But, if
only the information of release 2010-04-08 were used to pre-
dict the change-proneness of release 2011-01-03, this would
result in an incorrect prediction. Thus, our approach allows
the creation of instances containing the change history of this
class, leading to better prediction performance.

In our previous study [Silva et al., 2022], we evaluated
the proposed approach by combining structural, evolution-
ary, and smell-based metrics. We compared models based
on these predictors using our approach and the traditional one
which does not adopt the SW method. We also analyzed the
impact of using smell-related features. Our approach over-
came the traditional one, and we did not observe any im-
pact on the use of smell-related information. By adopting
the same methodology and target systems, in the evaluation
described in this section, we use our approach and the tra-
ditional one to obtain a broader set of models to the CPCP
problem, as well as to investigate the best kind of features
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Figure 3. Kinds of models evaluated

to be used with our approach. Following the most common
models found in the literature, we evaluate six kinds of mod-
els, as illustrated in Figure 3. They were obtained by vary-
ing the categories of features: 1) Structure-Based Model (St);
2) Evolution-Based Model (Ev); 3) Structure and Evolution-
Based Model (StEv); 4) Structure and Smell-Based Model
(StSm); 5) Evolution and Smell-Based Model (EvSm); and
6) All Features-Based Model (AF). Note that smell-based
models were not considered since this model is not common.
As mentioned earlier, smell-based metrics are only combined
with other types of features in the literature [Catolino ef al.,
2020].

4.2 Research Questions

We stated the following Research Questions (RQs) based on
our goals:

RQ1 - How do different window sizes affect the predic-
tion performance of the models? In this RQ, we intend to
evaluate the performance of the six kinds of models gener-
ated by the most used ML algorithms, according to different
window sizes. To this end, we use sizes 2, 3, and 4 for each
application. These sizes were adopted based on the work
of Tsoukalas et al. [2020];

RQ?2 - What is the performance of our approach regard-
ing the performance of a traditional approach? In this
RQ, we intend to compare the performance of the algorithms
using our approach based on a temporal dependency with the
performance using a traditional approach. To this end, we
consider the six kinds of models to evaluate if the set of fea-
tures affects the performance of both approaches;

RQ3 - What is the performance of the different kinds of
models generated by our approach? In this RQ, we eval-
uate the performance of the six kinds of models that can be
derived using our approach. We aim to identify the best set
of features for our approach;

RQ4 - Which algorithm leads our approach to produce
the best results? The Random Forest algorithm presents
the best performance in most studies [Malhotra and Khanna,
2019]. However, it is relevant to investigate whether this also
holds for our temporal approach, considering the six kinds of
models based on different features;

RQS - Which metrics are the most important for change-
proneness class prediction?  In the previous RQs, we
analyze different sets of features (models) and algorithms.
However, it is important to analyze the individual prediction

power of each metric.

4.3 Target Systems

We extracted features from five open-source Java applica-
tions from the GitHub® online repository. The criteria for
selecting systems used in our research are described as fol-
lows.

+ Java language: We consider systems written in Java
since it is supported by the tools used in this study, in-
creasing the replicability;

* Public access: We selected open-source software sys-
tems to allow full replication of our study since access
to private projects is usually difficult to obtain. Addi-
tionally, the systems use Git as the version control sys-
tem to track the evolution of their source code. This
allows access to the complete history of changes in the
source code of a software system and multiple analyses
to address our RQs;

+ Activeness and maturity: To classify a software sys-
tem as active and mature, we considered two criteria:
(i) it has the status defined as active to ensure the sys-
tems have a development activity and are subject to the
changes and (ii) its GitHub repository has more than 20
releases to ensure change-history.

+ Use in change-prone classes domain: We selected
projects already used by other studies on change-prone
class prediction [Malhotra and Lata, 2020; Malhotra
et al.,2021b].

We performed a search in the GitHub search engine. We
sorted the results by popularity, based on the highest number
of stars. Table 5 presents the main characteristics of the ap-
plications, such as the number of releases and samples, the
average number of classes (Avg Classes), as well as the av-
erage number of classes changed (or not), the period con-
sidered and the average number of days between releases
(Days). The average days between each release vary from
30 in PdfBox to 218 in Junit4. The standard deviation (Std)
of the days between the releases is high, with an average of
220.2.

4.4 Data Preprocessing

We consider six kinds of models to answer the RQs. There-
fore, we derived six datasets, containing the corresponding
set of features. To answer RQ2, in addition to the datasets

3https://github.com
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Table 5. Used Java systems

System Releases Samples Avg Classes Not Changed Changed Period Days Std
Commons-bcel 23 5383 234 5110 273 Jul/2011 to Sep/2019 114 212
Commons-io 61 34556 566 30844 3712 Mar/2012 to Sep/2020 78 225
Junit4 26 7987 307 7579 408 Nov/2012 to Feb/2021 218 397
PdfBox 57 47079 826 41584 5495 Jun/2018 to Mar/2021 30 45
Wro4j 50 16912 338 14922 1990 Mar/2010 to Nov/2021 90 222
Total 217 111917 2271 100039 11878  Mar/2010 to Nov/2021 106 220.2

using our representation (Table 4), we also build datasets us-
ing the representation of the traditional approaches (Table 3).
To ensure the data are on the same scale, they were normal-
ized using the min-max technique, where the data are scaled
with values ranging from 0 to 1. After, for each set of fea-
tures and by analyzing the data distribution, we found a high
imbalance in relation to the dependent variable. Training un-
balanced models can make the models tend to predict the
class that has the highest frequency, generating erroneous
results. To mitigate this, we selected three state-of-the-art
oversampling techniques: Synthetic Minority Oversampling
Technique (SMOTE) [Chawla et al., 2002], Random Over-
Sampler (ROS) [Batista et al., 2004] and Adaptive Synthetic
(ADA) [He et al., 2008]. In addition, we tried to use un-
dersampling techniques, but they further reduced our dataset
until we did not have enough data left for the split step used
in validation.

4.5 ML Model Building

In the ML Model Building and Prediction steps, the
datasets were divided into training (70% of the instances) and
testing (30%) sets. The training set is used to train the algo-
rithms and measure the performance of the generated models,
identifying, among the trained models, the models with the
best results. Testing sets are used for a final evaluation of the
trained models. To increase the reliability and accuracy of
the results, we performed a stratified 10-fold cross-validation
[Stone, 1974]. This consists of dividing the training set into
distinct subsets and using part of this subset for training and
the rest for testing (i.e., 9 folds for training and 1 fold for test-
ing). We used the scikit-learn tool [Pedregosa ef al., 2011]
to implement the cross-validation.

