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Abstract The usage of mobile devices like drones has been increasing in various fields, ranging from package deliv-
ery to emergency services and environmental monitoring. Intelligent services increasingly use the processing power
of these devices in conjunction with techniques such as Federated Learning (FL), which allows machine learning
to be carried out in a decentralized way using data accessed by clients or devices. However, in normal operations,
the data accessed by clients is distributed heterogeneously among themselves, negatively impacting learning results.
This article discusses the normalization in Federated Learning local training to mitigate results obtained in heteroge-
neous distributions. In this context, we propose Federated Learning with Weight Standardization on Convolutional
Neural Networks (FedWS) and evaluate it with Batch Normalization, Layer Normalization, and Group Normaliza-
tion in experiments with heterogeneous data distributions. The experiments demonstrated that FedWS achieved
higher accuracy results ranging from 3% to 6% and reduced the computational and communication costs between
25% and 40%, being more suitable for use in devices with computational resource limitations.
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1 Introduction
Recent technological advances have allowed the develop-
ment of services using the capabilities of mobile devices like
drones or as part of various activities such as air mobility,
ranging from package deliveries to emergency services [But-
ler et al., 2020]. In turn, the need to use processing power
of drones and other mobile devices in an Internet of Things
context took advantage of the concept of Mobile Edge Com-
puting, proposing the positioning of servers close to the de-
vices to provide and support the use of intelligent services
involving recognition and sensing activities, environmental
monitoring, and use of virtual reality [Alsamhi et al., 2022].
Drones have a variety of sensors at their disposal, such as

RGB Camera, LiDAR, Hyperspectral sensors, Lightweight
cameras, and thermal infra-red sensors that are used to cap-
ture data used for visual analysis, terrain mapping, object de-
tection, people and vehicle tracking activities that are com-
monly carried out in the context of agriculture, industry 4.0,
environment, health and emergency, smart cities, natural dis-
aster tracking, and construction. The use of deep learning
(DL) techniques in these activities can provide intelligence
to the services provided but has limitations regarding latency,
energy demands, and privacy [Yazid et al., 2021].
The need to transfer data from the drone to the central

server to use DL techniques in image classification can be
a risk to data privacy, as the data may contain sensitive in-
formation, such as location and personal information. Fur-
thermore, sending many images to the central server will in-
crease transmission bandwidth and energy consumption even
before the learning process begins [Alsamhi et al., 2022].
Considering this context, Federated Learning (FL) was

presented by McMahan et al. [2017] as a decentralized ma-

chine learning approach, which allows clients with access
to data and communication with a central server, to perform
local learning tasks on their data, sending only the learned
parameters to the central server, without the need of data
transfer in the learning activity, reducing privacy risks and
communication and energy costs, compared with a central-
ized machine learning approach.
An essential factor for the use of drones and mobile de-

vices in FL are issues related to limitation of resources that
these types of devices have about their processing capacity,
memory, and battery [Asad et al., 2021]. In this way, issues
such as the cost of processing and communication in FL can
be decisive for the use of drones in FL safely and satisfacto-
rily.
However, one of the main characteristics of drones is the

mobility and the possibility of having contact with a variety
of large datasets that generally have a degree of heterogeneity
among them. Using FL in heterogeneous data distributions
between clients can lead to poor learning accuracy results and
low convergence, increasing costs in FL, and the consump-
tion of drones’ computational resources [Li et al., 2021].
Zhu et al. [2021] highlighted the adverse effects caused by

the heterogeneous distribution of data among FL clients as a
challenge, highlighting different techniques in a taxonomy
that classify them according to the type of activity within FL.
Algorithm techniques are notable for enhancing local FL con-
vergence and expediting the process. Amongst them stand
out the normalization techniques such as Group Normaliza-
tion (GN) [Wu and He, 2018] and Batch Normalization (BN)
[Ioffe and Szegedy, 2015]. However, there is a need to delve
deeper into the study of the use of normalization techniques,
considering the impact of data heterogeneity in FL on ques-
tions of costs that may impact the use of drones in FL activi-
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ties.
Motivated by the need to advance in treating heteroge-

neous data distributions in FL using drones in image clas-
sification activities and considering the factors relevant to
using mobile devices highlighted previously, we propose a
solution in this work.
In our previous work [Vieira and Campos, 2023], we in-

troduced the Federated Learning Algorithm technique with
Weight Standardization on Convolutional Layers (FedWS)
which aims to reduce the adverse effects caused by heteroge-
neous data distributions in FL in the accuracy and commu-
nication costs. FedWS uses Weight Standardization [Qiao
et al., 2019] applied to convolutional layers of a Convolu-
tional Neural Network (CNN) in the local FL training stage,
obtaining improvements in accuracy results and reducing FL
costs in heterogeneous data scenarios.
This paper advances the work of [Vieira and Campos,

2023], deepening the understanding of the global effects and
impacts on FL caused by heterogeneous data distribution,
and how at a local level, other effects also contribute to a
scenario of worsening FL results. Furthermore, we discuss
in greater detail how the technique proposes to improve lo-
cal training behavior, reducing the impact of global effects
on FL results. To highlight the improvement, new experi-
ments were conducted that expanded the understanding of
how convolutional layers behave in situations of heteroge-
neous distribution, such as classification results reflect the
improvements proposed by the technique and how the behav-
ior of losses confirms the expected behavior. Finally, new
communication cost results were expanded for comparison
with processing costs aiming to show how the behavior of
the technique can benefit devices with few computational re-
sources.
As contributions during the work, we can highlight the fol-

lowing items:

• We advance the discussion of how improving local train-
ing behavior in the context of data heterogeneity can im-
prove global FL results and how the FedWS proposes to
address this situation.

• We show how the EMD (Earth Mover’s Distance) met-
ric can portray heterogeneity more realistically, con-
sidering not only the absence of classes in clients but
also the quantitative imbalance of data, allowing exper-
iments to be carried out on data closer to reality.

• We advanced the discussion of how data heterogeneity
affects the convolutional layers of FL clients’ neural net-
works, contributing to the reduction of test accuracy in
this context.

