
Journal of the Brazilian Computer Society, 2024, 30:1, doi: 10.5753/jbcs.2024.4236
 This work is licensed under a Creative Commons Attribution 4.0 International License.

BWBEV: A Bitwise Query Processing Algorithm for
Approximate Prefix Search
Edleno S. de Moura [Federal University of Amazonas | edleno@icomp.ufam.edu.br]
Berg Ferreira [Federal University of Amazonas | berg@icomp.ufam.edu.br]
Altigran da Silva [Federal University of Amazonas | alti@icomp.ufam.edu.br]
Ricardo Baeza-Yates [Northeastern University | rbaeza@acm.org]

Received: 16 March 2024 • Accepted: 08 September 2024 • Published: 27 October 2024

AbstractWe tackle the challenge of conducting an approximate prefix search within datasets of strings. We explore
using a bit-parallelism technique to compute the edit distance between distinct strings and illustrate its adaptation
for an approximate prefix search procedure referred to as BWBEV. This technique employs a unary representation
of edit vectors alongside bitwise operations to efficiently update these vectors during the edit distance computa-
tion. We also show how to apply our new bit-parallelism technique strategy to online edit distance computation
between strings without index structure. Our experiments with BWBEV applied to approximate prefix search for a
query autocompletion task revealed a substantial acceleration of over 36% when contrasted against state-of-the-art
methods.

Keywords: bit-parallelism, autocomplete, trie, error tolerance.

1 Introduction
Search systems are the core in many current applications
such as e-commerce services, search engines [Alaofi et al.,
2022], and embedded in-vehicle interfaces [Zhong et al.,
2022]. However, even nowadays, these applications have
some challenges in efficiently finding relevant results for
their users. For example, around 10-15% of searches submit-
ted to a search system have typing errors [Cucerzan and Brill,
2004], also when the users do not have enough knowledge
about the application, they use the try-and-see approach [Ji
et al., 2009] and spend more time searching to relevant re-
sults.
An essential component adopted in the interaction be-

tween the user and the search system is the Query Autocom-
pletion (QAC) system, which can guide users in choosing
high-value queries to submit to the search system. Also, they
help to reduce from 40% to 60% of typing effort on aver-
age [Ji et al., 2009] and to correct errors in typing time, be-
ing an important component of usability, especially in mo-
bile applications, where these devices have tiny keyboards
and users can easily produce typographical errors.
The QAC systems suggest full queries based on a typed

prefix and consist of the phases of matching and ranking.
Thematching phase receives the prefix and selects the strings
similar to the prefix based on a threshold. The ranking phase
sorts the matching results according to a score function and
selects the top most relevant results for the user. For more
details about QAC systems, see Cai and de Rijke [2016];
Phophalia [2011], which presents a detailed survey about
query autocompletion in information retrieval.
An example of an error-tolerant QAC system is shown

in Figure 1. In this example, the user receives suggestions
such as “smartphone”, “smartphone samsung”, “smartphone
xiaomi”, and “smartphone 5g”, all of which match the mis-
spelled typed prefix query “smarph”. The user can continue

typing the whole query and the system needs to present effi-
ciently suggestions for each keystroke.

sendsmarph

smartphone
smartphone samsung

smartphone xiaomi
smartphone 5g

Figure 1. Example of an error-tolerant query autocompletion system.

We here focus on the matching phase approaching the is-
sue of finding efficiently all items from a large set of string
keys that match a given search prefix, while allowing a lim-
ited maximum number of matching errors. This study as-
sumes that the string keys are previously stored in a large
dataset and the system allows for approximate matching. In
the following, we formally defined the problem that we are
addressing for the matching phase:

• Σ being an alphabet composed of a finite number of
symbols;

• p being a prefix query composed of symbols in Σ and
|p| denoting the length of p;

• S = {s1, ..., sn} being a set of strings to be searched
and s[1, j] denoting a prefix of s, where 1 ≤ j ≤ |s|.
For example, for s = “auto” we have s[1, 1] = “a”,
s[1, 3] = “aut” and s[0] = s[5] = ϵ (an empty string
out of the border);

• p = s[1, |p|] being an exact prefix match between p and
s;

• ed(p, s) being the edit distances given by the minimum
number of insertions, removals, or substitutions of sym-
bols required to transform s to p or vice-versa. For ex-
ample, ed(“ant”, “auto”) = 2 as we can transform “ant”

https://orcid.org/0000-0002-7860-9575
mailto:edleno@icomp.ufam.edu.br
https://orcid.org/0000-0001-8985-5045
mailto:berg@icomp.ufam.edu.br
https://orcid.org/0000-0002-8992-495X
mailto:alti@icomp.ufam.edu.br
https://orcid.org/0000-0003-3208-9778
mailto:rbaeza@acm.org

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

to “auto” by an insertion of “o” in the end and a substi-
tution from “n” to “u”;

• ped(p, s) = min
|p|+τ
j=|p|−τ ed(p, s[1, j]) being the prefix

edit distances between the two strings p and s and a
maximum number of edit distances τ . For example,
given a τ = 1, the ped(“ant”, “auto”) = min(ed(“ant”,
“au”), ed(“ant”, “aut”), ed(“ant”, “auto”)) = 1.

