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Abstract In this work, we propose an embedded low-processing Machine Learning solution designed to assist in
environmental acoustic monitoring. The pre-processing stage employs the Wavelet Packet Transform, generating
low-dimensional features that serve as inputs to a Gradient Boosting model for the near-real-time classification
of relevant sound events. Subsequently, we introduce an event filter that checks if there is any relevant event
occurring at the moment before sending the features to the model or ignores them until any sound event is detected.
This approach enhances the robustness of our solution, making it resilient to noise and wind-contaminated samples
while optimizing memory, battery, and computational power usage. Finally, we converted the processing pipeline
and trained model to the C programming language, successfully embedding them into the Nordic Thingy:53, a
low-power hardware device equipped with a built-in digital Pulse Density Modulation microphone (VM3011 from
Vesper). To evaluate the efficacy of our proposed method, we compared it with a convolutional neural network
approach usingMel-frequency cepstral coefficients and conducted tests using audio recordings of bird species found
in forests located in the central and western regions of Brazil, as well as samples of human activity-related sounds.
The favorable classification scores obtained, in conjunction with the embedded solution’s substantial battery life
capacity, have the potential to greatly reduce the necessity for extensive environmental monitoring field surveys.

Keywords: Embedded AI, Environmental Monitoring, Sound Event Classification, Machine Learning, Wavelet Packet
Transform, Acoustics

1 Introduction

Environmental sustainability is intrinsically linked to the bio-
diversity of animal species and the impact of human activi-
ties on diverse ecosystems. However, effectively monitor-
ing the health of these ecosystems poses significant chal-
lenges, often requiring exhaustive field surveys [Burivalova
et al., 2019, 2018; Deichmann et al., 2018]. The study of
environmental sound has great potential to enhance biodiver-
sity monitoring by analyzing acoustic signals to detect rele-
vant sound events, thereby providing valuable insights into
ecosystem dynamics. Nonetheless, establishing best prac-
tices for data collection and audio recording analysis remains
an open task [Bradfer-Lawrence et al., 2019]. Furthermore,
there is an increasing trend towards implementing Machine
Learning (ML) models on end-devices, such as microcon-
trollers (MCUs), to perform diverse tasks in the field, partic-
ularly in scenarios where access to energy supply is limited
or unavailable. However, these devices often have limited re-
sources, which poses challenges and limitations in the devel-
opment of embedded applications [Branco et al., 2019]. In
this regard, the present work proposes a low-processing em-
bedded ML application for the near-real-time classification
of significant sound events, aimed at aiding in the biodiver-
sity monitoring of ecosystems.
Birds are increasingly being used as valuable bioindicators

in ecosystem monitoring due to their responses to variations
in habitat, serving as an early warning of climatic or envi-
ronmental changes [Mekonen, 2017]. Studies conducted by
Morelli et al. [Morelli et al., 2021] in Europe and Wotton et
al. [Wotton et al., 2020] in Africa have demonstrated the use
of birds as bioindicators, observing that the presence of bird
species varies according to the demographic and urban char-
acteristics of each region within the countries. Furthermore,
monitoring the decline of species may provide important in-
sights about ecosystem health, as it can lead to consequences
such as the loss of natural pest control, reduction or extinc-
tion of dependent species, pollinator limitation, and changes
in cultural practices [Şekercioğlu çağanH et al., 2004]. Addi-
tionally, Burivalova et al. [Burivalova et al., 2018] used the
impact of human presence as an indicator, which, depending
on the severity, might cause the reduction of vocalizing bio-
diversity, consequently eliminating the dusk and dawn choir.
This whole monitoring process can be quite costly and time-
consuming, especially due to the need for data collection, la-
beling, and availability, which often require extensive expert
man-hours, such as those of ornithologists.
To overcome the issues associated with bird species recog-

nition, extensive investigations have been conducted in the
development of automatic audio signal pattern recognition
algorithms. Moreover, many researchers have explored the
adaptation of speech recognition algorithms to effectively
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perform this classification task [Cai et al., 2007]. In [Bardeli
et al., 2010], the authors introduce an automated bird vocal-
ization detector based on the analysis of temporal patterns
within specific frequency bands by inspecting spectrograms.
The proposed algorithm is evaluated on two endangered bird
species. Potamitis et al. [Potamitis et al., 2014] propose
an automated pattern recognition algorithm using Perceptual
Linear Prediction cepstral coefficients (PLP-CC) in conjunc-
tion with hidden Markov models (HMMs) and related tech-
niques. More recently, Kahl et al. [Kahl et al., 2021] de-
veloped a deep learning approach utilizing spectrograms as
inputs to a Convolutional Neural Network (CNN) based on
residual networks (ResNets). This approach shows consid-
erable advancements in bird species recognition, potentially
identifying up to 984 North American and European bird
species by sound. In a more computationally cost-efficient
approach, Yang et al. [Yang et al., 2021] utilized the energy
derived from Wavelet Packet Decomposition coefficients of
bird species syllables in conjunction with shallow learners,
achieving high classification scores when tested on 12 dis-
tinct bird species’ sounds. While significant progress has
been made in environmental acoustic monitoring algorithms,
there is a persistent demand for implementing these solutions
in affordable devices to enable conservation researchers to
conduct large-scale monitoring. However, developing on-
board applications for such devices presents difficulties due
to limitations in energy consumption, storage capacity, and
processing power [Prince et al., 2019].
In that sense, the main contribution of this work is to pro-

pose a low-processing and affordable environmental moni-
toring tool capable of detecting relevant bird species’ sounds
specific to a particular ecosystem, as well as identifying
sound events related to undesirable human activities. Sim-
ilarly to the approach used by Yang et al. [Yang et al., 2021],
we utilize energy features derived from Wavelet Packet De-
composition coefficients. However, in contrast, we employ
these features as inputs to a Gradient Boosting model, which
is computationally efficient and enables the ML model to be
executed on low-processing devices. For this study, we em-
bedded our solution in the Nordic Thingy:53, a low-power
hardware device featuring an integrated Vesper VM3011 mi-
crophone. The proposed method is tested using audio record-
ings of bird species found in forests located in the central-
western and northern regions of Brazil, as well as sounds re-
lated to human activities.
The remaining of this work is organized as follows: In

Section II, we present the methodology used in the develop-
ment of the application. In Section III, we introduce the data
used to develop the ML model. In Section IV, we present the
results for both the Python and the converted embedded solu-
tion. In Section V, we discuss the results. Finally, in Section
VI, we draw the conclusions.

2 Methodology
In this section, we describe each step of the methodology
employed to compose the proposed solution. It is worth
mentioning that the ML model experiments were conducted
using the hyperparameter tuning (HPT) framework Optuna

with the Tree-structured Parzen Estimator (TPE) sampler
(a Bayesian optimization method) and the MedianPruner,
which minimize the objective function with the median stop-
ping rule [Bergstra J. and B., 2011]. This approach allowed
us to choose the best combination of input features and ML
model parameters. Additionally, we discuss the integration
of the solution into the selected hardware for this study.

2.1 Preprocessing and Feature Extraction
Firstly, it should be pointed out that there are some process-
ing steps regarding only the dataset used to train the ML
models. These procedures, when performed during the train-
ing stage, eliminate the need for additional processing steps
within the hardware, saving the available processing mem-
ory. These steps are presented as follows:

• The available bird vocalization data is manually divided
into syllables using the software Audacity, as can be
seen in Figure 1. This process aims to capture different
vocalization patterns of different species (increasing the
variance of the data for each species) and avoid includ-
ing chunks with no sound events when further splitting
the signal [Yang et al., 2021].

• The data is converted to mono and downsampled to a
sample rate of 16kHz, which aligns with the hardware-
integrated microphone sample rate and the configured
number of channels. It should be acknowledged that
some bird species have vocalizations that exceed the
8kHz frequency range. For species whose vocaliza-
tions are entirely above this range, classification using
the proposed approach may not be feasible. We rec-
ognize this as a limitation due to the used hardware
(Nordic Thingy:53). However, Figure 2 shows the av-
erage Power Spectral Density (PSD) for each consid-
ered sound event before downsampling, demonstrat-
ing that all the species considered in this study can
be characterized within the specified frequency range,
with some loss of information observed only for the
Orange-Headed Tanager, Pale-breasted Thrush, White-
eyed Parakeet, and especially the White-chinned Sap-
phire.

• The resulting audio samples are then split into chunks
of 0.5 seconds, a time length supported by the hardware,
considering all the processing memory demand. During
the experimentation procedure with the HPT, this dura-
tion was found to be close to the optimal time length.

Figure 1. Example of bird syllable splitting. The top image shows the spec-
trogram of the entire audio sample, while the bottom image displays the
syllables manually separated from the original spectrogram, based on areas
with noticeable spectral energy density corresponding to vocalization pat-
terns. After this process, the original audio is discarded.
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Figure 2. The normalized average PSD for each considered sound event
before the downsampling to 16kHz. The red vertical dashed line represents
the 8kHz frequency, which corresponds to the Nyquist frequency resolution
for a sample rate of 16kHz.

The remaining processing steps are present in both the
model training stage and the hardware-integrated solution
and are described as follows:

• The audio sample is normalized to a range between -1
and 1.

• The Wavelet Packet Transform (WPT) at level 4 with a
Daubechies wavelet filter of length six is performed in
order to decompose the signal into a set of sixteen coef-
ficients (C), defined as follows [Coifman et al., 1994]:

Ck
j,m(x) ∼=

⟨
x(t), 2−j/2Wm(2−jt− k)

⟩
(1a)

W k
j (x) ∼= 2−j/2

∫ ∞

−∞
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and for all k ∈ Z,

2−1/2W2m

(
t

2
− k

)
=

∞∑
i=∞

hi−2kWm(t− k)

(3a)

2−1/2W2m+1

(
t

2
− k

)
=

∞∑
i=−∞

gi−2kWm(t− k),

(3b)

where x(t) denotes the original signal, ψ∗ represents
the complex conjugate of the mother wavelet function,
m is the decomposition level, j indicates the jth node
of a specific level, and h and g stands for the impulse
response of lowpass and highpass paraunitary Quadra-
ture mirror filters (QMF), respectively [Gokhale et al.,
2010]. That is, theWPT decomposes both low and high-
frequency bands of the signal, which overcomes the dif-
ficulty in differentiating detailed transient components,
giving a good time-frequency resolution of the entire
decomposed signal [Gao and Yan, 2010; Frusque and

Fink, 2022]. It should be noticed that this processing
approach is increasingly being used in acoustic classifi-
cation tasks, demonstrating promising results, as can be
seen in [Yang et al., 2021; Bianchi D., 2015].