• We expand the analysis of the impacts of data hetero-
geneity on FL tasks in data classification, also consider-
ing the differences between training and testing, how
the techniques behave with increasing sample EMD,
and other evaluation metrics. In this context, FedWS
managed to stand out from other techniques, showing
results that demonstrate the reduction of the impact of
EMD on classification metrics.

• We discuss how the increase in local epochs does not
influence the total accuracy result but increases the con-
vergence of normalization techniques.

• Our empirical evidence shows that FedWS offers com-
munication costs that other techniques can only achieve
by increasing local epochs, which comes at the expense
of increased computational cost. FedWS proves that it
can deliver superior results with fewer local times, mak-
ing it a more viable option for use on devices with lim-
ited computing resources.

The rest of this article is organized as follows. Section 2
presents related work. In Section 3, the theoretical founda-
tions involved in the study are described. Section 4 presents
the proposed method. Section 5 describes the experiments
carried out and analyzes the results obtained. And finally,
Section 6 presents the conclusion.

2 Related Work
Federated Learning was presented as a machine learning de-
centralized approach by McMahan et al. [2017] with sig-
nificant advances in preserving data privacy in training and
taking advantage of decentralized computing resources, also
called FedAvg, showing significant results even in situations
of heterogeneous data distribution.
However, subsequent studies Zhao et al. [2018] point out

that the federated process in situations of heterogeneity suf-
fers from degradation in test accuracy, mainly attributed to
divergence of weights of local model layers caused by the
heterogeneous data distribution among FL clients.
According to Zhu et al. [2021], one of the ways to miti-

gate the effects caused by heterogeneous distributions is to
focus on techniques that improve local client training, such
as normalization techniques such as BN and GN, reducing
the impact of non-uniform distributions on DNN weights.
Originally, normalization techniques, most notably BN,

were designed for centralized training to address the problem
called Internal Covariance Shift (ICS), which is a variation
of the inputs of the layers of a DNN that generated outputs
that were very far from each other, leading to saturation of
the [Ioffe and Szegedy, 2015] neurons. Subsequently, sev-
eral beneficial effects were identified to stabilize the training
of DNNs, such as reducing the dependence on initialization
values, greater convergence due to removing outliers, and
smoothing training errors. [Lubana et al., 2021]. These fea-
tures were later explored to improve local FL training behav-
ior when clients use a DNN.
Several studies use this strategy to improve local training

on FL using normalization techniques. FedBN [Li et al.,
2021] proposed using batch normalization to solve the prob-
lem caused by data distribution, but BN has some setbacks
when used with FedAvg in this context. Fedavg uses the cal-
culation of the weighted sum of the DNN parameters learned
by each client to generate the global model, and BN has extra
trained parameters that are calculated based on the data dis-
tribution of each client that do not behave well when being
aggregated by FedAvg [Li et al., 2022].
Fed2 [Yu et al., 2021] proposed the use of GN in conjunc-

tion with feature store, considering heterogeneous data sam-
ples with distributions very simple with only the presence
and absence of classes in clients without, however, making
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a comparison with other normalization techniques. Subse-
quently, Zhang et al. [2021] proposed the replacement of BN
by GN in semi-supervised training, and its results showed
that BN achieved lower results than GN, which managed to
improve the behavior of gradients and, consequently, train-
ing accuracy.
Subsequently, FedNorm [Du et al., 2022] carried out a

comparative study observing BN, GN, and Layer Normal-
ization (LN), which presented the best test accuracy and con-
vergence results. However, the GN results were very close
to LN and were not observed in all experiments, not present-
ing a justification that differentiates the choice of one or the
other as the most appropriate technique.
All of these studies were based on treating problems

caused by data heterogeneity using normalization techniques
to improve the local training behavior of clients in FL. How-
ever, it was not observed how these techniques behave con-
sidering the communication and processing costs in FL using
mobile devices with processing capacity restrictions.
In our work, we present a new technique using a new nor-

malization approach aiming to improve the results of fed-
erated training in heterogeneous distributions with different
levels of imbalance, considering the communication and pro-
cessing costs and the capacity and energy constraints of FL
clients.

3 Theoretical Foundation

3.1 Federated Learning Process
Federated Learning (FL) is a decentralized machine learn-
ing approach whose architecture comprises a set of clients
with access to local data and a central server that coordinates
and manages the learning process. In this approach, data is
not shared with the central server, and between clients; only
the parameters learned during training are transmitted [Duan
et al., 2023].
Figure 1 shows the training process used by FL, which

starts with the central server sending the global model, com-
posed of the neural network parameters (weights and biases),
initially with random values, to the clients. Each client then
uses the global model to perform a local learning task on the
data it has access to, and after a determined number of local
epochs, generates the local model that is sent to the central
server [Khan et al., 2021].
After the central server receives all local models from

all clients, it will aggregate the parameters and update the
global model generating a new global model. As proposed
by McMahan et al. [2017], the most used way to perform
this aggregation is called FedAVG and uses a weighted sum
of the local model parameters to perform the aggregation.
The stage of sending the global model, local learning by

clients, aggregation performed by the central server, and up-
dating the global model is called a round. After each com-
pleted round, the central server identifies whether the objec-
tive of the federated training reaches a certain number of
rounds or whether accuracy has been achieved. Otherwise,
another round begins with sending the new global model to
clients.

Figure 1. Federated Learning Training

Using FL by drones allows access to data captured by sen-
sors, enriching training with image data obtained in different
locations and conditions. However, these devices have pe-
culiarities that must be considered when used as clients in
FL, such as battery and processing power limitations, reduc-
ing the number of local iterations these clients can perform
without compromising their functioning [Asad et al., 2021].
Furthermore, more complex neural network architectures re-
quire more computational resources and time to complete the
local training task, increasing energy consumption.