The error-tolerant prefix search consists of finding all
strings si ∈ S such that there is a prefix match between p
and si with a maximum edit distance τ or more formally:
R = {si | si ∈ S ∧ ped(p, si[1, j]) ≤ τ}, where |p| − τ ≤
j ≤ |p|+ τ ;
The problem of approximate prefix search arises in various

practical scenarios, including DNA fragment search in large
DNA datasets, and approximate entity instance search in a
large dataset (e.g., people names, locations, etc.). However,
the specific application we are interested in is searching large
datasets of query suggestions in aQAC system. The key chal-
lenge in the context of QAC systems is the need to suggest
error-tolerant queries around or below 100ms [Miller, 1968]
as the user types character by character to avoid noticeable
delays during the user’s search session.
To efficiently support error-tolerant in QAC systems, ex-

isting methods [Chaudhuri and Kaushik, 2009; Ji et al., 2009;
Li et al., 2011; Xiao et al., 2013; Deng et al., 2016; Zhou
et al., 2016; Qin et al., 2020] adopt efficient data structures
such as Trie [Fredkin, 1960] and Burst Tries [Ferreira et al.,
2022] to index the strings in-memory. In search time, they
compute the trie nodes whose edit distances to the prefix
query are within the threshold, called Active Nodes, then the
system proceeds with the fetching operation by traversing
the trie to locate all leave nodes reachable from the active
nodes, thus retrieving the corresponding results. The man-
agement of the active nodes set is an important factor in the
efficiency of these methods. Another important factor is the
way to calculate the edit distance between two strings, even
in Learning-based approaches [Wang et al., 2018]. In this
paper, we focus on improving the edit distance calculation.

1.1 Contributions
We present a new method to QAC systems called Bitwise
Boundary Edit Vector (BWBEV) based on a bit-parallelism
approach to calculate efficiently the Levenshtein [Leven-
shtein, 1966] edit distance between two strings. We incor-
porate BWBEV for approximate prefix search by improving
the ideas presented in the method Boundary Edit Vector Au-
tomata (BEVA) [Zhou et al., 2016], one of the state-of-the-art
methods for QAC systems. While BEVA uses an automaton
referred to asEdit Vector Automata (EVA) to compute approx-
imate prefix matching, we replace it with our bit-parallel ap-
proach and speed up the time processing over 36%when con-
trasted against state-of-the-art methods. This result allows us
to use even larger datasets and more workloads in QAC sys-
tems.
We also present experiments with BWBEV when applied

to the problem of computing the online edit distance between
a pair of strings without using an index structure. While this
second task was not our target application, the experiments

are useful to show the practical scenarios where our algo-
rithm is competitive. For instance, it presents a competitive
performance when the compared strings are expected to be
different from each other in most of the cases, and when the
number of errors allowed in the comparison is small.
The remainder of this article is organized as follows. Sec-

tion 2 presents a review of the main related work. Section 3
explains related concepts and some definitions necessary to
understand our proposed ideas. Section 4 presents details
on the proposed method BWBEV. Section 5 presents experi-
ments to compare the proposed method with baselines. Sec-
tion 6 presents our conclusions and possible future research
directions.

2 Related Work

2.1 Computing the Edit Distance
To enhance our comprehension of recent methods for ap-
proximate prefix search, let us begin by introducing how to
adopt dynamic programming to compute the Leveinstein edit
distance [Levenshtein, 1966] or just edit distance between
strings p and s, with lengths n and m respectively. It popu-
lates a matrix denoted asM of dimensions (n+1)×(m+1).
The following recurrence relation enables the computation of
cell values in a single pass, either row-wise or column-wise:

M [i, j] = min(M [i− 1, j − 1] + δ(p[j], s[i]),
M [i− 1, j] + 1,

M [i, j − 1] + 1),
(1)

where δ(a, b) = 0 if a = b, and 1 otherwise. The values
assigned to the boundaries are M [0, j] = j and M [i, 0] = i.
In Table 1 we show how to obtain the distance between the
words “ant” and “auto”. We use the convention of placing
the prefix query string horizontally and the data string verti-
cally in the matrix. The edit distance between the two strings
can be obtained by simply extracting the value from the cell
position M [n, m] within the matrix. The time complexity to
calculate is O(n ·m).

0 1 2 3
ϵ a n t

0 ϵ 0 1 2 3
1 a 1 0 1 2
2 u 2 1 1 2
3 t 3 2 2 1
4 o 4 3 3 2

Table 1. When calculating the edit distance between “ant” and
“auto” the dynamic programming matrix is utilized.

