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Abstract The Internet of Things (IoT) has changed how poultry farming is carried out, offering various advantages
to farmers. One notable benefit is the real-time monitoring of bird breeding tasks, ensuring the well-being of the
animals. Farmers can enhance their operations through task automation by incorporating an edge server for local
sensor data processing. Tasks automation enables farmers to make informed decisions, improving production ef-
ficiency, bird quality, and agribusiness profits. However, poultry farming faces challenges, with disaster recovery
a critical concern. Potential events like fires, power outages, or equipment failures can significantly impact birds
and production. Consequently, continuous monitoring of birds is vital, and any disruptions must be minimized to
uphold system integrity. This study introduces Stochastic Petri Nets (SPN) models to evaluate the availability and
reliability of an intelligent bird breeding system. The system integrates a disaster recovery solution for uninterrupted
operations. Furthermore, a sensitivity analysis is conducted on the components of the smart poultry system to pin-
point the most relevant one to the system’s availability in the proposed architecture. This analysis can aid system
architects in developing distributed architectures, considering points of failure and recovery measures. The study
results demonstrate the system’s high availability and reliability, enabling farmers to make informed decisions and
improve the overall productivity of their farms.
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1 Introduction

The IoT has been widely adopted in everyday life, en-
compassing public safety, industrial operations, education,
healthcare, and agriculture, using sensor-based technologies
[Mohammadian et al., 2020; Santos et al., 2021a]. The num-
ber of Internet of Things (IoT) devices worldwide is fore-
cast to almost double from 15.9 billion in 2023 to more than
32.1 billion IoT devices in 2030. In 2033, the highest num-
ber of IoT devices will be found in China, with around 8 bil-
lion consumer devices Statista [2024]. IoT has emerged as
an evolutionary business opportunity for the poultry indus-
try, enabling its connectivity technologies for real-time data
collection, remote monitoring, and process automation [Xu
et al., 2022].
Poultry farming is raising birds for the meat and egg pro-

duction industry. In this context, the poultry industry plays
a vital role due to its significant demand in the global mar-
ket for animal-derived food products. By 2050, the global de-
mand for poultry meat will double compared to 2005, while
the demand for chicken eggs will increase by nearly 40%
[Smith et al., 2015]. In poultry farming, IoT has proven to be
a fundamental tool for monitoring the well-being of birds, op-
timizing feeding, and controlling environmental conditions

in breeding facilities [Astill et al., 2020]. Large-scale poul-
try farming requires advanced management practices. Poul-
try houses are structures designed for bird rearing, providing
a safe and suitable environment for the healthy development
of the animals.
Facilities for birds are planned with considerations such

as ventilation, lighting, climate control, and available space
to ensure the well-being of the birds. Using advanced avian
management systems becomes advantageous in optimizing
production, reducing expenses, and resource consumption
[Lashari et al., 2018]. In a smart poultry farm scenario, pro-
ducers can utilize sensors to assist decision-making, automat-
ically adjusting environmental and feeding conditions. Con-
nected sensors can be installed at various points within the
poultry house, collecting real-time data on temperature, hu-
midity, air quality, water, feed consumption, and bird behav-
ior.
Implementing a smart poultry house faces the challenge of

dealing with system availability for long periods of uninter-
rupted operation. As the number of components in a system
increases, predicting its behavior becomes more complex
[Silva et al., 2024]. Any failure that directly affects an entire
ecosystem’s availability must be considered. In the context
of a smart poultry house, maintaining monitoring services
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in constant operation is essential to ensure the quality of the
final product. Otherwise, system interoperability issues can
result in severe financial losses, resource wastage, and even
the loss of bird lives. Therefore, such IoT systems must be
designed using effective fault tolerance techniques. Disaster
recovery represents making a system capable of withstand-
ing unexpected events or exceptional adversities [Andrade
and Nogueira, 2020].
In this context, this paper proposes SPNmodels to analyze

the availability and reliability of a smart poultry house with
a disaster recovery solution. Petri Nets (PNs) are mathemat-
ical models that allow the modeling of a system using states
and transitions to represent its operation. PNs also enable the
portrayal of various system behaviors not seen in other math-
ematical models, such as parallelism, concurrency, synchro-
nization, and other aspects of systems. Therefore, the main
contributions of this paper are:

• Availability SPNModel:Amodel capable of represent-
ing the behavior of the components in the architecture of
a smart poultry system and representing the interaction
with the edge server using disaster recovery techniques.