3.2 Communication and Computational
Costs on Federated Learning

According to Alsamhi et al. [2022], one of the great motiva-
tors for using FL in drones is its ability to reduce the com-
munication cost of the learning process compared to the de-
centralized process. Therefore, communication cost is high-
lighted as one of the determining factors for using machine
learning in drones due to its limitation in processing capacity
and battery.
The total value of the communication cost W depends on

the amount of data transmitted in each transmission, the num-
ber of federated training rounds and the number of [Shome
et al., 2022] clients, and can be defined as [Liu et al., 2021]:

W = 2T (K.ω∗), (1)

where T is the total number of FL rounds, multiplied by 2
representing the send and the return of information, K is the
number of clients, and ω∗ is the size of weights of the local
model.
Based on this definition, the value of W is strongly in-

fluenced by the number of training rounds T and the size
of ω∗. The convergence capacity of the FL algorithm used
to achieve target accuracy is decisive in this aspect, as low
convergence can result in many training rounds that lead to
an increase in the W cost. In turn, the value of ω∗ derives
from the complexity of the neural network used in local train-
ing. Considering the requirements for using drones previ-
ously discussed in Section 2, the neural networks used will
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preferably be more straightforward to reduce the consump-
tion of energy resources.
According to Khan et al. [2021], another relevant factor

for the use of FL considering the energy consumption fac-
tor in mobile devices is the computational or processing cost.
The local computational cost can be defined as the number
of local iterations on clients to perform local training, rep-
resented by the number of epochs (E) of the local machine
learning task. From this information, we can derive the total
computational cost as:

C = T ×K × E, (2)

which represents the total number of local iterations,
considering K clients executing a fixed number of itera-
tions/epochs (E) and T rounds necessary to achieve a target
global accuracy.
According to Xu et al. [2022], one of the ways to reduce

the cost of communication in FL is to increase the number of
local client iterations, with positive results in learning conver-
gence and reducing the number of FL rounds to achieve a spe-
cific target accuracy and consequently the communication
cost, but increasing the computational cost. However, from
the perspective of using FL for mobile devices and drones,
the increase in local rounds represents an increase in energy
consumption for each client, which may make using FL un-
feasible for some types of devices.

3.3 Heterogeneous Data Distributions and its
Impacts on Federated Learning

The way the data accessed by FL clients is distributed has
a significant impact on the behavior and results obtained by
this machine learning strategy. As for the type of distribu-
tion, they are generally characterized as IID (Independent
and Identically Distributed), when each client’s data is dis-
tributed uniformly about the total distribution and non-IID
(non Independent and Identically Distributed) which repre-
sents a distribution heterogeneous data [Rodríguez-Barroso
et al., 2023].

Figure 2. Heterogeneous distribution in federated learning on the EuroSAT
dataset

Typically, in real-use scenarios, FL clients are subjected
to different environments that increase the possibility that
their data is heterogeneous (non-IID) reducing convergence
performance and test accuracy, increasing the need for more
training rounds to achieve the desired test accuracy and con-
sequently raising communication and processing costs of FL
[Wen et al., 2023].

Drones have a great capacity to monitor activities using
sensors in heterogeneous environments [Yazid et al., 2021],
and there is an excellent possibility that clients have data with
different classes. Therefore, this work will be developed on
this type of heterogeneity, where each drone has data with an
imbalance between its classes.
Figure 2 exemplifies this type of distribution, taking the

EuroSAT dataset [Helber et al., 2019] as an example and con-
sidering that the drones are in regions with access to different
types of terrain. In this case, each drone would only have ac-
cess to data representing part of the classes in the total data
set. The EuroSAT dataset has ten classes representing dif-
ferent types of terrain (permanent and temporary plantations,
highways, rivers, forests, pastures, lakes, diverse vegetation,
industrial and residential areas).
According to Zhao et al. [2018], the presence of heteroge-

neous data distributions in clients in FL causes a negative ef-
fect on the neural network weights called weight divergence,
which is defined as the relationship between the weights gen-
erated in centralized learning (Stochastic Gradient Descent -
SGD) performed on the total data set compared to theweights
obtained in FL using the same data set. The greater the het-
erogeneity of the data, the greater the divergence of weights
and the lower the final test accuracy obtained in FL.

Figure 3. Weight divergence on Federated Learning

Considering the weights ωt
(c) and ωt

(f) as resulting re-
spectively from SGD training and the aggregation of client
weights in FL, in a heterogeneous data configuration, the di-
vergence will initially be created by the distribution of data
from the first round of training. It will subsequently increase
cumulatively with each subsequent training round, as illus-
trated by Figure 3. Both the initial value and the subsequent
accumulated value are more significant in distributions with
higher data heterogeneity.
Tomeasure the impact of different levels of heterogeneous

data distributions with class imbalance, the EMD metric can
be used, which is defined as the data distribution ratio per
class for each client compared to the total distribution [Zhao
et al., 2018]. It is calculated as

∑C
i=1 ||p(k)(y = i)− p(y =

i)||, where p(k) is the data distribution according to classes
C for each client k and p is the total distribution.
Distributions with greater heterogeneity present higher
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EMD values and, consequently, a greater impact on test ac-
curacy in FL. This may lead to a need to increase training
rounds T , and consequently, the communication cost W in
FL.

(a) EMD 0: Clients have the same data
per class, denoting a homogeneous distri-
bution.

(b) EMD 0.37: Clients with data belong-
ing to 10 classes, with imbalance only in
the amount of data per class.

(c) EMD 0.71: Clients with data rang-
ing between 5 and 10 classes, presenting
class imbalance.

(d) EMD 1.08: Clients with data rang-
ing between 4 and 10 classes, presenting
class imbalance.

(e) EMD 1.41: Clients with more drastic
class imbalance, with data belonging to 1
or 2 classes.

Figure 4. EuroSAT dataset: Data distribution by Classes in 100 clients
considering EMD values: 0, 0.37, 0.71, 1.08 and 1.41.

