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Abstract Localization is a critical component in autonomous vehicle navigation stacks. While GNSS-only localiza-
tion cannot be fully reliable and available all the time, localization based on 3D high-definition (HD) maps have
to be robust to world changes, which is still a challenging issue. Added to that, in general, HD maps are expensive
and difficult to construct and maintain. In this paper, we propose a particle filter-based 2D global pose estimation
method that can use the crowdsourced OpenStreetMap (OSM) API, a digital surface map, or both. The main con-
tributions of the proposed approach are: that it is lightweight, does not require the vehicle to map the environment,
does not require a GPU (can be used with low-power computing resources), is agnostic to the odometry source,
and achieved relatively low position and orientation errors for this localization modality using the KITTI dataset
sequences. The proposed method’s implementation is open source and is available with the experimental results on

our GitHub page.
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1 Introduction

In the autonomous driving industry, localization plays an im-
portant role in navigation systems. One example is that mo-
tion and trajectory planning both depend on the knowledge
of the agent’s pose.

Localization is generally estimated using a filtering ap-
proach (backend) that fuses local and global pose estima-
tions. Local pose estimation approaches provide the vehicle’s
pose with respect to a relative frame - usually placed at the
sensor’s origin. They provide pose estimates at a high fre-
quency (generally above 10Hz) but are susceptible to drift
in the long run. Drifting is the accumulation of errors in the
process of estimating relative poses and is mitigated by ap-
plying place recognition and loop closure techniques using
local maps constructed along the trajectory.

On the other hand, global pose estimation techniques pro-
vide the agent’s position and orientation with respect to a
static and known reference frame. One example is the Uni-
versal Transverse Mercator (UTM) zone origin on which the
vehicle is placed. Global poses can be retrieved using place
recognition on maps constructed on a previous drive using
offline simultaneous localization and mapping (SLAM) ap-
proaches or GNSS-based correction.

GNSS-based localization is not reliable on urban canyons'.
Also, dense foliage around the vehicle impacts the accuracy
of the measurements. As an alternative for improving the es-

IRegions with tall buildings in the surroundings that interfere with the
satellites’ signal.

timations, expensive GNSS devices are fused with inertial
measurement unit (IMU) devices for improving localization.
Even in that case, some devices can interfere with or inten-
tionally block GNSS signals (GNSS jammers and special
security/military devices). Therefore, localization pipelines
usually use more sources of global localization, since the first
two problems still occur.

Map-based localization using high-precision 3D maps re-
quires reconstruction using one or more light detection and
ranging (LiDAR) devices, which are expensive. Among the
issues of the reconstruction process, filtering dynamic ob-
jects, performing manual point cloud alignment, ensuring
very precise local estimations and the volume of the recon-
structed maps are problems that constantly occur. Further-
more, when performing localization using those maps the ve-
hicles also need to use the LIDAR (with proper intensity cal-
ibration), which does not help in reducing the project’s price,
being restricted to expensive customized cars.

Other types of maps that can be used as an alternative to
high-precision 3D maps can also be used. For instance, digi-
tal elevation models (DEM) and digital surface maps (DSM)
represent the surface’s elevation and are usually recorded us-
ing LiDAR-equipped unmanned aerial vehicles. The DEM
represents the ground plane elevation profile and disregards
trees and buildings, while the DSM represents the elevation
profile considering trees, buildings, and other elements that
do not belong to the ground plane. While very popular in the
agriculture context, they are used in Geographic Information
Systems (GIS) and can be a valuable tool in the task of global
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localization in the autonomous vehicles’ context. In addition,
they are much less expensive to reconstruct than 3D HD
maps. Furthermore, some countries have a very broad DSM
and DEM coverage conveniently gathered by open source
tools, for instance, the Equator studios tool”.

Another type of map is the OpenStreetMap® (OSM), a
crowdsourced map containing the road network, places of
interest, or even high-level-represented landmarks that can
be used to aid in the visual place recognition task. The ad-
vantage of this type of map is that it is a free source and there
are many available tools that make its usage easier, as the
OSMnx*, Pyrosm® and JOSM®.

In this paper, we use the benefits of the OSM and the
DSM maps for estimating global poses. We propose two ap-
proaches that can be used either individually or together: the
“Global Localization using the OSM” (GLOSM) approach,
which uses the OSM road network, and the “Elevation Off-
set” (ELOFF)-based approach, which uses the DSM for cor-
rections. In short, the core concept is to use the navigable
area, provided by the OSM, and the elevation, provided by
the DSM, for weighing a particle filter. The output is a global
pose that can be used as input for a state estimation backend,
for instance, an Extended Kalman Filter or a pose graph.