• Following the WPT procedure, the energy of each co-
efficient (ε) is extracted as follows [Yen and Lin, 2000;
Yang et al., 2021]:

ε(m, j) = 1
nm

nm∑
l=1

C2
m,j(l), 1 ≤ j ≤ 2m, (4)

where nm denotes the number of data points for each
coefficient, and Cm,j(i) represents the i-th entry of the
j-th coefficient at level m. This procedure results in a
total of sixteen one-dimensional attributes for the audio
signal under analysis.

• Lastly, the most informative features are selected from
the sixteen generated energy attributes. This step was
performed with the aid of HPT, where the input features
were evaluated as one of the parameters in each model
experiment. The results indicated that the optimal set of
input features encompasses the energies extracted from
coefficients 0 to 12.

It should be noted that even though the entire pre-
processing procedure may not be straightforward or compu-
tationally inexpensive, it results in only thirteen informative
one-dimensional input features. In comparison, using a Mel
spectrogram feature approach, which is commonly addressed
in the literature, would generate high-dimensional features
that could potentially be used as inputs for a complex ar-
chitecture CNN [Lasseck, 2018; Ntalampiras and Potamitis,
2021; Xie et al., 2019; Zhang et al., 2021]. However, such
an approach would make the solution computationally costly
and thus impractical to deploy on an end-device with limited
processing and memory capacity. By utilizing the feature
approach proposed in the present work, we were able to dras-
tically reduce the computational cost of the ML model em-
ployed to perform the acoustic classification task. The com-
plete data pre-processing procedure is illustrated in Figure
3.

2.2 Machine Learning Method
Asmentioned in the previous section, theML algorithm used
to develop the model should be viable in terms of computa-
tional cost and yet perform with a satisfactory classification
score for the target sound events. Dealing with embedded
AI models is a difficult task, specifically when it comes to
handling the trade-off between the artificial intelligence (AI)
method and the pre-processing step [Situnayake and Plun-
kett, 2023]. This consideration is quite relevant since embed-
ded solutions tend to have few memory resources and must
run fairly quickly.
Considering that the data pre-processing algorithm is com-

putationally expensive, yet extracting informative sound
event features which simplifies the model inputs, we decided
to use shallow learner methods rather than Deep Learning
(DL) methods. Typically, DL methods are the preferred
choice when dealing with problems that involve unstructured
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Figure 3. Flowchart of the entire pre-processing procedure. The green,
dashed square represents the pre-processing stage, which is applied only to
the raw training data; the testing data does not undergo this step. Next, either
the processed training data or the raw test data is normalized before calcu-
lating the WPT and its coefficient energy. The red, dashed square indicates
the indexes of the coefficients selected during the HPT step.

data, as these methods have the capability to perform fea-
ture extraction themselves [Goodfellow et al., 2016]. How-
ever, in this work, all feature extraction is done during the
pre-processing stage, enabling the use of a simpler and more
cost-effective ML model, such as a shallow learner.
To perform a study to determine which shallow learner

would be a better fit for this project, we conducted exper-
iments involving a collection of classical algorithms, such
as Gradient Boosting (XGBoost and LightGBM), Support
Vector Machine (SVC, LinearSVC and NuSVC), Random
Forest, Decision Trees, and Naive Bayes. The models were
evaluated using the HPT method, in which each selected ML
method was trained with different hyperparameters. After
all the training and evaluation procedures, we compared the
performance of the top-scoring models from each method.
The results indicated that the Random Forest achieved the
highest classification score. However, due to the large size
of the saved trained model, it is not suitable for memory-
constrained devices. Thus, we selected the second-highest
scoring model, XGBoost, which not only delivers good per-
formance but is also affordable in terms of memory consump-
tion. Table 1 provides a brief analysis of all the shallow
learners tested in this study. A more in-depth analysis of
all tested models’ classification performance can be found in
Appendix B, while a detailed analysis of the selected shallow
learner (XGBoost) is presented in Section 4.2.

2.3 Event Filter

To analyze only potential target sound events, the develop-
ment of an event filter was crucial to remove audio sam-
ples containing only ambient noises or with significant wind
noise contamination. As for ambient noises, we straightfor-
wardly discard samples with maximum amplitude below a
threshold of 1500 µPa in terms of sound pressure, which is
equivalent to approximately 37.5 dB. However, discard sam-

Table 1. Comparison of the shallow learners in terms of compu-
tational and classification performance, including peak processing
memory, file size, and weighted F1 score, sorted by classification
performance.

Approach Peak processing (KB) Size (KB) F1 (%)
Random
Forest

1466 45697 84.1

XGBoost 752 358 82.8
LightGBM 808 509 80.6
Decision
Trees

746 733 73.7

SVC 740 2707 50.1
NuSVC 1325 3161 47.8
LinearSVC 689 4 32.0
Naive
Bayes

982 6 19.9

ples highly contaminated with wind noises proved to bemore
challenging, since wind noise can easily be mistaken for the
events of interest. Introducing another complex processing
step to the solution would be impractical, as it could signifi-
cantly increase the computational cost, making its hardware-
integration unfeasible.
To address this challenge, we used the already imple-

mented data pre-processing algorithm, since WPT-based fil-
ters have shown its effectiveness in similar tasks [Juodakis
and Marsland, 2022; Bianchi D., 2015]. Therefore, in this
study, we employed a combination of energies from WPT
coefficients, zero-crossing rate, and amplitude analysis. This
allowed us to develop a wind filter that effectively identifies
and addresses samples contaminated with wind noise. The
methodology is presented as follows:

• Firstly, the algorithm checks if the maximum amplitude
exceeds a threshold of 4000 µPa in terms of sound pres-
sure, which is equivalent to approximately 46 dB, indi-
cating a sample containing more than an ambient noise.

• Then, since wind noises are more active in lower fre-
quencies, it is expected that the zero-crossing rate (the
rate at which the signal changes sign) would be small in
such samples [Nelke et al., 2016; Honkakunnas, 2021].
Therefore, we established a superior threshold of 10%
for the zero-crossing rate relative to the signal length,
which corresponds to a maximum of 800 sign changes
in a 0.5s chunk with a 16kHz sampling rate (a signal
with 8000 time points), indicating a low zero-crossing
rate.

• Lastly, it was observed that samples contaminated with
wind noises tend to exhibit high energies in the two
first WPT coefficients, while showing practically zero
energy in coefficients related to higher frequencies.
Hence, by analysing the mean and the standard devia-
tion of wind-contaminated samples, we established an
inferior threshold of 0.5 in the first coefficient energy
(coefficient number 0), and a superior threshold of 0.5
for the sum of energies encompassing coefficients 4 to
15 (see Figure 2).

If the sample successfully passes through all of these veri-
fication steps, it is considered acceptable for further process-
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ing in the shallow learner inference stage. It should be no-
ticed that this procedure also contributes to reduce the over-
all processing time, since samples that do not pass through
the ambient noise filter are not processed through the entire
pre-processing procedure, and samples that pass through the
ambient noise filter but not through the wind filter are not
processed by the shallow learner. This selective processing
approach optimizes computational efficiency by avoiding un-
necessary computations for irrelevant samples and reduces
the likelihood of misclassifications by the shallow learner.

2.4 Deploying the Solution into the Hardware
We selected the Nordic Thingy:53 as an on-field end-device
for environment acoustic monitoring. This is a low-power
hardware for Internet of Things (IoT) prototyping that has
512 KB of Static Random Access Memory (SRAM), 1 MB
of Flash, and operates with a system clock of 128 MHz by
default. To develop application’s code, the C programming
language and Zephyr Real-Time Operating System (RTOS)
Software Development Kit (SDK) onVisual Studio code (VS
code) were used. Additionally, the Nordic nRF SDK exten-
sion for VS Code was used to build the firmware.
The Nordic Thingy:53 is equipped with a built-in digi-

tal Pulse Density Modulation (PDM) microphone VM3011
from Vesper, whose drivers were developed using Zephyr
Digital PDM microphone API. It is important to note that
not all functionalities and customization settings of the sen-
sor drivers are necessary to execute the proposed solution.
Therefore, only the MONO operation mode was imple-
mented with maximum gain and at an acquisition rate of
16kHz. Since it is a digital microphone, it collects 16 bit
precision integer type data, whose amplitudes range from -
32768 to +32767.
This built-in microphone serves as the data acquisition

source for this work and is fully capable of recording more
than 5 seconds of audio in SRAM with no failure. However,
since the WPT is a very complex algorithm and is imple-
mented with 32 bit precision float type data, it uses a lot of
memory resources. Then, to avoid memory crashes, a record-
ing time of 500 milliseconds was selected, with an extra 260
milliseconds added. It is important to note that this recording
duration (0.76s) differs from the one used during the train-
ing procedure (0.5s); this adjustment was made to increase
the likelihood of capturing relevant sound events. Since the
model is already trained, this change only affects event cap-
ture and not classification, as the features extracted from the
WPT are not influenced by the duration of the data due to
their nature. It was considered to use Flash memory to over-
come this memory bottleneck, however the execution time is
not as efficient as using SRAM.
All the pre-processing steps, including normalization,

WPT, and energy bin calculation, execute approximately in
940 milliseconds, considering a time record of 760 millisec-
onds. It is a very fast performance, considering that all these
steps use float data type, which is computationally expensive
for limited hardware. Thus, for this work, a short recording
time is perfect to avoidmemory crashes and, furthermore, for
real-time or near real-time execution.
Tiny model deployment can be a very difficult task de-

pending on which method was used, it highly depends on
the trade off between it and the pre-processing step, since
time execution is a very important factor in such applications.
For this work, the deployment was relatively simple since
the XGBoost method is a rule-based algorithm. After train-
ing the model in Python, the EloquentML library was used to
convert and generate the model in C. EloquentML is a library
that converts machine learning models from Python to C. It
is capable of converting various types of algorithms, includ-
ing both classic machine learning models and deep learning
models. In this work, an XGBoost model was trained using
the Scikit-Learn API and then converted into a C file using
EloquentML. As the model is a decision tree-based model,
the generated C file consists of a series of nested condition-
als, where votes are made to select the class with the highest
probability. A detailed description of the entire conversion
process, along with an example, can be found in Appendix A.
The generatedmodel is a header file composed of conditional
structures, enabling an execution time of approximately 1
millisecond. In total, the complete application executes in
approximately 1760 milliseconds based on Thingy:53’s de-
fault system clock, this information was obtained using the
Zephyr’s API. Furthermore, the whole application utilizes
33% of Flash memory and 40% of RAM.
After the inference, the top three highest-rated classes are

sent to the device’s USB serial port, which can be sent via any
wireless communication. If the device is located in an area
with Ethernet or Wi-Fi access, or if there is 4G/5G traffic
coverage, the data can be directly sent to the nearest server.
In cases where these options are not available, its possible to
send the data via satellite. Figure 4 provides an overview of
the hardware-integrated solution.