• Reliability SPNModel: A model capable of analyzing
the reliability of a smart poultry system over time and
allows analysis both with and without the application of
disaster recovery.

• Case Studies Demonstrating the Practical Applica-
tion of the ProposedModels: To demonstrate the prac-
tical utility of our approach, we present a series of case
studies. These case studies emphasize our models’ ef-
fectiveness and serve as valuable resources for other
researchers, offering guidance and initial instructions.
Furthermore, they provide various analytical possibili-
ties that can be explored using our models.

• Sensitivity Analysis: A sensitivity analysis was con-
ducted using the Design of Experiments (DoE) on both
models with and without disaster recovery. This anal-
ysis helps identify cause-and-effect relationships be-
tween the factors and the response variable, providing a
solid foundation for decision-making and implementing
improvements in the proposed architecture.

The subsequent sections of this paper are organized as fol-
lows: Section 2 briefly explains the topics covered in this
paper. Section 3 presents related works. Section 4 introduces
the architecture employed in this work. Section 5 provides
an overview of the SPN modeling based on the architecture.
Section 6 elaborates on a case study exploring disaster recov-
ery and availability. In Section 7, DoE is presented, along
with its results. Finally, Section 8 concludes the study and
suggests possible directions for future work.

2 Background

This section briefly overviews the fundamental concepts es-
sential for understanding this work. Firstly, it covers the basic
concepts of SPN, followed by explanations of disaster recov-
ery and sensitivity analysis using DoE.

2.1 Stochastic Petri Nets
PNs are graphical and mathematical modeling tools used
to represent different systems characterized by concurrency,
asynchrony, distribution, parallelism, non-determinism, and
stochastic processes [Chen and Ha, 2018]. Petri nets (PN), in
their various shapes and sizes, have been used for the study of
the qualitative properties of systems exhibiting concurrency
and synchronization characteristics, Marsan [Marsan, 1990]
and Petri [Petri, 1962] and Reising [Reisig, 1985] and Peter-
son [Peterson, 1981]. The Stochastics Petri nets allow you to
model a real system, without the costs of real equipment for
the system. PNs provide a set of formalisms to abstract com-
plex systems. Furthermore, several software tools facilitate
their modeling, analysis, and verification [Girault and Valk,
2013]. SPN is a special case of PN that adds timing to the PN
formalism and can be used to model performance and relia-
bility [Murata, 1989]. SPN modeling helps evaluate systems
and identify relevant points for them. This way, it is possible
to save costs when a designer or engineer implements a real
system.
SPNs can be identified as a directed graph divided into

two parts, populated by three types of objects. These objects
are places, transitions, and directed arcs connecting places to
transitions and transitions to places [Rodrigues et al., 2020].
Timed transitions follow a stochastic behavior, following a
probability distribution function [Murata, 1989]. Immediate
transitions fire when activated without waiting for any spe-
cific period. White circles symbolize places. Arcs are used
to connect places to transitions. Inhibitor arcs block or per-
mit the passage of tokens from one place to another. Addi-
tionally, tokens are assigned to specific places [Brito et al.,
2021]. Figure 1 illustrates the components of an SPN model.

Place Arc Token

Transitions

Immediate Timed
Refined

Timed
Unrefined

Arc
Inhibitor

Figure 1. SPN components.

2.2 Recovery Disaster
Disaster recovery is a set of procedures and strategies to re-
store and recover systems, infrastructure, and data after a
catastrophic event or a severe incident that causes disruption
or partial or total destruction of an organization’s resources.
In today’s business world, shutting down services for hours
or even minutes for maintenance services such as tape back-
ups [Rooney et al., 2008] is no longer acceptable. The need
for disaster recovery is evident in all sectors and organiza-
tions, regardless of size or complexity.
Modern computing systems must handle all failures or

disasters to keep services running. The approach to disas-
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ter recovery involves creating solutions to help an organi-
zation deal with potential disasters. These solutions should
be cost-effective yet efficient enough to provide high avail-
ability [Mendonça et al., 2018]. Disasters can occur in vari-
ous forms, such as hardware failures, human errors, cyberat-
tacks, fires, floods, and earthquakes. DR solutions help sys-
tems withstand unexpected or extraordinary failures [Reese,
2009].
In modern farms, a centralized server automatically moni-

tors real-time weather, soil, irrigation, and animal health data.
In this context, disaster recovery is vital for uninterrupted
agricultural operations. Strategies like continuous data repli-
cation to secure secondary servers are essential to maintain
this continuity.