We employed the algorithms widely used in the litera-
ture [Malhotra and Khanna, 2019], such as Decision Tree
(DT); Logistic Regression (LR); Multi-Layer Perceptron
(MLP), and Random Forest (RF). We used the normalization
and resampling methods and algorithms implemented by the
scikit-learn tool [Pedregosa et al., 2011]. All the raw data
and scripts are available in our repository.

Our approach generated a total of 1440 models. Each al-
gorithm was executed for each of the six datasets using or
not one of the three resample techniques (4 algorithms x 6
datasets x 3 windows sizes x 4 resampling techniques x 5 ap-
plications). Default parameters of the scikit-learn were used.
For each system, 288 models were generated. Similarly, the
traditional approach generated 480 models, 96 models for
each system. All these models were used to evaluate the im-
pact of the sliding window size (RQ1). The values of these
indicators for these models are presented in our repository.

However, to answer the other RQs, we consider only the
models adopting the best value for the window size pointed
out by RQI and the best resampling technique for each algo-
rithm and system.

4.6 Prediction Evaluation

We use common data science performance indicators and of-
ten used for the CPCP problem to evaluate the generated
models (see Section 2). The indicators are defined as follows,
considering that TP, TN, FP, and FN as the number of true
positives, true negatives, false positives, and false negatives,
respectively.

* Accuracy: it is the proportion of correct predictions,
both, true positives and true negatives, among the total
number of cases evaluated [Metz, 1978];

TP+TN
TP+TN+FP+FN

Accuracy = (1)

* Sensitivity: it is also known as Recall, is given by the
fraction of the study population that is actually posi-
tive [Metz, 1978];

TP

—_— 2
TP+ FN @

Sensitivity =

* Fl-score: it is a weighted average of Precision and Sen-

sitivity [Witten et al., 2005]. Precision is the ability of

the classifier to avoid labeling negative samples as pos-
itive. The Precision is the ratio TP/(TP + FP).

2 x Precision x Sensitivity 2xTP

F1l—score = — —
Precision + Sensitivity

3
* ROC/AUC: the ROC (Receiver Operating Character-
istic) curve shows the trade-off between the TP and FP
rates. An Area Under the ROC Curve (AUC) close
to 1 indicates a high-performance model while an area
about 0.5 indicates a low-performance model. An in-
crease in Sensitivity (TP rate) also increases the FP rate.
Therefore, the ROC measure helps track the optimum
point where the metric performs well for the TP and FP
rates [Sultana et al., 2021].

ROC/AUC is the main performance indicator used in our
work to compare all models and choose the models with
the best results. It considers equally positive and negative
classes. We selected this indicator because it is more suit-
able to compare classification models, especially with unbal-
anced data [Han et al., 2022]. The other indicators are used
to complement the analysis.

T 2+«TP+FP+FN
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We used non-parametric statistical tests, specifically
Kruskal-Wallis [Kruskal and Wallis, 1952] (multiple groups)
and and Wilcoxon rank-sum [Mann and Whitney, 1947]
(comparison pair), with a confidence level of 95%. This
selection was guided by the nature of our data [Arcuri and
Briand, 2011] since it does not follow a normal distribution.
This fact was corroborated by the Gaussian curve and the
Kolmogorov—Smirnov test [Massey, 1951] in the datasets
of all systems. These results are available in our repository.

We use Vargha and Delaney’s Ay, metric to calculate the
effect size magnitude of the difference between two groups.
This defines the probability that a value randomly taken from
the first sample is higher than a value randomly taken from
the second sample [Vargha and Delaney, 2000]. The mag-
nitude can be: negligible (/Lg < 0.56); small (0.56 <
12112 < 0.64); medium (0.64 < flu < 0.71); and large
0.711 < fllg). A negligible magnitude represents a tiny dif-
ference between the values and usually does not yield statisti-
cal difference. The small and medium magnitudes may yield
statistical differences (or not). Finally, a large magnitude rep-
resents a statistically significant difference, generally evident
in the numbers without much effort.

4.7 Calculation of Feature Importance

To answer RQS5, we analyzed the individual importance of
each metric by applying Mean Decrease in Impurity (MDI)
and Information Gain methods. These methods work as fol-
lows.

The MDI, also known as Impurity Importance, is com-
monly calculated with decision tree algorithms [Breiman,
2001]. It measures how much each predictor variable (fea-
ture) contributes to reducing impurity at tree nodes during the
splitting process. Thus, it measures how much the model’s
accuracy decreases when a certain variable is excluded. The
greater the decrease in impurity, the more important the vari-
able. The importance of a variable can be calculated as the
average of the change in impurity, considering all nodes at
which the variable was selected.

According to Mitchell [1997], Information Gain measures
how well a given attribute (feature) separates the training in-
stances according to their target classification. It measures
the effectiveness of an attribute in classifying the training
data and ranges from 0 (no gain) to 1 (maximum of infor-
mation gain). The measure is the expected reduction in en-
tropy caused by partitioning the instances according to this
attribute. More precisely, the Information Gain, Gain(S, A)
of an attribute A relative to a collection of instances S, is
defined as:

|| Entropy(Sy)

Gain(S, A) = Entropy(S)— 5]

>

veValues(A)

where Values(A) is the set of all possible values for at-
tribute A and .S, is the subset of S for which attribute A has
value v (i.e., S, = {s € S|A(s) = v}). Entropy(S) char-
acterizes the (im)purity of the collection S and is given by:

Entropy(S) = —palogape — pelogape

Silva et al. 2024

where p&® and pS are the proportion of positive and negative
instances in S, respectively. In all entropy calculations, to
avoid undefined values logg is considered equals to 0. En-
tropy quantifies the similarity or the difference between the
number of instances of the different classes. Its highest value
is 1, when all classes have the same number of instances.
It becomes lower when the difference in the number of in-
stances of classes increases.

S Analysis of the Results

This section presents the results, analysis, and answers for
our RQs.

5.1 RQI1: How do different window sizes af-
fect the prediction performance of the
models?

As mentioned in Section 4.2, we investigated three values for
S (2,3, and 4). There is no standard rule for optimal window
size, then, we empirically tested initial window sizes, start-
ing with 2, since this is the smallest possible window size,
similar to the work of Tsoukalas et al. [2020]. Larger win-
dow size values did not improve the results. The larger the
window size, the greater the class history required, thus ex-
cluding classes added in more recent versions. This reduces
the training data and can generate bias in relation to older
classes. By testing six models, three window sizes, four al-
gorithms, and four resampling techniques, we generated a
total of 288 models for each system.

