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AbstractDeep Learning models have achieved remarkable performance in tasks such as image classification or gen-
eration, often surpassing human accuracy. However, they can struggle to learn new tasks and update their knowledge
without access to previous data, leading to a significant loss of accuracy known as Catastrophic Forgetting (CF).
This phenomenon was first observed by McCloskey and Cohen in 1989 and remains an active research topic. In-
cremental learning without forgetting is widely recognized as a crucial aspect in building better AI systems, as
it allows models to adapt to new tasks without losing the ability to perform previously learned ones. This article
surveys recent studies that tackle CF in modern Deep Learning models that use gradient descent as their learning
algorithm. Although several solutions have been proposed, a definitive solution or consensus on assessing CF is yet
to be established. The article provides a comprehensive review of recent solutions, proposes a taxonomy to organize
them, and identifies research gaps in this area.
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1 Introduction

Incremental Learning, also known as Continual Learning, is
the ability to progressively learn new tasks, one at a time,
without forgetting the previously learned tasks, and also use
the accumulated knowledge to facilitate learning future tasks.
For humans, the process of learning a new task can be sim-
pler when it is related to an already-known task. For instance,
learning to ride a motorcycle should be simpler if you al-
ready know how to ride a bicycle. This property is called
Forward Knowledge Transfer [Mai et al., 2021a], and this
is a desirable property for any AI system. Forward Knowl-
edge is widely known as transfer learning with fine-tuning in
Neural Networks [Käding et al., 2016; Zhuang et al., 2021].
However, the problem with transfer learning approaches is
that prior knowledge is forgotten when learning a new task,
causing a drastic reduction in performance on previous tasks.
Backward knowledge propagation is another important hu-
man characteristic that is desirable in an AI incremental learn-
ing system [Ke et al., 2020]. This property expects that after
learning a task related to a previous one, the performance of
the previous one will also increase or at least be maintained.
When these properties fail and there is a high decrease in per-
formance on the previous tasks in favor of the new one, the
model is said to suffer from Catastrophic Forgetting (CF).

McCloskey and Cohen [1989] showed that the biggest
challenge for AI systems to support Incremental Learning is
the CF phenomenon. It was studied in many types of models,
for instance, Support Vector Machine (SVM) [Ayad, 2014],
however, this issue is more notable in connectionist mod-
els [French, 1999], and this is mainly caused by the way the

parameters of these models are adjusted. When a new pattern
is presented to the model, these parameters — also known as
weights — change in value, losing the model’s capability to
detect previous patterns. There is still no agreement on how
to handle this issue in AI today, making it an open problem.

Since the mid-2000s, connectionist models known as
Deep Learning (DL) [Goodfellow et al., 2016], have be-
come dominant in Machine Learning. The most common
DL models are those constructed from multilayer Artificial
Neural Networks (ANNs), Convolution Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Trans-
formers, which we also refer to as Deep Neural Networks
(DNN). Although several DNN models have been proposed,
including models that can outperform humans in numerous
tasks, such models continue to suffer from the effects of CF
on Incremental Learning. The Incremental Learning problem
is formulated in several ways, some accepting more relaxed
constraints and others trying to better approximate real-world
constraints [Lee et al., 2017a; Caccia et al., 2020].

In a recent study by Knoblauch et al. [2020], it was demon-
strated that the problem of determining the optimal parame-
ters to avoid the CF in a fixed model can be reduced to the
well-known Satisfiability (SAT) problem [Schaefer, 1978].
Consequently, this proof categorizes the CF problem within
the class of NP-HARD problems. Essentially, each potential
arrangement of weights, denoted as θt, within a model can
be seen as an element in a set of solutions that satisfy a given
task t. Thus, the key to solving the CF problem lies in iden-
tifying a specific combination of θ values that exist at the
intersection of the solution sets for all tasks. By reducing CF
to an NP-HARD problem, it becomes evident that effectively

https://orcid.org/0009-0008-5658-3221
mailto:everton.aleixo@icomp.ufam.edu.br
https://orcid.org/0000-0002-1740-2618
mailto:juancolonna@icomp.ufam.edu.br
https://orcid.org/0000-0001-8948-4192
mailto:marco.cristo@icomp.ufam.edu.br
https://orcid.org/0000-0002-7205-1072
mailto:everlandio.fernandes@sidia.com


Catastrophic Forgetting in Deep Learning: A Comprehensive Taxonomy Aleixo et. al., 2024

addressing this challenge is crucial for advancements in arti-
ficial intelligence in the years to come. In Figure 1, we can
visualize the set of all possible parameter combinations, de-
noted as Θ, for a given model. The subsets θ1, θ2, and θ3
represent the parameter combinations that individually solve
tasks 1, 2, and 3, respectively. Furthermore, there are smaller
subsets, such as θ12, θ23, and θ13, that solve combinations of
two tasks simultaneously. Finally, the set θ123 represents the
parameter combination that simultaneously solves all three
tasks. It is worth noting that finding this specific combina-
tion becomes increasingly challenging as it involves satisfy-
ing the requirements of multiple tasks simultaneously, lead-
ing to a combinatorial problem.

Despite the NP-HARD nature of CF, significant progress
has been made in mitigating CF within Deep Neural Net-
work (DNN) models through various techniques and heuris-
tics. Several studies have proposed effective solutions, in-
cluding Rusu et al. [2016]; Rebuffi et al. [2017]; Zenke et al.
[2017]; Kirkpatrick et al. [2017]; Fernando et al. [2017]; Roy
et al. [2020]; Prabhu et al. [2020]; Cha et al. [2021]; Wang
et al. [2022a]; Smith et al. [2023]. In this paper, we present
a comprehensive examination of these techniques, shedding
light on the current state of research in this domain.

Due to the absence of a clear consensus on how to eval-
uate these models numerically, we refrain from direct nu-
merical comparisons. Instead, our focus lies in discussing
the most suitable application scenarios for each technique
and comprehensively assessing their respective benefits and
drawbacks. This approach allows for a more nuanced under-
standing of the strengths and limitations of each method, aid-
ing researchers and practitioners in making informed deci-
sions regarding their implementation in real-world settings.
The primary contributions of this research endeavor can be
concisely encapsulated in the following threefold:

• proposes a taxonomy to cluster techniques to avoid CF
in DNN models based on the strategy;

• explores the progression of techniques within each cat-
egory, starting from 2012 with the rise in popularity of
DNNs;

• and, discuss the strengths and weaknesses inherent in
each category, fostering a comprehensive understand-
ing of their respective merits and limitations.

The rest of this work is organized as follows: in Sec-
tion 2 of this article, we present related articles that empiri-
cally contrast various strategies for preventing catastrophic
forgetting [Parisi et al., 2019; Pfülb and Gepperth, 2019;
Belouadah et al., 2021; Masana et al., 2020]; in Section 3
we propose a taxonomy for DNN models categorized into
four main groups: Rehearsal, Distance-Based, Dynamic Net-
works, and Sub-Networks, according to their learning strate-
gies. These models can be used in many contexts, such as
computer vision, natural language processing, and others;
and, finally, Section 4 brings final considerations.

2 Related work
Parisi et al. [2019] carry out a review on aspects of Incremen-
tal Learning with Neural Networks, which also details tech-

niques related to Incremental Learning. Although this work
was published recently, several new techniques, insights, and
solutions have emerged since then. Therefore, we use a sys-
tematic review approach to fully map the latest emerging
techniques. We follow the guidelines given by Kitchenham
and Charters [2007] to retrieve and filter works considered
state-of-the-art in this area. We intend to present and explain
the methods published since 2012, as it is the period of great-
est attention for DNN models.

The current state of research on CF is limited in that many
surveys only compare empirical findings or are confined to
a single experimental setup. For example, recent surveys by
Masana et al. [2020] and Mai et al. [2021a] have only fo-
cused on specific aspects of continual learning. However,
De Lange et al. [2021] conducted an extensive study on task
incremental learning setups for image classification, where
the model is aware of the task it is evaluating. They proposed
a taxonomy that categorizes solutions into three categories:
Replay, Regularization-based, and Parameter isolation meth-
ods, each with two or three sub-categories. Notably, this tax-
onomy does not include hybrid or distance-based methods,
which could be an interesting avenue for future research.

The work by Belouadah et al. [2021] provides a compre-
hensive analysis of fixed-size models in the context of image
classification. Their study focuses specifically on class incre-
mental learning, a setup in which the model has no knowl-
edge of which task an input belongs to when evaluating,
but each task introduces new classes. To handle this, mod-
els typically create new output neurons for each new class.
The authors demonstrate that a straightforward fine-tuning
approach using a memory of past tasks, also known as a Re-
play Buffer, can achieve competitive accuracy compared to
more complex methods.

In their study, van de Ven and Tolias [2019] introduce a
novel setup called domain-incremental learning, which they
investigate in the context of computer vision. In this setup,
each new task involves inputs from new classes related to pre-
vious ones. For example, the first task may involve detecting
cats in images of cats in a garden in the morning, while the
second task involves detecting cats in images of cats indoors.
The problem remains the same, but the domain changes.

We not only cover computer vision but also a diverse range
of topics, such as Natural Language Processing (NLP) and
Reinforcement Learning (RL), employing a variety of mod-
els including fully connected networks, Generative Neural
Networks (GAN), and others. Our survey also presents three
setups that have gained attention in online and few-shot learn-
ing: (i) Online Incremental Learning, (ii) Unbounded Task
Incremental Learning, and (iii) Data-free Incremental Learn-
ing, which have stricter constraints and require methods that
are specific to these setups. Previous surveys have not cov-
ered these setups, and as demonstrated by Mai et al. [2021a],
methods not designed for online learning are inadequate for
these setups.

The survey of Masana et al. [2020] shows the four main
reasons why CF occurs: i) weight drift, which occurs when
the model adjusts its parameters to new tasks; ii) activation
drift, similar to the former, but just in the classification layer;
iii) inter-task confusion, which occurs when samples from
different tasks have similar features; and finally, iv) task-
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Figure 1. Combinations of Parameter Sets for Simultaneous Task Solving. A subset θt is considered valid if it satisfies a minimum loss criteria denoted by
L(xi, θt).

recency bias, which occurs when the model is biased toward
the last task trained on. It is important to emphasize that these
reasons are valid for the setup of class incremental learning
that allow the storage of a part of the data set from previous
tasks.

In the context of Natural Language Processing (NLP),
there are also efforts to train models incrementally. Biesial-
ska et al. [2020] examined and compared methods used in
various NLP applications. In turn, Wu et al. [2022] compares
the resilience of pretrained language models to avoid CF in a
sequence of tasks using several techniques. However, unlike
us, they do not fit current methods into a taxonomy. Instead,
they present an evaluation of methods in continuous learning
scenarios.

As Kemker et al. [2018] demonstrated, comparing results
between models can be influenced by various variables such
as task order or chosen setup. Therefore, our goal is not to
provide another empirical survey but rather to offer a compre-
hensive overview of the field from multiple perspectives. To
achieve this, we will introduce a taxonomy that categorizes
existing methods, allowing for easier comparison between
them. In the following section, we will present the most rel-
evant works and organize them according to this taxonomy.
Our aim is to provide a broad understanding of the area and
understand the appropriate usage of them.

3 Taxonomic Organization

To provide a clear framework for organizing methods that
prevent CF, we suggest categorizing them into four main
groups: rehearsal, distance-based, sub-networks, and dy-
namic networks. Figure 2 visually represents this taxonomy.

A method falls under the Rehearsal category if it uti-
lizes data from previously learned tasks, such as a replay
buffer in RL. This can include artificial data or representa-
tions of learned knowledge, like embeddings from prior tasks.
Models that employ similarity estimates based on the dis-
tance between samples to determine task or class member-
ship are classified as Distance-based. For instance, samples
projected on a hyperplane can be considered part of the same
class. The Sub-networks group comprises models that aim
to prevent knowledge or parameter overlap between tasks.
One approach is to divide the model into smaller sub-models,
each with its own set of weights, which are used to learn one
task. Two sub-models can also share some components. Dy-
namic Networks, on the other hand, refer to models whose
structure, such as the number of nodes or layers, expands to

accommodate additional tasks. As more tasks are learned, the
model’s capacity increases, allowing it to recognize more pat-
terns. In the following sections, we will explore each of these
categories in greater detail.

3.1 Rehearsal
Rehearsal is the process of repeating a previous task while
learning a new one to prevent forgetting. This technique is
commonly used in human psychology and was introduced in
the study of neural networks by Robins Robins [1993, 1995].
However, storing all of the data that a model is presented with
throughout its lifespan and using it to retrain the model can
be impractical, as it requires a large amount of storage space
and can significantly increase the amount of time required for
training. To address these issues, some researchers have fo-
cused on reducing the amount of data that needs to be stored,
while others have focused on reducing the training time [Hu
et al., 2019; Leontev et al., 2019; Sprechmann et al., 2018;
Borsos et al., 2020]. These approaches are known as mini-
rehearsal and pseudo-rehearsal and will be discussed in the
following subsections.

3.1.1 Pseudo-rehearsal

Pseudo-rehearsal is based on the assumption that storing pre-
viously seen data is not required to deal with CF. It is suffi-
cient to generate new data synthetically, known as pseudo-
samples, in order to represent old classes on demand. As il-
lustrated in Figure 3, the generated data does not have to be
identical to the original. In this figure, the first row shows
noisy images generated by Mellado et al. [2017] to repre-
sent classes from the MNIST [LeCun et al., 1998] data set,
namely 0, 1, 2, 3, and 4. Although the samples in the first row
cannot be identified as digits by a human, they are intended
to activate the same set of neural network connections as the
original ones in the second row. Therefore, they can be used
to retrain the model from time to time, remembering previ-
ously learned concepts.