2.3 Sensitivity Analysis

The DoE corresponds to a set of statistical techniques that
deepen the understanding of the product or process under
study [Kleijnen, 1995]. DoE is a powerful technique used to
explore new processes and gain deeper insights into existing
processes, followed by optimizing these processes to achieve
world-class performance [Antony, 2014]. It can also be de-
fined as a series of tests where the researcher manipulates the
set of variables or input factors to be observed and identifies
the reasons for changes in the output response. Furthermore,
proper experimental design allows for obtaining valuable in-
sights with a minimal number of experiments, maximizing
efficiency and reducing costs.
System designers often adopt sensitivity analyses to assess

how “sensitive” a metric is to changes in the model [Santos
et al., 2021b]. Sensitivity analysis measures the impact of
specific input data on the output data to identify weak links
in computational systems. Subsequently, techniques are em-
ployed to enhance these systems in various scenarios [Cam-
polongo et al., 1999]. The Pareto chart allows us to identify
which factor interaction has a more significant effect on the
optimization process or design of the study, indicating where
attention should be focused. Understanding the magnitude of
interactions between factors enables the selection of the best
combination of measures, identifying patterns of cumulative
or degrading effects among the factors. The interaction be-
tween factors A and B can be calculated using Equation (1).

IA,B = 1
2

(EA,B(+1) − EA,B(−1)) (1)

The EA,B(+1) represents the effect of factor A at the high
level of factor B, andEA,B(−1) represents the effect of factor
A at the low level of factor B. If the lines on the interaction
plot are parallel, there is no interaction between the process
parameters. The different levels of factor B do not influence
the variation in the average response of factorA. On the other
hand, if the lines are not parallel, there is an interaction be-
tween the factors. The greater the deviation from parallelism,
the more significant the interaction effect between these fac-
tors.

3 Related Works
This section presents related works with similar contexts or
approaches to this work. The selection of works considered
those that addressed evaluating availability and reliability in
smart farming. The scientific literature reveals a notable gap,
with a need for related works focusing on assessing relia-
bility and availability in the context of smart farms. The se-
lected papers present significant contributions, highlighting
the need for further research and attention in smart farming.
Table 1 displays the selected works in the literature and their
respective comparison criteria.
The study by Oliveira et al. [2023] assesses the reliabil-

ity of an automated system utilizing computer vision to es-
timate live poultry weight. The reliability analysis employs
hierarchical models like Markov chains, Reliability Block
Diagrams, and closed-form equations to represent the entire
system. Metrics such as steady-state availability and annual
downtime are calculated. Similarly, Kamyod [2019] evalu-
ates the reliability of an IoT-based communication architec-
ture system designed for small and medium-sized farms. Ad-
ditionally, Catelani et al. [2021] investigate wireless sensor
networks’ (WSNs) reliability under adverse conditions and
various design constraints, including limited processing ca-
pacity, reduced storage memory, restricted energy consump-
tion, and fixed deployment.
The study by Montoya-Munoz et al. [2022] introduces