First, we applied the Kruskal-Wallis test considering all
models to answer RQ1. We aim to evaluate if there is a sta-
tistical difference between the window sizes. The p-value
obtained is 0.927, which means statistical equivalence. Fig-
ure 4 shows this result.
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Kruskal-Wallis p-value = 0.927

Figure 4. Boxplots regarding window size and AUC considering all models

After this, we performed a second analysis by applying the
test considering each model individually, as shown in Figure
5. The p-values for AF, Ev, EvSm, St, StEv, and StSm were
0.857, 0.979, 0.882, 0.875, 0.807, and 0.812, respectively.
These results show that even considering each model indi-
vidually, there is no statistical difference between the models
using the different window sizes.

As the results did not show statistical differences, we de-
cided to create a ranking of the top 10 models to select the
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Figure 5. Boxplots regarding the window size and AUC for each kind of model

most outstanding window size. We selected the 10 best mod-
els for each of the 5 systems based on the AUC score. We
aggregated the top 10 results from each application, creating
a list of 50 models. With this list, we counted the number of
times each size appeared. Figure 6 presents this result. We
can observe that 20 (out of 50) or 40% of the best models use
S = 3, followed by S = 2 which is used in 17 (34%) mod-
els, and size S' = 4, used in 13 (26%). Models using S = 4
have almost the worst distribution in the ranking. This could
indicate that increasing S would not contribute to a better
performance. In contrast, models with .S = 3 stand out and
appear more often among the best ones.

Response to RQ1: Although there was no statistical dif-
ference between the models using the evaluated window
sizes, the models with an intermediate size, (S = 3), ap-

peared most frequently among the best ones.
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Figure 7. Comparing both approaches per indicator

5.2 RQ2: What is the performance of our ap-
proach regarding the performance of a
traditional approach?

Table 6 presents the results of the best models using S = 3,
according to RQ1, for the six sets of features. For each sys-
tem and algorithm, it presents the values of the F1-score, Ac-
curacy, Sensitivity, and AUC of the models obtained using
our approach and the traditional one. The best values are
highlighted in bold. The RS columns correspond to the re-
sampling method used to obtain the model with the best per-
formance.

In both approaches, we calculated the mean and median
values for the indicators, considering all algorithms and sets
of features from Table 6. Figure 7 compares the means for
both approaches. For AUC, we can observe that our ap-
proach obtained the best results in 3 out of 5 systems with
the mean values, and in 4 out of 5 with the median values.
Both approaches had similar results for commons-io and
commons-bcel systems. This may be due to both systems
belonging to the same family and having a similar nature.
Our approach presented better results for F1-score and Accu-
racy than the traditional one in 4 out of 5 systems, almost tied
on commons-io. For Sensitivity, the traditional approach

had slightly better results on the commons-io system but
did not show outstanding results compared to our approach.
However, our approach presented better performance in most
cases and great differences for Junit4, PdfBox, and Wro4j
systems. This means that, for these systems, our approach
tends to correctly classify the change-prone classes as true
positives. This is an important characteristic because the ap-
proach does not spend time with false negatives. In addition,
except for commons-bcel and commons-1io systems, our ap-
proach obtained the best values of AUC, regardless of the set
of features and algorithms used. The results comparing the
approaches with median values are similar and are available
in our repository.