To perform a new training session and acquire new knowl-
edge, a copy of the existing model is created. This is called a
clone of the model. Then, some noisy generated images are
labeled by this cloned model. The pairs of noisy images and
their labels which have high confidence by the cloned model
are concatenated to the current task data set as synthetic data.
Thus, the original model is trained on this extended data set.
This aims to grant the model to remember classes from an old
task. The key problem with synthetically produced samples
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Figure 2. The proposed taxonomy of DNN models in continuous learning. We propose four main categories: i) Rehearsal; ii) Distance based; iii) Sub-
networks; and, iv) Dynamic networks. Moreover, for existing models that share properties of more than one group, we classify these ones as Hybrid models.
They all try to improve continuous learning when using deep neural networks.

Figure 3. The first row contains noises images that represent classes from 0
to 4 in the neural network trained by Mellado et al. [2017]. The second row
contains images of classes from 0 to 4 extracted from MNIST.

is that they don’t actually belong to the class to which they
were assigned. This is known as the ambiguities problem in
Incremental Learning [Masana et al., 2020]. Therefore, they
can conflict with the newest classes the model is learning.
Just as a playful example, assume that a neural network was
trained to classify images of cats and dogs. Then a new class
is added to this neural network. Now assume that the random
image generated by the algorithm depicts a sample from the
new class (a bird, for example). This image will be labeled
as a dog or a cat because the last trained model only knows
these two classes.

Bayesian Learning and Stochastic Langevin Dynamics
were used by Leontev et al. [2019] to improve the genera-
tion of such synthetic data samples. These two techniques
were used to generate samples that would maximize the neu-
ron activation, instead of random generation. They forced the
generated samples to increase the node output that represents
their classes. However, these techniques can lead to the gen-
eration of synthetic data with low diversity. To handle this
problem the authors proposed a Brownian motion [Karatzas
and Shreve, 1991] technique to avoid the selection of simi-
lar samples to the data set (using the distance among them
in input space). Therefore, they can produce a diverse syn-
thetic data set, discarding the most similar. This technique
proved to be resilient to CF in toy data sets, like MNIST,
where the dimension of the input data, (28, 28) pixels, is not
as big as it could be in real applications, such as facial recog-
nition [Schroff et al., 2015]. In applications where the input
space is larger, the performance of this technique tends to
quickly decrease.

The above technique aims to generate synthetic data that
will activate specific neurons that represent certain classes.
Nevertheless, there is no assurance that the most elevated
ones will be generated. To force this, Smith et al. [2021]
propose to use the inverted model trained on the previous
task to generate pseudo-samples passing the class label as
input. However, the synthetic data generated still does not
seem like the original samples. The strategy was used again
by PourKeshavarzi et al. [2022], however, different from the
previous, they demonstrated that using the Knowledge Dis-
tillation (KD) [Hinton et al., 2015] improves the final result.
They call this strategy a memory recovery paradigm. And,

recently, Liu et al. [2022] used the DeepInversion [Yin et al.,
2020] model to generate the pseudo-samples in the Few-shot
Incremental Learning setup.

Generative networks were also adopted to create synthetic
samples that were more likely to be similar to the original
ones. For instance, Mellado et al. [2017] used a Recurrent
Neural Network (RNN) called DRAW [Gregor et al., 2015]
to generate synthetic data. Different from traditional RNNs,
their model has 2 heads: i) a fully connected NN with a soft-
max activation to classify the input; and, ii) a decoder to re-
create the input. It showed that Generative Adversarial Net-
works [Goodfellow et al., 2014b] (GANs) could play an im-
portant role in helping to mitigate the CF effects for pseudo-
rehearsal. In the same year, Shin et al. [2017] propose the
Deep Generative Replay framework which uses a GAN as
an auxiliary model used at the start of each training session
to generate synthetic data from already known classes. The
GAN is trained at the end of each training session using the
data set of the current task and the self-generated one.

GANs were also used to produce synthetic data to avoid
CF in more general scenarios: i) label-conditioned image gen-
eration, where the input is the label of class and the output is
an image; and, ii) image-conditioned generation, where the
input is an image of a class and the output is an image from
the same class, but in a different domain. For instance, a car-
toon cat image as input can result in a sketch cat image as
output [Zhai et al., 2019]. Although generative models can
generate synthetic data for your own incremental training,
these data are not always high quality, problems like blur
usually occur. Therefore, Xiang et al. [2019] propose to gen-
erate feature maps that are passed to the classifier’s internal
layers instead of samples in the original input space. The use
of feature maps instead of pseudo-samples to do the classifi-
cations is an easier task due to the size of the feature map in
comparison to the raw image.

Learning using Encoded Experience Replay
(CLEER) [Rostami et al., 2019] is an Autoencoder
(AE) trained to make all tasks share the same distribution
in the embedding space. For this, the model is divided into
three parts: i) an encoder; ii) a shared classifier; and, iii) a
decoder to produce pseudo-samples. The encoder is trained
to generate embedding with the same distribution, regard-
less of tasks. For this, it models the embedding space as a
multi-modal distribution using the Gaussian Mixture Model
(GMM). When a new task needs to be learned, the model
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[b]

Figure 4. Training process.

[b]

Figure 5. Inference process.
Figure 6. Sequential training/infer of the PGMA framework. An image instance embedding is generated by the Encoder, then it is used by the DPG to create
a set of parameters to adapt the Solver. The Solver is used to classify the image instance. The Decoder creates a synthetic data set to avoid CF when learning
new classes.

uses the decoder with the GMM to generate pseudo-samples
that are merged with the samples of the current task. So,
with this expanded data set, the model goes through a new
learning phase in these three components. By doing this, the
encoder encourages all samples to be grouped together in a
single embedding region. As a result, the categorization task
is simplified. It works as a form of normalization.

Variational Autoencoder (VAE) is naturally more resilient
to CF [van de Ven et al., 2020]. Due to this, VAE is used in
Incremental Learning both to generate images and classifica-
tion tasks. The choice of the prior distribution over the latent
space is crucial to a VAE present accurate results [Egorov
et al., 2021]. However, in an Incremental Learning process,
choosing this distribution is not trivial, because the data
changes over a lifelong term. Egorov et al. [2021] propose to
use the gradient in an end-to-end training to find a prior that
is a mixture of current data distribution and old distributions.
However, it also presents image quality problems produced
by the decoder.

Another way used to generate examples of known classes
is by using class prototypes. The model can remember the
class since it serves as an anchor. A prototype is a represen-
tation of the samples of a class and is usually determined by
averaging all available samples. This is the strategy that re-
quires less storage memory overhead, however, it requires
that all samples from a class are clustered and separated
from other classes. In these scenarios, simply add Gaussian
noise to the prototype to get an ephemeral collection that can
be used together with the training set in each training ses-
sion [Zhu et al., 2021b; Petit et al., 2023].

Instead of forcing the approximation of samples in the em-
bedding space, Hu et al. [2019] propose to adapt the value
of the model’s weights to handle instances from different
classes. They did this by employing the model together with
three auxiliary models: i) a Solver, which predicts the re-
sponse of a task; ii) a Dynamic Parameter Generator (DPG),
which creates a set of parameters to be merged in the Solver
for each sample; iii) an Encoder that creates an embedding to
be used as input by the DPG and the Decoder; and, iv) a De-
coder which creates realistic data samples of tasks that are no
longer available. This strategy allows mutating the weights

based on the current processed sample. It helps the model
to mitigate the semantic drift problem [Masana et al., 2020].
This is also considered pseudo-rehearsal (and not a Dynamic
Network) as the model maintains its structure but modifies its
parameter values by utilizing data derived from prior knowl-
edge.

Figure 6 shows how these models interact with each other
during inference (left side) and training (right side) time.
Given an image of a new class, the Encoder generates an
embedding vector. This vector is given to the DPG which
outputs a set of weights. These weights are combined with
those provided by the Solver to predict input class y, along
with the samples of the new task. The models are trained with
samples generated by the Decoder. Data Generator, a macro
component composed of the Encoder and Decoder, can also
suffer from CF. To mitigate this, the authors propose to use a
KD loss as illustrated on the right side of Figure 6. A frozen
version of the last training session is used as a “teacher” in the
current training session to remember the old behavior of the
models. For this, a random embedding vector from a normal
distribution is used to generate a synthetic image. Next, the
objective is to minimize the difference between that synthetic
image and the one generated by the current Decoder. In addi-
tion, the current Encoder must generate an embedding from
the synthetic image and minimize the difference between its
embedding and that used by the frozen Decoder.

While the results indicate strong performance in a two-
task sequence, further evaluation is necessary to validate the
method’s efficacy in handling arbitrary task sequences and
more complex tasks beyond MNIST. Future investigations
should focus on expanding the evaluation to encompass di-
verse scenarios, ensuring the method’s scalability and robust-
ness. Nevertheless, the use of synthetic data sets that are more
similar to the current samples shows more promising results.

Hypernetworks are also used to generate values for the
model’s parameters [von Oswald et al., 2020] based on a
task identifier. This approach passes the problem of CF to
the hypernetwork. However, von Oswald et al. [2020] advo-
cate this is less affected because the pair of input-output is
less than these relations between data of classes from tasks.
Although it still happens, they use a VAE to apply pseudo-
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rehearsal in the hypernetwork.
Hu et al. [2021] explain the CF problem as a causal ef-

fect of the old data lost in new training. They argue that re-
playing a feature representation of data does not achieve the
causal information of replaying the original data. However,
they showed that it is possible to distill the colliding effect
between the old and the new data on embedding space.

Other learning algorithms were also tested with
pseudo-rehearsal.For instance, Contrastive Hebbian
Learning [Movellan, 1991] and No-Prop [Widrow et al.,
2013] were tested by Hattori and Tsuboi [2018].However,
they only tested on toy data sets and with shallow networks.
Future work could perform tests with deep architectures
and more data sets and also use GANs to generate synthetic
data. Nevertheless, in our work, we focus on methods based
on the gradient descent learning algorithm, so this work
is out of our scope. Figure 7 depicts an overview of this
category. It shows that the pseudo-examples can be used
to change the parameter values of the model or distill the
causal information. In addition, it shows the main ways to
generate pseudo-samples. In the next section, we present
works that allow for the storage of certain outdated data to
prevent CF.

3.1.2 Mini-rehearsal

The idea behind mini-rehearsal is that a subset of the original
data must be retained to prevent CF while training a model
on a new task. The objective is to minimize the amount of
old data that needs to be kept in order to allow the model to
learn the new task without experiencing CF. This can be ac-
complished through selective data sampling. This subset is
known as coreset. The main objective is to identify a repre-
sentative subset of the training set. Therefore, with this subset
stored, CF can be handled by the model.

The Greedy Sampler and Dumb Learner (GDumb), an
established baseline of this category that demonstrates its
strength, is a naive model that questions the advancements
of contemporary approaches to address the CF suggested in
the literature [Prabhu et al., 2020]. A memory manager and a
learner make up GDumb’s two main modules. For each new
class that is learned, a new bucket is made to hold its samples,
according to the naive management practiced by the previ-
ous. The sample from the bucket containing the most samples
is removed when memory is full. The learner uses samples
stored in memory to train a DNN from scratch. Several stud-
ies that have been published in the literature are surpassed by
this model.

There is a lot of research on how to improve the sample se-
lection for the coreset [Shankar and Sarawagi, 2018; Hayes
et al., 2019; Borsos et al., 2020; Liu et al., 2021; Yoon et al.,
2022]. It is possible to select the coreset that reduce the for-
getting of knowledge using a bilevel optimization based on
gradients [Borsos et al., 2020]. However, it has a high com-
putational cost despite the optimizations proposed by the au-
thors. Using a GeForce GTX 1080 Ti GPU to select a coreset
of 100 samples in a set of 1000, takes about 20 seconds, while
selecting 400 samples in the same set takes more than three
minutes. This shows that the time does not increase linearly.
In addition, it only works with a static set of samples for the

task, therefore it cannot be used in an Online Incremental
Learning setup.

Most researchers advocate that the size of coreset has to
be limited, but there are two ways to think about this: i) Mc

samples per class; or ii) M samples to be managed to all
classes. The former has the problem of total memory increase
as the tasks learned increase, due to this, some researchers
believe that compressing the data is a way to overcome this
problem [Hayes et al., 2019; Wang et al., 2022a]. Exemplar
Streaming (ExStream) algorithm compresses the bucket data
and is compared to other two compression algorithms: i) On-
line k-means; ii) and, CluStream; and two replacement algo-
rithms: i) reservoir sampling ii) and, first-in-first-out queue.
The results showed that when we have a bucket size above
256, all algorithms behaved similarly. However, when the
bucket size is small, like four or eight, the correct choice
of samples can improve the results. For instance, ExStrem
showed an improvement of more than 50%, in some cases,
compared to the reservoir algorithm [Hayes et al., 2019].

The sample compression causes a tradeoff between quality
and quantity, however, it is possible to have gained in accu-
racy, even with lower quality samples [Wang et al., 2022a].
It has also been noted in the literature to apply mutations
to coreset samples in order to maximize memory retention.
Mnemonics [Liu et al., 2020c] consider each bucket as a
variable and apply a post-training phase, where the samples
stored in the memory mutate their values to be considered
more representative. Despite it being more computationally
efficient than the above methods, it still requires to be done in
the offline phase. Jin et al. [2021] apply gradient-based edit-
ing on samples from coreset (in an online fashion), instead
of replacing them, however, they were looking to unbounded
task incremental learning setup, where the data distribution
changes without a sense of task identifier.

Another way to reduce the amount of memory required
is to consider storing the representations (feature maps) in-
stead of raw samples to perform the rehearsal process. RE-
MIND [Hayes et al., 2020] showed that it does not present
better results in scenarios where each task is learned sequen-
tially, however in scenarios where classes came in any order
(online learning), it presents the state-of-the-art results. To
achieve this, they used the MixUp [Liang et al., 2018] tech-
nique in the stored samples to get more robust and represen-
tative sets in the replay process.