an optimization model designed to enhance reliability and
ensure uninterrupted service in smart farms. This model
assists stakeholders in determining the optimal number of
Fog Nodes necessary for deploying agricultural services. It
considers factors such as variations in fog capabilities, re-
source demands, redundancy techniques, and reliability re-
quirements. Similarly, Kamyod [2018] focuses on evaluating
the end-to-end reliability of two IoT communication network
architectures. They employ the OPNET tool to analyze the
impact on reliability as the number of sensor nodes increases.
Additionally, Londra et al. [2021] explores the sizing of rain-
water harvesting systems for agricultural greenhouse irriga-
tion. Their approach involves utilizing a daily water balance
model to calculate the required size of rainwater tanks, con-
sidering factors such as daily precipitation and water needs.
The study by Abdulhamid et al. [2024] propose to address
the reliability of IoT systems in agriculture, with a specific
focus on analyzing failures in Smart Irrigation Systems (SIS)
using Fault Tree Analysis (FTA). The proposal includes in-
troducing a Security-Based Model (MBSA) to model the be-
havior of failures in SIS, and using FTA to identify and un-
derstand the propagation of failures in system components.
Additionally, Rahman et al. [2023] explores the use of Fault
Tree Analysis (FTA) to identify and analyze potential fail-
ure causes in smart irrigation systems. It highlights the im-
portance of understanding how component failures can con-
tribute to overall system failure, aiming to enhance the relia-
bility and security of these critical agricultural systems.
This work introduces SPN models to assess the availabil-

ity and reliability of a smart poultry system employing disas-
ter recovery techniques. The first model precisely depicts the
behavior of smart poultry system components for availabil-
ity assessment. It is worth noting that the studies addressed in
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Table 1. Related works.

Work Focus
Evaluation
Method

Availability Relaibility
Recovery
Disaster

Oliveira et al. [2023]
Availability and reliability
evaluation of a smart poultry.

Modeling ✓ ✓ ×

Kamyod [2019]
Reliability assessment of
smart farm system.

Modeling × ✓ ×

Catelani et al. [2021]
Assessment of the reliability
of Wireless Sensor Networks
in precision agriculture.

Modeling × ✓ ×

Montoya-Munoz et al. [2022]
Reliability analysis in smart
farms for service continuity
with IoT-Fog-Cloud.

Modeling × ✓ ×

Kamyod [2018]
End-to-End Reliability
Characteristics in Smart
Agriculture.

Simulation × ✓ ×

Londra et al. [2021]
Reliability Analysis of
Water Tanks for Irrigation
in Greenhouse Agriculture.

Measurement × ✓ ×

Abdulhamid et al. [2024]
Reliability Analysis in
Smart Irrigation Systems.

Modeling × ✓ ×

Rahman et al. [2023]
Reliability in smart
agriculture systems
for food security.

Modeling × ✓ ×

This work
Availability and Reliability
Analysis in Smart Poultry
with Disaster Recovery.

Modeling ✓ ✓ ✓

the literature almost do not cover availability, focusing more
on reliability. The second model measures system reliabil-
ity over time. Both models incorporate case studies examin-
ing scenarios with and without disaster recovery. Addition-
ally, sensitivity analyses were performed using DoE to eval-
uate system behavior under varying failure times of specific
components. Both disaster recoveries and sensitivity analysis
with DoE are unique characteristics of this work compared
to those mapped in the literature. Importantly, the model en-
ables designers to customize input parameters without the
necessity of an existing physical infrastructure.

4 Architecture

This section presents the underlying architecture used in this
work. Figure 2 depicts the architecture of a smart poultry
house for bird production on a farm. The smart poultry house
consists of IoT devices that monitor light, water, gas, and
temperature within the poultry house. Monitoring is carried
out to ensure a healthy environment for the birds. Data is col-
lected by a gateway and transmitted to the local edge server.
The edge server is near the poultry house, resulting in low
latency. Due to the nature of modeling, specific data, such
as the exact amount of latency, are abstracted to ensure the
validity of the model, as these data are generally obtained
accurately only after the implementation of the real system.
The importance of bird monitoring justifies the choice of

a local edge server, as an error could result in losses or ad-
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Figure 2. Evaluated architecture.

ditional expenses. Having the local server allows for more
direct control over the data. To ensure that bird monitoring
is not affected by any losses or disruptions, it is essential
to have a well-planned disaster recovery solution in place.
A secondary edge server would be on hot standby mode in
the proposed setup, so if there are disasters or failures in the
primary edge server, the secondary server would be immedi-
ately accessible, ensuring uninterrupted birdmonitoring. The
system is reactive, meaning that in the event of a failure of
the first server, the second one may need access to histori-
cal data to maintain operations or make informed decisions.
The frequency with which the second edge server receives
information and whether it needs past information in case of
failure in the first one depends on the specific design of the
system. It is important to note that this data is usually ob-
tained only after the implementation of the real system, and
the developed models serve as a basis for initial planning,
abstracting this step to avoid increasing complexity.
In this context, disasters refer to events that might happen

in the edge server responsible for processing sensor data. It
is crucial to emphasize that events such as floods and hurri-
canes are not considered in this analysis because they would
havewider effects, impacting the entire aviary. Ourmain con-
cern is guaranteeing the edge server’s specific operational
safety and continuity, which is vital for bird monitoring. As
a result, we are excluding the analysis of natural phenomena
that could have a broader impact on the location.