Table 7 presents the number of times each approach was
better or obtained an equivalent result for each indicator and
each set of features. These results confirm that our approach
obtained the best values for the indicators compared to the
traditional approach. We can observe that, for 120 models an-
alyzed in Table 7 (4 algorithms, 5 systems, and 6 sets), our ap-
proach obtained the best results of AUC in 96 (80%) models
and equivalents in 8 models. The traditional approach only
reached the best values of AUC in 16 (~13%) models. Con-
sidering the other indicators, our approach also overcame the
traditional approach. For Fl-score and Accuracy, the mod-
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Table 6. Results from the best obtained models for each algorithm and set of features
DT \ LR \ MLP \ RF
Commos-bcel
App | F1 Acc Sen AUC RS |Fl Acc  Sen AUC RS | Fl Acc Sen AUC RS | Fl Acc  Sen AUC RS
AF Our | 098 098 073 086 A |093 091 095 092 S 098 098 078 088 R |099 099 078 0.89 A
Trad | 095 094 068 082 A |092 090 0.82 0.86 S 096 096 063 0.80 S 097 097 078 088 A
StEv Our | 098 098 078 0.89 R |093 090 095 092 R | 098 098 0.76 0.87 S 099 099 078 089 A
Trad | 094 093 079 086 A | 092 090 0.83 0.87 S 096 096 068 0.83 S 097 097 080 089 A
EvSm Our | 098 098 073 08 A |08 083 095 089 A |095 094 078 087 A |[099 099 0.78 089 R
Trad | 095 094 0.80 0.87 S 083 077 08 08 R |092 091 079 085 A |095 095 080 088 S
StSm Our | 096 096 054 076 R |08 076 0.78 0.77 A | 090 085 0.78 0.82 A |097 097 038 0.68 S
Trad | 090 0.88 056 073 A | 094 094 051 074 S 093 094 022 060 R |08 085 076 081 S
St Our | 096 095 054 075 N |08 072 081 077 A |08 082 0.81 08 R |097 097 038 068 S
Trad | 0.89 0.87 039 065 R |093 092 048 0.71 S 091 091 024 060 A |08 086 073 080 A
Ev Our | 098 098 073 086 R |087 081 1.00 090 S 094 092 081 087 R |098 098 073 0.8 R
Trad | 094 093 093 093 A |08 075 08 0.8 R |08 084 089 086 S 094 093 090 092 A
Commons-io
App | Fl1 Acc Sen AUC RS | Fl1 Acc Sen AUC RS | Fl Acc Sen AUC RS | Fl1 Acc  Sen AUC RS
AF Our | 094 093 083 0.89 S 081 0.77 073 075 R | 094 094 080 088 A |097 097 08 091 R
Trad | 096 096 086 091 R |078 073 072 073 S 092 092 08 08 R |09 09 088 093 R
StEv Our | 094 094 080 087 S 0.81 0.77 073 075 R | 094 094 086 090 R | 097 097 084 091 R
Trad | 095 095 088 092 S 078 0.74 073 073 S 092 092 078 08 A |09 09 088 093 R
EvSm Our | 089 0.88 064 0.78 A |0.73 0.67 0.71 0.69 S 084 0.82 077 080 R | 095 095 079 0.8 A
Trad | 0.94 093 086 090 A | 070 062 067 064 R |08 078 065 072 S 096 0.96 090 094 A
StSm Our | 093 093 086 090 A |076 0.71 0.68 0.70 S 090 0.89 083 0.86 S 095 095 085 091 A
Trad | 093 093 083 0.89 N |073 067 071 0.68 S 086 0.84 0.88 0.85 S 095 095 086 091 S
St Our | 093 092 085 089 A |[076 071 0.68 0.70 S 089 0.87 084 086 A |095 095 085 091 R
Trad | 093 092 085 0.89 S 073 0.67 070 068 R | 084 0.81 089 08 R |095 094 086 091 A
Ev Our | 0.88 0.86 0.66 0.77 S 0.69 0.62 070 0.65 S 081 0.78 072 0.75 R | 095 095 078 088 S
Trad | 094 093 086 090 A |065 057 0.69 063 S 080 0.76 0.64 0.71 S 096 0.96 091 094 A
Junit4
App | Fl1 Acc Sen AUC RS | Fl Acc Sen AUC RS | Fl Acc Sen AUC RS | Fl Acc  Sen AUC RS
AF Our | 097 097 082 090 S 090 0.87 078 083 R |09 096 056 077 A | 098 098 080 090 S
Trad | 092 090 053 072 A |08 076 071 074 N | 091 088 0.64 077 R |094 095 040 0.69 S
StEv Our | 097 097 0.79 0.88 S 090 0.87 079 083 A |09 096 062 080 S 098 098 079 089 S
Trad | 092 091 051 072 S 083 0.76 071 074 N | 091 0.88 060 075 R | 095 095 038 0.68 A
EvSm Our | 097 097 075 086 A 091 0.88 0.78 0.83 S 096 096 070 0.84 S 098 098 088 093 S
Trad | 092 090 059 0.75 S 080 072 074 073 N | 084 0.78 078 078 R | 095 094 059 078 S
StSm Our | 089 086 041 0.65 S 0.82 0.75 0.60 0.68 N 090 0.87 043 0.66 R 093 094 022 0.60 A
Trad | 0.88 0.84 040 0.63 A | 080 071 0.65 0.68 N | 085 080 057 069 A |092 092 023 059 A
St Our | 093 093 024 060 N 0.83 0.77 057 0.68 R 090 0.88 038 0.64 S 093 094 021 0.60 A
Trad | 0.88 0.84 046 0.66 A | 080 071 0.64 0.68 N | 081 074 0.63 069 R |092 092 023 059 A
Ev Our | 097 097 069 084 S 090 0.86 0.77 082 A 097 097 081 089 R 097 097 084 091 S
Trad | 090 0.87 052 070 A |078 070 071 070 R |08 08l 0.71 077 R |094 094 056 076 S
PdfBox
App | F1 Acc  Sen AUC RS | Fl Acc Sen AUC RS | Fl Acc Sen AUC RS | Fl Acc  Sen AUC RS
AF Our | 092 091 075 084 A 0.81 0.77 0.71 0.74 R 090 0.89 0.78 0.84 R 094 094 0.73 085 A
Trad | 0.81 0.79 0.58 070 S 0.75 0.69 0.63 0.67 R 0.81 0.78 0.60 0.70 R 0.86 0.86 042 0.67 S
StEv Our | 092 092 073 084 A 0.80 0.77 0.71 0.74 S 091 091 0.77 085 R 094 094 0.73 085 S
Trad | 0.83 0.81 0.52 069 S 0.75 0.69 0.64 0.67 S 0.80 0.76 0.67 0.72 R 0.86 0.86 043 0.67 A
EvSm Our | 091 090 071 082 A 0.79 0.74 0.69 072 A 090 089 081 085 A 093 092 0.79 086 A
Trad | 0.82 0.79 0.56 0.69 A 0.74 0.68 059 064 A 0.78 0.74 0.70 0.72 S 0.87 0.86 0.61 0.75 A
StSm Our | 087 087 046 069 R | 076 071 0.65 069 R |08 078 080 079 R | 088 088 053 073 A
Trad | 0.76 0.71 049 061 R 0.75 0.70 0.61 0.66 R 0.75 0.69 0.71 0.70 R 0.76 0.71 0.51 0.62 R
St Our | 0.84 0.82 054 0.69 S 076 0.71 0.65 0.69 S 083 080 078 079 R | 088 0.88 054 073 A
Trad | 0.76 0.71 0.50 0.62 R 0.73 0.67 0.65 0.66 A 0.75 0.70 0.71 0.70 R 0.76  0.71 0.51 0.62 R
Ev Our | 088 087 074 081 A | 083 080 0.61 072 A |08 08 085 08 A |08 088 08 087 A
Trad | 0.79 0.75 0.66 0.71 A 0.72 0.66 0.59 063 N 0.75 0.69 0.74 0.72 S 0.83 0.80 0.70 0.76 A
Wro4j
App | F1 Acc Sen AUC RS |Fl Acc Sen AUC RS | F1 Acc Sen AUC RS | F1 Acc  Sen AUC RS
AF Our | 093 092 0.76 085 S 077 073 080 076 R |[0.89 088 0.71 0.81 A |093 093 078 087 A
Trad | 0.80 0.77 044 063 A 0.75 0.69 0.67 0.68 R 0.81 0.79 0.51 0.67 R 0.86 0.86 036 0.64 A
StEv Our | 093 092 078 086 A |077 073 079 075 R | 089 089 0.64 078 A |094 093 0.80 088 A
Trad | 0.79 0.76 045 062 A 0.75 0.69 0.65 068 N 0.78 0.74 0.59 0.67 R 0.86 0.86 036 0.64 S
EvSm Our | 092 092 076 085 A | 072 0.66 0.81 0.73 S 090 0.89 086 088 R | 094 094 091 092 A
Trad | 0.77 0.73 051 0.64 S 065 058 075 065 N |[0.76 071 0.65 0.68 S 084 0.83 049 068 S
StSm Our | 0.80 0.77 047 0.64 S 072 066 071 069 A |[083 081 059 072 R | 086 086 037 065 A
Trad | 0.83 0.82 032 060 R | 074 069 063 066 R |0.76 071 0.64 0.68 A | 0.8 083 035 062 A
St Our | 079 0.76 046 0.63 A | 073 068 0.69 068 A |08 079 059 070 R |086 086 037 0.65 A
Trad | 0.83 0.82 031 060 R | 075 0.70 0.63 0.67 S 078 0.74 059 067 R | 084 083 036 063 S
Ev Our | 092 092 075 08 A |[072 066 080 072 R |091 090 0.890 090 R | 094 093 092 093 A
Trad | 0.76 0.72 0.52 0.63 S 0.68 0.61 060 061 A |[0.72 066 0.68 0.67 S 084 0.83 051 069 S
Legend: Approach (App); Traditional (Trad); Decision Tree (DT); Logistic Regression (LR); Multi-Layer Perceptron (MLP); Random Forest (RF);