Given that the coreset has a fixed size of M , we need
a method to replace, update, or remove samples from the
classes’ bucket when memory is full. Applying the herding
selection algorithm, ICaRL [Rebuffi et al., 2017], detailed in
Section 3.5 as it is a hybrid technique, was a pioneer in this
field. Herding selection chooses the samples closest to the
centroid of the samples of each class. Reservoir sampling is
the most used strategy to manage the coreset. This is a naïve
strategy that gives each sample the same chance of being se-
lected to be removed from the coreset once it is full. As a
result, it cannot be assumed that the coreset will always be
balanced, however, empirical research suggests an approxi-
mation of this [Hayes et al., 2019].

Metrics can be employed to determine the selection of sam-
ples that will be retained within the coreset. Shapley value
was used to estimate the individual contribution of each sam-
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Figure 7. Overview of main approaches in the Pseudo-rehearsal category. In Pseudo-rehearsal, it does not require the storage of samples. Instead, the model
leverages its existing knowledge to generate new samples as needed. The figure shows the main way to generate pseudo-samples and unusual ways to use
these generated data.

ple to the performance of the model [Shim et al., 2021]. Maxi-
mally Interfered Retrieval (MIR) uses the loss to check if the
incoming sample is more negatively impacted by updating
the model parameters than the already stored data. Informa-
tion theory was used to manage the most relevant samples
to keep in the coreset using the Bayesian model to compute
the criteria efficiently by exploiting rank-one matrix struc-
tures [Sun et al., 2022]. Classifier’s confidence is another
metric that was used in the literature. It is possible to select
the elements with the largest or worst confidence. In the for-
mer case, it is selecting samples that the model has no prob-
lem hitting, while the latter are samples that the model has
difficulty inferring correctly. According to empirical stud-
ies, choosing the most trustworthy ones produces better re-
sults [He et al., 2018].

An RL agent was trained to decide what proportion of
memory should be allocated to each class and also which
samples it should keep [Liu et al., 2021]. As the agent can
also suffer from CF, it is only trained on the first task, split-
ting the data into N groups to simulate various tasks. In an
Online Incremental Learning setup, the problem of an imbal-
anced and noisy data set is more predominant. Online Core-
set Selection [Yoon et al., 2022] manage the memory follow-
ing three selection objectives: i) minibatch similarity, to se-
lect representative samples to the current task; ii) cross-batch
diversity, to reduce the redundancy among the samples of the
current task; and, iii) coreset affinity, to minimize the inter-
ference between the selected samples and knowledge of the
previous tasks.

All pretrained models can use the coreset in an Incremen-
tal Learning scenario, transforming it into a Memory Aug-
mented Neural Network (MANN) [Santoro et al., 2016]. The
memory of MANN is a table in which each row is a tuple
{lm, vm, αm}, where lm is the instance label, vm is the em-
bedding generated by the last layer of the model (just before
softmax activation) and αm is the weight attached to the row.
During inference, they interpolate the prediction of the pre-
trained model and prediction of the memory, using the top N
most similar tuples comparing vm with the embedding gen-

erated by the last layer’s model. These two values are inter-
polated by means of a set of weights, which is generated by
a recurrent neural network (RNN) in each prediction.

At training time, the truth label is used to update the mem-
ory if a mistake is done by the model. In addition, only tuples
where lm is equal to the truth label are updated, so that rare
classes are not forgotten. The RNN is also trained in an on-
line fashion to decide the relevance of the prediction done
by the memory and the pretrained model. Although the idea
of the work implies that CF is avoided, there are no eval-
uations in this regard. Instead, the authors only evaluate the
forward transfer knowledge without checking if older classes
are still remembered by the model. Nevertheless, it is evident
that this memory aids in addressing the issue of imbalanced
data sets by leveraging the top N similar tuples [Shankar and
Sarawagi, 2018].

Following the approach based on feature embeddings (last
layer’s output), Sprechmann et al. [2018] propose the adop-
tion of a hash table using the embedding as key and the truth
label as value. The model is divided into three components: i)
the embedding generator; ii) the hash table memory; and, iii)
the classifier. During training time, all models are updated.
In the hash table, samples are appended as a circular buffer,
while the embedding generator and the classifier are updated
with backpropagation. In inference time, a K-Nearest Neigh-
bors (KNN) is applied to the hash table keys, and the result
is used to modify the classifier weights on demand. This is
an online adaptation, as done by Hu et al. [2019], however,
instead of using a model to generate the drift in the weights,
a little training session is performed to find this ∆ drift. As
the memory has a fixed size and acts as a circular buffer, the
model has a tendency on the most recently trained classes,
making it difficult to remember rare classes or old tasks.

The literature makes numerous and varied uses of the core-
set to reduce the CF. MeRGAN [Wu et al., 2018] analyzes
two ways: i) joint training with replay; and ii) replay align-
ment. In the first, the samples are generated conditioned in
the label of past tasks to be used together with the samples
of the current task. While in the second, it is the applica-
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tion of KD in the Generator model, making the generator
of the current task a student of the generator learned in the
last task. Gradient Episodic Memory (GEM) [Lopez-Paz and
Ranzato, 2017] uses it to add a hard constraint in the updating
step of the model. It only accepts changes in the parameters
of the model if the error on coreset does not increase. This
avoids forgetting in the coreset and allows backward knowl-
edge transfer. However, the general error in the class can still
increase. Moreover, the model can lose its ability to learn
new tasks due to this hard restriction. Chaudhry et al. [2019a]
proposes to relax this constraint and start to accept updates
despite increasing the error by a threshold. They called this
method A-GEM. It outperforms GEM in accuracy and in the
number of tasks that the model can learn.

To regularize the training in a different approach, Tang
et al. [2021] divide the gradient into two pieces and use the
coreset to do this: i) relative to all tasks; and, ii) relative to
the specific task. Then, they apply one constraint to each
part. In the first, the gradients have to be in the same direc-
tion. In the last, they have to be orthogonal to another task-
specific gradient from other tasks. Another regularization
method adopted was the Elastic Weight Consolidation [Kirk-
patrick et al., 2017], used in the Natural Language Gener-
ation (NLG) domain [Mi et al., 2020]. This constraint is a
technique from the Sub-networks category that will be dis-
cussed in Section 3.3.

Hou et al. [2019] and Wu et al. [2019] hypothesized
three main reasons why methods that use mini-rehearsal tech-
niques present in the problem of forgetting: i) imbalanced
magnitudes; ii) semantic drift; and, iii) ambiguities. Hou
et al. [2019] create LUCIR to prevent these three points. For
the former reason, they noticed that the value of logits re-
ferring to classes of the current task tends to have a magni-
tude much higher than that of the classes of old tasks due to
data imbalance, where the samples of the classes of the cur-
rent task are abundant while the samples of the old classes
are scarce. Therefore, they apply cosine normalization to the
logits to make them all of the same magnitude. To face the
semantic drift, they use KD in the embedding layer. Finally,
to handle ambiguities among the classes, they use a margin
ranking loss.

BiC appends a final layer to the model responsible to equal-
ize the bias of the logits in relation to the new classes [Wu
et al., 2019]. For this, the samples of the current task are di-
vided into two sets, validation, and training. The training set,
which is still abundant, is used to train the model down to the
logits layer, this is called stage 1 of the training session. Then,
the validation set, which is balanced against the in-memory
set, is used to fine-tune the last linear layer, which is used to
make predictions. In the first stage, they also use KD to pre-
vent semantic drift. They advocate that, in the second stage,
the fact of training in a balanced data set, the model can han-
dle the problem of ambiguities by itself. BiC is not catego-
rized in dynamic networks because despite it appending a
final layer on the model, it only happens on the model’s cre-
ation, not in its lifelong term.

The problem of imbalanced magnitudes was also observed
by Belouadah and Popescu [2020]. To handle this issue, they
use extra memory to store the statistics of classifier nodes of
classes in the current training session when the data of these

classes are abundant. In the next training sessions, when the
data of these classes are sparse, the magnitude of their nodes
tends to drop. Therefore, these statistics are used to rescale
the weights of those parameters. Zhang et al. [2022] demon-
strates that in an Online Incremental Learning setup, em-
ploying random transformations on the coreset to increase
its size helps the model generalize knowledge and mitigate
CF. Their work serves as a strong baseline for this particular
setup.

Lee et al. [2019] propose to use a stream of unlabeled
data from the internet to overcome the problem of unbal-
anced data. They advocate that this alleviates the three prob-
lems above. Moreover, they indicate this approach is better
than fine-tuning the model in a post-training with a restricted
amount of data. The data that comes from the stream are la-
beled by the model itself versioned on the last training ses-
sion, in such a way as to distill the knowledge of old classes.
In the context of object detection, Dong et al. [2021] use unla-
beled data to get a sampling of objects that are not presented
in the current task anymore. Moreover, they use a scheme of
dual networks to apply KD of this old knowledge.

Ahn et al. [2021] argue that this bias is mainly caused by
computing the softmax probabilities by combining the output
scores for all the old and new classes. Thus, it is proposed
to separate the softmax layer, leaving a head for each task
and applying KD with the coreset during training. However,
Zhu et al. [2021a] show that the models also create a bias
in the embedding space for the most recent classes. To ad-
dress this, it is proposed to perform a semantic augmentation
(semanAug) in the latent space with the old samples.

Belouadah et al. [2020] go in this direction and defend
that forgetting mainly affects the classification layer. They
proposed that vanilla fine-tuning can mitigate CF since clas-
sifiers learned in old tasks can be kept to standardize the
weights against all classifiers learned in each task. They ar-
gue that this is necessary due to the bias towards the new
classes. To make the weights fairer after learning a new class,
the standardization of initial weights is done.

Hou et al. [2018] propose the Adaptation by Distillation
(AD) method to show the advantages of KD in terms of In-
cremental Learning. In the training process, the lifelong term
model does not directly learn from the truth labels, instead,
an auxiliary model, called ”expert”, is trained with original
data. After that, the main model is trained by this expert, us-
ing its soft labels. They showed that this process gives the
model a more generalized knowledge, reducing the effects
of CF. Despite the KD being widely used to mitigate CF, Be-
louadah and Popescu [2019] show, in their experiments, that
it is worst to model accuracy when the model has access to a
representative coreset.

The Meta-learning approach was proposed to create a
model agnostic [Rajasegaran et al., 2020]. This model is not
a specialist in any task; however, its solution is near all tasks.
Therefore, it can use the coreset with the one-shot learning
strategy to solve any task in its lifelong term. Von Oswald
et al. [2021] find that sparse learning emerges, due to a large
fraction of learning rates dropping to zero in this type of
model (MAML). They showed that it can be used to focus
the learning on the most appropriate regions of the model.
Perez-Rua et al. [2020] show that this approach also works
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in the context of object detection; and, XtarNet [Yoon et al.,
2020] uses meta-learning to train a MetaCNN to produce an
embedding to new classes. These new embeddings are com-
bined with the ones generated by a pretrained network. Then,
the combined embedding is used for the final classification.
Part of the data from each class is maintained in memory to
be used as a query set and support set in meta-learning.

Generative classifiers are less prone to CF because the de-
cision boundaries of n classes learned sequentially are the
same as when trained together [Banayeeanzade et al., 2021].
GeMCL extends OML [Javed and White, 2019] replacing
its discriminative classifier with a generative one (Bayesian
classifier). Henning et al. [2021] propose a Bayesian frame-
work where task-conditioned posterior parameter distribu-
tions are continually learned and compressed in a Hypernet-
work. They reported almost no forgetting and show it scales
to modern architectures such as ResNets.

Recently, with the increasing attention on Transformers,
researchers have begun investigating their potential benefits
in addressing the issue of CF [Wang et al., 2022b,c]. They
propose the hypothesis that by identifying the appropriate
Prompt, the model can effectively prevent CF. However, a
challenge arises in determining the ideal Prompt for each in-
stance. In their study, Wang et al. [2022b] propose a method
to learn and store the Prompts associated with each class
within the coreset. Each Prompt is linked to a key, which
is the embedding of a sample from the corresponding class.
During inference, the current sample’s embedding is utilized
to select the most suitable Prompt. This approach opens up a
new research direction, as it shifts the focus from CF avoid-
ance to discovering the optimal Prompt.

Figure 8 depicts an overview of this category. Although re-
hearsal methods show good results, they present an inherent
problem of overfitting in the coreset [Chaudhry et al., 2019b].
Verwimp et al. [2021] advocate that this result is observed be-
cause the models that use coreset stay in the same low-loss
region after a task has finished. However, they point out that
more research in this direction is required. There are many
spaces in research to evaluate the best approach to select the
best samples to maintain in memory. In the next section, we
present the works that use techniques focused on learning
representations, that we classify as Distance-based methods.

3.2 Distance-based
Within the Distance-based category, Rebuffi et al. [2017]
propose two primary approaches: i) fixed data representation;
and ii) learning representation. In the former, a fixed embed-
ding generator is used in every Incremental Learning step
and the major challenge is to ensure that the generated em-
beddings are representative of all upcoming classes in a way
that keeps embeddings from samples belonging to the same
class grouped together but apart from embeddings from sam-
ples of other classes. In the latter, the embedding generator
also suffers adjustment in its parameters in each training step.
The main challenge is the tracking of the embedding region
of the classes when the embedding generator updates and the
model does not have access to samples from those classes.

The use of prototype classes is a common technique em-
ployed in many methods within the Distance-based cate-

gory. A prototype class is an embedding that represents the
central tendency of other samples from the same class. Fig-
ure 9 provides an example where the embeddings are colored
light yellow and light red, representing cats and dogs, respec-
tively. The dark yellow point (pc) is the prototype class of
cats and is created by averaging the features of the embed-
ding of the cats. Similarly, the dark red point (pd) is the pro-
totype class of dogs and is also created by averaging the fea-
tures of its class.