5 Models Overview

This section introduces the foundational model of the work
based on the architecture mentioned in the previous section.
The section also describes the disaster recovery solution’s
representative, availability, and reliability models. All mod-
eling and simulations were performed using the Mercury
Tool Maciel et al. [2017].

5.1 Availability Model

Figure 3 presents the SPN availability model for the smart
poultry farm. Availability is the probability that the system
is operational during a specific period or has been restored af-
ter a failure [SOUSA, 2015]. The model comprises sensors
such as water (SW), temperature (ST), light (SL), and gas
(SG). It also includes a gateway (GATEWAY) for transmit-
ting data to the main server at the edge (Edge). Smart Poultry
(SMART_POULTRY) represents the connection of all sen-
sors responsible for generating data in the model. Each com-
ponent has a timed transition representing the mean time to
failure (MTTF) and mean time to repair (MTTR).
The Smart Poultry component represents the status of the

poultry house system. The poultry house is active when
all sensor components are active. The poultry house is in-
active when all sensor components have tokens in the in-
active state. Smart Poultry operates when there is a token
in SMART_POULTRY_U. Smart Poultry is not operational
when there is a token in SMART_POULTRY_D. The transi-
tion between the active and inactive states is triggered by tran-
sitions MTTR_SP and MTTF_SP, respectively. Thus, tran-
sition MTTF_SP is activated when all sensors are inactive,
as expressed by the guard condition = ((#SW_D>0) AND
(#ST_D>0) AND (#SL_D>0) AND(#SG_D>0)).
Transition MTTR_SP is activated when all sensors are

active, as expressed by the guard condition = ((#SW_U>0)
AND (#ST_U>0) AND (#SL_U>0) AND(#SG_U>0)). The
Gateway is active when there is a token in GATEWAY_U
and inactive when there is a token in GATEWAY_D. The
edge server is active when there is a token in EDGE_U and
inactive when there is a token in EDGE_D. The equation that
calculates the availability of the proposed model is given by
Equation (2), i.e., the probability that Smart Poultry, the Gate-
way, and the Edge are all operational simultaneously. P rep-
resents probability, and # represents the number of tokens
in a specific place.
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Figure 3. Availability SPN model.

A = P{(#Smart_Poultry_U > 0)AND

(#Gateway_U > 0)AND(#Edge_U > 0)}
(2)

5.2 Reliability Model

Figure 4 presents the reliability SPN model for the smart
poultry farm. Reliability is the conditional probability of a
system remaining operational over time [0, t], considering
that it was operational at t = 0 [Silva et al., 2022]. Initially,
the model operates similarly to the availability SPN model.
In this model, the components do not have the MTTR transi-
tions that allow for their recovery.
The reliability of the presented model can be calculated

using Equation (3). Such metric is given by one minus un-
availability, which is the probability that any system com-
ponent fails. P calculates the probability that the system is
unavailable. The equation can generate a curve showing how
reliability decreases over time.

R = 1 − P{(#Smart_Poultry_D > 0)OR

(#Gateway_D > 0)OR(#Edge_D > 0)}
(3)
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Figure 4. Reliability SPN model.

5.3 Recovery Disaster Model
Figure 5 presents the SPN model for disaster recovery in
the edge server. In this model, a natural failure is consid-
ered a brief disruption in the main edge’s operation, indi-
cated by the location EDGE_D, caused by events like power
outages. Conversely, a disaster, represented by the location
EDGE_DD, involves more serious events, such as fires, lead-
ing to a complete server shutdown and substantial data loss.
The standby edge consists of a place representing its hot
standby state (EDGER_HOT), a timed transition MTFF_ER
representing a failure in the standby edge when it is not in
use, and a timed transitionMTTR_ER representing the repair
of the standby edge and placing it back in the hot standby
state. Place EDGER_D represents the standby edge’s inac-
tive state.