F1-Score (F1); accuracy (Acc); sensitivity (Sen); AUC score (AUC), Resample (RS), ADA (A); SMOTE (S); ROS (R); NONE (N); All Features (AF);
Structural Metrics (St); Evolutionary Metrics (Ev); Smell-based Metrics (Sm).
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Table 7. Number of times each approach reached the best value for
each indicator and model considering all systems

AF ‘ StEv

App F1 Acc Sen AUC App Fl Acc Sen AUC
Our 19 19 15 16| Our 19 18 15 17

Trad 1 1 4 2 | Trad 1 1 4 2
Eq 0 0 1 2 Eq 0 1 1 1
EvSm StSm

App F1 Acc Sen AUC App Fl1 Acc Sen
Our 18 18 14 17 | Our 14 14 10 16

Trad 2 2 6 3| Trad 4 4 10 2

Eq 0 0 0 0 Eq 2 2 0 2
St Ev

App F1 Acc Sen AUC App Fl1 Acc Sen AUC

Our 14 15 9 14 | Our 18 18 15 16

Trad 4 4 8 3| Trad 2 2 5 4

Eq 2 1 3 3 Eq 0 0 0 0

Table 8. Effect size results obtained by comparing both approaches

Indicator Approach  Avg Std Magnitude
AUC Trad 0.7036 4+ 0.104 medium

Our 0.7755 +0.093 Dbest
Accuracy Trad 0.8282 4+ 0.107 small

Our 0.8803 4+0.092 best
Floscore Trad 0.8517 4+ 0.082 small

Our 0.8952 4+ 0.073 best
Sensitivity Trad 0.5541 4+0.217 small

Our 0.6510 +0.182 best

els of our approach obtained the best values in 102 (85%)
models, against only 14 in the traditional one and 4 equiva-
lents. Regarding Sensitivity, our approach also overcame the
traditional one reaching the best values in 78 (65%) models,
against 37 in the traditional approach and 5 equivalents. If
we consider all indicators, algorithms, and sets (480 cases),
our approach achieved the best results in 378 cases (~79%),
and equivalent ones in 21 (4.3%).

Figure 8 shows the boxplots comparing both approaches
for each indicator using the Wilcoxon test. In all cases,
there is a statistical difference in the distribution between
our and traditional approaches with confidence level >95%
(p-value<0.001). Table 8 shows that the magnitude was
medium for AUC and small for the other indicators. We con-
ducted the same analysis for each model individually and ob-
tained similar results. Our approach performs better for all
the models, obtained with the six sets of features. The statis-
tical analysis is detailed in our repository.

The time to execute the algorithms is similar for both ap-
proaches. The biggest bottleneck is found in the data collec-
tion and preprocessing steps. However, this problem affects
both approaches.

Response to RQ2: Our approach overcomes the tradi-
tional one in ~ 79% of the cases. The performance of
our approach is better regardless of the indicators and
the set of features. Then, we can conclude that our ap-
proach improves the performance of the six kinds of
models analyzed.

Silva et al. 2024

5.3 RQ3: What is the performance of the dif-
ferent kinds of models generated by our
approach?

Figure 9 compares the mean values of the indicators for each
type of model considering all algorithms to the five systems.
We derived this figure from Table 6 to analyze the effect of
different sets of features on the performance of our approach.
We can observe that the performance of the models varies
according to the system. In general, when considering the
results for the five systems, our approach presented a better
performance for AF, StEv, EvSm, and Ev but showed poor
results for St and StSm. The St and StSm models do not in-
clude evolutionary metrics. In our approach, structural met-
rics are not good predictors when used alone or combined
with smell-based metrics. Some studies on the traditional ap-
proach reported similar results [Lu et al., 2012; Zhou et al.,
2009; Tsantalis et al., 2005]. In contrast, evolutionary met-
rics were good predictors in our approach, even when used
alone (Ev). We also analyzed the median values of each set
of features. We did not observe any impact on the results.
Additional figures presenting median values are available in
our repository.

Table 9 presents the number of times each kind of model
achieved the best values for each indicators considering all
the systems. We can observe that evolutionary models (Ev)
achieve the best values of Sensitivity in 4 out of 5 systems.
The StEv set achieves three best values for AUC, Fl-score,
and Accuracy. The AF set reaches two best values for AUC
and one for Fl-score and Accuracy. The mean values for
each model for all the indicators are available in our reposi-

tory.

Table 9. Number of times each type of model reached the best value
for each indicator considering all systems

Indicator AF Ev EvSm St StEv StSm
AUC 2 0 0 0 3 0
F1-score 1 1 0o 0 3 0
Sensitivity 0 4 0 o0 0 1
Accuracy 1 0 1 0 3 0
Total 4 5 1 0 9 1

We also applied the Kruskall-Wallis test to compare the
models. Figure 10 shows the results for each indicator. The
p- values were less than 0.01, indicating a statistical differ-
ence between the models. The StSm and St sets have the
lowest median values for all indicators. Table 10 presents
the effect size values. The StEv obtained the best values
of AUC, Accuracy, and Fl-score with no statistical differ-
ence compared to AF, Ev, and EvSm. However, there was a
statistically significant difference compared to St and StSm.
For Sensitivity, the best model is Ev, with no statistical dif-
ference with AF, EvSm, and StEv but presenting significant
statistical difference with St and StSm.

Response to RQ3: Our approach presented the best per-
formance for the models that include evolutionary met-
rics (AF, Ev, EvSm, and StEv). There is no statistical




On the use of Change History Data to Enhance Class Change-Proneness Prediction Models

0.9

o
©

e
b

ROC/AUC

0.6

0.5

JE —
|
2 |
¥ .
=
‘ 2,
| e
\ !
-
Our Trad
Wilcoxon p-value = < 0.001
(a) AUC
— Ti

Silva et al. 2024

0.85 =

g 3

& |

2080 ‘

b i
0.75 ‘ ‘
0.70 —

0.65
Our Trad
Wilcoxon p-value = < 0.001
(b) F1-score
1.0 —

0.9

o
™

Accuracy

o
3

0.6

(¢) Accuracy

Trad

Wilcoxon p-value = < 0.001

4
©

o
>
|
i
i

Sensitivity

|
SRRTO

-
:

o
o

Wilcoxon p-value = < 0.001

(d) Sensitivity

Figure 8. Boxplots comparing both approaches.