The use of a prototype class, instead of all samples, helps
Incremental Learning to reduce memory requirements and
avoid training with classes with unbalanced sample amounts.
The first problem is handled because the model has to store
only one data point. The second problem was noticed by Be-
louadah and Popescu [2019]. They showed that the models
suffer from a bias in favor of new classes. This bias is caused
by the number of samples of new classes in relation to the old
ones.

The choice of embedding representation is crucial in deter-
mining how well a classifier can avoid forgetting. When the
representations of samples from different tasks are aligned in
embedding space, learning one task facilitates the learning
of the other. Conversely, when they are orthogonal, learn-
ing one task does not affect the learning of the other. In a
recent study, Javed and White [2019] used a meta-learning
algorithm to train a feature extractor that searches for repre-
sentations that maximize parallel or orthogonal embeddings,
thus enabling the classifier to determine a region for each
task’s classes.

In a few-shot learning setting, aligning visual embedding
and word embedding is another technique for choosing the
space for each class in the embedding space. Cheraghian
et al. [2021] proposed a method where the model takes an
image as input and produces an embedding that should be
close to the word embedding that represents the class, in-
stead of generating a label as output. They tested this method
with Word2Vec embedding [Church, 2017] and GloVe em-
bedding [Pennington et al., 2014]. By doing so, a model that
can handle natural language classification problems can be
used without experiencing CF.

In situations where the embedding generator updates its
weights during training, the embedding space of a class can
change. To address this issue, Semantic Drift Compensation
(SDC) [Yu et al., 2020] updates all prototypes at the end of
each training session to discover the new region in the embed-
ding space where a class will be allocated. To calculate this
change, the model determines the position of the incoming
data in the embedding space before training and again at the
end of the session. The difference between these positions is
then used to update the prototypes. However, it’s important
to note that SDC assumes that all class embeddings continue
to be clustered with their respective prototypes, which is not
guaranteed. Therefore, while this technique can be effective
in certain scenarios, it may not always provide accurate up-
dates to the prototypes.

Incremental Unsupervised Learning of representations us-
ing the MixUp technique [Liang et al., 2018] has yielded
promising results that surpass those obtained with Super-
vised Incremental Learning. One possible explanation for
this phenomenon is that unsupervised learning generates a
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Figure 8. Overview of main approaches in Mini-rehearsal category. In Mini-rehearsal the model can store a limited part of samples from old tasks. Existing
works that use these data to avoid CF and others that research better ways to select the coreset.

Figure 9. A prototype representation condensing the entire class into a sin-
gle point, reducing the impact of imbalanced data among the classes. Points
pc and pd serve as prototype representations of the light points.

smooth loss landscape [Madaan et al., 2022]. This approach
has been tested with Barlow Twins [Zbontar et al., 2021]
and SimSiam [Chen and He, 2021]. The main classifier used
in this category is based on cosine similarity. Two improve-
ments have been proposed for this classifier: (i) generating
multiple perspectives of each sample, and (ii) using a Con-
trastive loss. In the first approach, each sample is used to
generate multiple views of itself by applying rotations. In the
second approach, the generated samples are used as anchors
in a Contrastive loss [Wu et al., 2021].

When a model is trained using the Joint Training approach,
where all classes are trained together, it leads to a better deci-
sion boundary within the embedding space compared to train-
ing in an incremental fashion. In general, this approach tends
to produce a more robust class separation, effectively en-
hancing the model’s ability to distinguish between different
classes and improving overall generalization performance.

Therefore, Shi et al. [2022] propose an objective function
that aims to enforce the decision boundary generated through
incremental training to mimic that of Joint Training.

Figure 10 provides an overview of the Distance-based cate-
gory. One of its advantages over other categories is that it can
expand its known classes without changing its structure, fo-
cusing only on the embedding space. However, it remains un-
clear how many classes an embedding space can effectively
support without causing confusion. In the next section, we
will introduce a category that attempts to address this issue
by identifying sub-modules within the model that can miti-
gate CF.

3.3 Sub-networks

When learning a new task, previously learned patterns are
replaced by the current training patterns, which can lead to
forgetting. For example, a model may use a neuron connec-
tion as a positive stimulus to improve its performance when
learning its initial task, and later, when learning a second task,
that same neuron may need to be used as a negative stimulus,
which can decrease the model’s performance in the previous
task. To address this issue, some approaches try to encode
the knowledge needed for each task in separate sections of
the model with minimal overlap, as shown in Figure 11. By
considering a neural network as a high-capacity model with
redundant connections, it becomes feasible to selectively up-
date specific subsets of neurons during the training of each
new task. These subsets, known as Sub-networks, consist of
distinct sets of neurons within the main model, and the aim
is to minimize their overlap.

Goodfellow et al. [2014a] led a pioneering study on the
subject of CF. They conducted a series of experiments with
various activation functions and regularization techniques to
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Figure 10. Overview of main approaches in Distance-based category. In Distance-based, cosine classifiers are the most used. It assumes that the embeddings
of the same class are clustered in the same region.

Figure 11. A shared sub-network approach. Example of two sub-networks
within the main network.

determine which combinations were less prone to CF. They
found that the combination of the ReLU [Nair and Hinton,
2010] activation function and Dropout [Hinton et al., 2012]
regularization was the most effective. Dropout works by ran-
domly disabling a subset of connections during each training
iteration, which forces the model to learn using the remaining
active connections. This encourages patterns to be encoded
redundancy in different subsets of connections, meaning that
even if some connections change in future tasks, there may
still be alternative paths using different subsets of connec-
tions that can solve the initial task. This suggests that a model
can be composed of multiple sub-models. Therefore, choos-
ing a good training regimen can reduce CF in a wide range of
models [Mirzadeh et al., 2020], such as the best combination
of dropout, weight decay, learning rate, batch size, and opti-
mizer. It’s important to note that these training regimens can
also be used in conjunction with other techniques discussed
in this survey.

The Sub-network category can be classified into two
types: Soft Sub-networks and Hard Sub-networks. Hard Sub-
network-based approaches aim to identify a subset of param-
eters that represent the learned knowledge of a specific task
and then freeze them. Consequently, when the model has to
learn a new task, it adjusts a different subset of neurons to
form small networks within the model. This produces a sub-
model for each learned task, each with varying performance.
However, because a new subset of parameters must be frozen
for each trained task, the number of tasks the model can learn
is limited, as the overall network size remains constant.

Like Hard Sub-networks, Soft Sub-networks also select a
set of important parameters for task ti. However, instead of
keeping these parameters frozen by default, a term is added
to the loss function that penalizes changes to the parameters
of task ti. This ensures that the network will do its best to
avoid changing the important parameters of task ti while gen-
erating values for the parameters of task ti+1. In this way,
Soft Sub-networks try to overcome the capacity limitations
observed in Hard Sub-networks approaches by allowing neu-
rons to suffer little changes during training new tasks.

Adding a penalization term to the loss function changes the
loss landscape. It has been established that in the loss land-
scape, multiple local minima can yield satisfactory levels of
accuracy for a specific task, as illustrated in Figure 15 [Lee
et al., 2017a]. By adding a penalty term, each submodel can
be forced to reach a local minimum that provides optimal
performance for each task simultaneously. With Soft Sub-
networks, different local minima can correspond to different
solvable tasks for each submodel. Therefore, the goal of suc-
cessful Soft Sub-network training is to bring the local minima
of each submodel closer together, allowing the parameters of
one submodel to be reused by another submodel. For exam-
ple, after learning task ti and starting to learn task ti+1, the
network is forced to find an acceptable solution for task ti+1
that is as close as possible to the solution found for task ti.
The works that most contributed to these two approaches will
be discussed in the following subsections.

3.3.1 Soft Sub-networks

In the Soft Sub-networks, each submodel specializes in solv-
ing a task that shares parameters (weights) with the other sub-
models, which helps to avoid the capacity limitations of Hard
Sub-networks. However, the subset of important parameters
for task ti, which will be shared by the submodels of subse-
quent tasks ti+1, ti+2, . . ., cannot go through a lot of changes
when those tasks are being trained. To keep these parameters
useful for the original task, they must be identified prior to
beginning the training of task ti+j , where j represents a posi-
tive integer value. The Fisher Information Matrix (FIM) was
used by Kirkpatrick et al. [2017] to determine which param-
eters are most important for solving task ti. This information
is then incorporated into the loss function as a regulariza-
tion term to prevent changes to these parameters during the
training of task ti+1. This method is called Elastic Weight
Consolidation (EWC) and is one of the most widely cited



Catastrophic Forgetting in Deep Learning: A Comprehensive Taxonomy Aleixo et. al., 2024

[b]

Figure 12. Loss landscape of task ti.

[b]

Figure 13. Loss landscape of task ti+1.

[b]

Figure 14. Overlapping of loss landscape of the
two tasks.

Figure 15. Loss landscape of two tasks. Each task has more than one possible value to its weights (Parameter w1 and Parameter w2) that shows similar
results in the final mean accuracy of the model. On the right side (c), we observe the two loss landscape overlapping, and the star point represents a region
to weights that is a good solution to both tasks.

approaches in the field of Soft Sub-networks.
Hong et al. [2019] introduced Predictive EWC as an en-

hancement to the existing EWC algorithm. In Predictive
EWC, before the model starts learning a new task ti+1, it ini-
tially processes the new training data using the current model.
This pre-processing step enables the model to identify and
discard samples that it can handle accurately, retaining only
those with lower accuracy. Consequently, a refined data set
is formed, based on the assumption that certain samples are
no longer necessary for the model since it has already learned
how to handle them effectively. This refinement of the data
set leads to a reduction in training time.

In a similar vein, Kobayashi [2018] suggests that when
data from different tasks exhibit substantial distribution dif-
ferences, a more aggressive regularization approach should
be applied to important parameters. To address this concern,
the author proposes a conditional loss called Check Regular-
ization, which facilitates parameter grouping based on each
task, while still allowing parameter sharing between similar
tasks. By incorporating Check Regularization, the model can
adapt its regularization strategy to account for variations in
task distributions, ultimately improving performance across
diverse tasks.

The EWC algorithm assumes that the FIM is a diagonal
matrix. However, in practice, this assumption does not hold
true. To address this limitation, a technique proposed by Liu
et al. [2018] can be employed. The idea is to rotate the
model’s parameters in such a way that: i) the model’s out-
put remains unchanged; and, ii) the FIM calculated from gra-
dients becomes approximately diagonal. This rotation-based
approach has demonstrated superior accuracy compared to
the original EWC method. However, it comes at the cost of
increased processing time.

While these approaches have shown improvements, the
use of strong regularization techniques can potentially hin-
der the model’s ability to acquire new knowledge. Addition-
ally, there are two notable drawbacks associated with these
methods. Firstly, they do not consider the presence of batch
normalization layers, which are commonly used in DNN.
Secondly, they involve a high computational cost during
post-processing when calculating the FIM. These drawbacks
should be taken into consideration when applying these tech-
niques in practical scenarios.

In CF research, the influence of batch normalization layers
is often overlooked due to their potential to degrade model ac-
curacy when the data distribution changes over time, rather

than improving it. However, to tackle this particular draw-
back, a promising solution called the Continual Normaliza-
tion (CN) layer has been proposed by Pham et al. [2022].
The CN layer performs spatial normalization on the feature
map using group normalization. By incorporating CN layers
into CF models, the adverse effects of batch normalization
on changing data distributions can be mitigated, thereby pre-
serving model accuracy over time.

To overcome the high computational cost associated with
calculating the Fisher Information Matrix (FIM) during post-
processing, the Synaptic Intelligence (SI) technique offers a
viable solution. SI involves the creation of a matrix Ωk that
represents the importance of each parameter. This matrix is
calculated during the training session by applying a small
perturbation to the parameter values and observing the result-
ing degradation in the solution, as described by Zenke et al.
[2017]. Parameters that have a more negative impact are con-
sidered more important.

Similarly, Jung et al. [2020] also employs an importance
matrix within the SI framework, but with two main differ-
ences. Firstly, instead of calculating the matrix during train-
ing, they compute it during inference time. This shift in com-
putation reduces the post-processing computational burden.
Secondly, they nullify the output weights of nodes deemed
unimportant. When the model needs to learn a new task,
these nullified weights are randomly reinitialized. This ap-
proach provides the model with an opportunity to acquire
new and different knowledge. By nullifying and reinitializ-
ing the weights, the model can adapt its architecture and
synaptic connections to accommodate the requirements of
the new task.

Another approach to address the computational cost dur-
ing post-processing involves considering all parameters as
important and striving to maintain them within the same re-
gion defined by the first task. This can be achieved through
the utilization of the Monte Carlo Variational Inference
method [Blundell et al., 2015]. By minimizing the variation
of all model parameters using the Kullback-Leibler diver-
gence, the model seeks to preserve their values across dif-
ferent tasks [Nguyen et al., 2018].

To further refine this approach, Ritter et al. [2018] intro-
duced the concept of online Laplace Approximation with
Kronecker. By leveraging this technique, they estimated the
posterior distribution of the parameters. This estimation not
only considers the correlation between a parameter and it-
self in the next task but also accounts for the correlation
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with other parameters. By incorporating these correlations,
the model can capture more nuanced dependencies between
parameters, resulting in a more accurate estimation of the
posterior.

Aljundi et al. [2018] advocate that some things need to be
forgotten for new knowledge to be learned. They maintain
a matrix Ω during inference time. This matrix is updated by
each inference, observing which parameters are more acti-
vated when the test data is processed by the model. In this
sense, the model gives more importance to connections that
are more used in test time. This method was called Memory
Aware Synapses (MAS). The principal problem of MAS is
that it tends to forget rare classes quickly. Wang et al. [2021]
show that this selective forgetting is consistent with the un-
derlying mechanism of biological forgetting. Thus, they add
a term to calculate the weight importance matrix to decide
which parameters, despite being important for the previous
task, should be modified to maximize the probability of the
new task being learned.