Considering the EuroSAT dataset, we can investigate how
the class distribution would look at different EMD levels.
Figure 4 exemplifies the distribution in three EMD values: 0,
0,37, 0.71, 1,08, and 1.41, in a scenario with 100 clients with
access to local data. When observing the distribution, we no-
tice that the lowest EMD values (0.37) present an imbalance
that does not necessarily indicate the absence of a class in a
given client but rather the reduction of data that represents
this class. Intermediate values (0.71 to 1.08) already show
the absence of some classes, while level 1.41 shows a level
of data concentration in 1 to 2 classes in the clients involved,
denoting a more acute unbalanced scenario.
Finally, Table 1 consolidates the main impacts of hetero-

geneous distributions in FL and shows us how a local cus-
tomer problem, their data distribution, and the result of local
training generates impacts at a global level in FL and mainly
increasing the costs of communication and FL processing,
consequently increasing the energy consumption of drones.

Table 1. Summary of the Main Impacts of Heterogeneous Distribu-
tions in FL

Root cause Impacts and Symptoms

Heterogeneous data
distributions on FL
clients

- Reduces convergence of FL training
- Reduces FL test accuracy
- Increases weight divergence
- Increases communication and
processing costs

4 Proposed Method
This section presents the proposed method, called Federated
Learning Algorithm with Weight Standardization on Convo-
lutional Layers (FedWS).
Given what was exposed in Section 3.3, we can investi-

gate how this problem influences clients’ local training to
the point of harming the final FL result, aiming to propose
an approach that can reduce the impact of heterogeneous dis-
tributions in FL when drones are used.
Local training in FL is conventional DL training carried

out by clients. Within the context of DL, the heterogeneous
data distribution within neural networks causes the ICS ef-
fect, which is a change in the parameters of a CNN, generat-
ing weight values that are very far apart, generating satura-
tion of neurons and resulting in low convergence of training.
As noted by Santurkar et al. [2018], another effect caused

by ICS is the increase in losses during centralized learning,
damaging both convergence and the final test accuracy. Nor-
malization techniques such as BN can improve the distribu-
tion of weights within the layers, reducing and smoothing
losses, increasing convergence, and improving the final ac-
curacy result.

Figure 5. Impact of Global Losses Caused by Heterogeneous Data.

The behavior of the objective function during the process
becomes a good indicator of how the learning convergence
will be when the data is distributed in a non-uniform way.
Considering the objective function for a centralized DL prob-
lem fi(w) = l(xi, yi; ω), which calculates the loss value on
an example (xi, yi), using the parameters ω, McMahan et al.
[2017] defined the objective function for FL, considering K
clients that calculates global FL losses as:

f(ω) = 1
K

K∑
k=1

fi(ω). (3)

For clients with non-uniformed distributions, the loss val-
ues produced at the end of local training will be aggregated,
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generating high aggregated loss values and global weights
that are distant from each other, contributing to the increase
in FL’s accumulated loss and low convergence, as shown in
Figure reffig:gbloss. In this way, the impact of local training
contributes to the final result, generating the problems listed
in Table 1.
The importance of loss behavior is also evidenced by Zhao

et al. [2018], which identifies that the impact of heteroge-
neous distributions, measured by EMD, can be mitigated by
the way gradients direct losses. In this way, the use of tech-
niques that enable the smoothing of losses in local training
tends to generate losses that contribute to reducing customer
data’s impact on global training results.
One way to move in this direction is to use normalization

techniques. In centralized training, the Weight Standardiza-
tion (WS) technique is a normalization approach whose ob-
jective was to achieve good results with reduced batch sizes
with the ability to smooth gradients in a CNN, providing
losses with smoother behavior than other normalization tech-
niques [Qiao et al., 2019].
In local training in FL, updating the weights during learn-

ing is carried out as defined in (4), where ω are the local
weights, η is the learning rate, ∇ is the gradient, and l(w; b)
is the error of the local training step.

ω ← ω − η∇l(w; b) (4)

The FedWS strategy uses the normalization proposed by
WS in the local training phase of FL, reducing the local im-
pact of losses generated by the non-uniform distribution of
data. This type of normalization consists of acting on the
output of the convolutional layer, using the mean(µω) and
standard deviation(σω) of the set of weights ω to generate a
new normalized set of weights ωws of the form:

ωws = ω − µω

σω
. (5)

Another expected effect is that the impact of weight di-
vergence is reduced due to the normalization of the con-
volutional layers, producing local weights with less diver-
gence between them ωws so that the weighted sum produces
a model global with a more minor divergence of weights rep-
resented by the aggregation:

ωws
t+1 =

K∑
k=1

nk

n
ωwsk

t+1 , (6)

, where n is the total set of samples from the dataset, nk

is the set of samples for the client, and ωwsk
t+1 are the weights

that the clients sent from local training.
Figure 6 summarizes the expected effects of using FedWS

in FL considering the use of non-uniformed data by clients.
The smoothed loss values at the end of each FL round will
allow for greater test accuracy due to the reduction of local
ICS effects and greater convergence due to standardization.
Furthermore, with increased convergence, fewer local and
global training iterations will be required, reducing commu-
nication and processing costs. In turn, the smoother behavior
of losses will make FL results less sensitive to the increase
in the EMD of client data distributions, which exist in more
heterogeneous distributions.

Figure 6. Espected Results of FedWS Training on Heterogeneous Data.

Figure 7. FedWS Schema of Federated Training.

Figure 7, presents a resume of FedWs federated training,
FedWS starts the FL process at stage 1, with Global Model
Upload, which consists of sending the global model, com-
posed of weights and biases for customers participating in
the learning. Then, in stage 2, clients perform what is called
Local Training, where they perform a learning task using
neural networks on their data from the global model. At this
stage, FedWS normalizes the output of the convolutional lay-
ers, more precisely the activation map, using (5) and gener-
ating a new normalized activation map. This activation map
is used in subsequent neural network layers to produce lower
loss values. Upon completion of local training, clients com-
plete stage 3 (Local Model Upload), which is the return of
local models to the central server.
After receiving all local models, at stage 4 (Aggregation),

the central server performs local model aggregation using (6)
and generates an update of the global model and uses this
update to generate a new global model, ending the current
round of FL. At the end of the round, if the FL objectives are
achieved, federated learning ends; otherwise, the new global
model is sent to a new set of data aimed at the continuity of
training.
Another critical point is that the application of the normal-

ization shown in (5) is not a local training parameter and,
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therefore, does not suffer side effects due to the aggregation
performed by FedAvg.