Figure 4. Flowchart of the hardware-integrated solution.

Besides all the implementations previously described, the
WatchDog function is used to automatically reboot the device
in case an unwanted action occurs. This procedure occurs
so quickly that it does not interfere with monitoring perfor-
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mance. It is also important to clarify that no sensitive data
(e.g., human voice) is saved or sent. All the data is processed
in SRAM and then discarded.

3 Data

Our database is composed of 23 classes, including 20 distinct
bird species, general insects sounds, and human-related activ-
ities, such as dog barking and engine noises (including chain-
saw and car engine sounds). The selection of these events
was based on feedback and insights from both locals and re-
searchers, ensuring their relevance to the study.
Initially, data was recorded using the XIXI SPY micro-

phone. However, after more than 900 hours of recording
time, we encountered insufficient data for each class, partic-
ularly for events that has rare occurrence, such as specific
bird species’ vocalizations. To address this issue, we in-
cremented the dataset by including additional data from the
ESC50, xeno-canto and FreeSound databases. It is impor-
tant to emphasize that for xeno-canto, only the audios that
were recorded in the central-western and northern regions of
Brazil were selected. Similarly, for ESC50 and FreeSound,
only the insects that are native to the same region were cho-
sen. Furthermore, it is essential to emphasize that this work
is solely dedicated to research, and as such, the data collected
from these databases were strictly intended for research pur-
poses only. The total number of samples per class is shown
in Table 2.

Table 2. Total number of samples per class.

Class Number of samples
Amazonian Motmot 21

Black-capped Antwren 20
Black-capped Screech-Owl 20
Blue-and-yellow Macaw 31
Boat-billed Flycatcher 23

Buff-necked Ibis 33
Insects 218

Chivi Vireo 38
Chopi Blackbird 24
Dog Barking 249

Engine 304
Flavescent Warbler 24
Great Kiskadee 27

Helmeted Manakin 25
Orange-headed Tanager 28
Pale-breasted Thrush 34
Pavonine Cuckoo 27

Red-shouldered Macaw 22
Small-billed Tinamou 34
Tropical Screech-Owl 41
Undulated Tinamou 37

White-chinned Sapphire 29
White-eyed Parakeet 20

Following the manual syllable splitting procedure de-
scribed in Section II.A, the resulting total number of samples

for each bird species, as well as for the other sound events,
is shown in Table 3.

Table 3. Total number of samples per class after the syllable split-
ting procedure.

Class Number of samples
Amazonian Motmot 85

Black-capped Antwren 73
Black-capped Screech-Owl 55
Blue-and-yellow Macaw 93
Boat-billed Flycatcher 84

Buff-necked Ibis 95
Insects 218

Chivi Vireo 103
Chopi Blackbird 87
Dog Barking 249

Engine 304
Flavescent Warbler 98
Great Kiskadee 98

Helmeted Manakin 98
Orange-headed Tanager 94
Pale-breasted Thrush 112
Pavonine Cuckoo 106

Red-shouldered Macaw 89
Small-billed Tinamou 105
Tropical Screech-Owl 113
Undulated Tinamou 99

White-chinned Sapphire 95
White-eyed Parakeet 81

During the data collection procedure, it was identified that
some bird species and insects syllables were larger compared
to the mean duration of their respective classes, increasing
the class overall standard deviation, as presented in Table 4.
This can be attributed to the variations in vocalization size
and complexity among different species [Kershenbaum et al.,
2016]. However, the mean duration of the classes is still rel-
atively short, indicating that the majority of the syllables has
a shorter time duration. On the other hand, the engine class
has the highest mean value, which was already expected be-
cause the majority of the files were from the ESC50 dataset,
where each one has a duration of 5 seconds.
After the data collection stage, the gathered data is pro-

cessed using the methodology described in Section II.A,
which involves splitting each audio into 0.5s chunks. The
final number of samples per class is shown in Table 5, where
it can be seen that our dataset is highly unbalanced.

Table 4. Statistical analysis of the data time duration.

Class Mean (s) Standard deviation (s)
Birds 1.453 2.005
Insects 2.831 5.955

Dog barking 0.593 0.385
Engine 4.133 1.401

It is important to emphasize that the data is split into train-
ing, validation, and test sets before the syllable and time win-
dow splitting procedures (see Table 2). This ensures that data
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Table 5. Total number of syllables for each class after the pre-
processing step.

Class Number of syllables
Amazonian Motmot 443

Black-capped Antwren 698
Black-capped Screech-Owl 2469
Blue-and-yellow Macaw 527
Boat-billed Flycatcher 294

Buff-necked Ibis 564
Insects 3235

Chivi Vireo 293
Chopi Blackbird 411
Dog barking 600

Engine 6681
Flavescent Warbler 405
Great Kiskadee 336

Helmeted Manakin 712
Orange-headed Tanager 528
Pale-breasted Thrush 568
Pavonine Cuckoo 1372

Red-shouldered Macaw 743
Small-billed Tinamou 258
Tropical Screech-Owl 378
Undulated Tinamou 661

White-chinned Sapphire 1097
White-eyed Parakeet 462

leakage is avoided, preventing any artificial inflation of the
models’ performance.

4 Results

In this section, we present the results of a deep learn-
ing approach combining Mel-frequency cepstral coefficients
(MFCC) with a CNN to compare computational cost and
classification performance with that of the chosen shallow
learner. We also assess the performance of the proposed
models with and without the use of the Synthetic Minority
Over-sampling Technique (SMOTE) for data augmentation.
The SMOTE is a popular method for addressing class im-
balance in datasets by generating synthetic samples for the
minority classes by first selecting a minority class instance
at random and finding its k nearest minority class neighbors.
A synthetic instance is then created by randomly choosing
one of the k nearest neighbors β and forming a line segment
between α and β in the feature space. The synthetic instance
is generated as a convex combination of α and β. This helps
improve the performance of machine learning models, espe-
cially in scenarios where the number of samples in the minor-
ity classes is limited [Chawla et al., 2002]. It should be noted
that SMOTE is applied solely to the training dataset during
the experiments conducted in this study to prevent data leak-
age. Additionally, a dedicated subsection compares both ap-
proaches in terms of classification performance, processing
cost, and memory usage. Finally, we discuss the results and
execution performance of the selected approach when em-
bedded in the Nordic Thingy:53.

4.1 Deep Learning Approach

As mentioned previously, the selected deep learning ap-
proach involves extracting MFCC features from each split
audio sample and using them as input to a CNN. For the
sake of comparison with the shallow learner, this approach
was chosen due to its proven effectiveness, its success in bird
classification and sound event detection, and its continuous
use in numerous studies in the literature, as can be seen in
[Lasseck, 2018; Ntalampiras and Potamitis, 2021; Xie et al.,
2019; Zhang et al., 2021; Carvalho and Gomes, 2023; Kama-
rajugadda et al., 2024; Saad, 2020]. The use of transformers
has shown promising results in bird sound detection as well,
although their high computational cost [Rauch et al., 2023;
Zhang et al., 2023] makes them prohibitive for deployment
on the Nordic Thingy:53, and thus they are not considered in
the current work. Additionally, more complex CNN archi-
tectures are excluded from this study due to their increased
computational cost. Consequently, a simpler CNN architec-
ture is used, which is presented in Figure 5. This architecture
was achieved through HPT combined with a Monte Carlo
cross-validation approach, with a limited set of simple ar-
chitectures and hyperparameters. The implemented Monte
Carlo algorithm consists of conducting 100 experiments for
each model evaluated by the HPT. In each experiment, the
dataset is randomly split into training and test data in a strat-
ified 80/20 ratio, respectively. The Adaptive Moment Esti-
mation (ADAM) optimizer was employed for training. The
extracted MFCC features, used as inputs of the CNN, have
a shape of (128, 16). This corresponds to 128 mel bins, a
hop length of 512, and an FFT size of 2048 applied to each
audio sample following the window split procedure to stan-
dardize the sample size. Specifically, each sample, prior to
MFCC extraction, has a fixed size of 8000 time points. Table
6 presents the classification results for the considered classes
using the deep learning approach. All the steps of this proce-
dure were developed in Python 3.11.3.

128 x 16

64 x 8 64 x 8

16384 128 128 23

3232

Conv2D MaxPooling2D Dropout Flatten Dense

Figure 5. The CNN architecture. ReLU activation functions are used for
both the convolutional and intermediate dense layers, while the final dense
layer uses a softmax activation function. The dropout rate is set to 0.25.