To incorporate a temporal factor in the strength of
synapses, the Benna-Fusi model proposed by Benna and Fusi
[2016] was integrated into a DNN. This model introduces the
concept of gradually changing synapse strength over time,
resulting in some synapses being reinforced while others
are lost. This temporal modulation of synapse strength en-
ables the network to adapt and incorporate new information
while retaining important knowledge from previous tasks. Al-
though initially tested in the context of RL, where there is a
natural notion of time due to the sequential nature of agent
actions, the concept of temporal modulation can be extended
to other domains as well. By incorporating the Benna-Fusi
model into a DNN, researchers can introduce a temporal di-
mension to the learning process, allowing the network to dy-
namically adjust its synapse strengths based on the sequence
of tasks encountered.

There are also alternative strategies for the creation of
Soft Sub-networks, apart from penalizing critical weights. To
eliminate the module of parameter importance, a technique
called Incremental Moment Matching (IMM) proposes to
train a set of models Mti , all of them with the same struc-
ture. Each model is addressed to learn a unique task. In the
end, all models are averaged and the resulting model should
be able to solve all tasks in T [Lee et al., 2017a]. Tasks are
not learned in parallel, because for this strategy to work, the
initial weights of the model Mti+1 need to be cloned from
the already trained model Mti . In addition, L2 regulariza-
tion is applied to the weights of models Mti and Mti+1 to
ensure that the parameters of the solution of the second task
are close to the parameters of solution of the first task.

Another alternative to solve the selection problem on Soft
Sub-networks is to try to select a subset of parameters to
solve each task based on context. Generally, the input distri-
bution for each task is regarded as the task’s context. Orthog-
onal Weights Modification (OWM) uses the input distribu-
tion to choose the filters used by the model to solve the tasks.
It is supported by finding orthogonal filters for each task and,
in inference time, using the task identifier to retrieve the right
filters [Zeng et al., 2019]. To achieve this, when a new train-
ing session happens, the parameters can only be modified in
the direction orthogonal to the subspace spanned by previous

tasks. Ke et al. [2021] use two RNNs to define the context: i)
the main; and; ii) the auxiliary. The latter is trained to choose
the optimal parameters of the former based on input distribu-
tion. The goal of the auxiliary network consists to find a sub-
set of connections on the main network that best solves the
current task without training. As a result, this subset is also
used for similar tasks, and instead of forgetting happening, it
improves the quality of representations. The main network is
responsible to aggregate the knowledge of all tasks in their
parameters. And, use the subset parameters selected by the
secondary network to train in the current task with supervised
learning, nullifying other parameters.

Inspired from Learn without Forgetting (LwF) - discussed
in the next section -, Learn without Memorizing (LwM) uses
Knowledge Distillation (KD) [Hinton et al., 2015] to alle-
viate the forgetting in training sessions [Dhar et al., 2019].
While LwF is focused on Task Incremental Learning setup,
the LwM is focused on Class Incremental Learning setup.
This means that it does not create an entire classifier for each
task, only append one output for each new class in the classi-
fier that already exists, and regularizes the internal paths of
the model to classify each new task. To achieve this, KD is
applied to the last two layers of the model: the embedding
layer and the classification layer. KD is a technique where
a smaller, student network learns from a larger, teacher net-
work, to improve its performance. However, in Incremen-
tal Learning, the teacher is usually the model with weights
frozen in the oldest learned task.

Most of the research in this category focuses on penalizing
or controlling parameter changes to increase model stability,
but this can reduce plasticity, making it difficult for mod-
els to learn new tasks. While preserving prior knowledge is
important, it’s essential to balance stability and adaptability
to efficiently acquire new knowledge while retaining what
has already been learned. Figure 16 provides an overview
of this category. One challenge with these methods is that
there is often a drift in the distribution of input data between
tasks. If the tasks are similar, such as the MNIST splits, all
methods in this group can handle the problem because the
drift is low, and the samples belong to the same domain. The
choice of which method to use in this group depends on train-
ing time, with Synaptic Intelligence (SI) or Incremental Mo-
ment Matching (IMM) being a better choice for shorter train-
ing times. However, when the tasks are from different do-
mains, the drift is high, and none of these methods can handle
the problem. This occurs because solving task ti+1 requires
changing critical parameters that were learned to solve task ti.
To address this problem, another research approach, known
as Hard Sub-networks, was proposed. In Hard Sub-networks,
the connections used to solve task ti are frozen, and this ap-
proach will be discussed in the next section.

3.3.2 Hard Sub-networks

In the Hard Sub-networks category, the main objective is to
find a set of weights inside the main model. However, dif-
ferent from the Soft Sub-networks category, after the set of
important weights was selected for a task ti, they cannot be
changed in the training session of tasks ti+j , where j rep-
resents a positive integer value. Coop et al. [2013] led a pi-
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Figure 16. Overview of main approaches in Soft sub-networks category. In Soft sub-networks, the tasks can share part of the selected parameters to solve
other tasks. The works discussed in this section are clustered by their approaches.

oneering study on this category proposing the Fixed Expan-
sion Layer (FEL) Networks. FEL expands the original neural
network adding a layer after each hidden layer. These addi-
tional layers are larger than their predecessor hidden layer
and each neuron of the original layer is connected only to a
subset of neurons in the new hidden layer. In addition, the
weights of these new layers are frozen, thus they are never
changed during the training phases. This expansion of the
layers helps the model to avoid the overlap of knowledge
over tasks. As the choice of connections between the hidden
and the additional layer is random, they use an ensemble of
FEL networks. Therefore, this technique is not categorized
as a hybrid or dynamic because it only changes the model’s
structure only at the beginning.

The selection of a subset of input neurons to combat the
CF was introduced by Goodrich and Arel [2014]. The pro-
posed selection forces different regions of the input space to
be learned in different nodes avoiding the knowledge overlap.
Gepperth et al. [2015] propose to use Self-Organized Map
(SOM) to correlate the input with the neurons. In each train-
ing session, SOM is updated if the model fails, otherwise,
just the last layer suffers fine-tuning. Therefore, for each task
(represented by the statistic distribution discovered by SOM)
a new subset of parameters is selected. Similar work was
done by Lancewicki et al. [2015]; however, instead of using
SOM, they used the unsupervised algorithm KNN. To sepa-
rate neurons they used Mahalanobis distance with a sample
and sparse covariance matrix generated by a Shrinkage esti-
mator [Ledoit et al., 2012]. Other researchers concentrate on
choosing parameters from the full model due to the limited
resources in the input layer.

A Genetic Algorithm (GA) approach was used by Fer-
nando et al. [2017] to find the best minimal subset of pa-
rameters to learn each task sequentially. When the training
starts, each chromosome is a subset of parameters. The model
freezes all other parameters and applies a traditional gradi-
ent learning mechanism. When the solution gets stable, the
model reserves these parameters for this task. Thus, when
a new task must be learned, it can only use the set of non-
reserved parameters. It is important to consider solutions that

use as few weights as possible, otherwise, the solution found
in the first task could consume all connections.

A weight pruning introduced by Han et al. [2015, 2017]
shows that a model can have similar accuracy with fewer
parameters if the proposed pruning-training process is incre-
mentally executed. This process consists in nullifying some
weights and retraining in the same data set until the accu-
racy cannot overcome a pre-defined threshold in the training.
Those weights that were nullified are considered pruned and
the neural network can solve the task only with the weights
that are left. Therefore, Guo et al. [2018] used this process to
select the minimal subset of parameters for each task. They
also apply L1 norm in the training phase to accelerate the
pruning process. They showed that it is possible to resolve
some tasks with less than 10% of total resources.

Masse et al. [2018] showed that with a random selection
of 20% of the weight for each task (freezing other 80%), the
neural network can learn a sequence of 100 tasks without
suffering much from CF in tasks like Permut-MNIST. For
this approach to be successful, it needs to be associated with
weights regularization like EWC or SI [Kirkpatrick et al.,
2017; Zenke et al., 2017].

PackNet uses a binary mask of weights for each
task [Mallya and Lazebnik, 2018]. This causes an overhead
of storage, as the number of tasks increases. To minimize the
storage needed by masks, they proposed to use of an incre-
mental mask. That is, if the model uses parameters p1, p2, and
p3 to learn the first task, it freezes these parameters and uses
them together with others (not frozen) to learn a new task. To
create the mask they also used the iterative pruning method
of Guo et al. [2018]. Serrà et al. [2018] extended PackNet by
implementing an attention mechanism, called Hard Attention
to the Task (HAT). It has a gate coupled to the output of the
neurons that control the flow of information transmitted by
the neuron. This mask is learned together with the task using
a sigmoid function as a gate. As the sigmoid function pro-
duces a value between zero and one, they used a mechanism
to force the result to be only zero or one, generating the mask.
HAT was tested in eight sequential tasks, and it was able to
learn them without CF of the initial one. Adel et al. [2020]
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equip each node of the model with three more variables to
control the mask. The first one is binary and defines whether
or not to be adapted, while the other two define the magni-
tude of the adaptation. These three variables are learned via
variational inference.

Some tasks can share a mask, or at least a part of it, with-
out causing the CF problem on past tasks while allowing the
new task to be learned. It works on tasks that are similar. Ke
et al. [2020] define that tasks ti and ti+j , where j represents
a positive integer value, are considered similar if a positive
knowledge transfer from ti to ti+j is observed. For this, a
model trained from scratch in task ti+j is compared with
a pretrained model in task ti fine-tuned to task ti+j . If the
fine-tuned model has a better performance they consider that
a positive knowledge transfer has been observed. They also
used HAT to find the masks.

Piggyback [Mallya et al., 2018] represents a departure
from the above approach of selecting a subset of parame-
ters for training specific to task ti. The Piggyback method
involves finding a mask that, when applied to a frozen pre-
trained model, such as a ResNet [He et al., 2016] that has
been trained on the ImageNet [Russakovsky et al., 2015] data
set, results in a solution for task ti. The mask is used to decide
which parameters of the model should be used for each task;
however, the model weights are never changed. When the
backbone is trained on a task in a different context than the
tasks being evaluated, the results are not satisfactory as the
new patterns cannot be learned. Zhai et al. [2020] extend this
concept to GANs, creating a bank of filters that the model can
use, instead of creating, in future tasks. Recently, Xue et al.
[2022] show that these masks can also be used in models
from Vision in Transformers (ViT) to avoid the CF.

Modular networks consist of multiple clusters, or modules,
comprising densely interconnected neurons that have sparse
connections with neurons in other clusters [Wagner et al.,
2007; Lipson, 2007; Clune et al., 2013]. In the context of RL,
modular networks have been employed to address CF [Ellef-
sen et al., 2015]. However, there is a lack of comparative
results against established benchmarks, as the authors pro-
posed a novel RL problem. They designed a distinct set of
input neurons for each task, as depicted in Figure 17. The red
neurons receive samples exclusively from one task, while the
blue neurons receive samples exclusively from the other task.
This arrangement enables the internal structure of the model
to selectively activate different subsets of neurons for each
task.

A variation of modular networks, known as Diffusion-
based Neuro-modulation, was introduced by Velez and Clune
[2017] to identify task-specific modules within the model.
The authors established connection points within the model
to regulate modularity. For their evaluation, two additional
input points were introduced, one for each task. The first
point received a positive stimulus, while the stimulus at the
other point was suppressed when processing samples from
the first task. Conversely, the stimulus was inverted when
processing samples from the second task. The authors solely
tested their method on the specific problem they proposed,
and its extension to other tasks is challenging due to the re-
quirement for manual model design and configuration.

One potential solution to address the limited capacity of

Figure 17. Figure adapted from Ellefsen et al. [2015]. At the top, we can see
the input layer. Each task has 4 values as input, thus, the first four neurons
were used when training task ti, and the other four were used on Task ti+1.

a model is to provide it with more capacity than necessary
and enable every layer to contribute to the decision-making
process for each task, thereby creating an ensemble model.
An example of such an approach is the Incremental Adap-
tive Deep Model (IADM), which leverages the outputs from
these layers as input to a shallow network. This shallow net-
work employs an attention mechanism to make the final pre-
diction [Yang et al., 2019].

Figure 18 provides an overview of the Hard Sub-networks
category. Most studies within this category focus on explor-
ing the optimal set of parameters to effectively solve mul-
tiple tasks. It is crucial to note that the ideal parameter set
should also be minimal due to resource limitations. As the
timeline progresses, all available resources (model param-
eters) become occupied, thereby rendering the model inca-
pable of learning any additional tasks without experiencing
CF. In an attempt to address this issue, some researchers have
introduced a new category of strategies known as Dynamic
Networks, which allow for model expansion when required.
The dynamic networks category will be discussed in the up-
coming section.

3.4 Dynamic Networks
Dynamic Network category suggests that the CF problem
is caused by the overlap of knowledge within neural net-
work connections, but beyond this, it also suggests that a
fixed number of resources (parameters) will not allow learn-
ing new tasks in perpetuity without forgetting previous ones.
Therefore, the Dynamic Network techniques circumvent this
problem, allowing the model to expand its capacity when
necessary. The pioneering work in this idea was an analyt-
ical system based on the pseudoinverse of the input matrix,
introduced by Serre [2002], which was used to identify the
optimal parameters after adding a new neuron on the output
layer. While this approach may effectively solve the problem
of CF, it is limited to networks that follow the Extreme Learn-
ing Machine (ELM) [Huang et al., 2006] architecture. ELMs
are neural networks that consist of an input layer, a hidden
layer, and an output layer. Because this approach relies on
the specific structure of ELMs, it cannot be applied to DNN
architectures that have more complex network structures.
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Figure 18. Overview of main approaches in Hard Sub-networks category. In Hard Sub-networks, each task will have permission to change just a unique
subset of parameters. The works discussed in this section are clustered by their approaches.