5 Experiments
Aiming to advance the discussion of how normalization tech-
niques can positively affect local training and reduce the im-
pact of heterogeneous distributions in FL, experiments were
conducted using the EuroSAT dataset [Causa et al., 2023].
EuroSAT comprises 27,000 images captured via satellite,
with dimensions of 64 by 64 pixels divided into ten classes
representing different types of terrain (permanent and tem-
porary plantations, highways, rivers, forests, pastures, lakes,
diverse vegetation, industrial and residential areas). The
choice of this dataset was based on the use of drones to cap-
ture and analyze images in different regions, generating het-
erogeneity, as discussed in Section 3.3.

5.1 Setup and Dataset
The experiments were conducted on a notebook with a Core
i5 processor, 16 GB of RAM, and an Nvidia GTX 1650
graphics card with 4 GB of memory and CUDA support. The
experiment utilized a modified version of a framework 1 to
implement and conduct the experiments in a Python 3.8 and
Pytorch 1.19 environment.
The EuroSAT dataset was set up with an 80% training and

20% testing split, and the heterogeneous data distribution
was achieved through five data arrangements representing
EMD values of 0, 0.37, 0.74, 1.08, and 1.41 [Zhao et al.,
2018], leading to a class imbalance in client data.
The federated training was configured with 200 rounds

(T=200), a learning rate of µ = 0.01, a local training batch
size of 50 (B=50), five local training epochs, and ten clients
(K=10). The local model was a CNN, as defined by McMa-
han et al. [2017].
The scenarios considered were: No Normalization (NN),

where no normalization technique was applied to the model,
three others that represent the techniques used by related
works: FedBN(BN) [Li et al., 2021], Fed2(GN) [Yu et al.,
2021] and FedNorm (LN) [Du et al., 2022] and, finally, a
scenario using FedWS, executed on the predicted 5 distinct
EMD dataset distributions.
The CNN architecture used for the tests is the Lenet5 Le-

Cun et al. [2015], and its parameters are detailed in Table 2,
which shows where the normalization layers are positioned
within the architecture. This architecture was used consider-
ing the limited processing capacity that mobile devices have
to execute the local training stage in FL.

5.2 Impact of Heterogeneous distributions on
Convolutional Layers of CNN

Considering the use of normalization techniques mentioned
previously to mitigate the effects of heterogeneous distribu-
tions in FL and that these techniques are widely used in
conjunction with CNN architectures, an essential factor is
to evaluate the impact of data heterogeneity on the weights

1https://github.com/c-gabri/Federated-Learning-PyTorch

Table 2. Architecture of CNN Used on Experiments (Lenet5).
No. Layer Kernel Shape Parameters Activation
01 Input - (3 × 24 × 24) - -
02 Conv2D (5 × 5) (64 × 24 × 24) 4,864 ReLU
03 Normalization - - - ReLU
04 MaxPooling2D - (64 × 12 × 12) - -
05 Conv2D (5 × 5) (64× 12 × 12) 102,464 ReLU
06 Normalization - - - ReLU
07 MaxPooling2D - (64 × 6 × 6) - -
08 Fully

Connected
- (384) 885,120 ReLU

09 Fully
Connected

- (192) 73,920 ReLU

10 Fully
Connected

- (10) 10 Softmax

Normalization layers are positioned in the 3 and 6 layers of the Lenet5. If normal-
ization is not used these layers are ignored.

of convolutional layers. Figure 8 presents a histogram of
the weight distributions of the last convolutional layer of a
Lenet5 network [LeCun et al., 2015] used as architecture in
local training of FL clients and extracted after aggregation
using FedAvg, represented by the number 05 in the Table
2. As we can see, the homogeneous distribution (EMD 0)
presents a normalized distribution, and when we observe the
distribution with a higher EMD (1.41), the histogram shows
a denormalized weight distribution.
When using normalization techniques in conjunction with

Lenet5 convolution layers, we observed in Figure 8 that even
with values of EMD 1.41, the weights appear to be more ho-
mogeneous, close to a normal shape.

(a) No Normalization EMD=0 (b) No Normalization EMD=1.41

(c) Batch Normalization EMD=1.41 (d) Group Normalization EMD=1.41

(e) Layer Normalization EMD=1.41 (f) FedWS EMD=1.41
Figure 8. Histogram of Convolutional Layer on Round 1 of FL on EuroSAT
Dataset

Considering the use of the proposed technique, it is essen-
tial to evaluate how the outputs of the convolution layer be-
have when subjected to heterogeneous distributions. Figure
8 shows the histogram of the Lenet5 architecture used as lo-
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cal training applying WS to the outputs of the convolutional
layers. We can see in (Figure 8(f)) that the result obtained
by FedWS is a more uniform and normal distribution com-
pared to other normalization techniques, demonstrating the
potential of using the FedWS technique.

5.3 Using FL for Image Classification in Het-
erogeneous Data

Observing the results in Table 3 we can evaluate the results
of using normalization techniques in FL for image classifi-
cation. In this context, it was shown that the FedWS tech-
nique achieved results between 3% and 6% higher than other
normalization techniques evaluated, observing the results in
training accuracy.