From Table 6, it can be observed that the model exhibits
an overall performance exceeding 78% in F1 score. How-
ever, there are notable variations in classification perfor-
mance across different classes. This disparity is particularly
pronounced when comparing the top and bottom performers.
For instance, the Black-capped Screech Owl demonstrates
an F1 score of 91%, while the Great Kiskadee shows an F1
score below 51%. To improve the model’s performance, sev-
eral data augmentation techniques were tested, including tra-
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Table 6. Performance metrics for the trained CNN model without
SMOTE data augmentation, sorted by F1 score. The top three per-
forming classes are highlighted in teal, while the bottom three are
shown in red. In cases of a tie, the classes are ordered alphabeti-
cally.

Class Precision (%) Recall (%) F1 (%)
Black-capped
Screech Owl

98.1 84.9 91.0

Engine 84.1 97.9 90.5
Tropical Screech-
Owl

88.4 91.0 89.7

White-chinned Sap-
phire

92.7 84.4 88.4

Chopi Blackbird 78.2 97.4 86.8
Pavonine Cuckoo 91.8 81.7 86.4
White-eyed Parakeet 83.3 76.1 79.5
Amazonian Motmot 78.6 76.7 77.6
Dog barking 75.7 67.5 71.3
Flavescent Warbler 74.4 68.1 71.1
Insects 60.9 82.0 69.9
Orange-headed Tan-
ager

83.8 59.6 69.7

Helmeted Manakin 82.0 60.3 69.5
Undulated Tinamou 97.2 53.8 69.3
Buff-necked Ibis 87.5 53.8 66.7
Black-capped
Antwren

67.2 65.0 66.1

Chivi Vireo 69.7 59.0 63.9
Boat-billed Fly-
catcher

77.3 53.1 63.0

Red-shouldered
Macaw

78.9 46.2 58.3

Blue-and-yellow
Macaw

61.5 49.0 54.5

Small-billed
Tinamou

58.6 47.2 52.3

Pale-breasted
Thrush

78.6 38.6 51.8

Great Kiskadee 64.0 42.1 50.8
Weighted Average 80.2 79.3 78.5

ditional SMOTE, adding random noise, pitch-shifting, and
applying frequency and time masking to the spectrograms
[Ferreira-Paiva et al., 2022]. However, none of these meth-
ods resulted in significant improvements. Although tradi-
tional SMOTE helped reduce class imbalance, it did not lead
to a notable performance boost. One potential explanation
is that the high-dimensional input feature space may limit
SMOTE’s effectiveness, as discussed in [Blagus and Lusa,
2013]. Furthermore, SMOTE is primarily designed for nu-
merical vectors and is not inherently suited for time-series
or sequential data, where the relationship between samples
is crucial. In time-series data (such as audio or other signal-
based data), preserving the temporal structure is essential for
accurate model interpretation [Zhao et al., 2022]. Due to its
design, SMOTE canmixmatrices (representing sequences of
data) without considering their temporal dependencies. This
process may introduce distortions or misalignments in the
time-series data, generating noise rather thanmeaningful syn-

thetic examples, which could negatively impact model per-
formance. Additionally, the pitch-shifting technique caused
a significant decrease in model performance, increasing con-
fusion between bird species and reducing the overall F1 score
by more than 10%.
To address this issue, Temporal-oriented SMOTE (T-

SMOTE) was employed to the raw training data after the
syllable splitting with the goal of generating synthetic data
points by interpolating between instances of the minority
class while preserving their temporal relationships. Given a
set ofminority class samplesP = {X1, X2, . . . , Xn}, where
each sample Xi is a one-dimensional vector in the problem
under analysis, Xi ∈ RT , with T representing the sequence
length after the syllable splitting (i.e., the number of times-
tamps), with xi

j being the raw audio segment value at time
step j for sample Xi. In summary, T-SMOTE works as fol-
lows [Zhao et al., 2022]:

1. T-SMOTE generates a set of candidate samples with dif-
ferent leading time l,X l

i , near the class boundary, where
a subsequence of length w (with w < T ) is selected
from the sequenceXi. The subsequence starts at times-
tamp T − l−w+ 1 and ends at timestamp T − l. Math-
ematically, the subsequence is:

X l
i = {xT −l−w+1

i , . . . , xT −l
i }.

2. T-SMOTE then generates synthetic samples by interpo-
lating the subsequences. For a given subsequenceX l

i , a
new synthetic sample Xnew is created by linearly inter-
polating between X l

i and its temporal neighbor X l+1
i .

The interpolation is done along the temporal dimension,
preserving the structure of the time-series data:

Xnew = αX l
i + (1 − α)X l+1

i ,

where α is a random value on the interval [0, 1] gener-
ated by Beta distribution.

3. Finally, T-SMOTE uses a weighted sampling technique
to select the generated synthetic samples. This helps re-
duce noise and prevent overfitting by emphasizingmore
meaningful synthetic samples near the decision bound-
ary, based on their relevance to the minority class.

In other words, for each sample in the minority class, syn-
thetic samples are created by linearly interpolating the gen-
erated segments along the time axis. After this, the time
window splitting procedure is applied, followed by MFCC
feature extraction, thereby maintaining the structure and in-
tegrity of the feature space in the time and spectral (fre-
quency) dimensions while increasing the volume of the train-
ing data. With this approach, all classes were balanced to
3000 samples per class in the training data. The results fol-
lowing this procedure are shown in Table 7.
From Table 7, it can be observed that the model’s classifi-

cation performance improved overall by approximately 4%
in the weighted F1 score, resulting in an F1 score above 82%.
However, T-SMOTE had a negative impact on some classes
(e.g., Small-Billed Tinamou), which could be attributed to
overfitting in certain minority classes or boundary confu-
sion during the T-SMOTE procedure. Furthermore, using
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Table 7. Performance metrics for the trained CNN model with T-
SMOTE data augmentation, sorted by F1 score. The top three per-
forming classes are highlighted in teal, while the bottom three are
shown in red. In cases of a tie, the classes are ordered alphabeti-
cally.

Class Precision (%) Recall (%) F1 (%)
Black-capped
Screech-Owl

97.6 91.6 94.5

Tropical Screech-
Owl

95.3 91.0 93.1

Engine 87.1 97.5 92.0
Chopi Blackbird 81.8 98.5 89.4
White-chinned Sap-
phire

93.6 81.1 86.9

Pavonine Cuckoo 88.5 84.4 86.4
White-eyed Parakeet 92.5 80.4 86.0
Insects 85.1 85.7 85.4
Flavescent Warbler 88.6 66.0 75.6
Helmeted Manakin 86.5 66.2 75.0
Amazonian Motmot 74.4 74.4 74.4
Dog barking 78.1 68.7 73.1
Orange-headed Tan-
ager

69.0 76.9 72.7

Black-capped
Antwren

64.9 80.0 71.6

Chivi Vireo 82.8 61.5 70.6
Buff-necked Ibis 67.3 71.2 69.2
Undulated Tinamou 61.7 76.9 68.5
Boat-billed Fly-
catcher

64.7 68.8 66.7

Red-shouldered
Macaw

83.7 55.4 66.7

Great Kiskadee 77.8 55.3 64.6
Blue-and-yellow
Macaw

73.5 51.0 60.2

Pale-breasted
Thrush

64.3 47.4 54.5

Small-billed
Tinamou

50.0 30.6 37.9

Weighted Average 83.0 83.0 82.4

the MFCC approach to reduce the number of Mel bins and
working with smaller architectures has been shown to reduce
the classification performance of the DL model.

4.2 Shallow Learner Approach

As mentioned in Section 2.2, the ML algorithm chosen to de-
velop the shallow learner is XGBoost, and its optimal set of
hyperparameters was determined by performing the HPT in
conjunction with a Monte Carlo cross-validation approach.
Analogously to the experiments conducted using the deep
learning approach, the implemented Monte Carlo algorithm
consists of conducting 100 experiments for eachmodel evalu-
ated by the HPT. In each experiment, the dataset is randomly
split into training and test data in a stratified 80/20 ratio, re-
spectively.
This approach was implemented to assess the robustness

of each model and evaluate its performance under different

training and test data scenarios. All the steps of this pro-
cedure were developed in Python 3.11.3, and the resulting
optimal set of hyperparameters is presented in Table 8. Fur-
thermore, the performance metrics of a single trained XG-
Boost model, evaluated on the same test data used for the
deep learning approach, are summarized in Table 9.

Table 8. Hyperparameters of the XGBoost model.

Parameter Value
Number of estimators 5

Max depth 6
Learning rate 0.712

Table 9. Performance metrics for the trained XGBoost model with-
out SMOTE data augmentation, sorted by F1 score. The top three
performing classes are highlighted in teal, while the bottom three
are shown in red. In cases of a tie, the classes are ordered alphabet-
ically.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 92.3 95.9 94.1
Black-capped
Screech-Owl

87.9 92.5 90.1

White-chinned Sap-
phire

82.2 90.9 86.3

Engine 80.0 92.0 85.6
Tropical Screech-
Owl

78.8 88.2 83.2

Insects 79.4 86.2 82.7
White-eyed Parakeet 72.4 68.5 70.4
Pavonine Cuckoo 68.7 71.2 69.9
Undulated Tinamou 83.2 59.8 69.6
Red-shouldered
Macaw

68.3 65.1 66.7

Dog barking 72.2 58.3 64.5
Flavescent Warbler 65.3 60.5 62.8
Small-billed
Tinamou

74.3 50.0 59.8

Black-capped
Antwren

65.5 52.9 58.5

Buff-necked Ibis 62.6 50.4 55.9
Boat-billed Fly-
catcher

58.5 52.5 55.4

Blue-and-yellow
Macaw

69.7 43.8 53.8

Helmeted Manakin 62.9 46.5 53.4
Amazonian Motmot 61.4 39.8 48.3
Orange-headed Tan-
ager

55.0 41.5 47.3

Pale-breasted
Thrush

53.7 37.7 44.3

Great Kiskadee 45.8 40.3 42.9
Chivi Vireo 37.8 28.8 32.7
Weighted Average 76.1 77.2 76.2

From Table 9, one can notice that the model exhibits an
overall performance above 76% in terms of the F1 score,
slightly below the deep learning approach. Nonetheless, it
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is clear that, similarly to the deep learning approach, the
model’s performance varies within different sound events, as
evidenced by the difference in results for the Chopi Blackbird
and the Chivi Vireo. To improve the model’s performance,
some data augmentation techniques, such as SMOTE and T-
SMOTE, were applied to evaluate themodel’s improvements
over the classification scores. The traditional SMOTE tech-
nique showed a increase of performance of approximately
3%. Since the features used in this approach do not explicitly
exhibit temporal dependencies, they can be treated as numer-
ical vectors, making them suitable for the SMOTE technique.
However, the procedure using the T-SMOTE overall yielded
better results, by increasing the weighted F1 score by more
than 6%. With this approach, all classes were balanced to
3000 samples per class in the training data. The results fol-
lowing this procedure are shown in Table 10.