In the context of DNN architectures, Rusu et al. [2016]
start an investigation on this category by proposing Progres-
sive Neural Networks (PNN). PNN replicates all the net-
work’s structure for each new task, initializing the weights
of the new network with the most recently trained ones. In
addition, each layer lk of task ti is connected to the input of
layer lk+1 in task ti+1. PNN shows that expanding the capac-
ity of the model is a possible way to handle CF in DNNs. The
Expert Gate [Aljundi et al., 2017] method uses one model
for each task; however, each model is equipped with an auto-
encoder (AE) and is considered an expert to solve its task and
has its parameters frozen after the training session. It is bet-
ter than PNN to learn a new task because when a new model
is required, the expert with better results on current training
data is cloned. Therefore, it is not limited to the last model.
Moreover, the AEs address the issue of identifying the task
to which a specific sample belongs.

Another work that creates a new DNN model for each task
is the Dual-Memory [Lee et al., 2017b]. For each task, a new
DNN is trained on data of the current task to produce an em-
bedding. This embedding is concatenated with embeddings
from all previous DNNs trained. This concatenation creates
a rich representation of the data across all tasks learned so
far, allowing the model to retain knowledge from previous
tasks. Next, a shared shallow neural network selects a ran-
dom subset of this concatenation to predict the class of a sam-
ple. The weights of a novel DNN are always initialized with
the trained weights of the last DNN learned and frozen when
the training session finishes. The main problem with these
works is the inefficient use of resources, because they cre-
ate a new entire DNN for each new task, even though the
learning of the new task is faster as it takes advantage of
the knowledge acquired by the old networks. Therefore, it re-
quired more research to minimize the increase of resources,
looking for modular expansion, where growth is sub-linear
[Ostapenko et al., 2021].

Despite the inherent resource-intensive nature of Trans-
formers architectures, certain researchers employ the Dy-
namic Networks approach to achieve enhanced accuracy
and circumvent the challenge of CF in extended task se-
quences [Douillard et al., 2022; Hu et al., 2023]. Leverag-

ing the representational capabilities offered by Transform-
ers, Douillard et al. [2022] propose to use a shared Trans-
former encoder (Vision in Transformer) to generate tokens
from samples and increase the structure of the decoder to
classify each task. More recently, expert modules to adapt
the stimulus in internal layers of Transformers are created
for each task and freeze them. In order to achieve a sub-linear
growth rate, an effective strategy involves sharing modules
across multiple tasks, as emphasized by Hu et al. [2023]. It
is crucial to acknowledge that the Transformer model under
consideration is a pretrained model, whereby solely the mod-
ules undergo incremental learning during the process.

In order to mitigate the escalating rate of resource con-
sumption, Ramesh and Chaudhari [2022] adopt a contrast-
ing approach and suggest the utilization of a singular DNN
for feature extraction, accompanied by multiple shallow net-
works, each dedicated to a specific task. By employing a
shared feature extractor across all tasks, they propose the
adoption of a pretrained model or the freezing of the fea-
ture extractor after training the initial task. During a training
session, only the shallow network specialized in the current
task undergoes updates. The inference is performed by aggre-
gating the outputs of all classifiers, employing an averaging
technique. The authors advocate that this approach proves
effective due to its functioning as a Boosting classifier, en-
suring improved classification performance while utilizing
resources more efficiently.

Li and Hoiem [2018] propose to add only a new softmax
layer in the model for each new task. This method is known
as Learn without Forgetting (LwF). This method requires a
specific training algorithm. Before starting a new training
session, the model creates a set of soft labels for each data. A
soft label is the probability distribution over multiple possi-
ble classes, in this case, it is generated by the softmax layers
of the model. The soft label helps the model to generalize
and is used to apply KD [Hinton et al., 2015] in the training
session. When the layers generate the labels, they are known
as Teachers. On the other hand, when the layers use these la-
bels to acquire knowledge, they are known as Students. In the
training session, it applies KD in those softmax layers while
using the current task data to train the new softmax created.
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The method described previously utilizes a shared feature
extractor to generate an embedding representation prior to
the softmax layer. However, one significant drawback of
this approach is that the embedding can be altered as the
network learns new tasks. As a result, it becomes difficult
to maintain the original knowledge, since the embedding
may undergo substantial modifications during training. This
presents a challenge for developing effective algorithms to
avoid CF following that methods [Rannen et al., 2017].

Other works focused on research metrics to indicate where
and/or when the model has to increase. Cai et al. [2018] pro-
posed a metric that measures how well a new task is fitted
by filters in each layer of a CNN already trained. This metric
is called Averaged Response Variance (ARV) and is calcu-
lated as ARV = 1N

∑N
n=1 Rn, where N is the number of

filters in each layer and R is the variance of the filter out-
puts after processing the data set of the new task. They pro-
posed to change the model’s structure based on this metric.
When the ARV value is large, they augment the number of
filters to fit the new task knowledge. Ashfahani and Pratama
[2019] show that other metrics can be used to take this deci-
sion. They proposed using overfitting and underfitting met-
rics. to modify the number of neurons in a layer and the num-
ber of layers if necessary. Although the accuracy results are
comparable across different approaches, the growth of the
model may vary depending on the task and its order. Thus, it
is crucial to evaluate each scenario individually to determine
which approach has the least growth rate.

Rather than relying on a metric, some researchers have
opted for a trainable method where an auxiliary entity makes
the decision. Neural Architecture Search (NAS) was used to
expand a model until discovering the optimal structure to sup-
port the incoming task [Li et al., 2019]. They consider three
operations to find the optimal structure: i) add new filters
to the layer, freezing the old ones; ii) reuse the old frozen
ones; and, iii) create a new layer from scratch. In parallel,
[Xu and Zhu, 2018] trained an agent with RL, in an end-to-
end fashion, to decide when and where to add nodes on a
neural network to support new tasks. Those methods gener-
ally spend more time to reach a final version of the model,
however, can find better structures (lower size). Hierarchi-
cal methods can also be used to decide when expanding the
model. Tree-CNN [Roy et al., 2020] uses a tree structure to
define its model. Each node can give a prediction or take it to
another node to decide. Each node has its own CNN to pre-
dict. In addition, a child node is created when a new task is
presented, and the node cannot distinguish the new task from
any other that it already learned. The main problem with this
method is that when it makes a mistake at some intermediate
level, the final inference will also be wrong.

A different research direction within this category in-
volves the reuse of a “frozen” model and replication of only
a specific portion of the original architecture. Unlike other
approaches, this technique does not require any modifica-
tions to the overall structure of the DNN. Instead, the up-
dated weights for only the relevant part of the model are re-
tained, while the remaining weights remain unchanged. This
approach can provide an efficient means of preserving the
original knowledge in the network while allowing for the
acquisition of new information for specific tasks. Imai and

Nobuhara [2018] creates a new DNN with a structure identi-
cal to that of the pretrained one, however, with the weights
initialized randomly. Thus, in a training session, the model
can choose whether to use a lk layer from the pretrained DNN
or from the recently created one. Therefore, only a part of the
DNN needs to be stored and the technique can be applied to
any architecture. The results show that the initial layers are
generally taken from the pretrained DNN because it contains
the base features. However, they do not present tests in a se-
quence of tasks with drift domain.

Based on the results of Imai and Nobuhara [2018], which
show that the initial layers of a CNN learn low-level char-
acteristics, Zacarias and Alexandre [2018b] proposed SeNA-
CNN. This is a special case of CNN that has five convolu-
tional layers. When the model needs to learn a new task, it
just replicates layers three onwards for each new task and
shares the first two. Different from PNN there are no connec-
tions between layers of different tasks. Both PNN and SeNA-
CNN do not know what task a sample belongs to. To handle
this issue in SeNA-CNN, Zacarias and Alexandre [2018a]
published an improvement, where another CNN equipped
with a softmax output layer decides which branch to use in
prediction time.

An even more resource-efficient proposal was done by
Xiong et al. [2018]. They only store the statistic (mean and
std) of the last layers, so in inference time, the weights are
generated according to the task. To decide which task the
sample belongs to, they use an auto-encoder for each task.
While saving resources on the neural network, it creates new
structures and information to store. It is important to point out
here that when tasks share the first layers, the model presents
favoritism in the first learned task. When the tasks have a sim-
ilar domain it works fine, however, to a different domain it
can deliver poor results.

Several studies have explored the utilization of methods
and strategies within the Dynamic Networks category to
tackle CF in more challenging problem setups and contexts.
For instance, Lee et al. [2020] work on Unbounded Task
Incremental Learning proposing a framework that creates a
new network, called Expert, to handle the unknown classes.
As the data arrives in the stream, when the sample is not
recognized by any Expert that already exists, the sample is
stored in an ephemeral memory. When this memory is full,
a new Expert is created and trained with this data, after this,
the data is discarded. In the context of GANs, Verma et al.
[2021] propose to integrate each parameter from two parts: i)
shared one; and, ii) task-specific one. The former is fixed af-
ter the first task or gotten from a pretrained model. The latter
is created for each new task, in such a way that, by adding the
two parts, the model produces good results. To create distin-
guished task-specific parts, they apply the Kullback-leibler
divergence constraints.

A typical challenge faced by Dynamic Network tech-
niques is the requirement of knowing the task that a given
sample belongs to. This problem also happens in some mod-
els of the Sub-network group too. Some works propose mod-
els equipped with their own task selector, but not all. There-
fore, some authors focus on research methods to be used as
oracles to decide which task each sample belongs to. Gep-
perth and Gondal [2018] propose to use a KNN as oracle
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Figure 19. Overview of main approaches in Dynamic Networks category. In Dynamic Networks you can expand the resource (parameters) to arrange the
new knowledge. The works discussed in this section are clustered by their approaches.

and just create a new output layer head to each task. This is
resource-efficient; however, they only present tests on per-
mutation MNIST data sets. Consequently, each task exhibits
highly similar input statistics, i.e., there is no significant dis-
tribution shift across the tasks.

In summary, models within the Dynamic Networks cate-
gory exhibit the ability to increase their size to accommodate
new knowledge, with some models altering their structures
while others create auxiliaries structures. Figure 19 provides
an overview of this category. The primary objective of these
models is to learn new tasks while minimizing the increase
in model size. However, some authors accept a polynomial
increase in size to achieve more efficient learning of new
tasks. Similar to the Sub-Networks category, distinguishing
the task to which a sample belongs remains a challenge in
Dynamic Networks approaches. This area of research is still
actively evolving and holds promise for improving existing
methods. However, a notable drawback of this category is the
space required by the model, making it less suitable for sce-
narios such as edge computing or mobile applications where
space constraints are critical. In the subsequent section, we
will discuss methods that combine strategies from multiple
categories, aiming to leverage the strengths of each approach.

3.5 Hybrid Approaches
Researchers who often employ a hybrid approach combine
two or more techniques described in previous sections to deal
with CF effectively, thus leveraging the strengths of differ-
ent strategies to achieve better performance. Certain combi-
nations are relatively straightforward to implement, such as
incorporating rehearsal methods with other techniques, and
often yield enhancements in accuracy for previously learned
tasks. The flexibility of hybrid approaches also allows them
to tailor their solutions to specific requirements and achieve
a balance between mitigating forgetting and acquiring new
knowledge.

3.5.1 Enhancing Distance-based using Rehearsal

Distance-based approaches encounter a significant challenge
in effectively tracking class prototypes when the feature
extractor undergoes weight modifications during training.
These changes in weights result in shifts of the prototype
vectors to different regions in the feature space, which can
lead to confusion in the final classifier’s decision-making pro-
cess. To address this issue, rehearsal techniques can be em-
ployed by storing a subset of samples and their correspond-
ing feature vectors. By incorporating rehearsal, the feature
vectors of these stored samples can be closely monitored
during the learning of new tasks, enabling the detection of
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any distance shifts caused by weight modifications. ICaRL
pioneered the combination of rehearsal and distance-based
methods to tackle CF, effectively maintaining accurate class
representations despite weight modifications and prototype
shifts [Rebuffi et al., 2017].

Rehearsal, as demonstrated by Liu et al. [2020a], can be
effectively combined with a Distance-based and Knowledge
Distillation (KD), in a meta-learning context, to enable adap-
tion to new tasks while minimizing the interference with pre-
viously learned tasks. This integration is complemented by
the use of a coreset, which helps maintain consistent embed-
dings of stored samples. The proposed model, presented by
Liu et al. [2020a], consists of two main components: an ex-
tractor and a classifier. At the start of the training session, a
temporary copy of the extractor is created with its parameters
frozen. Throughout the training, both the frozen extractor and
the active one produce identical embeddings for the same in-
put data. This alignment is crucial to ensure that the classifier
achieves high accuracy when predicting new classes during
the fine-tuning process. The entire process takes place within
the meta-learning inner loop.

Furthermore, in an Online Incremental Learning setup
where the model lacks task ID knowledge and must learn in
a single pass, a Distance-based approach augmented with a
Mini-rehearsal technique can be employed to mitigate CF.
To address the challenge of limited samples per class, the
MixUp technique introduced by [Liang et al., 2018] can be
utilized for data augmentation. By combining these strate-
gies, including Distance-based, KD, Mini-rehearsal, and
MixUp, a model can adapt to new tasks, retain past knowl-
edge, and mitigate CF while overcoming limitations associ-
ated with this setup.