Table 3. Federated LearningAccuracyResults usingNormalization
Techniques on EuroSAT Dataset with Different EMDs

EMD 0 0.37 0.71 1.08 1.41
NN 75.7 (0.2) 74.6 (0.3) 73.3 (2.1) 69.8 (0.8) 64.8 (0.8)
BN 82.4 (0.2) 79.6 (0.7) 79.5 (0.7) 75.0 (0.3) 72.5 (3.9)
GN 81.1 (0.3) 80.4 (0.1) 79.4 (0.9) 74.0 (0.1) 71.3 (1.2)
LN 80.4 (0.2) 79.9 (0.3) 78.6 (1.1) 73.3 (0.3) 70.4 (0.5)
FedWS 85.5 (0.6) 86.0 (0.6) 85.0 (0.8) 80.7 (0.3) 77.0 (0.1)

Standard deviation in parentheses

(a) Percentage Training Accuracy

EMD 0 0.37 0.71 1.08 1.41
NN 77.1 (0.7) 76.2 (0.5) 74.7 (1.7) 71.9 (0.1) 61.7 (1.1)
BN 84.7 (0.3) 82.4 (0.1) 82.0 (1.2) 77.8 (0.3) 69.7 (3.1)
GN 82.0 (0.9) 80.9 (0.3) 80.1 (1.5) 75.0 (0.6) 69.2 (0.8)
LN 81.0 (0.1) 80.9 (0.2) 79.7 (1.9) 74.0 (0.2) 68.8 (0.1)
FedWS 84.4 (2.9) 84.5 (0.9) 84.3 (2.1) 80.3 (0.9) 76.9 (0.1)

Standard deviation in parentheses

(b) Percentage Test Accuracy

Furthermore, observing the results considering an increase
in the heterogeneity of the data, represented by the increase
in the EMD in the samples used, it was observed that the pro-
posed technique obtained a more linear result than the others,
being less affected by the negative effects of this type of dis-
tribution in the accuracy results.
However, the results obtained in test accuracymust also be

considered, as they reflect how the federated global model
behaves in more real test results. In this context, the re-
sults in Table 3 present a very close result between using
BN and FedWS when the data is homogeneous. However,
as the EMD value increases, FedWS presents test accuracies
between 2% and 7% higher than the best results of other tech-
niques.
Considering the adverse effects that increased data hetero-

geneity causes on accuracy results, the increase in EMD is
expected to result in lower accuracies compared to the ho-
mogeneous scenario (EMD=0) [Zhao et al., 2018]. One way
to measure this impact is to calculate the difference between
the test accuracy results with EMD equal to 0 and the result
obtained by each heterogeneous EMD sampling.
Figure 9 shows that the observed normalization techniques

have a smaller impact in magnitude when compared to not
using normalization (NN). However, they present similar
behavior considering the behavior. In contrast, FedWS

Figure 9. Impact of increased heterogeneity on test accuracy for each ob-
served technique

presents results that show that the technique is less affected
by samples with larger EMD and presents more linear results.
Considering EMD 1.41, which represents a greater degree of
heterogeneity, the impact on FedWS accuracy was close to
7%, while the others had an impact between 12% and 15%.
As shown in Figure 4 EMD 1.41 represents a type of sample
where clients have images belonging to only between 1 and 2
classes for the EuroSAT Dataset, showing that the technique
presents good results even in situations with greater hetero-
geneity. In distributions with EMD 0.37 and 0.71, FedWS
was practically not affected by the increase in EMD, consid-
ering that at these levels of heterogeneity, they do not present
a very large unbalance, as shown in Figure 4.

Table 4. Federated Learning Precision, Recall and F1-Score Re-
sults on Normalization Techniques on EuroSAT Dataset with Dif-
ferent EMDs
Technique Metric 0 0.37 0.71 1.08 1.41

precision 0.771 0.762 0.747 0.759 0.667
NN recall 0.771 0.762 0.747 0.719 0.617

f1-score 0.761 0.762 0.737 0.699 0.597
precision 0.847 0.834 0.820 0.818 0.747

BN recall 0.847 0.824 0.820 0.778 0.697
f1-score 0.847 0.824 0.820 0.758 0.677
precision 0.820 0.809 0.801 0.770 0.712

GN recall 0.820 0.809 0.691 0.750 0.692
f1-score 0.820 0.809 0.671 0.740 0.682
precision 0.810 0.809 0.807 0.770 0.708

LN recall 0.810 0.809 0.797 0.740 0.688
f1-score 0.810 0.809 0.797 0.730 0.678
precision 0.844 0.855 0.853 0.813 0.779

FedWS recall 0.844 0.845 0.843 0.803 0.769
f1-score 0.844 0.845 0.843 0.793 0.769

To evaluate the impact of the diversity of data distributions,
other relevant metrics that can be observed are precision, re-
call, and f1-score. Precision measures the proportion of true
positive predictions among all positive predictions, inform-
ing which positive results really are positive. Recall mea-
sures the proportion of true positive predictions among all
true positive instances, telling us about the data points that
should be predicted as true and how many we correctly pre-
dicted as true. F1-score presents the relationship between
precision and recall.
Table 4 shows the results of the weighted average score of

the precision, recall, and f1 score metrics in FL on the Eu-
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roSAT dataset of the observed techniques, considering dif-
ferent EMDs. These values were calculated as the weighted
average of the values obtained by the ten classes of the Eu-
roSAT dataset in the image classification experiment. Con-
sidering the results shown, if compared with Table 3b, the
techniques presented uniform results consistent with the test
accuracy at EMDs 0 and 0.37. From EMD 0.71 onwards,
the NN, BN, GN, and LN techniques began to present recall
values lower than precision. Looking more directly at the f1-
score results, we observe that NN, BN, GN, and LN have a
lower test accuracy than the f1-score results, indicating that
these techniques generate models that possibly cannot be ef-
fective for inference but classes fewer representatives, con-
sidering a scenario with class imbalance.
In this context, FedWS presented f1-score results superior

to other techniques by between 2% to 9% considering the
best results of all techniques and did not present such a large
difference between precision and recall.

Table 5. F1-Score Results Considering the Three Classes with the
Worst Results on EuroSAT with EMD 0.71, 1.08 and 1.41.