Table 10. Performance metrics for the trained XGBoost model with
T-SMOTE data augmentation, sorted by F1 score. The top three per-
forming classes are highlighted in teal, while the bottom three are
shown in red. In cases of a tie, the classes are ordered alphabeti-
cally.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 99.2 99.5 99.4
Black-capped
Screech-Owl

93.7 93.1 93.4

Tropical Screech-
Owl

90.0 94.7 92.3

White-chinned Sap-
phire

92.1 90.9 91.5

Insects 90.9 86.9 88.9
Engine 93.9 79.1 85.9
Undulated Tinamou 80.4 84.1 82.2
Pavonine Cuckoo 81.9 74.1 77.8
Red-shouldered
Macaw

77.3 77.9 77.6

Black-capped
Antwren

75.2 77.9 76.5

Flavescent Warbler 68.0 86.4 76.1
White-eyed Parakeet 69.5 79.3 74.1
Dog barking 65.1 79.2 71.4
Boat-billed Fly-
catcher

63.0 78.0 69.7

Amazonian Motmot 61.3 73.9 67.0
Buff-necked Ibis 61.5 73.5 66.9
Pale-breasted Thrush 61.7 71.9 66.4
Orange-headed Tan-
ager

58.1 70.8 63.8

Great Kiskadee 58.0 70.1 63.5
Helmeted Manakin 68.3 59.2 63.4
Blue-and-yellow
Macaw

50.0 79.0 61.3

Small-billed
Tinamou

55.4 78.8 65.1

Chivi Vireo 48.7 64.4 55.5
Weighted Average 84.1 82.3 82.8

From Table 10, it can be observed that the model’s clas-
sification performance improved overall, resulting in an F1

score above 82%. In this case, the T-SMOTE data augmen-
tation had a greater effect than in the deep learning approach.
In that case, the T-SMOTE contributed to reducing the per-
formance discrepancy between classes.

4.3 Approaches Comparison
In this section, for the sake of comparison between the DL
and shallow learner approaches, both methods are analyzed
in terms of their classification performance (see Tables 7-
10). Additionally, since the goal of this work is to embed the
solution in the Nordic Thingy:53 hardware, the processing
costs and memory usage of both approaches are also com-
pared. Given that the DL approach typically has relatively
highmemory consumption andmodel size, quantization tech-
niques were applied to assess the feasibility of embedding
this approach into the target hardware.
For this purpose, post-training quantization was per-

formed, which involves representing the weights and activa-
tions of the CNN, as well as the operations involved in the
MFCC preprocessing, with lower-precision data types. In
this study, model conversion to TensorFlow Lite (TFLite)
and MFCC function conversion were tested using differ-
ent quantization formats, including 16-bit floating point
(float16), 8-bit integer (int8), and 8-bit unsigned integer
(uint8). Quantization reduces the solution size and mem-
ory footprint, making it more suitable for embedded systems,
though it may lead to a slight decrease in model accuracy.
Previous works, such as those by [Jacob et al., 2018], have
demonstrated the effectiveness of these techniques for re-
ducing the computational cost while maintaining an accept-
able level of accuracy in embedded systems. The results for
the comparison of the shallow learner approach and the DL
approach, considering all the processing steps and different
types of quantization, can be seen in Table 11.

Table 11. Comparison of the chosen shallow learner (XGBoost) and
DL approaches in terms of computational and classification perfor-
mance, including peak processing memory, file size, and weighted
F1 score. For the DL approach, results are presented for the non-
converted model, the TensorFlow-to-TFLite converted model, and
three types of quantization.

Approach Peak processing (KB) Size (KB) F1 (%)
Shallow
Learner

752 358 82.8

DL 2801 25166 82.4
DL
(TFLite)

2411 8176 82.4

quantized
DL
(float16)

1578 4099 82.4

quantized
DL (int8)

1187 2065 81.8

quantized
DL (uint8)

1054 2045 56.4

As can be observed in Table 11, the shallow learner ap-
proach still maintains the best balance between classification
performance, memory size, and computational cost, achiev-
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ing the highest weighted F1 score, the smallest memory foot-
print, and the lowest processing cost. Even when compared
to the deep learning approach with integer quantization, its
computational cost remains lower.

4.4 Embedded Solution
During the process of transferring the pre-processing code
from Python to the C programming language, a slight loss
was observed in the WPT step due to a necessary decrease in
floating point precision. However, this loss was insignificant
and had no impact on the XGBoost performance. Therefore,
no loss was observed during the conversion of the trained
model from Python to C, as it achieved the exact same results
presented in Table 9 when evaluated with the same data.
The sound event filter was developed following the

methodology described in Section 2.3. The main objective
was to optimize the retention of relevant sound event sam-
ples, including birds, insects, dog barking, and engine noises,
while simultaneously minimizing the number of undesirable
samples, such as wind and ambient noise, that pass through
the filter. In essence, the challenge lies in striking a well-
balanced trade-off between capturing relevant events and re-
jecting unwanted ones. To validate the proposed wind fil-
ter algorithm, wind audio samples, along with other sound
events such as chainsaw, engine, dog barking, insects, hu-
man laughing, and siren, from the ESC-50 dataset [Piczak,
2015] were used to verify whether there is a low rate of wind-
contaminated samples passing through the filter in compari-
son to other sound events. The results are shown in Table
12. Furthermore, during the development process, an ad-
ditional set of 1000 audio samples contaminated by wind
noise and over 3000 samples of only environmental ambi-
ent noises (collected from the area of interest) were included,
along with the samples presented in Table 5, to thoroughly
test the filter’s performance within the solution development
dataset. The results are presented in Table 13.

Table 12. The sound event filter validation results using the ESC-
50 dataset wind samples.

Class % of samples passing through the filter
Wind 25.00

Other Events 69.60

Table 13. The sound event filter results using the dataset employed
to develop the embedded solution.

Class % of samples passing through the filter
Birds 75.55
Insects 76.06

Dog barking 75.83
Engine 80.02
Wind 18.92

Ambient Noise 0.27

From Tables 12 and 13, it can be observed that the filter
performs as intended, showing slightly better results for the

test dataset compared to the validation dataset. At a mini-
mum, the filter retains approximately 70% of the relevant
sound event samples while removing around 75% of wind-
contaminated samples and almost entirely eliminating sam-
ples with only ambient noises.
It is important to mention that the collected data is sent to a

hardware gateway that connects sensors to the cloud through
Long Range Wide-Area Network (LoRaWAN), a standard
Low-Power Wide-Area Network (LPWAN) communication
protocol for low-power wide-area networks that works on
Long Range (LoRa), which relays the result of inferences to
our platform. In order to evaluate the hardware’s battery run-
time, we conducted an experiment in which the solution ran
continuously in an infinite loop with different power levels
for the LoRa communication until the battery was fully de-
pleted. The entire experiment was conducted indoors with
no external peripherals, and only an LED was used to indi-
cate that the hardware was still operating. Table 14 presents
the results of the battery runtime experiment.

Table 14. Battery runtime of the Nordic Thingy:53 embedded solu-
tion at different LoRaWAN transmission power levels.

Transmission Power Hardware Runtime (h)
Without LoRaWAN 75

Low Power 41
Medium Power 28
High Power 11

From Table 14, it can be seen that the hardware’s battery
runtime demonstrated a duration ranging from 11 to 75 hours,
depending on the power level of the wireless communica-
tion. These results reaffirm the viability of the proposed solu-
tion for field use, particularly when utilizing low-power Lo-
RaWAN for transmitting the solution’s inference results. It
should be highlighted here that the onboard nPM1100 pro-
vides the Thingy:53 with advanced battery management that
not only has Li-Ion charging capabilities but can also help to
extend battery life. The battery provided with the Thingy:53
has a capacity of 1350mAh and can be charged over a USB
C cable.

5 Discussion
The results of sound event classification provide a com-
parison between a shallow learning approach, which uses
wavelet coefficient energy as input features, and a more con-
ventional CNN approach, which uses MFCCs as input fea-
tures. It is important to note that the nature of these two
types of input features could potentially lead to biased con-
clusions regarding the performance of each model. How-
ever, the main objective of this comparison is not to evalu-
ate the models’ performance directly but rather to assess the
entire pipeline — ranging from feature extraction to the clas-
sification model — and determine whether it can be embed-
ded into the proposed hardware, considering computational
cost, while still maintaining acceptable classification perfor-
mance. The results showed that the deep learning approach
achieved a weighted F1 score above 82% with the use of
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the T-SMOTE technique on the training dataset. Addition-
ally, as highlighted in Section 4.3, the CNNmodel’s size and
memory consumption make it unfeasible for embedding into
the Nordic Thingy:53, even with the use of post-quantization
techniques. Despite only a negligible decrease in classifica-
tion performance (except for the uint8 approach), the mem-
ory reduction is still insufficient to fit within the hardware
constraints.
It is important to note that more complex CNN archi-

tectures would likely yield better overall performance, as
demonstrated in previous studies (e.g., [Lasseck, 2018; Nta-
lampiras and Potamitis, 2021; Xie et al., 2019; Zhang et al.,
2021; Carvalho and Gomes, 2023; Kamarajugadda et al.,
2024; Saad, 2020]). However, since even the simple archi-
tecture tested in this study was too large in terms of memory
to be embedded in the Nordic Thingy:53, further experimen-
tation with more complex architectures would not be feasible
and would go beyond the scope of this study.
In contrast, the shallow learner approach, while slightly

underperforming compared to the deep learning approach
without data augmentation, showed a significant improve-
ment with the use of T-SMOTE. Its performance increased to
over 82%, surpassing the CNN+MFCC approach by 0.4% in
the overall weighted F1 score. Consequently, the XGBoost
model, based on the shallow learner approach, was selected
to compose the solution embedded in the Nordic Thingy:53,
as discussed in Section 4.4. Figure 6 presents the confusion
matrix for the chosen (best) model, which is the one embed-
ded in the hardware.
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Figure 6. The confusion matrix for the model embedded in the Nordic
Thingy:53 hardware. This model is the XGBoost, utilizing the shallow
learner approach, where the input space consists of WPT coefficient energy.
The blue dots refer to sound event test samples that were accurately pre-
dicted, while the red dots represent false positives or false negatives, indi-
cating incorrect predictions.