Distance-based approaches benefit from using cosine dis-
tance classifiers, which have shown greater resilience to CF
compared to softmax classifiers [Simon et al., 2021; Davari
et al., 2022]. However, this advantage holds true only when
the embeddings belonging to the same class can be effec-
tively clustered in the latent space and remain sufficiently
distant from other class clusters. To address this requirement,
Mai et al. [2021b] propose a solution that involves storing a
coreset of samples and applying Contrastive loss during train-
ing. By leveraging the coreset and Contrastive loss, the aim
is to encourage the embeddings to automatically cluster in a
way that facilitates better separation between classes. Thus,
the model can better organize the embeddings in the latent
space, resulting in improved class separation and enhanced
resilience to CF.

In a highly challenging setup, such as Online Incremen-
tal Learning combined with an Unbounded Task scenario,
the utilization of rehearsal techniques becomes crucial for
preserving previous knowledge in Distance-based methods.
To address this, De Lange and Tuytelaars [2021] propose
a memory-based approach that consists of two components:
samples and prototypes. Memory storage effectively handles
the unbalanced data stream that arises in such setups. The
assumption is that prototypes will change over time as new
information is received. Therefore, a novel loss function is
introduced to guide the feature extractor in generating em-
beddings that are closer to the class prototype while being
farther away from other prototypes. This encourages better

separation between classes and improves the model’s ability
to retain previous knowledge. As the samples in the mem-
ory are replaced with new ones, the prototypes evolve ac-
cordingly, adapting to the changing data distribution. This
dynamic updating of prototypes ensures that the model re-
mains up-to-date and capable of handling evolving tasks and
unbounded learning scenarios effectively.

The analysis of geometric relations among classes can be
examined from multiple perspectives through the utilization
of Mixed-curvature Spaces, as proposed by Gao et al. [2023].
Their approach involves creating distinct spaces for each task
and projecting samples onto all relevant spaces during infer-
ence. By leveraging a coreset, their objective is to ensure
that new projections do not introduce confusion with clas-
sification from previous spaces. Similarly, Ma et al. [2023]
employ a projection technique for sample embeddings. How-
ever, they adopt a Voronoi Diagram as the designated space.
Specifically, when a new class emerges, they partition a cell
within the diagram. One portion of the split is dedicated to
retaining existing knowledge, while the other part accommo-
dates the new class. This process, facilitated by the utiliza-
tion of a coreset, entails strategic decisions on cell selection
for partitioning and ensuring the preservation of a structured
framework that mitigates the challenges posed by CF.

In scenarios where the total number of classes is known
in advance, yet the classes must be learned sequentially, it
is feasible to predefine a distinct region for each class and
solely train a projection layer, as proposed by Yang et al.
[2023]. It is important to note that the underlying embedding
generation model remains fixed throughout this process, and
it can either be a pretrained model or be frozen after the ini-
tial task. Since the projection layer necessitates updates with
each new task, the inclusion of a coreset becomes imperative
to retain the knowledge on how to appropriately project each
class into its respective space, thereby effectively addressing
the challenge of CF.

3.5.2 Enhancing Distance-based using Dynamic Net-
works

Hybrid approaches that combine Dynamic Networks with
Distance-based methods offer another effective solution. The
best example is the Encoder-Based Lifelong Learning ap-
proach, which creates a new classification layer for each task
and tracks changes in class embeddings [Rannen et al., 2017].
In this method, an auto-encoder is trained for each task, al-
lowing the preservation of embeddings and enabling the fix-
ation of the classification layer for old tasks through knowl-
edge distillation.

The use of auto-encoders in this approach serves two key
purposes. Firstly, it allows the embeddings of one class to
be stationary over the model lifespan. Secondly, the auto-
encoders can serve as oracles, providing guidance to the clas-
sifier in the model’s lifelong learning process. This selection
is based on the distances between the preserved embeddings,
ensuring accurate and task-specific classification.

By combining Dynamic Networks with Distance-based
methods and leveraging the Encoder-Based Lifelong Learn-
ing approach, a model can adapt to new tasks while retain-
ing knowledge from previous tasks. This hybrid approach
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offers a comprehensive solution that effectively handles life-
long learning scenarios mitigating CF. However, since the ap-
proach relies on training separate auto-encoder for each task,
the memory footprint of the model grows as new tasks are
introduced. Therefore, the auto-encoder structure has to be
much lower than the original model to be a viable approach.

3.5.3 Enhancing Dynamic Networks using Rehearsal

One significant limitation of Dynamic Networks methods
lies in their elevated growth rate. To mitigate and control this
growth, a prudent approach involves maintaining a coreset,
which enables the model to modify certain parameters while
preserving knowledge of previous classes. Consequently, the
model can effectively acquire new knowledge with reduced
resource requirements, such as fewer neurons and layers.

Lüders et al. [2017] propose to use an Evolvable Neural
Turing Machine [Greve et al., 2016] (ENTM). In this model,
a tape is added to store contextual information. This tape has
two heads, one to read and the other to write, which are con-
trolled by a neural network. They used an approach called
Neuroevolution of Augmenting Topologies (NEAT) [Stan-
ley and Miikkulainen, 2002] to produce this neural network.
NEAT uses evolutionary algorithms to increase the size of
the neural network, so it starts with a shallow network and
evolves it to a more robust one until it finds an acceptable so-
lution. In addition, ENTM stores the contextual information
that allows the neural network to remember things. The left
side of Figure 22 illustrates the proposed architecture. This
model is hybrid, ENTM is its complementary learning sys-
tem, and the NEAT module makes its neural network grow
dynamically. Unfortunately, they only tested this proposal in
an RL context and requires a handcraft-designed input and
output by task. The input needs to receive three pieces of
information: i) the new state; ii) the reward (environment
output); and, iii) the contextual information in the reader’s
head tape. The network’s output produces: i) the action (en-
vironment input); ii) a context representation to be written
in the tape; and, iii) controllers to the tape’s heads. Besides
that, they do not compare their results with other works, just
demonstrating that this model can solve the RL problem de-
fined by Ellefsen et al. [2015].

Castro et al. [2018] expand the model adding a new clas-
sifier to each task and using an approach based on herding
selection to maintain samples on the coreset. In contrast to
ICaRL (presented in Section 3.5.1), they train a parametric
classifier together with the feature extractor. The right side of
Figure 22 presents the process of training. For each new task,
a new head classifier is added to the model and trained with
cross-entropy loss, while the oldest ones are trained with dis-
tillation loss using KD. They store a part of the older task data
but also grow the network structure by adding a new head to
each task. To handle the problem of the imbalanced data set,
they apply a post-training fine tune with samples from mem-
ory and a subset of samples from the current task such that
all classes have the same number of samples.

Ostapenko et al. [2019] extend DGR [Shin et al., 2017]
adding the capability of expanding the generator model, cre-
ating a hybrid model from Pseudo-rehearsal and Dynamic
Networks. After a training session, the generator parameters

are frozen, then in the next session, more resources (layers
and neurons) are added. Due to this, it requires storing a mask
to identify which parameters belong to each task. Instead
of generating pseudo-samples, Joseph and Balasubramanian
[2020] propose to use a Variational Autoencoder (VAE) to
generate weights to create an ensemble of models, all of
them with the same structure. These weights are considered
a kind of rehearsal of old knowledge. Although the method
proposed by Hu et al. [2019] also has a weight generator mod-
ule, the technique proposed by Joseph and Balasubramanian
[2020] differs from them because they create an ensemble of
models.

RL agent was used as a neural structure search method to
expand the model in a Task Incremental Learning setup [Qin
et al., 2021]. It considers as the environment the current task
data, a continual learner, a knowledge repository, and the
coreset. The knowledge repository contains the parameter’s
value of old tasks. Thus, the agent uses the environment to
create a new learner, minimizing the forgetting ratio (validat-
ing it with the coreset) and maximizing the accuracy of the
current task.

An additional prevalent challenge encountered in Dy-
namic Networks methods pertains to the determination of the
task to which a sample belongs during inference. The appli-
cation of a coreset can serve as a valuable aid in alleviating
this predicament as well. Dynamically Expandable Represen-
tation [Yan et al., 2021] expands the model creating a new
feature extractor for each task and having a unique classifier.
Once the extractor is learned, it is frozen. The classifier is al-
ways modifying its parameters to learn new tasks, so it needs
to store a coreset to avoid the CF. The classifier uses as in-
put the concatenation of features produced by all extractors.
Therefore, the representation size of each sample increases
when a new task is learned.

An alternative approach to address the challenge of identi-
fying the task associated with a sample in Dynamic Networks
methods is to employ multiple classifier heads, each dedi-
cated to a specific task. By assessing the confidence levels
of each classifier, the one exhibiting the highest confidence
can be selected. Kim et al. [2022] propose to use the core-
set, containing data from previous tasks, as a negative class
within the current head classifier. Consequently, each classi-
fier can function as an effective out-of-distribution detector,
enabling the appropriate head selection during inference.

Both Dynamic Networks and Rehearsal techniques suf-
fer from the disadvantage of increased storage requirements
compared to the original model. Dynamic Networks necessi-
tate storing additional parameters, while Rehearsal involves
storing samples from a coreset. The increased space demands
should be carefully considered in terms of resource utiliza-
tion and memory constraints. Zhou et al. [2023] introduces a
baseline framework for this hybrid category, which takes into
account the overall memory consumption, additional param-
eters, and the presence of samples within the coreset. This
framework is designed to strike a delicate balance between
the number of retained samples in the coreset and the expan-
sion of the model itself. Through their empirical analysis, the
authors note that expanding the model at the deeper layers
yields substantial advantages in terms of both accuracy and
space requirements. Notably, this proposed baseline outper-
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[b]

Figure 20. Architecture proposed by Lüders et al. [2017].

[b]

Figure 21. Castro et al.’s (2018) model training.
Figure 22. On the left side (a), a neural network with fixed input and output layer controls the agent actions taking as input the last reward, the current
environment state, and the last contextual information maintained in ENTM’s tape. In addition, the neural network produces a new context to be stored in
ENTM’s tape and controls its heads. The amount and the shape of the hidden layers are controlled by a NEAT algorithm. On the right side (b), the classification
layers from the old tasks produce logits that are used for distillation and classification while the classification layer from the current task produces logits that
are involved only in classification.

forms, in accuracy and space requirements, numerous tech-
niques discussed in this section.

3.5.4 Enhancing Sub-networks using Rehearsal

The application of Incremental Learning using Sub-networks
techniques holds particular significance in scenarios charac-
terized by limited computing resources, such as edge com-
puting. Notably, the integration of a coreset, which retains
select samples from previous tasks, can play a crucial role
in facilitating the discovery of improved and more shareable
sub-structures between tasks [Wang et al., 2022e]. Recent
studies have highlighted that it may not be necessary to reg-
ularize all model weights to mitigate CF, as focusing on reg-
ularization solely in the last layer can suffice. This approach,
known as functional regularization, has been effectively em-
ployed by Titsias et al. [2020] and Pan et al. [2020], utilizing
a Gaussian Processes (GP).

One drawback of functional regularization using GPs is
its reliance on storing a large number of samples from the
most recent tasks. Consequently, a hybrid approach combin-
ing regularization (identifying sub-networks within the last
layer) with mini-rehearsal techniques should be favorable. It
is important to note that the choice of mini-rehearsal tech-
nique varies across different studies. The results achieved
through this approach exhibit similarities to methods that
adopt regularization across all model weights while being
computationally more efficient.

Another noteworthy technique is Neural Calibration for
Online Continual Learning (NCCL) proposed by Yin et al.
[2021]. NCCL extends the concept of Elastic Weight Con-
solidation (EWC) by introducing two mechanisms to modu-
late the input and output signals of DNNs, referred to as neu-
ron calibration. The parameters of this module are learned to
strike a balance in the stability-plasticity dilemma, aiming to
discover sub-modules within the model that can effectively
solve each task. However, it still requires storing a portion of
the training data from each learned class to aid in the learning
process.

Sarfraz et al. [2023] employ two key techniques to en-
courage the formation of Sub-networks using Rehearsal tech-
niques: Sparse Activations and Semantic Dropout. Sparse
Activations utilize the k-Winner-Take-All (k-WTA) activa-
tion function, enabling the selective propagation of the top
k units with the highest activations to subsequent layers. On
the other hand, Semantic Dropout promotes dropout in dif-
ferent neurons when learning new tasks, leveraging the acti-
vation patterns of neurons. This approach proves particularly
advantageous when dealing with uncorrelated tasks.

Incorporating Sub-networks and Rehearsal techniques of-
fer promising avenues for continual learning in environ-
ments of fixed space resources. They provide mechanisms
to identify and leverage task-specific sub-structures within
the model, thereby facilitating better retention of previously
acquired knowledge while adapting to new tasks. Neverthe-
less, it is crucial to address the challenge of storing training
data to ensure the effectiveness of these techniques.

3.5.5 Growth Sub-networks using Dynamic Networks

The combination of Dynamic Networks and Sub-networks
offers a solution to the limited resource challenge encoun-
tered by Sub-networks methods. One method in this regard
is the Dynamically Expandable Network (DEN) introduced
by Yoon et al. [2018]. DEN aims to determine the minimum
set of connections required by a Neural Network to learn a
new task. If the existing connections are insufficient, DEN
dynamically expands the model’s resources.

DEN operates through three distinct phases: training, ex-
panding, and avoiding semantic drift. In the training phase,
the model undergoes initial training using L1 regularization,
which promotes weight sparseness. When a new task is in-
troduced, an output node corresponding to the task is added.
Subsequently, a pre-training step takes place, where only the
last layer remains unfrozen, adjusting only the weights of the
newly added node. Since the remaining parts of the model
also maintain sparse connections, a Breadth-First Search
(BFS) algorithm is employed to establish a path S that con-
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Figure 23. Overview of main methods in the Hybrid approaches category. The works discussed in this section are clustered by similarity.

nects every output node to the model inputs. Afterward, all
neurons except those belonging to path S are frozen, and the
model undergoes conventional training, minimizing the loss
associated with the specific task.