The proposed approach was tested using the KITTT dataset
sequences from 0 to 10 and it could achieve translational
error metrics close to 3m and orientation error lower than
1°. It was tested and compared using three different odom-
etry sources (from different sensor modalities: camera and
LiDAR) and it was able to reduce the drift errors to less than
10%.

The main contributions of the proposed methods are:

+ They can use open and crowdsourced data without re-
quiring expensive offline processing or mapping steps;

* They are robust to GNSS failures and do not depend on
3D HD maps;

» They can be used on machines with lower computa-
tional power so that they can be incorporated into con-
ventional vehicles at a lower cost.

Additionally, we also provide:

* A LiDAR odometry implementation for testing the lo-
calization algorithms (named SLOPY);

* Tools for constructing a digital surface map from laser
scans collected by a ground vehicle.

The source code of the global localization methods, tools,
and experimental results are available in our GitHub reposi-
tories’8?.

2 Available at: https://equatorstudios.com/

3 Available at https://openstreetmap.org/

4 Avaiable at https://osmnx.readthedocs.io/

3 Available at: https://pyrosm.readthedocs.io/

6 Available at https://josm.openstreetmap.de/

"SLOPY: github.com/cabraile/SLOPY

8Map construction tools: github.com/cabraile/3D-Kitti-Mapper

GLOSM, ELOFF, and results: github.com/cabraile/ GLOSM-
EIOff
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2 Related Work

In this paper, we explore different aspects of the localization
problem, which is related to other works that use OSM, ele-
vation profiles, aerial imagery, semantic maps, and 2D geo-
metric features for localization. In this section, we provide a
broad overview of those related methods.

2.1 OSM-based localization

The OSM-based localization approaches tend to use higher-
level world representations such as text, road networks, or the
existence of buildings in the surroundings in order to perform
data association. The process generally requires extracting
those higher-level data from the low-level data of the sensor
information for matching with the map data.

In Radwan et al. [2016], the authors perform data asso-
ciation between the text detected from a camera image and
the text contained in the OSM nodes in the surroundings,
which were filtered using received GNSS coordinates. Their
method does not use sequential information in order to im-
prove the estimated global localization and is highly depen-
dent on the GNSS. In contrast, our method, as can be seen
in Section 3, depends on the GNSS only for initializing the
global localization. Our approach does not require text de-
tection and uses sequential information in order to provide
global localization.

In Brubaker et al. [2016], they propose a new state repre-
sentation model based on the displacement and orientation
with respect to a road segment (way) and model the global
state distribution using a Gaussian Mixture Model. Their idea
is to predict the state based on the vehicle’s displacement
velocity and the road bifurcations ahead while updating the
hypotheses’ weights using visual odometry. Their work in-
spired our GLOSM in using the road segments as constraints
for the localization problem. However, we model differently
the way those constraints are used, so that we work directly
with the cartesian state variables instead of working with an
intermediate representation.

The method presented in Yan et al. [2019] performs global
localization using 4-bit descriptors based on building gaps
and road intersections retrieved from the OSM API. Even
though compact, building this descriptor requires using se-
mantic range images. Also, walls and fences that surround
buildings are not always mapped in OSM, which frequently
occurs in residential neighbors, and is not handled in their
approach. Our GLOSM approach, on the other hand, is ag-
nostic to the sensor used and is not prone to issues related to
unmapped walls.

In Amini et al. [2019], an end-to-end approach deep learn-
ing stack for navigation was proposed, in which the camera
images, added to GNSS coordinates and the OSM map of
the surroundings’ driveable area, are received as input and
the steering control and refined localization estimation are
provided as output. More recently Sarlin ef al. [2023] pro-
posed the OrienterNet: a global 2D pose estimation method
that uses the coarse pose, monocular camera images and the
rasterized OSM geometric and semantic information for esti-
mating the probability distribution of the camera in the given
map using convolutional neural networks. The network ex-
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tracts the semantic BEV from the camera image and encodes
the OSM shapes in order to perform exhaustive BEV map
matching. While our GLOSM approach can use GNSS to
complement the filter process, GNSS is not required for local-
ization which is a benefit compared to the approach proposed
by Amini et al. [2019]. Added to that, neither GLOSM nor
ELOFF uses deep learning - which requires dedicated hard-
ware, heavy offline processing (training) and an extensive
dataset that covers most of the possible cases for good gen-
eralization.