Table 10. Effect size results obtained comparing the models

Indicator Model  Avg Std Magnitude
AF 0.8469 4 0.055 negligible
AUC Ev 0.8328 +0.074 negligible
EvSm 0.8369 =+ 0.066 negligible
St 0.7228 £0.090 large
StEv 0.8482 £+ 0.055 best
StSm  0.7287 +0.087 large
AF 09115 £0.076 negligible
Ev 0.8754 4+0.101 small
Accuracy EvSm 0.8853 +£0.097 small
St 0.8366 +0.092 large
StEv 09126 +0.076 best
StSm  0.8395 +0.090 large
AF 0.9218 4+ 0.062 negligible
Ev 0.8944 +0.081 small
Fl-score EvSm 09018 +£0.078 small
St 0.8620 £+ 0.070 large
StEv 0.9228 +0.062 best
StSm  0.8645 +0.070 large
AF 0.7701 4+ 0.073 negligible
Ev 0.7830 +0.094 best
Sensitivity EvSm 0.7801 +£0.076 negligible
St 0.5889 +0.203 large
StEv 0.7714 4+ 0.071 negligible
StSm  0.5982 +0.187 large

difference between these models, but the best result was
obtained by StEv, i.e., combining structural and evolu-
tionary metrics. The results show a large statistical dif-
ference between the best model and models combining
structural and smell-based metrics (StSm) or structural
metrics alone (St). These models lead to lower perfor-
mance, considering all indicators.

5.4 RQ4: Which algorithm leads our ap-
proach to produce the best results?

Figure 11 shows the results comparing the algorithms for
each indicator considering all models and using the Kruskal-
Wallis test. We can observe that, except for Sensitivity, the
p-value is less than 0.001, which means a statistical differ-
ence between the algorithms. The RF algorithm presents the
best performance for AUC, Fl-score, and Accuracy indica-
tors. The LR is far from the other algorithms. For Sensitivity,
LR is the best algorithm but with no statistical difference (p-
value = 0.241).

Table 11 shows the effect size. For the AUC, RF is the
best algorithm but there is no statistical difference from MLP
or DT. There is a statistical difference with LR of medium
magnitude. Regarding Accuracy, RF has a statistically sig-
nificant difference from MLP and LR. For the F1-score, this
difference is medium from MLP and large from LR. These
results indicate that RF has the best overall performance, fol-
lowed by DT and MLP. The LR is only a good algorithm
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to ensure more correct classifications due to its good perfor-
mance for Sensitivity.

Table 11. Effect size results obtained by comparing the algorithms

Indicator ~ Algorithm  Avg Std Magnitude
DT 0.8063 +0.088 small
AUC LR 0.7565 +£0.078 medium
MLP 0.8184 +£0.068 small
RF 0.8296 +£0.106 best
DT 09160 =+ 0.058 medium
Accuracy LR 0.7602 +0.079 large
MLP 0.8875 +0.061 large
RF 0.9436 £ 0.038 best
DT 09222 +£0.051 small
Fl-score LR 0.8090 +£0.068 large
MLP 0.9029 +£0.050 medium
RF 0.9442  +£0.038 best
DT 0.6765 +£0.150 negligible
Sensitivity LR 0.7522  £0.104 best
MLP 0.7373 +£0.126 negligible
RF 0.6951 +0.209 negligible

We also analyze the performance of the algorithms by us-
ing each set of features. Figure 12 shows the results for AUC.

Silva et al. 2024
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The best performance of RF is for AF, Ev, EvSm, and StEv
models. For the StSm and St models, MLP performs better.
However, there is a statistical difference only for the mod-
els EvSm and EV. The RF algorithm presents a significant
difference in comparison with the other algorithms in most
cases, as we can see in Table 12. A complementary analy-
sis of the results of the other indicators can be found in our

repository.

Table 12. Effect size of the models and algorithms

Indicator Avg Std Effect
0.8254 +0.034 large

Ev 0.7630 +0.098 large
0.8542 +0.060 medium
0.8884 £+0.029 best
0.8327 +0.036 large
0.7706 £ 0.085 large

EvSm 0.8460 +0.031 large
0.8983 +0.030 best

We also analyzed the use of the resampling techniques.
Based on Table 6, we present Table 13 to show the num-
ber of times each algorithm uses the resampling techniques
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systems and 6 models), the RF algorithm obtained the best
results using ADA (17 times). The same occurred for the tra-
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ditional approach, using ADA 15 times. In both approaches,
the performance of the DT algorithm is better using ADA
(14 times). For the LR algorithm, SMOTE appears 10 times

in both approaches. The MLP algorithm performed better in Table 13. Comparing resampling methods

both approaches using ROS, appearing 16 times in our ap- Algorithm ADA NONE ROS SMOTE
proach and 15 times in the traditional one. We can conclude Our
that the ADA presents the better performance for the RF and DT 14 2 10
DT algorithms. LR 9 1 10 10
MLP 9 0 16 5
RF 17 0 5 8
Response to RQ4: The analysis indicates that our ap- Traditional
proach achieved the best results with RF for the AUC, DT 14 1 6 9
F1-score, and Accuracy indicators, followed by DT and LR 3 8 9 10
MLP. LR presents the best values of Sensitivity. We 11\{/[;P 1: 8 li i(l)

can highlight that ADA is the resampling technique with
the best general performance for RF and DT. The RF
presents the best results for Ev, EvSm, StEv, and AF
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models. However, MLP is the best for St the and StSm.

5.5 RQS5: Which metrics are the most im-
portant for change-proneness class predic-
tion?

We evaluated the set containing all features (AF) with MDI
and Information Gain methods to determine the most impor-
tant features for change-proneness class prediction. The re-
sults of both methods for each dataset are in our repository.