From Figure 6 and Table 10, one can notice that the XG-
Boost model performance ranges from 99.4% to 55.5% in
terms of F1 score, performing particularly well for human

activity-related events and some bird species, such as the
Chopi Blackbird, Black-capped Screech-Owl, and Tropical
Screech-Owl. However, certain discrepancies in the results
for other bird species (see Table 10) could be attributed to
various factors:

• Firstly, the presence of inharmonic calls can pose a chal-
lenge in precisely characterizing the vocalizations of
some species [Yang et al., 2021].

• Moreover, it is important to note that the pre-processing
of the disposable data resulted in a very unbalanced
training dataset, which could lead to biases in the
model’s predictions, affecting its performance. This is-
sue is partially addressed with the use of T-SMOTE,
which improves the model’s overall performance.

• Additionally, some bird species may have a signifi-
cantly larger vocabulary of syllables compared to oth-
ers [Garamszegi et al., 2012] (e.g., Buff-necked Ibis),
requiring greater variance and diversity in the training
data to classify them adequately Even T-SMOTE could
not address this issue, and the only solution would be
to acquire more training data for species with a broader
range of vocabulary.

• Lastly, some audio samples were contaminated by the
calls of other birds or background sound events (e.g.,
some engine audios had bird calls in the background,
and a few bird audios had calls from different species
occurring at the same time), which could potentially
prejudice the model’s decision-making process. This
is evidenced by the confusion matrix shown in Figure
6, which indicates that the class most often confused by
the model is bird species with engine sounds.

In summary, the proposed shallow learner demonstrates
potential for classifying sound events, especially considering
its low computational cost, which is a significant advantage.
However, addressing the aforementioned challenges to fur-
ther enhance its performance and robustness could be a con-
cern, particularly when considering integration into an end-
device. For instance, tackling the audio background contam-
ination would require a complex filtering algorithm to isolate
the relevant sound event from the rest of the audio. Adding
such computational complexity to the algorithmmight render
the solution unfeasible to embed in resource-constrained de-
vices. This emphasizes the importance of finding a balance
between accuracy and computational efficiency.
When integrated into the Nordic Thingy:53, the embedded

solution performed as expected. The shallow learner main-
tained its performance seamlessly when running on the hard-
ware, and the entire solution operated smoothly without en-
countering any errors. Moreover, the embedded sound event
filter proved to be effective, reducing the number of samples
contaminated by wind and almost completely eliminating oc-
currences of samples with only ambient noises (see Table
13). These results are consistent with the study by Juodakis
and Marsland [Juodakis and Marsland, 2022], which demon-
strated the potential of using WPT to detect wind noise, as
well as with the studies [Nelke et al., 2016; Honkakunnas,
2021; Guo and Zheng, 2022], which reinforce the idea that
wind sound retains energy in the lower frequency range. Re-
garding battery runtime, this refers to the duration of oper-
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ation with low-power wireless communication, in line with
the use of LoRaWAN. Specifically, the embedded solution
can operate continuously for up to 41 hours.

6 Conclusions
In the present work, we proposed an embedded ML so-
lution aimed at supporting environmental acoustic moni-
toring. Our approach focuses on tracking both bird bio-
diversity and human-related sound events using Nordic’s
Thingy:53 hardware and its built-in Vesper’s digital PDM
VM3011 microphone. The solution is mainly based on a
low-dimensional feature extraction step, which consists of
performing the WPT on the audio signal and calculating the
energy from its coefficients. These extracted features serve
as input for a low-cost Gradient Boosting model responsi-
ble for performing the event classification. This approach
has demonstrated potential for the assigned task, delivering
a near-real-time response and a classification performance
above 82% of weighted F1 score even when integrated into
Nordic Thingy:53, while our developed sound event filter
has proven to be robust against wind and ambient noise. Fur-
thermore, we strongly believe that this approach exhibits re-
markable versatility, making it easily adaptable to track and
classify not only bird species from distinct regions but also
potentially extendable to classify species from other fauna
families, such as anurans. Additionally, the embedded so-
lution can operate continuously for approximately 41 hours
before requiring a recharge, making it a reliable tool for as-
sisting ecoacoustic researchers during extended field surveys.
Moreover, due to challenges of relocating the research team
to other biomes and the scope of the project being restricted
to the central and western regions of Brazil, future studies
should be conducted across diverse ecosystems and a broader
range of sound categories to test the versatility of the pro-
posed solution.
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A EloquentML
This appendix aims to explain the use of the EloquentML li-
brary for converting Scikit-Learn models to C language. The
code below provides an example of how to use the Scikit-
Learn library to train a Support Vector Machine (SVM)
model using the Iris dataset. Through the ’port’ method, im-
ported from micromlgen (one of the tools in EloquentML),
the trained model is converted into a .h file.

1 from micromlgen import port
2 from sklearn.svm import SVC
3 from sklearn.datasets import load_iris
4
5 if __name__ == '__main__':
6
7 iris = load_iris()
8 X = iris.data
9 y = iris.target
10 clf = SVC(kernel='linear', gamma=0.001).fit(X, y)
11
12 with open('SVMLinear.h', 'w') as file:
13 file.write(port(clf, classmap={
14 0: 'setosa',
15 1: 'virginica',

16 2: 'versicolor'}))

The code generated in the .h file is shown as follows:

1 #pragma once
2 #include <cstdarg>
3 namespace Eloquent {
4 namespace ML {
5 namespace Port {
6 class SVM {
7 public:
8 // Predict class for features vector
9 int predict(float *x) {
10 float kernels[27] = { 0 };
11 float decisions[3] = { 0 };
12 int votes[3] = { 0 };
13 kernels[0] = compute_kernel(x, 5.1 , 3.3 , 1.7 ,

0.5 );↪→
14 kernels[1] = compute_kernel(x, 4.8 , 3.4 , 1.9 ,

0.2 );↪→
15 (...)
16 + kernels[25] * -0.160296720576
17 - kernels[26];
18 votes[decisions[0] > 0 ? 0 : 1] += 1;
19 votes[decisions[1] > 0 ? 0 : 2] += 1;
20 votes[decisions[2] > 0 ? 1 : 2] += 1;
21 int val = votes[0];
22 int idx = 0;
23 for (int i = 1; i < 3; i++) {
24 if (votes[i] > val) {
25 val = votes[i];
26 idx = i;
27 }
28 }
29 return idx;
30 }
31 // Predict readable class name
32 const char* predictLabel(float *x) {
33 return idxToLabel(predict(x));
34 }
35 // Convert class idx to readable name
36 const char* idxToLabel(uint8_t classIdx) {
37 switch (classIdx) {
38 case 0:
39 return "setosa";
40 case 1:
41 return "virginica";
42 case 2:
43 return "versicolor";
44 default:
45 return "Houston we have a problem";
46 }
47 }
48 protected:
49 // Compute kernel between feature vector and support vector

Linear.↪→
50 float compute_kernel(float *x, ...) {
51 va_list w;
52 va_start(w, 4);
53 float kernel = 0.0;
54 for (uint16_t i = 0; i < 4; i++) {
55 kernel += x[i] * va_arg(w, double);
56 }
57 return kernel;
58 } }; } } }

Finally, an example of how to import the header file
and use the SVM class of our model, and use the predict()
method.

1 #include SVMLinear.h"
2
3 Eloquent::ML::Port::SVM cls;
4 float X[] = {...};
5
6 void setup() {
7 }
8
9 void loop() {
10 float y_pred = cls.predict(X);
11 }

B Shallow Learners Results
From Table 15 to Table 28, we present the classification per-
formance of all shallow learners tested, comparing the results
with and without the use of T-SMOTE data augmentation.
As in Section 4, the analysis considered the optimal set of
hyperparameters for each model, determined through hyper-
parameter tuning (HPT) combined with a Monte Carlo cross-
validation approach. That is, theMonte Carlo algorithm used
for this purpose involves conducting 100 experiments for
each model evaluated by the HPT. In each experiment, the
dataset is randomly split into training and test data in a strati-
fied 80/20 ratio, respectively, with subsequent syllable splits

https://eprints.utm.my/93040/
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https://doi.org/10.1017/S0030605317001181
https://doi.org/10.1109/ACCESS.2019.2957572
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https://doi.org/10.1073/pnas.0408049101


Environmental Monitoring with Low-Processing Embedded AI through
Sound Event Classification Junqueira et al. 2025

for bird species and time window segmentation. The metrics
presented in this appendix for each shallow learner represent
a single trained model with the optimal set of hyperparame-
ters evaluated on the same test data. The results for the XG-
Boost model, the selected shallow learner to be embedded
into the Nordic Thingy:53, are presented in Section 4.