2.2 Elevation-based localization

Elevation does not tend to be a unique feature in elevation-
based maps, since many places in a map can have the same el-
evation. Still, when fused with the appropriate filtering meth-
ods, it can be used for reliable global pose estimation. In Man-
del and Laue [2010], the authors propose using the elevation
computed using the pressure measured by a barometer for
correcting the position of an autonomous wheelchair. Similar
to our approach, the position of the particles is corrected by
comparing the deviation between the elevation and a digital
elevation model (DEM). Their approach, however, depends
on the barometer for computing the elevation - which is prone
to pressure changes in the atmosphere and constantly has to
be recalibrated. We, instead, propose using the odometry dis-
placement with respect to the fixed world frame’s upward
axis.

On a different application, Hyuga et al. [2016] proposed
using a smartphone’s barometer information for filtering hy-
potheses of subway stations a passenger can be. In their ap-
proach, they estimated the altitude above sea level and found
the matching stations according to the prior altitude map of
each available station and with the constraints of which line
of the subway network the user was on.

In Larnaout et al. [2013], both GNSS and DEM are used
for global 3D pose estimation using monocular SLAM. In
their approach, the DEM is used for adding a constraint in
the pose graph, which uses the reprojection error of the road
plane points as part of the optimization’s cost function.

In Imperoli et al. [2018], a more complex system that inte-
grates different sources of odometry and global position was
proposed in the context of unmanned farming ground vehi-
cles. In their application, the DEM was used as a pose graph
constraint in the fixed world frame’s upward axis in order to
avoid elevation drift. Our proposed method ELOFF uses the
DSM as a weighing constraint in the x-y plane for the particle
filter.

2.3 Geometry-based localization approaches

While not exactly a higher-level feature, the available infor-
mation on buildings’ 2D footprints is also interesting and can
also be used for performing data association and directly cor-
recting the estimated vehicle’s pose. The work presented in
Bhattacharyya et al. [2017] uses both the 2D building foot-
prints and the DSM for retrieving 3D information on build-
ings in Tokyo. With the 3D buildings, the 3D point clouds
from stereo images are used for correcting the 2D pose es-
timated using an inertial navigation system. Similarly, in
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Figure 1. The Bayes network that models the conditional independency re-
lationships for our approach. Notice that the element m does not contain a
subscript, which is intended since the map m is assumed to be static. In the
context of this model, lowercase variables represent observed quantities and
uppercase variables represent variables that cannot be directly measured.

Quack et al. [2019], their localization correction relies on
matching laser scans with 2D building polygons. In their ap-
proach, those building polygons were annotated manually on
their test site using satellite imagery. The scan matches are
used for correcting the Monte Carlo Localization (MCL) fil-
ter. The backend of our localization pipeline used for inte-
grating the GLOSM and ELOFF estimations is the MCL as
in the approaches mentioned, but we do not use the map’s
geometric information for performing data association or for
directly correcting the poses.

While not explicitly using the map geometries for correct-
ing the vehicle position, in Miller et al. [2021] they perform
global localization by matching semantically annotated scan
point clouds with the semantic-segmented aerial imagery of
the world. The core idea is that the segmented scans can be
projected for each particle and compared to the semantic map
of that particle’s position. This approach requires: training a
semantic segmentation model for segmenting aerial images;
segmenting the map’s aerial images, which can take a long
time to cover small regions even using a lower resolution;
and performing on-the-fly point cloud semantic segmenta-
tion, which adds a computational burden to the pipeline.

3 Method

The goal of the proposed method is to correct the drift from
an odometry source using global position estimates from a
given digital surface model (DSM) map or from the Open-
StreetMap layers. Hence, the state to be estimated is com-
posed of a 3D position and the yaw orientation 1, thus it is
represented by S; = (x¢, yt, 2¢, ¢ ). The subscript ¢ denotes
the time stamp in which the state is contained. Differently
from the SLAM problems, the map m components are not
included in the state space since the map is assumed to be
given and static. Considering this, we decided to model the
conditional relationship between the variables as in the Bayes
network illustrated in Figure 1.

The probability distributions of the estimations using the
GLOSM or the ELOFF approaches are not expected to be
Gaussian and neither the map measurements are expected
to be obtained using linear transformations. Also, the model
represented by the presented Bayes network is conveniently
easy to use if implemented using the particle filter frame-
work, which was adopted as our sequential filtering ap-
proach.