Standby
Edge Server

EDGER_U

MTTF_ER2

EDGER_HOT

MTTF_ERMTTR_ER

TAKE_OVER REDIRECT_TO
EDGE

EDGE_U

EDGE_D

MTTF_EMTTR_E

Edge

EDGE_DD

MTTR_ED

MTTF_E

MTTF_ED

EDGER_D

COMPONENTS RELATED TO THE STATE OF DISASTER OCCURRENCE

Figure 5. Disaster recovery SPN model.
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The timed transition TAKEOVER represents the edge’s
failover time, i.e., the time it takes for the standby edge to
take control in case of a disaster in the primary edge. Place
EDGER_U indicates that the standby edge is active, mean-
ing that the primary edge is inactive due to a disaster. Timed
transition MTTF_ER2 represents the failure of the standby
edge when it is active; in this case, both the primary and sec-
ondary edges would be inactive, constituting the worst-case
scenario. Finally, timed transition REDIRECT_TO_EDGE
redirects the data to the primary edge, indicating it is active
again. The guard condition for the secondary edge to take
over is given by (EDGE_DD>0) in TAKEOVER, and for
the data to be redirected back to the primary edge is given
by (EDGE_U>0) in REDIRECT_TO_EDGE.
The disaster recovery model is applied alongside the mod-

els shown in Figures 3 and 4. To integrate it into the model
depicted in Figure 3, adjustments are made to the edge server
component to accommodate the changes in this model, en-
abling disaster recovery implementation on the edge server.
Regarding integration with the model in Figure 4, in addition
to the modifications made in the Figure 3model, components
representing the MTTF are removed, ensuring the system’s
availability and reliability with the implemented disaster re-
covery.

6 Case Studies
This section presents the results obtained by analyzing the
proposed models in this work. The following subsections an-
alyze the availability and reliability with and without disas-
ter recovery for all the presented models. Table 2 presents
the values used for each system component. The values were
extracted from other works in the literature [Oliveira et al.,
2023; Silva et al., 2022; Andrade and Nogueira, 2020].

Table 2.Model Parameters

Component MTTF (h) MTTR (h)
Edge Servers 940.0 1.37
Gateway 480.77 8.0

Sensor Water 13140.0 2.0
Sensor Light 13140.0 2.0

Sensor Temperature 13140.0 2.0
Sensor Gas 13140.0 2.0

6.1 Availability and Disaster Recovery
In this section, we will present the results of the availabil-
ity model. Figure 6 displays the results of this model. The
availability was analyzed based on the edge failure time, al-
lowing an assessment of the system with and without disas-
ter recovery. When the edge does not have disaster recov-
ery, the availability is approximately 2.33 nines. As the fail-
ure time increases, the availability also grows, reaching just
over 2.63 nines when the MTTF is 4700 hours. On the other
hand, availability with disaster recovery shows a significant
increase as MTTF increases. When the edge has an MTTF of
4700 hours, availability reaches 3.53 nines. The results sug-

gest disaster recovery significantly improves system avail-
ability, especially in situations with longer MTTF.
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Figure 6. Availability.

6.2 Reliability and Disaster Recovery
Figure 7 presents the system’s reliability over time. For re-
liability analysis, the system was assessed with and without
disaster recovery. Initially, both reliability levels started with
a high probability. As the system’s operating time progresses,
the reliability levels become distinct. The reliability line with
disaster recovery shows higher values than reliabilitywithout
disaster recovery. Both results decrease exponentially as the
reliability of a system tends to decrease over time. Therefore,
given a disaster scenario, implementing disaster recovery in
the system allows it to operate longer and with fewer failures.
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Figure 7. Reliability.