To evaluate the information gain of each feature, we used
the mutual_info_classif method of scikit-learn with de-
fault settings. First, we ranked the top 10 features for each
dataset of each system individually. Then, we created a
unique set of 50 features, which corresponds to the top 10
of each dataset. In this set of 50 features, we intersected
the 10 most repeated ones. Table 14 presents this rank-
ing result for Information Gain. The best performance in
all datasets are FRCH (FrequencyOfChanges), TACH (To-
talAmountOfChanges), CHD (ChangeDensity), and sumCy-
clomaticModified features. The BOC (BirthOfClass), fi-
nalFieldsQty, FCH (FirstChange), LCH (LastChange), and
WEFR (WeightedFrequencyOfChanges) appear in 4 out of 5
datasets. The CHO (ChangeOccurred) is the last one in the
ranking, placed among the top 10 in just 2 datasets. We
can observe that the evolutionary metrics performed better.
There are only two structural metrics, SumCyclomaticModi-
fied and finalFieldsQty.

Similarly, we ranked with MDI the 10 most important
features for each dataset using ExtraTreesClassifier method
of scikit-learn. Then, we created a set of 50 features
containing the top 10 features of each dataset. In this
set of 50 features, we intersected the 10 most repeated
ones. Table 14 also presents the result of this ranking for
MDIL. In all datasets, LCH (LastChange), FRCH (Frequen-
cyOfChanges) and WFR (WeightedFrequencyOfChanges)
appear in the top 10. The ACDF (AgregatedChangeDen-
sityFrequency), ATAF (AgregatedChangeSizeNormalized-
byFrequencyOfChange), FANIN, FANOUT, CHG (Change-
Density) and CSB (ChangeSinceBirth) are at the top 10 in 4
out of 5 datasets, followed by WCD (WeightedChangeDen-
sity) in 3 out of 5. Only two of the top 10 are structural met-
rics (FANIN and FANOUT), which are associated with class
coupling.

The LCH (LastChange), FRCH (FrequencyOfChanges),
CHD (ChangeDensity), and WRF (WeightedFrequency-
OfChanges) features appeared in both ranks. Density and
diversity of do not appear between the top 10 features using
both methods, even when any dataset is considered individu-
ally. These results reinforce RQ3 findings, which state that
these metrics do not affect the change-proneness class pre-
diction and that the evolutionary metrics are important for
CPCP problems.

We also performed a correlation analysis between the fea-
tures. The results are available in our repository. In sum-
mary, in all systems, we observed correlations between the
following structural metrics: WMC (WeightedMethodsper-
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Class) and MethodsQty, WMC and LOC (LinesOfCode),
WMC and SumCyclomatic, RFC (ResponseForaClass) and
LOC, RFC and assignmentsQty, RFC and variablesQty,
RFC and SumCyclomatic, MethodsQty and LOC, Meth-
odsQty and SumCyclomatic, LOC and AssignmentsQty,
LOC and VariablesQty, LOC and SumCyclomatic, DIT
(DepthoflnheritanceTree) and MaxInheritanceTree. In sum-
mary, we can observe that the cyclomatic complexity is corre-
lated to some of the other structural metrics. Future studies
should better investigate the impact of removing these cor-
related metrics. There are no strong correlations related to
other structural metrics such as TotalFields, TCC and LCC,
for instance, and evolutionary features. This reinforces their
importance.

Response to RQ5: The results obtained by MDI and
Information Gain methods reinforce the importance of
the evolutionary metrics for the CPCP problem. Evo-
lutionary metrics are 8 out of the top 10 features in
the rank of both methods, and the other two are struc-
tural. The LastChange, FrequencyOfChanges, Change-
Density, and WeightedFrequencyOfChanges features
appeared in both ranks.

In the next section, we discuss the implications of the re-
sults.

6 Implications

The findings obtained in the analysis of our RQs have some
implications that help developers in practice and also point
out some research opportunities.

6.1 Practical Implications

Our approach improves performance in ~80% of the cases
compared to the traditional approach, considering all sys-
tems, indicators, models, and algorithms. This means that
it generates better class change-proneness prediction models
and is the best option for developers. This allows develop-
ers to plan preventive maintenance operations and allocate
resources more efficiently. For instance, developers should
pay more attention to change-prone classes in the next re-
lease, spending more time coding, refactoring, reviewing,
and testing these classes. This could lead to a lower failure
rate, reduced technical debt, and maintenance costs.

Consider the following scenario to illustrate a practical im-
plication. A developer has added a new feature for a system.
However, this feature was implemented hastily because other
priorities arose, such as fixing a security bug. Because the
new functionality was not programmed consistently, techni-
cal debt was created. This debt may be related to quality
indicators, such as lack of cohesion or high coupling. These
indicators are captured by the metrics used as independent
variables in our approach. Then, this class will be predicted
as change-prone, leading to fast identification of the debt by
developers and reducing future costs.
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Table 14. Top 10 features for all datasets

# Datasets  Information Gain MDI

SumCyclomaticModified LCH (LastChange)

5 FRCH (FrequencyOfChanges) FRCH (FrequencyOfChanges)
TACH (TotalAmountOfChanges) WFR (WeightedFrequencyOfChanges)
CHD (ChangeDensity)
BOC (BirthOfClass) ACDF (AgregatedChangeDensityFrequency)
finalFieldsQty ATAF (AgregatedChangeSizeNormalized

4 FCH (FirstChange) byFrequencyOfChanges), FANIN, FANOUT
LCH (LastChange) CHD (ChangeDensity)
WEFR (WeightedFrequencyOfChanges) ~ CSB (ChangeSinceBirth)

3 - WCD (WeightedChangeDensity)

2 CHO (ChangeOccurred) -

According to RQI, our approach does not require a long
change history. A period of 3 releases may be enough, re-
gardless of the set of features used. However, metrics need to
be collected. We think that the software industry has already
adopted this practice, and many tools that can be employed.
Moreover, RQ3 and RQ5 findings show that not all the met-
rics evaluated in our study as independent variable needs to
be used. Evolutionary metrics should be prioritized to reduce
collection costs. For developers, the use of a lower number
of features can be advantageous since it makes models sim-
pler. Our results show that adding density and diversity of
smells does not improve the performance of our approach.
According to RQ4, regardless of the set of features used, RF
is the best option for the developer. However, our approach
achieves good performance with simpler algorithms, such as
LR, with values of AUC greater than 0.7. The MLP is a good
choice when using structural metrics.

6.2 Implication for research

We observe that larger window sizes do not improve the re-
sults. The larger the window size, the greater the class history
required, thus excluding classes added in more recent ver-
sions. This reduces the training data and can generate bias
towards older classes. However, further studies should be
conducted to better characterize the life of a class along the
project and its relationship with changes. It is expected that
newborn classes are more change-prone, whereas more ma-
ture classes are not. Testing other window thresholds would
be interesting to investigate the boundaries between small
and large windows. Another possible research opportunity is
to study the capacity of our approach in generating change-
proneness prediction models considering a number x of re-
leases ahead.