If we assume that we have an odometry source (obtained
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using any arbitrary sensor) - which provides relative poses u;
between time steps t — 1 to ¢ -, and if we know the distribution
from which u was sampled, we only need to define the prob-
ability distribution of the measurement model P(Z|S, M),
where Z represents the measurement (and z would represent
the observed quantity), S the state vector and M the map
source used, which can be the OSM, M = mog s, or the dig-
ital surface map, M = mpgys. In this paper, we compared
two odometry sources: SLOPY (ours, see Section 3.3) and
DF-VO [Zhan et al., 2021, 2020], but the filter implementa-
tion is modular enough for using other odometry sources as
well.

In general, the implemented particle filter works as fol-
lows:

1. The pose offset estimated from the odometry algorithm
is provided as an input for the particle filter’s sampling
step;

2. The particles are weighed using the OSM (GLOSM) or
the DSM (ELOFF) models;

3. The weighed particles are then resampled.

As for the first step (known as the sampling step), it is per-
formed as in any particle filter approach: from the estimated
pose offset, assumed to have a known noise model'?, each
sampled particle is displaced with noise.

The second step consists of measuring the likelihood of the
hypothesis each particle represents so that particles that have
more likely states have higher weights. In this paper, this is
done by comparing the particles’ positions with the map. De-
pending on the map used this is done differently, as described
in Section 3.1 (GLOSM) and in Section 3.2 (ELOFF). We
emphasize that, in most global localization approaches, this
is performed with data association between features detected
by one of the sensors and a map. In our approach, the key con-
cept is to use the trajectory to weigh the particles instead of
performing feature matching.

Finally, resampling the particles will keep the most likely
particles and discard most of the less likely particles. In our
implementation, we used the low-variance sampler approach,
which is less prone to bias when generating random numbers.

3.1 GLOSM

The OpenStreetMap'! is a rich resource, which consists of
many higher-level landmarks, the road network geometry,
and its semantics. In this paper, we only explored the nav-
igable areas provided by the road network.

The road network provides valuable data for localization:
the driveable area. Assuming the vehicle is in a driveable
area or assuming that an external module is able to provide
this information, we can weigh particles that are outside the
driveable area. The Equation (1) represents the measurement
model probability distribution when using this as a feature:

p(z = +navigable|s, M = mosnr)
e
l-«a

10We assumed the noise to be Gaussian-distributed in our model
AL openstreetmap.org

if s in a driveable area, (1)
otherwise,
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where 0 < a < 1 represents how likely is the vehicle inside
a navigable area.

Another feature provided by the OSM is the existence of
traffic lights and stop signals inside a region. Even though
their coordinates are not exact, they can be used to filter hy-
potheses by assigning low values to particles that are too far
away for observing them when those features are detected.
We explored this in our previous paper, Przewodowski and
Osorio [2022]. However, those features are sparse in the
dataset used for testing the proposed methods and we decided
to not explore them further in this paper.

3.2 ELOFF

In this paper, we use an initial estimation of the absolute el-
evation of the vehicle and propagate the elevation offsets us-
ing the odometry estimates. Since the odometry estimation
provides the relative pose from the current ego-vehicle frame
(Feurr) to the same frame in the previous time step (Frev),
it is necessary to apply a frame rotation for retrieving the
elevation offset with respect to the ground plane. This is rep-
resented in the following equation:

AtE = RE G @)
where the rotation matrix R can be computed using the previ-
ous orientation provided by an IMU (already in the frame F)
and t?f:ij represents the displacement from F), e, t0 Fryrr,
and At represents the displacement between the previous
and current frame F' had w.r.t. the world coordinates.

Having a digital surface map allows querying, for each par-
ticle, the expected elevation in its position. This is modeled
in the following equation:

p(Zmeasured = Z|Zexpected = DSM(I7 y))

N o G
(== DSM(x, )]

where z corresponds to the particle’s estimated elevation af-
ter propagation using the odometry input, DSM (z,y) re-
trieves the elevation in the (z,y) coordinates (in our case,
projected in the UTM coordinates) and o represents the un-
certainty in the measurement (in meters). The right side of
the equation is the inverse of the 1-D Mahalanobis distance
which, in practice, will provide higher weights for particles
that have an elevation closer to the map’s elevation.

The operation for retrieving the elevation in the DSM
raster given the global position of the object is known in geo-
graphic information systems (GIS). It consists of first con-
verting from the projected coordinate frame to the image
frame and then accessing the individual image value. The op-
eration for converting from the global position to the image
frame’s coordinates is represented in the following equation:

Ty Sx 0 —SeTmin | |2
Yyr| = 0 - Sy Sy Ymax vyl (4)
1 0 0 1 1

where S, and S, represent the map resolution (in pixels per
meter), Lpmin and Ymq, are the minimum easting coordinate
and the maximum northing coordinates of the map, and x;
and y; correspond to the image coordinates column and row.
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Figure 2. General data flow of the proposed method.