EMD NN BN GN LN FedWS

0.71
0.470
0.597
0.637

0.650
0.720
0.740

0.601
0.681
0.711

0.587
0.677
0.707

0.723
0.733
0.803

1.08
0.469
0.519
0.679

0.448
0.678
0.678

0.620
0.600
0.680

0.550
0.560
0.680

0.608
0.718
0.738

1.41
0.227
0.447
0.447

0.327
0.347
0.537

0.462
0.482
0.522

0.392
0.482
0.562

0.589
0.589
0.649

However, we would also like to evaluate how the tech-
niques behaved in the worst cases, considering the results by
class. Therefore, Table 5 presents the f1-score values for the
three classes with the worst results for all techniques consid-
ering the most critical EMD values (0.71, 1.08, and 1.41) ob-
served in Table 4. The results confirm that FedWS presents
higher values even considering the worst f1-score results in
an unbalanced data scenario.
Another point to be analyzed is the comparison between

training and testing accuracy results, which can indicate over-
fitting tendencies when the neural network obtained a train-
ing result superior to the testing result, indicating that the
generated model may not present a generalization aimed at
using in real scenarios. On the contrary, underfitting occurs
when the testing accuracy is higher than the training accu-
racy, the neural network may need to learn more from the
training data.
Figure 10 shows that the observed techniques generally

presented an underfitting situation with a tendency to in-
crease as the heterogeneity of the data samples increases.
The difference values varied between -3% to 1.5%, indicat-
ing that, in general, the difference was not so significant as to
cause any problem. Nevertheless, it is worth highlighting the
behavior of some of the techniques: BN showed a more lin-
ear behavior with a higher underfitting value compared to the
other techniques, LN showed a linear underfitting behavior
that grew as the EMD value increased, and FedWS showed
overfitting in the samples less heterogeneous and becoming
almost imperceptible underfitting in the sample with EMD

Figure 10. Percentage difference between training and testing results of
observed normalization techniques

1.41.
According to Zhao et al. [2018], the number of local

epochs influences EMD’s impact on federated training in het-
erogeneous data distributions. Therefore, it is interesting to
check the effect of increasing the number of local epochs (E)
on test accuracy. Table 6 shows that all techniques increased
accuracy, varying between 1.1% to 6.7%. Considering that
the local epochs were doubled, the gain in accuracy was not
very significant.

Table 6. Test accuracy percentage in the EuroSAT Dataset using
ten local epochs, showing the comparative gain with five epochs
EMD 0 0,37 0,71 1,08 1,41
NN 81.9 (4.9) 80.9 (4.7) 80.0 (5.2) 75.2 (3.3) 69.7 (4.9)
BN 86.0 (1.3) 84.3 (1.9) 84.8 (2.7) 79.9 (2.1) 74.4 (1.9)
GN 85.0 (3.0) 83.7 (2.9) 83.3 (3.2) 77.9 (2.9) 75.4 (4.0)
LN 84.4 (3.3) 83.8 (2.9) 83.0 (3.3) 77.5 (3.1) 74.2 (3.8)
FedWS 87.7 (3.3) 87.1 (2.6) 86.7 (2.5) 83.5 (3.2) 79.6 (2.5)

Comparative with test accuracy between parentheses. Positive values indicate that
the execution with ten epochs obtained greater test accuracy

The convergence of accuracy indicates how long the learn-
ing process took to reach a sure accuracy. This is another
characteristic that can be observed when evaluating the be-
havior of normalization techniques in heterogeneous data dis-
tributions. Figure 11 shows the test accuracy obtained by FL
techniques on the EuroSAT Dataset with EMD 0, 0.71, and
1.41, considering 5 and 10 epochs of local training at clients.
Considering the ability of the techniques to reach a level of
75% accuracy, the results for five epochs of local training
show that FedWS managed to reach this accuracy using 50,
60, and 170 rounds, while the other techniques required 80
and 100 rounds, and for EMD 1.41 were unable to reach this
level. For ten local rounds, we observed that the increase in
local epochs increased the convergence of the techniques and
reduced the number of rounds to 75% at 30, 30, and 70 for
FedWS and 50, 60, and 200 for the other techniques. These
results indicate that the increase in local epochs, despite not
significantly affecting the final result as observed in Table
6, has a more beneficial effect on the convergence of tech-
niques.
According to Section 3.1, the divergence of client weights

increases with each round of federated training, contributing
to the reduction of training and testing accuracy. However,
the impact of the EMD term on these results is influenced by
the errors presented during the federated training. Analyzing
the average of errors detected by the techniques, shown in Ta-
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(a) EMD 0.71 and 5 local epochs (b) EMD 1.41 and 5 local epochs

(c) EMD 0.71 and 10 local epochs (d) EMD 1.41 and 10 local epochs
Figure 11. Convergence analysis in classification task on EuroSAT

Table 7. Average losses of techniques on different EMD distribu-
tions.
EMD 0 0,37 0,71 1,08 1,41
NN 1.05 (0.24) 1.01 (0.22) 0.88 (0.21) 0.68 (0.19) 0.44 (0.10)
BN 0.86 (0.20) 0.80 (0.18) 0.70 (0.17) 0.53 (0.15) 0.33 (0.08)
GN 0.85 (0.22) 0.81 (0.20) 0.69 (0.19) 0.55 (0.16) 0.36 (0.10)
LN 0.88 (0.22) 0.83 (0.20) 0.73 (0.19) 0.56 (0.17) 0.37 (0.10)
FedWS 0.54 (0.22) 0.47 (0.21) 0.43 (0.19) 0.36 (0.15) 0.23 (0.07)

Standard deviation between parentheses.

ble 7 we observed that FedWS has the lowest averages and
standard deviation even with the increase in data heterogene-
ity, represented by the increase in EMD. Considering that
the client weights in local training are also affected by errors
as seen in (4), the results of the errors obtained by FedWS
prove to be decisive so that the technique is less affected by
the increase in data heterogeneity, as indicate that the tech-
nique can produce weight updates more smoothly, avoiding
jumps in weight values, in addition to alleviating the impact
of EMD on weight divergence.