The RQ3 shows that the models presenting the best per-
formance in our approach are based on evolutionary metrics.
Our findings are different from the studies using the tradi-
tional approach. For instance, Catolino et al. [2020] shows
that adopting code smell-related information improves the
performance of different categories of models obtained with
the traditional approach. Moreover, studies do not show a
consensus on using structural metrics [Lu ef al., 2012; Zhou
et al., 2009; Tsantalis et al., 2005]. New studies should eval-
uate the impact of the features according to the domain and
kind of system being developed. In such studies, other kinds

of smells can be considered, as well as other smell-based met-
rics.

According to RQ4, our approach obtained similar results
to the literature when applying the traditional approach. The
Random Forest algorithm presents the best performance for
the CPCP problem [Malhotra and Khanna, 2019]. Thus,
smarter algorithms lead our approach to produce better re-
sults. We also observe that the performance of resampling
techniques can vary according to the algorithms. The Ran-
dom Forest and Decision Tree algorithms performed better
with ADA. This preprocessing technique and others should
be further investigated. A research opportunity is to inves-
tigate other algorithms, for instance, Deep Learning neural
networks. They naturally can analyze the state of variables
in different versions, e.g. long short-term memory (LSTM)
networks can be used for speech recognition and time series
prediction, among others. For this, the datasets should also
be expanded since these networks demand a large amount of
data.

Kriiger et al. [2024] analyzed studies on Software-Change
Intentions (SCIs) by using five dimensions: 1) Goals: pur-
pose for which developers perform a change; 2) Actions:
concrete activities developers perform to achieve their goals,
which can be simple, or compound. This last one combines
multiple simple actions); 3) Objects: artifacts manipulated
by an action; 4) Customer: individual or entity interested
in the change; and 5) Lifecycle: related to the development
phase.

In our study the Object/Artifact is always the code,
and we only focus on the dimension Actions. The ac-
tivities performed are simple changes pointed out by the
tool ChangeDistiller, as adopted in the literature. How-
ever, another way to define the dependent variable could
be used, considering, e.g., only compound and more com-
plex changes. Another research direction is to classify the
changes according to the intentions. A database should be
generated that relates changes with the developers’ goals, or
other dimensions proposed by Kriiger ef al. [2024]. The dif-
ferent intentions of the developers mentioned in their work
could be predicted such as bug fixing, refactoring, testing,
and resource configuration.
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7 Threats to Validity

This section presents some limitations and threats to the va-
lidity of our results, according to the taxonomy of Wohlin
et al. [2000].

Internal Validity: Possible threats are related to mistakes
in data extraction, selection, and preparation and preprocess-
ing steps in our approach. To minimize them, we followed
a methodology commonly reported in the literature and pro-
vided the data for a possible replication study. The ML al-
gorithms were configured with standard parameters. Then,
tuning the parameters can lead to better results. The number
of instances used for training the algorithms varies between
5383 and 111.917, but this may be a threat.

Construct validity: The selection of the features and how
they are combined to compose the kinds of models is possi-
bly a threat. For instance, the use of other smells or other
smell-based metrics may lead to other findings. The good
performance of the evolutionary metrics may be related to
how we calculated the dependent variable, which does not
consider a simple class change. The independent and depen-
dent variables were selected based on the literature to miti-
gate this. We also did not analyze the independent variables
to select the projects. However, other metrics and tools used
to collect them may impact the results.

External Validity: A threat is related to the systems used.
We analyze 5 systems with different sizes, diverse applica-
tion domains, and from distinct developers. However, all
systems were developed in Java. Therefore, we cannot gen-
eralize the obtained results to a different context.

Conclusion Validity: The conclusions may depend on the
indicators used in our analysis. To minimize this threat, we
employed different indicators and statistical tests. Our find-
ings depend on the formulated RQs. Other RQs could lead
to different implications.

8 Conclusions

Change-prone classes are more likely to change due to soft-
ware development, refactoring, and maintenance activities.
The early identification of these classes is useful for the soft-
ware development team to reduce the cost and resource con-
sumption [Elish and Al-Khiaty, 2013; Catolino et al., 2017].
The approach introduced in this study adopts the sliding win-
dow method to incorporate the change history of the class to
solve the CPCP problem. It is more realistic since it consid-
ers the structure of the problem and the temporal dependency
between the instances obtained from different releases. Each
learning instance is not limited to a fixed release, but it con-
tains the total or partial change history of the class.

The performance of the approach was evaluated to derive
six kinds of models, by combining structural, evolutionary,
and smell-based metrics as predictors. We analyzed three
window sizes (2, 3, and 4). The results point out that a
change-prone class prediction does not necessarily require
a long history. In the systems and kinds of models evaluated,
three releases were enough. We compared our approach with
the traditional approach. The results show that our approach,
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regardless of the algorithm and set of features, improves the
performance in most cases.

The Random Forest algorithm presented the best individ-
ual performance. Our approach works well with other tested
algorithms, e.g., MLP and Decision Trees. We achieved the
best results when applying the resampling techniques, e.g.
ADA. We also evaluated the importance of features in the
change-proneness prediction. The results show that evolu-
tionary metrics are predominant on the change-proneness.
Structural metrics stood out discreetly, 2 out of 10 most im-
portant. Smell-based metrics do not appear among the most
important ones. The models including evolution-based met-
rics derived from our approach are the ones that reach the
best performance for all systems, indicators, and algorithms.

This study can lead researchers to understand the aspects
of history-based representation and the role of evolutionary,
structural, and smell-related metrics in change-prone class
prediction. Researchers can develop more precise tools to
recommend change-prone classes. In the practical field, our
approach can help developers to better focus on change-
prone classes to minimize the number of future changes and
guide maintenance team and resource distributions to reduce
future efforts and costs.

In this study, we used some features from open-source
Java applications or those that can be extracted for Object-
Oriented software. However, our approach is language-
independent and can be used to obtain models adopting
other features not explored here, which are specific to other
languages and contexts, such as Test classes and Highly-
Configurable Software. In future work, we intend to eval-
uate other languages and sets of applications from the same
domain to create more specific models for these problems.
We analyzed the features but did not generate a model with
the best features. This would be interesting in future studies
to compare and investigate the possibility of adopting a gen-
eral model for all systems. Other sets of metrics, such as the
ones captured dynamically should be investigated, as well as
the use of deep learning.
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