Table 15. Performance metrics for the trained LightGBM model
without SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 92.1 95.9 94.0
Black-capped
Screech-Owl

89.2 90.3 89.7

White-chinned Sap-
phire

83.4 87.2 85.3

Engine 76.4 93.9 84.3
Insects 77.6 86.9 82.0
Tropical Screech-
Owl

80.8 82.9 81.8

White-eyed Parakeet 81.4 62.0 70.4
Pavonine Cuckoo 69.6 63.5 66.4
Undulated Tinamou 80.0 51.5 62.7
Black-capped
Antwren

63.4 59.3 61.3

Red-shouldered
Macaw

63.8 59.1 61.3

Flavescent Warbler 69.4 53.1 60.1
Dog barking 63.8 55.8 59.6
Boat-billed Fly-
catcher

53.1 57.6 55.3

Blue-and-yellow
Macaw

65.2 41.0 50.3

Helmeted Manakin 45.0 47.9 46.4
Amazonian Motmot 62.7 36.4 46.0
Buff-necked Ibis 54.1 35.4 42.8
Small-billed
Tinamou

51.4 34.6 41.4

Great Kiskadee 60.0 31.3 41.2
Pale-breasted Thrush 46.6 36.0 40.6
Orange-headed Tan-
ager

60.0 25.5 35.8

Chivi Vireo 32.0 13.6 19.0
Weighted avg 73.9 75.2 73.7

Table 16. Performance metrics for the trained LightGBM model
with T-SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 99.0 99.0 99.0
Black-capped
Screech-Owl

96.1 89.7 92.8

Tropical Screech-
Owl

89.6 90.8 90.2

White-chinned Sap-
phire

89.3 87.2 88.2

Insects 88.8 81.0 84.7
Engine 91.4 79.3 84.9
Red-shouldered
Macaw

80.0 75.2 77.5

Undulated Tinamou 74.1 75.8 74.9
Flavescent Warbler 65.7 85.2 74.2
Black-capped
Antwren

77.3 70.7 73.9

Pavonine Cuckoo 79.5 67.9 73.2
White-eyed Parakeet 65.5 80.4 72.2
Boat-billed Fly-
catcher

66.2 72.9 69.4

Dog barking 61.9 75.8 68.2
Helmeted Manakin 64.9 69.0 66.9
Small-billed
Tinamou

58.7 71.2 64.3

Buff-necked Ibis 55.8 72.6 63.1
Blue-and-yellow
Macaw

51.9 78.1 62.4

Amazonian Motmot 51.6 72.7 60.4
Orange-headed Tan-
ager

50.3 70.8 58.8

Great Kiskadee 55.3 62.7 58.7
Pale-breasted Thrush 51.7 65.8 57.9
Chivi Vireo 82.1 79.9 80.6
Weighted avg 82.1 79.9 80.6
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Table 17. Performance metrics for the trained SVC model without
SMOTE data augmentation, sorted by F1 score. The top three per-
forming classes are highlighted in teal. In cases of a tie, the classes
are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

79.2 90.4 84.4

Engine 62.6 79.9 70.2
Black-capped
Screech-Owl

56.5 83.2 67.3

Chopi Blackbird 43.1 90.8 58.4
Pavonine Cuckoo 48.0 65.0 55.2
Insects 39.6 40.2 39.9
Tropical Screech-
Owl

52.2 31.6 39.3

Undulated Tinamou 70.8 25.8 37.8
Amazonian Motmot 62.5 22.7 33.3
Orange-headed Tan-
ager

75.9 20.8 32.6

Red-shouldered
Macaw

51.2 14.8 22.9

Great Kiskadee 24.6 20.9 22.6
Dog barking 78.9 12.5 21.6
Helmeted Manakin 34.4 15.5 21.4
Boat-billed Fly-
catcher

29.2 11.9 16.9

Buff-necked Ibis 24.5 10.6 14.8
Pale-breasted Thrush 100.0 7.9 14.6
Black-capped
Antwren

13.1 7.9 9.8

White-eyed Parakeet 33.3 5.4 9.3
Flavescent Warbler 66.7 2.5 4.8
Chivi Vireo 100.0 1.7 3.3
Blue-and-yellow
Macaw

100.0 1.0 1.9

Small-billed
Tinamou

0.0 0.0 0.0

Weighted avg 54.9 53.2 47.8

Table 18. Performance metrics for the trained SVC model with
T-SMOTE data augmentation, sorted by F1 score. The top three
performing classes are highlighted in teal. In cases of a tie, the
classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

83.7 86.8 85.2

Chopi Blackbird 76.7 56.4 65.0
Black-capped
Screech-Owl

52.7 78.3 63.0

Tropical Screech-
Owl

45.0 94.7 61.0

Engine 84.6 46.8 60.2
Pavonine Cuckoo 67.3 48.2 56.2
Undulated Tinamou 54.3 57.6 55.9
Buff-necked Ibis 36.1 54.0 43.3
White-eyed Parakeet 32.9 58.7 42.2
Orange-headed Tan-
ager

41.9 41.5 41.7

Red-shouldered
Macaw

36.6 37.6 37.1

Insects 66.4 24.4 35.7
Boat-billed Fly-
catcher

22.5 57.6 32.4

Flavescent Warbler 21.1 69.1 32.3
Pale-breasted Thrush 39.1 23.7 29.5
Helmeted Manakin 40.8 21.8 28.4
Small-billed
Tinamou

20.0 48.1 28.2

Blue-and-yellow
Macaw

19.8 47.6 27.9

Dog barking 20.2 44.2 27.7
Great Kiskadee 21.4 37.3 27.2
Black-capped
Antwren

26.5 25.7 26.1

Amazonian Motmot 17.0 43.2 24.4
Chivi Vireo 15.9 16.9 16.4
Weighted Average 59.9 46.7 50.1
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Table 19. Performance metrics for the trained LinearSVC model
without SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

77.3 91.8 83.9

Chopi Blackbird 54.7 91.5 68.5
Engine 40.5 95.1 56.8
Pavonine Cuckoo 46.1 53.3 49.4
Black-capped
Screech-Owl

46.2 28.5 35.3

Orange-headed Tan-
ager

52.6 9.4 16.0

Pale-breasted Thrush 35.0 6.1 10.4
Helmeted Manakin 53.8 4.9 9.0
Insects 11.9 6.0 8.0
Tropical Screech-
Owl

66.7 2.6 5.1

Flavescent Warbler 100.0 1.2 2.4
Amazonian Motmot 0.0 0.0 0.0
Black-capped
Antwren

0.0 0.0 0.0

Blue-and-yellow
Macaw

0.0 0.0 0.0

Boat-billed Fly-
catcher

0.0 0.0 0.0

Buff-necked Ibis 0.0 0.0 0.0
Chivi Vireo 0.0 0.0 0.0
Dog barking 0.0 0.0 0.0
Great Kiskadee 0.0 0.0 0.0
Red-shouldered
Macaw

0.0 0.0 0.0

Small-billed
Tinamou

0.0 0.0 0.0

Undulated Tinamou 0.0 0.0 0.0
White-eyed Parakeet 0.0 0.0 0.0
Weighted avg 32.8 43.2 32.0

Table 20. Performance metrics for the trained LinearSVC model
with T-SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

65.0 90.0 75.5

Chopi Blackbird 86.9 66.2 75.1
Black-capped
Screech-Owl

50.5 74.9 60.3

Tropical Screech-
Owl

39.3 98.7 56.2

Pavonine Cuckoo 59.9 49.6 54.3
Undulated Tinamou 53.5 40.2 45.9
White-eyed Parakeet 35.3 45.7 39.8
Red-shouldered
Macaw

55.3 17.4 26.5

Orange-headed Tan-
ager

21.3 34.0 26.2

Great Kiskadee 16.7 34.3 22.4
Boat-billed Fly-
catcher

13.6 61.0 22.2

Small-billed
Tinamou

11.7 67.3 19.9

Pale-breasted Thrush 21.5 14.9 17.6
Flavescent Warbler 9.7 61.7 16.8
Buff-necked Ibis 13.4 19.5 15.9
Chivi Vireo 9.9 30.5 15.0
Engine 82.1 7.2 13.2
Blue-and-yellow
Macaw

9.9 14.3 11.7

Amazonian Motmot 5.5 53.4 10.0
Helmeted Manakin 22.6 4.9 8.1
Dog barking 9.7 2.5 4.0
Black-capped
Antwren

21.4 2.1 3.9

Insects 6.7 0.3 0.6
Weighted avg 48.3 31.0 28.4
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Table 21. Performance metrics for the trained NUSVCmodel with-
out SMOTE data augmentation, sorted by F1 score. The top three
performing classes are highlighted in teal. In cases of a tie, the
classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

84.8 84.0 84.4

Chopi Blackbird 77.2 62.6 69.1
Black-capped
Screech-Owl

52.0 75.5 61.6

Engine 84.8 41.0 55.3
Undulated Tinamou 57.6 51.5 54.4
Pavonine Cuckoo 67.4 44.5 53.6
Tropical Screech-
Owl

29.5 92.1 44.7

White-eyed Parakeet 36.0 53.3 43.0
Orange-headed Tan-
ager

40.8 39.6 40.2

Red-shouldered
Macaw

34.5 45.0 39.1

Buff-necked Ibis 30.9 40.7 35.1
Boat-billed Fly-
catcher

25.6 52.5 34.4

Blue-and-yellow
Macaw

21.3 58.1 31.1

Dog barking 26.9 35.0 30.4
Black-capped
Antwren

31.0 27.9 29.3

Great Kiskadee 24.5 34.3 28.6
Pale-breasted Thrush 36.1 22.8 28.0
Small-billed
Tinamou

18.7 50.0 27.2

Amazonian Motmot 17.4 46.6 25.4
Flavescent Warbler 15.7 66.7 25.4
Insects 37.8 18.7 25.0
Helmeted Manakin 36.2 17.6 23.7
Chivi Vireo 17.9 23.7 20.4
Weighted avg 56.1 45.8 47.0

Table 22. Performance metrics for the trained NUSVC model with
T-SMOTE data augmentation, sorted by F1 score. The top three
performing classes are highlighted in teal. In cases of a tie, the
classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