5.4 Federated Learning Communication and
Computational Costs

Communication cost is significant in the FL training process,
indicating when a technique is more appropriate or consumes
less training time to achieve a specific objective, avoiding
saving communication and computational resources. Aim-
ing to compare how the techniques behave in terms of com-

munication cost, we use the definition presented in (1) to cal-
culate the communication cost in megabytes (MB) using the
number of rounds (T ), the number of clients (K) and the size
of the local model weights (ω).
Based on the architecture used in Lenet5 training, shown

in Table 2, the size of the local model, measured via exper-
iment, is 4.27 MB for all techniques observed. This shows
that normalization techniques do not impact the size of the
generated model. Considering that we have ten clients per
round K = 0, we can apply the values of K and ω to the
definition of (1), resulting in W = 2T (42.7). This shows
that since the techniques did not modify the size of the local
model, the communication cost will be defined by the num-
ber of rounds needed to achieve sure accuracy.
Table 8 shows the results of the communication cost ob-

tained by the techniques aiming to reach 75% in federated
training. Using five local epochs, FedWS presented lower
costs between 25% and 40% compared to the best results
of other techniques. Furthermore, considering the increase
in cost concerning the homogeneous distribution scenario
(EMD = 0), it presented the exact cost for EMD = 0.71 and
a cost three times higher in the scenario with EMD 1.41, in
which the others were not even able to achieve the desired ac-
curacy. Considering that EMD 0.71 has a medium unbalance
of classes in clients (5 to 10). EMD 1.41 has a more acute
unbalance (1 to 2 classes), which shows that the technique’s
cost is little affected in lighter unbalances. In more acute
ones, despite achieving accuracies not achieved by others, it
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significantly impacts cost more significantly.
When analyzing the impact of increasing local epochs in

training, from 5 to 10, we observed that previous results
showed a relative gain in accuracy, as shown in Table 6, but
a substantial gain in convergence, as shown in Figure 11. In
Table 8, we see that the increase in local epochs resulted in
a reduction in communication cost between 25% and 50%
for all techniques. Looking at these results alone, increas-
ing local epochs can be used to reduce communication costs.
However, the processing cost must be taken into account.

Table 8. Communication Cost (MB) for Normalization Techniques
to Achieve 75% Test Accuracy

Local
Epochs

EMD NN BN GN LN FedWS

0 13,665 6,832 8,540 8,540 5,124
5 0.71 15,372 10,248 8,540 8,540 5,124

1.41 - - - - 15,372
0 8,540 5,124 5,124 5,124 3,416

10 0.71 10,248 5,124 5,124 5,124 3,416
1.41 - - 17,080 - 8,540

As defined by (2), the processing cost represents the total
number of iterations required for all clients to execute a FL
task to achieve the desired accuracy. Using this definition,
Table 9 compares FL techniques’ performance comprehen-
sively. It shows the influence of increasing local epochs on
the result of total iterations, aiming to achieve 75% test ac-
curacy, for each technique in data distributions with EMD 0,
0.71 and 1.41. The results demonstrate that in the scenario
with 5 local epochs, FedWS required 25% fewer iterations to
reach the target accuracy in a homogeneous dataset (EMD=0)
and 40% fewer iterations for a dataset with an EMD of 0.71.
For themost acute case of data heterogeneity observed (1.41),
only FedWS managed to achieve 75% accuracy, making it
the best approach in such scenarios.

Table 9. Computational Cost (total iterations) to Achieve 75% of
Test Accuracy

Local
Epochs

EMD NN BN GN LN FedWS

0 6,000 4,000 5,000 5,000 3,000
5 0.71 9,000 6,000 5,000 6,000 3,000

1.41 - - - - 9,000
0 10,000 6,000 6,000 6,000 4,000

10 0.71 12,000 6,000 6,000 6,000 4,000
1.41 - - 20,000 - 10,000

Considering a scenario with 10 local epochs and an EMD
of 0.71, normalization techniques increased the processing
cost between 20% to 25%. Compared to the reduction in
communication cost observed in Table 8 between 25% to
50% in this context, the increase can be beneficial for most
techniques aiming to obtain greater accuracy and reduce the
cost of communication. However, the processing cost was
measured considering the training process for all clients in-
volved. If we consider each client individually, the increase
in processing cost is 100% as the times increased from 5 to
10. In a scenario where clients have battery and processing
capacity restrictions, this increasemay not be feasible. In this
case, FedWS can be an excellent alternative, as the reduction
in communication costs obtained by other techniques when
increasing local epochs was 20% to 50%, while FedWs us-

ing 5 local epochs achieved results of 25% and 40% the rest.
This can be seen in Table 8 where the cost of FedWS for 5 lo-
cal epochs was 5,124 MB for EMD 0 and 0.71 while the best
technique using 10 local epochs reached the same cost. In
other words, FedWs can be used instead of other techniques
for use on devices that can use small local epochs due to ca-
pacity limitations.

6 Conclusion

In this paper, we advance the discussion of how data hetero-
geneity can negatively affect FL, considering its use in con-
junction with CNN for image classification activities. Using
EMD to define samples with heterogeneity made it possible
to identify that samples with slight quantitative imbalances
between classes generate less impact. In contrast, cases in
which a lack of data representativeness in the classes affect
accuracy and convergence more acutely. The perception of
the impact of heterogeneity in the convolutional layers to this
degree is apparent, as shown in the histograms, which also
demonstrate how normalization techniques can mitigate this
effect. The test and training accuracy results confirmed that
FedWS achieved test accuracy results between 3% and 6%
higher than other techniques, in addition to suffering less im-
pact compared to the homogeneous distribution result. Con-
sidering the increase in local epochs, we observed that their
increase was little beneficial to all the techniques observed,
considering the percentage increase in epochs and the test
accuracy result. However, when observing the convergence
of techniques, there was a reduction of 75% to 100% in the
number of rounds needed to achieve the desired objective.
Delving deeper into the issue of communication and compu-
tational costs, the results show that FedWS reduced the com-
munication cost between 25% and 40% compared to other
techniques using five local training epochs. When we in-
creased the local training epochs to 10, there was a reduction
in the communication cost between 20% to 50% for all tech-
niques, but this increased the computational cost between
20% to 25%. When comparing the results, we observed
that FedWS achieves communication costs that the others
only achieved with an increase in local epochs and, conse-
quently, in the computational cost. In this scenario, FedWS
becomes more appropriate for devices with processing and
battery resource constraints, like drones, which are unsuit-
able for longer time periods.
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