3.3 SLOPY

One of the inputs of our approach is the relative pose pro-
vided by an odometry source from any source, for instance:
visual, inertial, or LIDAR. The estimated relative poses prop-
agate the particles from the proposed particle filter. Even
though we tested with different odometry sources (DF-VO
and Viso2, which are camera-based), we also implemented
an easy-to-integrate LIDAR odometry Python module named
SLOPY (from “Simple Laser Odometry in PYthon™) for con-
ducting our experiments. While simple, it has demonstrated
its effectiveness in combination with the proposed global lo-
calization approach.

SLOPY was implemented using a point-to-plane registra-
tion approach for computing the SE(3) transformation ma-
trix that relates the current frame with respect to the previous,
T/~ Also, for making it more accurate, the linear and an-
gular velocities are computed, so that the translation and ro-
tational parts are separated from 7} ' and divided by the in-
verse of the scans’ frequency. First, the Euler angles ¢ (roll),
0 (pitch), and v (yaw) are obtained from the rotation matrix
for computing the angular velocities. The velocities are then
used for estimating an initial transformation, which improves
the convergence of the ICP algorithm.

When anew scan is received in the time stamp ¢+ 1, the ini-
tial position for the point-to-plane registration is provided by
computing the estimated displacement matrix Ttt 1 assuming
constant velocity and multiplying the velocities by the time
interval between scans.

This framework allowed pose estimates to be provided ev-
ery 100ms in the given pipeline. We emphasize that any other
local estimation approach could be used, but using this ap-
proach was easier to prototype and was effective for our pur-
poses.

3.4 Pipeline

The general pipeline data flow is illustrated in Figure 2. The
received odometry poses, fused with a global orientation
measurement (in this project we used the IMU as a source),
are used for propagating the filter’s particles. Then, using the
particles’ coordinates, we can retrieve the elevation of each
particle and whether they are in a driveable area. The eleva-
tion information - along with the accumulated particles’ ele-
vation offsets - are used for computing the ELOFF weights
(Equation (3)) and the information of particles contained in a
driveable area is used for computing GLOSM weights (Equa-
tion (1)). The weights are then used for updating the particle
filter, which provides the refined pose state (x4, y¢, 2¢, ¥r).
As for filtering, the implementation of the proposed filter
works the same as in usual Monte Carlo Localization (MCL)
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filters, in which the particles are sampled from a prior pose,
then a cycle of sampling, weighing, and resampling starts.

In our approach, weighing the particles can be done us-
ing any of the measurement models proposed in Sections
3.1 (GLOSM) and 3.2 (ELOFF). We noticed that, in practice,
weighing particles every period of time instead of doing it for
every frame yields more stable results. In the case of ELOFF
this might be related both to the accuracy of the digital sur-
face map used and the low offset in the upwards direction
between frames. In the case of GLOSM, usually, the lanes
are not fully aligned with the true road positions or the map
lanes are not as large as the true road. In that case, if we re-
sample the particles on each frame good candidates might be
filtered out as well. Instead, by weighing periodically, this
effect is mitigated.

In Figure 3, one iteration of our pipeline’s cycle is sum-
marized. The resulting particles for each cycle represent the
probability distribution of the trajectory given the odometry
estimates and the measurements performed in the process.
The moments of this distribution can be estimated empiri-
cally and provided as input for a localization pipeline, which
can use factor graphs or any Kalman Filter variant approach
as back-end processes.

4 Experiments

For validating our approach, the KITTI dataset [Geiger et al.,
2013], a well-known and open benchmark dataset used to
evaluate and compare different intelligent and autonomous
vehicles’ approaches, was used. For comparing localization
methods, the “odometry” subset was used'?, which is com-
posed of 21 sequences (from “00” to “20”’) recorded under
different environmental conditions, dates, and places. The
sequences “00” to “10” are provided with the ground truth,
while sequences from “11” to “20” do not have the ground
truth publicly available (for a fair comparison between ap-
proaches). In its foundations, this dataset is targeted for com-
paring odometry and SLAM methods, not global localization,
so that we could only evaluate trajectories “00” to “10” using
the available references. The sequence “03” was not avail-
able for download by the time the proposed method was un-
der its experimental phase, hence the experiments were not
conducted in that sequence.