7 Design of Experiments
This section presents the sensitivity analysis results in the
system using DoE. The analysis considered parameters from
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the models presented, both without and with disaster recov-
ery. The results were obtained through simulations, aiming
to comprehend how each factor influences the system’s per-
formance, identifying potential effects and interactions.
For the sensitivity analysis using DoE, we employed avail-

ability models, both with and without disaster recovery, on
the edge server. Factors were selected based on their signifi-
cance in the proposed architecture. As the number of compo-
nents in DoE increased, creating combinations became more
complex. Therefore, we limited the selection to 5 factors.
Due to the importance of the edge, the edge with disaster re-
covery, and the gateway, only two sensors were chosen ran-
domly, including temperature and water sensors.
The factors chosen for this study were: (i) MTTF_SW,

(ii) MTTF_ST, (iii) MTTF_GW, (iv) MTTF_E, and (v)
MTTF_ED. Each factor was investigated at two levels: low
configuration and high configuration. Interactions were ver-
ified using the availability metric, as this metric directly im-
pacts the end user’s perception. Table 3 presents all the an-
alyzed factors and levels. Additionally, Table 4 displays all
possible combinations between the factors and their respec-
tive levels.

Table 3. Design table.

Factor name Low Setting High Setting
MTTF_SW 13140.0 19710.0
MTTF_ST 13140.0 19710.0
MTTF_GW 480.77 721.155
MTTF_E 980.0 1470.0
MTTF_ED 2350.0 3525.0

7.1 Case Without Disaster Recovery
Figure 8a presents the factor effect graph without disaster re-
covery. The graphical representation of factor effects uses
bars arranged in descending order to illustrate the impact
of factors on the analyzed measure. The higher the bar, the
greater the influence of the corresponding factor on the vari-
able in question. This visual representation allows for identi-
fying factors with significant impact on the tests.
Among the factors analyzed in the system without disas-

ter recovery, the failure time of the edge server has the most
significant impact on the system’s availability. Compared to
others, the disparity in the height of the edge server failure
bar indicates that for the system to achieve satisfactory per-
formance, the edge server needs to function correctly. Fac-
tors representing sensor failure times also have significant
relevance in the system.
Figure 8b illustrates the interaction between MTTF_GW

and MTTF_E. Upon analyzing the figure, it is evident that
there is a mutual influence between these two factors. When
the gateway failure time is 480.77h, the combination that re-
sults in higher availability is when the edge failure time is
980h. However, as the gateway failure time increases, the
best combination with the edge occurs at 1470h.
Figure 8c represents the interaction between MTTF_ST

and MTTF_E. Regardless of the temperature sensor’s fail-
ure time, any combination with the edge failure time is set at

1470h, resulting in higher system availability. The longer it
takes for a failure to occur in this component, the better the
system’s processing, ensuring greater availability and opera-
tional efficiency.
Figure 8d represents the interaction between MTTF_SW

and MTTF_E. In this interaction, we observe a pattern simi-
lar to the one shown in the previous figure. Regardless of the
water sensor’s failure time, the system maintains good avail-
ability in both situations where the edge failure time is 1470h.
In other words, the system’s availability is not significantly
affected by variations in the water sensor’s failure time as
long as the edge failure time is maintained at specific levels.

7.2 Case With Disaster Recovery
Disaster recovery operations are extremely challenging and
place significant demands on multiple resources, including
local and international emergency response personnel, non-
governmental organizations, and the military. In the immedi-
ate aftermath of a disaster, one of the most pressing require-
ments is situational awareness so that resources, including
personnel and supplies, may be prioritized to have the most
impact and help those in the most need. Disaster recovery
mechanisms are very important in the context of not only
cities but also in rural areas.
Figure 9a displays the factor effect graph with disaster re-

covery, emphasizing the importance of factors related to the
availability metric. In this analysis, we identified that the two
factors exerting the most significant influence on the sys-
tem’s availability are the edge disaster recovery server and
the edge server itself. The gateway is also a relevant factor
in ensuring the system’s availability.
Figure 9b illustrates the interaction between MTTF_E and