During the expanding phase, the model checks if the loss
for the new task has reached a pre-defined acceptable level.
If not, k neurons are added to all layers and another round
of training takes place using L1 regularization to promote
sparsity and discard unnecessary neurons.

Finally, in the avoiding semantic drift phase, the model
examines if any neuron in the original path S has undergone
significant changes. If so, it indicates that the neuron is prone
to semantic drift with respect to some previous task. Then,
the neuron is duplicated: one of them preserves the old value
and is removed from path S, while the other remains for the
current task.

By dynamically adjusting the model’s architecture and se-
lectively expanding and modifying connections, DEN ad-
dresses the resource limitations faced by Sub-networks meth-
ods. This adaptive approach allows the model to accom-
modate new tasks while mitigating interference with prior
knowledge and ensuring efficient resource utilization.

Another hybrid approach, proposed by Hung et al. [2019],
also addresses the challenge of limited resources by identi-
fying sub-structures for each task and expanding them when
necessary. Their method involves an iterative process con-
sisting of three phases. In the first phase, the model learns the
task by utilizing unfrozen neurons while applying a mask to
the frozen ones. The second phase involves iterative pruning

of the non-frozen neurons to maintain the model’s capacity.
This pruning process helps optimize the resource allocation
and ensures that only the most relevant connections are re-
tained. Lastly, if the model fails to achieve the pre-defined
minimum accuracy, it undergoes expansion and the training
process recommences for the specific task. This expansion
allows the model to acquire additional resources and adapt
to the task’s requirements. Once the pre-defined accuracy
threshold is reached, the mask utilized during the learning
phase is saved, and the corresponding weights are frozen.

By iteratively learning, pruning, and expanding the
model’s sub-structures, this method provides a hybrid solu-
tion that effectively manages resource limitations. This ap-
proach allows the model to dynamically allocate resources
based on task-specific requirements while preserving the
knowledge gained from previous tasks.

This combination takes the advantage of Sub-networks cat-
egory of encapsulating the maximum number of tasks in the
same network structure while avoiding the resource limita-
tion. On the other hand, it only grows when it is really nec-
essary, handling the problem in the Dynamic Networks cat-
egory of increasing the size in a linear way. Therefore, it is
considered an excellent choice, however, there are several
environments and setups that it does not work, for instance,
in Unbound Task Incremental setup or edge computing envi-
ronment. In the general case, the accuracy of techniques in
this category is worst than the techniques from the Rehearsal
category.
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3.5.6 Combining Sub-networks, Dynamic Networks,
and Rehearsal

The Else-Net model proposed by Li et al. [2021] com-
bines features of Sub-networks, Dynamic Networks, and Re-
hearsal. In this model, each layer consists of multiple knowl-
edge blocks that process the input. A gating mechanism se-
lects the most important block, generating an embedding for
the next layer. When a new task needs to be learned, a tem-
porary block is created. If the gate identifies it as important,
it is retained for future tasks; otherwise, it is discarded, and
other modules have their parameters adjusted. Additionally,
a small portion (10 percent) of samples from each learned
class is stored in the coreset to mitigate forgetting.

A notable difference from other methods discussed earlier
is that the presence of a coreset allows for weight adapta-
tion in a portion of the model without causing significant for-
getting. This flexibility makes the Else-Net model applica-
ble to setups beyond Task Incremental Learning, where the
task identifier is known during both training and evaluation
phases.

Figure 23 provides an overview of approaches that com-
bine multiple categories to address CF. Each category has
its own strengths and limitations. It is evident that no model
can learn an infinite number of tasks with a fixed parameter
count. Conversely, creating a separate model for each new
task is impractical. Storing all previously trained samples is
also infeasible due to storage space and retraining time con-
straints, but preserving key samples appears to enhance the
retention capacity. Comparing these approaches is challeng-
ing due to the lack of consensus regarding metrics, datasets,
and testing methodologies.

4 Final Considerations

Catastrophic forgetting, initially identified as a problem in
machine learning by McCloskey and Cohen [1989], refers to
the phenomenon where a model loses previously acquired
knowledge when learning new tasks. French [1999] fur-
ther investigated this issue and found that it is particularly
pronounced in connectionist models like Neural Networks.
Nowadays, despite the significant advancements in DL, ad-
dressing the challenge of CF remains an ongoing problem in
the field, as evident from our comprehensive review. While
pretrained networks in Computer Vision, and more recently
in Natural Language Processing, exhibit reduced susceptibil-
ity to CF, relying solely on pretraining can lead to poor gener-
alization for new tasks that differ significantly from the initial
task. To overcome this limitation, it is crucial to ensure the
diversity and heterogeneity of the dataset used for the initial
task.

In our review, we explored various methods and tech-
niques to mitigate the effects of Catastrophic Forgetting in
DL. To facilitate the comprehension and analysis of these
approaches, we introduced a taxonomy that classifies them
into four main categories. This classification framework en-
hances our understanding of the different strategies proposed
in the literature, enabling future researchers to categorize and
compare their effectiveness in addressing CF.

The first category we reviewed is Rehearsal, which was
originally introduced by Robins [1993]. Rehearsal involves
reprocessing previously encountered data when learning a
new class. However, in practice, this approach is often in-
feasible due to the accumulation of a large volume of data
over time. Within this category, we further divided it into
two groups: pseudo-rehearsal and mini-rehearsal. Pseudo-
rehearsal techniques aim to overcome the storage issue by
generating simulated data on demand instead of storing the
actual samples. This approach allows for more efficient use
of resources while still providing the model with relevant
information from previous tasks. On the other hand, mini-
rehearsal approaches address the problem by storing a lim-
ited amount of samples from each class. These stored sam-
ples are carefully selected to ensure that the model does not
suffer from catastrophic forgetting, even with this restricted
subset of data.

During our review, we observed that there is room for
improvement in sample selection algorithms for generating
simulated samples on demand. By enhancing the accuracy
and informativeness of these simulated samples, we can po-
tentially enhance the effectiveness of pseudo-rehearsal tech-
niques. Additionally, we encourage the utilization of Genera-
tive Adversarial Networks (GANs) for sample generation, as
they have shown promise in producing more informative and
diverse samples. Overall, the Rehearsal category presents in-
teresting avenues for addressing catastrophic forgetting, and
further advancements in sample selection algorithms and the
use of GANs can contribute to more effective and efficient
rehearsal-based techniques.

The second category we reviewed is distance-based ap-
proaches. This category focuses on non-parametric classi-
fiers, such as cosine classifiers, which utilize class representa-
tions generated by deep models, as demonstrated by Rebuffi
et al. [2017]. This approach helps address the issue of bias
in the latest classes by leveraging the class representations.
However, it necessitates the use of an effective embedding
generator that minimizes overlap among representations of
different classes while accurately approximating the repre-
sentations of the same class. Notably, unsupervised learning
and ranking losses have emerged as the most effective strate-
gies within this category, as evidenced by recent research.

The primary challenge encountered in the distance-based
category is maintaining the consistency of the class repre-
sentations when new training sessions occur. As new tasks
or data are introduced, it is crucial to ensure that the repre-
sentations remain reliable and informative. Overcoming this
challenge is essential for preventing CF and enabling effec-
tive classification on both old and new tasks. To enhance
the distance-based approaches, future research could focus
on developing more robust and accurate embedding gener-
ators that can better capture the subtle differences between
classes. Additionally, investigating novel unsupervised learn-
ing techniques and refining ranking loss functions can further
improve the effectiveness of this category. By addressing
these challenges, we can enhance the performance and sta-
bility of distance-based methods for mitigating catastrophic
forgetting.

The third category we reviewed was sub-networks, which
addresses the issue of CF by minimizing changes in neuron
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connections during the learning of new tasks. In Sub-network
the CF problem arises when the value of a neuron connec-
tion, which has already learned a task ti, changes in favor
of learning a new task ti+1. Thus, the main objective of sub-
networks approaches is to mitigate such changes. Notably,
Elastic Weight Consolidation (EWC) by Kirkpatrick et al.
[2017] and PathNet by Fernando et al. [2017] are pioneering
works in this category, although they may not achieve the
best performance results.

We can classify similar approaches to EWC as Soft Sub-
networks since they allow changes in all parameters of the
neural network while penalizing changes in connections
that are important for previous tasks. On the other hand,
works similar to PathNet fall into the category of Hard Sub-
networks, where the values of neuron connections, specifi-
cally those crucial for learning certain tasks, are frozen af-
ter training to prevent catastrophic forgetting. However, it is
important to consider the limitations of Hard Sub-networks,
such as their restricted number of parameters, which restricts
the total number of tasks that can be learned. Additionally,
the usage of an oracle is necessary for PathNet to determine
the parameters to be used for each sample during inference.
In contrast, Soft Sub-networks do not face this limitation,
but they show lower performance in scenarios where domain
tasks drift. Therefore, it is crucial to explore improved tech-
niques for selecting parameters as an oracle in such contexts,
as it holds the potential for significant advancements in the
sub-networks category.

The final category we reviewed was dynamic networks,
which aims to address the limitations of limited resources by
dynamically increasing the size of the neural network as re-
quired. The representative work in this category is Progres-
sive Neural Networks (PNN) by Rusu et al. [2016], which
overcome constraints by allocating more resources for each
new task. For instance, PNN demonstrates the creation of a
completely new neural network for each task, resulting in im-
proved performance.

The key research contribution in this category is to de-
termine when and how to expand the network structure
effectively. Finding optimal strategies for increasing the
network’s capacity is crucial. Additionally, exploring ap-
proaches to reduce the network structure could also lead to
significant improvements. This is because as we gain knowl-
edge in solving tasks and subsequently learn new incremen-
tal tasks, the previously learned tasks tend to become easier.
However, a common challenge encountered here is the selec-
tion of parameters for inference. Determining the appropriate
parameters set for a given sample during inference is criti-
cal for achieving optimal performance. Hence, it is recom-
mended to investigate techniques that can serve as an oracle
for parameter selection. Advancements in developing effec-
tive oracle techniques would benefit both the dynamic net-
works and sub-networks categories.

Lastly, hybrid models offer a promising approach to mit-
igating CF. Rehearsal techniques can be effectively com-
bined with methods from other categories to address this chal-
lenge. However, there is a lack of comparative studies on the
performance of these combined approaches. The combina-
tion of sub-network and dynamic network methods may not
seem intuitive at first, as the former focuses on identifying

task-specific sub-structures within the model, while the latter
expands the model’s capacity to accommodate new knowl-
edge. Nevertheless, integrating elements from different cat-
egories can help reduce resource limitations encountered by
sub-networks. In a study by [Liu et al., 2020b], a mixture of
techniques in the form of ensembles, such as EWC, IMM,
and ICaRL, was explored. This approach aims to leverage
the strengths of each model to enhance resistance against CF.
However, it is worth noting that ensembles can come with a
high computational cost.

To date, our survey has examined a comprehensive selec-
tion of over 230 studies, primarily focusing on works pub-
lished after 2013 when Deep Learning gained significant at-
tention. We aimed to capture the most recent advancements
in the field. Figure 24 presents the distribution of works
across the proposed categories over the years. Notably, dur-
ing the initial period from 2013 to 2015, the Sub-networks
category dominated the landscape as the primary focus for
mitigating CF. However, in subsequent years, we observed a
shift in research interest, with increasing contributions from
other categories, resulting in a more balanced distribution.
This diverse distribution implies that there is no clear-cut
path or prevailing approach to achieving continuous learning
while effectively addressing the challenge of CF.

We have observed that in the last two years, a majority of
the works have adopted some variant of the Mini-rehearsal
technique. It is worth noting that several studies have utilized
techniques similar to a coreset to address CF, such as Incre-
mental Semantic Segmentation Oh et al. [2022]; Yu et al.
[2022]. However, during our review, we discovered that not
all papers proposed novel techniques specifically targeting
CF. Instead, many of them applied existing techniques to
various applications, making it impractical to cite each in-
dividual work. To overcome this limitation, we recommend
referring to a curated repository1 that provides an extensive
and regularly updated list of papers on Incremental Learning,
where the majority of them attempt to address CF. In this
review, our focus was on works that have made significant
contributions to each evolving category.

More recently, in the domains of Natural Language Pro-
cessing and Computer Vision, the utilization of prompts
combined with few-shot learning in Transformers (ViT) has
shown promise in addressing incremental learning without
retraining the model, thereby mitigating the risk of forget-
ting [Wang et al., 2022b,d; Smith et al., 2023; Hu et al., 2023;
Villa et al., 2023]. However, it is important to acknowledge
that this approach is not a definitive solution to CF, as its ef-
fectiveness is confined to specific domains. Furthermore, the
current computational demands of most transformer models
make them unsuitable for regular updates of their parameters
to solve new tasks on a regular basis. Furthermore, it should
be noted that most of these proposals present good results
only in the context of Task Incremental Learning, making
their practical implementation unfeasible in more realistic
scenarios, such as Online or Unbound Incremental Learning.

Although catastrophic forgetting (CF) is a well-
established problem, there remains considerable divergence

1https://github.com/xialeiliu/Awesome-Incremental-
Learning

https://github.com/xialeiliu/Awesome-Incremental-Learning
https://github.com/xialeiliu/Awesome-Incremental-Learning
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Figure 24. Heatmap showing the distribution of works sorted by categories. It depicted the distribution of all surveyed works in all years. We can note
that in the last three years, the field gain a lot of attention accumulating most of the work. Moreover, the Rehearsal and Hybrids categories have the major
concentration of works.

in testing protocols. Therefore, it is crucial for the field to
adopt a standardized test platform that enables fair com-
parisons among new models and existing ones [Lomonaco
et al., 2021]. As a final consideration, it is important to
recognize that the choice of the best model, technique, or
framework will depend on the specific context and problem
being addressed. Furthermore, it is likely that solving new
complex problems will require the integration of multiple
categories rather than relying solely on a single approach.
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