4.1 Building the DSM

Since the KITTI dataset does not provide a DSM and since
the EquatorStudio tool’s DSM for Karlsruhe has a very low
resolution (30m), we reconstructed the environment using
the LIDAR scans and georeferencing the point cloud using
the inertial navigation system (INS) poses, which are also
used as the ground truth. While in the mapping tools imple-
mented (and mentioned in Section 1) the resolution could be
as precise as the resolution of the used sensors, we chose
to use a resolution of 15 centimeters per pixel, which al-
lows a good tradeoff between map sizes, as the covered dis-
tances are big, and would allow frequent system updates if

12 Available  at:
odometry.php.

https://www.cvlibs.net/datasets/kitti/eval
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Figure 3. Summarized pipeline iteration. ¢ and 6 represent the roll and pitch angles provided for computing the elevation displacement in the global frame

for ELOFF.

intended. Also, even though it is theoretically possible to use
low-resolution maps like Karlsruhe’s EquatorStudio DSM,
the elevation in a 30-meter region is provided with a high
uncertainty due to many factors - including oscillations in
the ground slope, buildings and vegetation - which implies
in update steps that would not discard hypotheses.

For filtering the dynamic objects'?, we applied the Yolo
detector (vSm)'# in the RGB images of the left camera and
filtered the projected LiDAR scan points that were inside the
detections’ bounding boxes. More than filtering, projecting
the points to the RGB image frame allowed for colorizing the
point cloud.

Using the reconstructed environment’s point cloud, the
DSM was built by projecting each point to a raster array us-
ing the transformation of Equation (4) presented in Section
3.2. In this array, each cell contains the maximum Z of the
projected points. Some of the maps that resulted from this
process are displayed in Figure 4.

4.2 Results

For comparing pose estimation methods, the metrics used
were the Absolute Pose Error (APE) and the Relative Pose Er-
ror (RPE), which are generally split into translational and ro-
tational error values. Those error metrics were computed us-
ing the EVO software [Grupp, 2017], which is a well-known
tool for computing error metrics between trajectories and
a reference. We computed metrics for the visual and laser-
based odometry approaches used as input to the PF and for
the 2D global localization.

The APE is computed using the relative transformation
matrix between the estimated state S and the expected (anno-
tated) state G, which is obtained using 7§ = (TF)~1(T1),
where TY € SE(3) corresponds to the transformations be-
tween G and an arbitrary frame F', and T € SE(3) between
Sand F. T§ € SE(3), contains the linear and angular dis-
placements from .S to G, which are used for computing the
translation and angle errors.

Following similar logic, the RPE compares the relative
transformation of the frame S in a previous moment in time
(Sprev) with the relative transformation from G at the same

LIS

13The objects considered dynamic in our filtering are “car”, “person”,

“bicycle”, “motorcycle”, “handbag”, “train”, “truck”, and “bus”.
4From this implementation https://github.com/ultralytics/
yolovh

SLOPY(Ours) | DF-VO (Stereo) Viso2
Sequence Lrel Trel trel Trel Lrel Trel
00 2.3 2.1 2.0 1.0 16.1 4.8
01 2.2 14 105.7 32.6 173.1 | 224
02 2.1 2.4 2.1 0.8 33.5 2.1
04 2.6 2.0 1.0 0.3 50.9 1.5
05 2.1 2.4 1.5 0.5 18.1 5.4
06 1.9 1.7 1.2 0.5 29.2 2.7
07 2.9 2.2 1.1 0.4 15.0 5.9
08 2.6 2.7 1.9 0.5 18.3 3.2
09 1.9 2.8 3.1 0.4 28.1 2.4
10 2.3 3.2 3.5 0.5 32.9 3.4
Average | 2.3 2.3 12.3 3.8 41.52 | 5.38

Table 1. Comparison of the estimated odometry trajectories’ rela-
tive position (¢,ei, in %) and orientation (ry.c;, in deg/100m) error
metrics.

moment Gp,¢y, S0 that the RPE pose matrix is computed as
TS = (Tg prevy—1 (Tg Prev). More information can be found
in the EVO source code'® and documentation'®.

The goal of the odometry approaches is to provide local es-
timates that are not globally corrected over time. Therefore,
the appropriate metric used for comparison is the RPE, which
basically computes the difference in the offset between the
reference and the odometry. In the KITTI dataset, they rec-
ommend using window sizes above 100m for the compari-
son. In Table 1, we compared the translational and rotational
RPE for SLOPY, DF-VO, and Viso2. The DF-VO and Viso2
results were provided by Zhan et al. [2021]"7.

Regarding the global pose estimation - which is our main
goal - the absolute position and orientation errors are gath-
ered in Table 2. For computing those metrics, since the ref-
erence frame is the camera, the Z-axis points forward and
the X-axis points to the left, which means that the Y compo-
nent of the estimations and the reference were ignored and
the rotation part was recomputed by setting the roll and yaw
components to zero both to the reference and the estimations.