MTTF_ED. Both components significantly impact the sys-
tem, and the system’s behavior varies depending on the fail-
ure time of these components. When the edge failure time is
low, the best availability is achieved with disaster recovery
set at 2350h. However, when the edge failure time is high, the
optimal combination is with the recovery time set at 3525h.
This pattern emerges because disaster recovery maintains a
stable outcome regardless of the edge failure time, providing
a reliable solution to maintain system availability.
Figure 9c illustrates the interaction between MTTF_GW

and MTTF_E. In general, regardless of the failure value of
the gateway component, whether low or high, the edge server
with a failure time of 1470h maintains stable performance
and offers higher system availability. Combining the edge
failure time at 980h with the low gateway failure time also
yields satisfactory results. While different from the first com-
bination mentioned, this option should be considered in cer-
tain scenarios.
Figure 9d illustrates the interaction between MTTF_GW

andMTTF_ED. Upon analyzing this interaction, it is evident
that the best combination occurs when the disaster recovery
failure time is set to 2350 hours for both a gateway with low
and high failure times. When the failure time in recovery is
increased, the system’s availability is lower than the previous
interaction. The system already achieves satisfactory results
with the standard failure time of disaster recovery, eliminat-
ing the need for investing capital to increase the failure time
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Table 4. Combination of factors.

MTTF_SW MTTF_ST MTTF_GW MTTF_E MTTF_ED DR and WDR (%)
13140.00 13140.00 480.76 980.00 2350.00 0.99
13140.00 13140.00 480.76 980.00 3525.00 0.99
13140.00 13140.00 480.76 1470.00 2350.00 0.99
13140.00 13140.00 480.76 1470.00 3525.00 0.99
13140.00 13140.00 721.15 980.00 2350.00 0.99
13140.00 13140.00 721.15 980.00 3525.00 0.99
13140.00 13140.00 721.15 1470.00 2350.00 0.99
13140.00 13140.00 721.15 1470.00 3525.00 0.99
13140.00 19710.00 480.76 980.00 2350.00 0.99
13140.00 19710.00 480.76 980.00 3525.00 0.99
13140.00 19710.00 480.76 1470.00 2350.00 0.99
13140.00 19710.00 480.76 1470.00 3525.00 0.99
13140.00 19710.00 721.15 980.00 2350.00 0.99
13140.00 19710.00 721.15 980.00 3525.00 0.99
13140.00 19710.00 721.15 1470.00 2350.00 0.99
13140.00 19710.00 721.15 1470.00 3525.00 0.99
19710.00 13140.00 480.76 980.00 2350.00 0.99
19710.00 13140.00 480.76 980.00 3525.00 0.99
19710.00 13140.00 480.76 1470.00 2350.00 0.99
19710.00 13140.00 480.76 1470.00 3525.00 0.99
19710.00 13140.00 721.15 980.00 2350.00 0.99
19710.00 13140.00 721.15 980.00 3525.00 0.99
19710.00 13140.00 721.15 1470.00 2350.00 0.99
19710.00 13140.00 721.15 1470.00 3525.00 0.99
19710.00 19710.00 480.76 980.00 2350.00 0.99
19710.00 19710.00 480.76 980.00 3525.00 0.99
19710.00 19710.00 480.76 1470.00 2350.00 0.99
19710.00 19710.00 480.76 1470.00 3525.00 0.99
19710.00 19710.00 721.15 980.00 2350.00 0.99
19710.00 19710.00 721.15 980.00 3525.00 0.99
19710.00 19710.00 721.15 1470.00 2350.00 0.99
19710.00 19710.00 721.15 1470.00 3525.00 0.99

of this component.

8 Conclusion
This paper proposed SPN models for the architecture of a
smart poultry system using edge computing resources and
including a disaster recovery solution. The models aim to as-
sist system administrators in planning the architecture before
deployment. The models take into account various factors
that influence the final system availability. Availability and
reliability metrics with disaster recovery were used to ana-
lyze each model. The analysis showed that when the edge
does not have disaster recovery, availability reached approx-
imately 2.33 nines, indicating a reasonable ability to keep the
system operational. However, when considering disaster re-
covery, availability reached 3.53 nines, demonstrating a sig-
nificant increase in system availability and reliability. The re-
sults show how each model behaves with varying parameters
through sensitivity analyses, highlighting the interaction be-
tween the factors. The DoE analysis allowed for a meticulous
examination of how changes between these factors influence
system availability. In future work, we will analyze specific
disaster recovery metrics, such as Recovery Point Objective

(RPO) and Recovery Time Objective (RTO).
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(a) Impact of different factors on the system without disaster recovery. (b)MTTF_GW x MTTF_E.

(c)MTTF_ST x MTTF_E. (d)MTTF_SW x MTTF_E.
Figure 8. Case without disaster recovery DoE results.
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