84.5 79.5 81.9

Chopi Blackbird 89.5 50.5 64.6
Black-capped
Screech-Owl

54.5 77.1 63.9

Engine 82.1 45.0 58.1
Pavonine Cuckoo 63.3 39.1 48.3
Tropical Screech-
Owl

30.2 92.1 45.5

Undulated Tinamou 49.1 41.7 45.1
White-eyed Parakeet 33.1 58.7 42.4
Red-shouldered
Macaw

41.5 36.2 38.7

Orange-headed Tan-
ager

32.3 39.6 35.6

Buff-necked Ibis 35.5 34.5 35.0
Dog barking 42.0 28.3 33.8
Insects 39.5 28.7 33.3
Boat-billed Fly-
catcher

24.6 47.5 32.4

Flavescent Warbler 19.6 65.4 30.2
Blue-and-yellow
Macaw

17.9 56.2 27.1

Great Kiskadee 20.8 38.8 27.1
Small-billed
Tinamou

17.7 50.0 26.1

Amazonian Motmot 18.3 39.8 25.1
Chivi Vireo 21.0 28.8 24.3
Helmeted Manakin 29.3 20.4 24.1
Pale-breasted Thrush 20.8 28.1 23.9
Black-capped
Antwren

30.3 19.3 23.6

Weighted avg 56.2 46.0 47.8
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Table 23. Performance metrics for the trained Random Forest
model without SMOTE data augmentation, sorted by F1 score. The
top three performing classes are highlighted in teal. In cases of a
tie, the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 95.1 100.0 97.5
Black-capped
Screech-Owl

92.9 95.1 94.0

Tropical Screech-
Owl

89.2 97.4 93.1

White-chinned Sap-
phire

88.5 95.0 91.6

Insects 88.0 91.0 89.5
Engine 82.3 96.6 88.9
Pavonine Cuckoo 80.1 78.1 79.1
Undulated Tinamou 89.4 70.5 78.8
Flavescent Warbler 79.7 77.8 78.7
Dog barking 74.1 71.7 72.9
Red-shouldered
Macaw

73.6 71.1 72.4

Black-capped
Antwren

74.0 69.3 71.6

White-eyed Parakeet 74.1 68.5 71.2
Blue-and-yellow
Macaw

78.0 61.0 68.4

Buff-necked Ibis 73.5 63.7 68.2
Helmeted Manakin 71.1 60.6 65.4
Boat-billed Fly-
catcher

80.0 54.2 64.6

Orange-headed Tan-
ager

74.0 53.8 62.3

Pale-breasted Thrush 77.8 49.1 60.2
Small-billed
Tinamou

77.4 46.2 57.8

Amazonian Motmot 80.9 43.2 56.3
Great Kiskadee 64.6 46.3 53.9
Chivi Vireo 63.4 44.1 52.0
Weighted avg 83.2 83.7 82.9

Table 24. Performance metrics for the trained Random Forest
model with T-SMOTE data augmentation, sorted by F1 score. The
top three performing classes are highlighted in teal. In cases of a
tie, the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 97.5 99.5 98.5
Tropical Screech-
Owl

93.7 97.4 95.5

Black-capped
Screech-Owl

95.8 92.9 94.3

White-chinned Sap-
phire

90.6 92.2 91.4

Insects 92.8 87.8 90.2
Engine 94.2 82.0 87.6
Black-capped
Antwren

84.8 75.7 80.0

Red-shouldered
Macaw

75.6 81.2 78.3

Undulated Tinamou 75.4 81.1 78.1
Pavonine Cuckoo 85.3 71.9 78.0
Dog barking 73.0 83.3 77.8
Flavescent Warbler 68.2 90.1 77.7
White-eyed Parakeet 69.1 82.6 75.2
Boat-billed Fly-
catcher

67.7 74.6 71.0

Helmeted Manakin 73.3 67.6 70.3
Orange-headed Tan-
ager

60.6 75.5 67.2

Buff-necked Ibis 60.4 74.3 66.7
Pale-breasted Thrush 62.3 71.1 66.4
Great Kiskadee 60.5 73.1 66.2
Small-billed
Tinamou

56.2 78.8 65.6

Chivi Vireo 58.1 72.9 64.7
Amazonian Motmot 58.7 69.3 63.5
Blue-and-yellow
Macaw

51.9 79.0 62.6

Weighted avg 85.3 83.6 84.1



Environmental Monitoring with Low-Processing Embedded AI through
Sound Event Classification Junqueira et al. 2025

Table 25. Performancemetrics for the trainedDecision Treesmodel
without SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 94.7 95.9 95.3
White-chinned Sap-
phire

85.7 87.2 86.4

Black-capped
Screech-Owl

83.5 85.2 84.4

Tropical Screech-
Owl

76.7 86.8 81.5

Engine 80.5 80.8 80.7
Insects 78.7 79.3 79.0
Undulated Tinamou 63.6 67.4 65.4
Pavonine Cuckoo 57.1 59.9 58.5
Flavescent Warbler 53.7 63.0 58.0
Buff-necked Ibis 56.8 55.8 56.2
White-eyed Parakeet 52.5 57.6 54.9
Red-shouldered
Macaw

52.3 54.4 53.3

Boat-billed Fly-
catcher

50.0 50.8 50.4

Black-capped
Antwren

50.0 47.1 48.5

Dog barking 49.5 45.0 47.2
Orange-headed Tan-
ager

45.5 43.4 44.4

Amazonian Motmot 48.6 39.8 43.8
Pale-breasted Thrush 41.3 39.5 40.4
Blue-and-yellow
Macaw

39.0 37.1 38.0

Small-billed
Tinamou

36.4 38.5 37.4

Helmeted Manakin 42.3 33.1 37.2
Great Kiskadee 38.3 26.9 31.6
Chivi Vireo 29.0 33.9 31.3
Weighted avg 70.2 70.5 70.3

Table 26. Performancemetrics for the trainedDecision Treesmodel
with T-SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
Chopi Blackbird 95.9 96.9 96.4
Tropical Screech-
Owl

91.0 93.4 92.2

Black-capped
Screech-Owl

88.2 86.4 87.3

White-chinned Sap-
phire

88.1 84.5 86.2

Insects 87.6 77.6 82.3
Engine 91.1 66.5 76.8
Undulated Tinamou 69.1 72.7 70.8
Red-shouldered
Macaw

71.2 69.8 70.5

White-eyed Parakeet 56.9 80.4 66.7
Pavonine Cuckoo 67.8 63.1 65.4
Black-capped
Antwren

61.9 68.6 65.1

Flavescent Warbler 50.4 77.8 61.2
Dog barking 54.2 70.0 61.1
Buff-necked Ibis 52.2 62.8 57.0
Blue-and-yellow
Macaw

47.7 67.6 55.9

Helmeted Manakin 51.3 56.3 53.7
Pale-breasted Thrush 42.8 54.4 47.9
Amazonian Motmot 38.5 62.5 47.6
Small-billed
Tinamou

35.9 63.5 45.8

Orange-headed Tan-
ager

37.8 55.7 45.0

Boat-billed Fly-
catcher

41.2 47.5 44.1

Great Kiskadee 36.6 55.2 44.0
Chivi Vireo 31.1 47.5 37.6
Weighted avg 76.6 72.5 73.7
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Table 27. Performance metrics for the trained Naive Bayes model
without SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

76.2 87.7 81.5

Tropical Screech-
Owl

59.8 64.5 62.0

Chopi Blackbird 84.4 47.2 60.5
White-eyed Parakeet 31.0 42.4 35.8
Pavonine Cuckoo 75.0 21.9 33.9
Orange-headed Tan-
ager

53.1 16.0 24.6

Red-shouldered
Macaw

13.3 78.5 22.8

Black-capped
Screech-Owl

34.1 14.2 20.0

Great Kiskadee 11.8 43.3 18.6
Dog barking 12.3 27.5 17.0
Boat-billed Fly-
catcher

11.0 30.5 16.1

Flavescent Warbler 11.9 16.0 13.7
Buff-necked Ibis 45.0 8.0 13.5
Amazonian Motmot 31.8 8.0 12.7
Pale-breasted Thrush 19.2 8.8 12.0
Small-billed
Tinamou

5.9 26.9 9.6

Engine 34.6 4.8 8.4
Blue-and-yellow
Macaw

4.3 68.6 8.1

Undulated Tinamou 15.0 4.5 7.0
Chivi Vireo 7.9 5.1 6.2
Helmeted Manakin 16.7 2.8 4.8
Insects 23.8 1.5 2.9
Black-capped
Antwren

0.0 0.0 0.0

Weighted avg 36.2 20.2 19.9

Table 28. Performance metrics for the trained Naive Bayes model
with T-SMOTE data augmentation, sorted by F1 score. The top
three performing classes are highlighted in teal. In cases of a tie,
the classes are ordered alphabetically.

Class Precision (%) Recall (%) F1 (%)
White-chinned Sap-
phire

75.2 88.6 81.3

Tropical Screech-
Owl

58.8 65.8 62.1

Chopi Blackbird 87.1 46.7 60.8
White-eyed Parakeet 27.8 43.5 33.9
Pavonine Cuckoo 76.6 21.5 33.6
Red-shouldered
Macaw

15.6 68.5 25.5

Orange-headed Tan-
ager

40.5 16.0 23.0

Amazonian Motmot 13.3 45.5 20.6
Great Kiskadee 10.6 53.7 17.7
Pale-breasted Thrush 21.8 10.5 14.2
Flavescent Warbler 10.6 14.8 12.4
Buff-necked Ibis 25.7 8.0 12.2
Dog barking 13.8 9.2 11.0
Black-capped
Screech-Owl

69.2 5.5 10.1

Boat-billed Fly-
catcher

7.8 11.9 9.4

Small-billed
Tinamou

5.7 19.2 8.8

Blue-and-yellow
Macaw

4.4 80.0 8.4

Engine 47.3 4.0 7.3
Chivi Vireo 7.0 6.8 6.9
Helmeted Manakin 16.2 4.2 6.7
Undulated Tinamou 8.8 4.5 6.0
Black-capped
Antwren

2.0 2.1 2.1

Insects 10.8 0.6 1.2
Weighted avg 40.5 19.1 18.4
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