As for other localization methods, in the paper presented
in Yan et al. [2019], the authors tested their localization algo-
rithm using the KITTI 00, 05, 06, 07, 09, and 10 sequences

15 Available at: https://github.com/MichaelGrupp/evo/blob/
master/evo/core/metrics.py.

16 Available at https://github.com/MichaelGrupp/evo/blob/
master /notebooks/metrics.py  API_Documentation.ipynb

17 At https://github.com /Huangying- Zhan/DF-VO
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Figure 4. The digital surface maps of 3 of the sequences constructed using the reference trajectory.

Odometry | Uncorrected | ELOFF | GLOSM | Both
SLOPY 40.6m - 6.0° | 6.4m - 2.0° 3.6m -0.9° 4.3m-1.7°
DF-VO 81.7m -5.3° | 70.1m - 3.3° | 69.5m - 2.46° | 75.1m - 3.2°
SLOPY* 28.9m -5.7° | 5.8m -2.0° 3.3m - 0.87° 4.5m - 1.7°
DF-VO* 11.3m -5.6° | 5.6m-2.1° 4.1m - 1.2° 10.6m - 2.6°

Table 2. The estimated trajectories’ average 2D position (¢45s) and orientation (74p5) error metrics computed on the KITTI sequences from
0 to 10. The methods indicated with * had their averages computed without sequence 01, in which DF-VO was unable to converge.

Sequence | Miller ef al. [2021] | Brubaker et al. [2016] (Stereo) | Ours
00 2.0m 2.2m 2.8m
01 2.0m 2.6m 6.5m
02 9.1m 4.3m 3.1m
05 - 3.7m 2.6m
07 - 1.7m 1.5m
08 - 6.0m 3.6m
09 7.2m 4.4m 3.6m
10 - 4.9m 3.2m
Average 5.1m 4.0m 3.4m

Table 3. Comparison between the average 2D position error metrics
of the proposed approach with related works. For the column of
our approach, we selected the combination SLOPY with GLOSM,
which yielded the best results.

but did not specify the exact error metrics, however, their
claim is that - after convergence - their localization reach
an error close to 10m. In Miller et al. [2021], they also
tested their localization algorithm using the 00, 02 and 09
sequences. In Brubaker et al. [2016], the authors tested their
method in all the initial sequences but failed to converge in
sequences 04 and 06.

The mean trajectories’ error metrics of those papers are
displayed in Table 3.

Regarding the processing time, the average processing
time of the MCL predictions, GLOSM, and ELOFF update
times are displayed in Table 4. For the sequences above,
the experiments were conducted using 500 particles, but we
benchmarked with more particles in order to verify the limits
for real-time applications.

In addition, the videos of the experiments, as well as the
estimated trajectories and tables of the experiments’ metrics,
are available in our paper’s GitHub repository!8.

4.3 Analysis

Even though SLOPY implements basically point-to-plane
ICP registrations with velocity estimations, it proved to be
consistent even on a sequence (sequence 02) in which the

18 Available at github.com /cabraile/ GLOSM-EIOff

(b) Roads not fully covered.
Figure 5. The artifacts found in the GLOSM map.

vehicle is at a higher speed, which is in general an issue for
odometry estimation, as happened with DF-VO and Viso2.
We emphasize that the global localization method we pro-
pose in our paper can use odometry poses estimated using
any sensor modality.

In practice, GLOSM’s role in the pipeline was to ensure
that the trajectory was contained reasonably well inside the
navigable area. Its strength was in the parts of the trajectory
with very narrow lanes or in trajectories with many curves.
However, in the highway (sequence 01) the roads are larger,
which implies a larger margin for the particles to spread and,
therefore, less accurate estimations. Added to this fact, in
some parts of the trajectory the driveable area was not cor-
rectly mapped. An instance of each of the mentioned issues
is illustrated in Figure 5.


github.com/cabraile/GLOSM-ElOff
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Num. Particles | Prediction | GLOSM \ ELOFF | Total
500 9ms + 3ms 42ms £+ 149ms | 0.2ms £0.7ms | 51.2ms
1000 18ms + bms 79ms + 212ms | 0.3ms £0.2ms | 97.3ms
2000 39ms + 12ms | 157ms £ 358ms | 0.7ms + 2.3ms | 193.7ms

Table 4. The average and standard deviation of the processing time of the proposed method’s steps.

. ~.‘"

(b) Elevation Oscillation

(¢) Road Occlusion

Figure 6. The artifacts found in the reconstructed DSM. In (a) the top of a
moving vehicle was not filtered during several frames, leading to the orange
line in the DSM. (b) An abrupt change of elevation (more than 5m) causes
the map discontinuity from the yellow to the red parts. (c) The tree canopy
that was covering the street was mapped and is contained in the DSM.

The dynamic objects’ filtering mitigated the artifacts from
the constructed maps but did not remove completely their in-
fluence. Also, the height of the reference oscillated by a large
margin in a slow period of time in some cases. Using the
surface models built from a ground vehicle’s LiDAR is not
ideal: while filtering can help, aerial LIDAR imagery tends to
be more accurate (can achieve a resolution lower than 10cm)
and less prone to the objects’ motion. ELOFF is also prone
to issues when tall objects cover the road in the DSM, for in-
stance, traffic signals or light poles that are curved towards
the street. An example for each of the issues described above
is displayed in Figure 6. Still, even with the presented limita-
tions, the proposed method was able to converge.

Incorporating GLOSM to ELOFF in this set of ex-
periments improved its estimations, but quantitatively the
GLOSM with ELOFF approach was still not better than us-
ing GLOSM alone. In general, most of the sequences had a
high presence of height artifacts in the same lane of the vehi-
cle, which led the particles to converge on a parallel lane. In
the sequences in which the artifacts were not prominent, the
ELOFF helped in correcting the drift mainly for the cases
where the vehicle takes too long to perform a turn. One of
those cases is illustrated in Figure 7.

In DF-VO the average error of the fusion of GLOSM with
ELOFF increased when compared with the estimates being

1 \\-., B .. v

Figure 7. A situation where the vehicle took a long period of time before
turning (moving from the top to the bottom). On the left, the GLOSM-
estimated state and particles. On the right, the estimated state uses both
GLOSM and ELOFF. This example was performed on Sequence 00 using
SLOPY. Particles are represented by yellow crosses.

SRig .
Figure 8. The sequence of frames (from the left to the right) that illustrate the
failure in the convergence of DF-VO corrected with GLOSM and ELOFF.
The altitude of the map is colorized so that the lowest point is blue and
the highest point is red. Notice that right at the first frame (left figure), the
height ramp changes abruptly and that DF-VO odometry was very delayed
with respect to the reference.

performed individually. This happened because, in sequence
09, we had a combination of the DSM height oscillation ar-
tifacts allied with bad odometry estimates at the beginning.
Those made the filter diverge very close to the start of the
trajectory. This is illustrated in Figure 8.

When it comes to global localization, our approaches were
capable of reducing the trajectory drift error by approxi-
mately 20m and localizing the agent with an average error be-
low 5m without the usage of GNSS devices or high-precision
maps and even performed better than the approaches used
in our comparison. Besides the accuracy, the proposed ap-
proach is relatively fast: on average, using GLOSM and
ELOFF together for updating 500 particles takes close to
50ms on an i7 8th generation processor, which means that
the method can operate close to 20Hz, exceeds the regular
input frequency of LiDAR scans, and is very close to the
operation frequency of camera sensors usually used in the
context of self-driving agents. Even more, the implementa-
tion provided is a Python-prototyped code and was not fully
optimized so that the filter’s speed can be enhanced further.

5 Conclusion

In this paper, we used both OSM and DSM information for
performing 2D global pose estimation. The proposed method
is relatively lightweight, was able to achieve a relatively low
pose error if considering its modality, does not depend on
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sensor-specific data, and is open-source.

Considering the experiments conducted in the KITTI
dataset, the driveable area constraint was the most relevant
feature for reducing the trajectory drift. Yet, it is more ef-
fective on trajectories with more turns, while the DSM con-
straint helped to correct the drift for longer trajectories with-
out turns.

Still, we believe that using the DSM as a constraint can be
more effective if reconstructed from aerial unmanned vehi-
cles since most of the effects of the elevation oscillation and
dynamic objects would be solved. However, handling map
occlusion by tree canopies or other higher objects that over-
lap the road is still an open issue that would happen even for
more precisely collected DSM.

Also, even though we used GNSS only for initializing the
filter, this dependency could be replaced by incorporating the
localization pipeline methods that focus on providing an ini-
tial global pose when no prior global position knowledge is
available, which is the goal of the approach proposed in Yan
et al. [2019].

In future work, we intend to explore the localization us-
ing DEM instead of DSM, since trees and other tall objects’
influence are not present in DEM. Also, we believe that esti-
mating pitch and yaw from the DEM or DSM would require
small changes in the framework, which is also to be explored
in later work.
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