Ukkonen [1985] made a significant observation: the edit
distance computation can be performed only on the matrix el-
ements situated within the k-diagonals. Here, k ranges from
−τ to τ , where τ represents the maximum edit distance al-
lowed. In Table 2 we show the diagonals -1, 0 (in dark gray),
and 1 for τ = 1 and the words “ant” and “auto”. The time
complexity to calculate is O(τ ·min(n, m)).

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

0 1 2 3
ϵ a n t

0 ϵ 0 1 2 3
1 a 1 0 1 2
2 u 2 1 1 2
3 t 3 2 2 1
4 o 4 3 3 2

Table 2. k-diagonal definition for strings “ant” and “auto” and τ =
1.

2.2 Approximate Prefix Search in Tries

The general concept behind recently proposed approximate
prefix search methods involves calculating the edit distance
operation between strings. Nevertheless, calculating this op-
eration between every pair of strings individually would re-
sult in excessive computational costs, rendering real-time
search results unfeasible. Therefore, these methods typically
employ an index structure to simultaneously compute the
edit distance between the entered prefix query and the entire
string dataset. In this section, we explain in more detail the
main approximate prefix search baseline methods and how
they perform fast prefix search.
When examining the existing literature on approximate

prefix search methods for retrieving results from large
datasets, it becomes evident that several approaches [Li et al.,
2011; Deng et al., 2016; Zhou et al., 2016; Qin et al., 2020]
employ tries, initially proposed by Fredkin [1960], or some
trie variations as an indexing data structure. Generally, most
methods employ breadth-first search (BFS) to traverse the
trie and a result list is generated for every character entered
during the processing of the prefix query. The key idea in
these methods involves the management of the active nodes
set, where each node is associated with a trie node and corre-
sponds to matches that satisfy a specified error limit τ . Vari-
ous algorithms proposed in the literature adopt this approach,
differing in how they handle the active nodes set.
The size of the active node set that is required to maintain

during approximate prefix search can be exceedingly high,
leading to a slower search process. ICPAN, presented by Li
et al. [2011], introduces a trie-based technique that reduces
the size of the active node set when compared to the methods
previously proposed by considering only a subset of active
nodes that do not involve the substitution or deletion of the
last characters, ICPAN reduces both memory consumption
and query response time.
In another effort to minimize the computational expenses

of computing active nodes, Deng et al. [2016] proposed
META, which also supports top-k query matches. META
uses a compact tree index to maintain the set of active nodes,
thus avoiding the redundant computations that occur in pre-
vious trie-based methods.
In their research, Zhou et al. [2016] introduced BEVA,

which accelerates query processing by storing the edit vector
values of each active node, enabling the storage of a minimal
set of active nodes, known as boundary active nodes. The
edit vectors are structures to support the edit distance calcu-
lation and are explored in detail in Section 3. In our study,
we adopted BEVA as a baseline to explore the application of
a bit-parallelism approach and we provide in Section 3.2 a

detailed explanation of how the BEVA method works.
Xiao et al. [2013] proposed IncNGTrie. It calculates the

edit distance by detecting a common prefix between two
strings and deleting a few characters in the prefix until the
prefixes are the same. This approach significantly reduces
the number of prefixes to be considered and speeds up the
query response time.
It is worth noting that memory usage and index size are

crucial factors to consider when designing autocomplete al-
gorithms, especially for large datasets. Although the Inc-
NGTrie algorithm is efficient in query processing time ac-
cording to experiments reported by Xiao et al. [2013], it re-
quires indexing several nodes for a single word, leading to a
higher memory consumption compared to other algorithms
in the literature. While the authors proposed a reduction in
the number of nodes indexed by eliminating duplicate nodes,
the algorithm still uses a large amount of memory, making
the index size a severe restriction to the use of IncNGTrie.
To address this issue, Qin et al. [2020] proposed an im-

provement to IncNGTrie that reduces the index size. While
their method still requires more memory than BEVA and
META, their new proposal reduces thememory requirements
of IncNGTrie, but increases the index building times. The
trade-off between memory consumption and indexing time
should be carefully considered when choosing an autocom-
plete algorithm for a specific application.
Ferreira et al. [2022] demonstrate how to adapt trie-

based algorithms for approximate prefix search to use burst-
tries [Heinz et al., 2002]. This adaptation technique enables
the methods to maintain almost the same performance as
when using the full trie while significantly reducing the ad-
ditional space required by the index. The burst tries experi-
mented with by the authors demand only a small fraction of
the space required by the full tries.

Hu et al. [2018] proposed a trie-based method that allows
combining location-aware and approximate query autocom-
pletion. Wang and Lin [2020] extended the ICPAN [Li et al.,
2011] method and propose a method called AutoEL to sup-
port approximate location-aware query autocompletion. The
approximate feature is enabled by applying the edit distance
to evaluate the textual similarity between a given query and
the underlying data, while the location-aware feature is taken
by choosing the k-nearest neighbors.

2.3 Pattern Matching using Bit-Parallelism
Approach

The bit-parallelism approach has two main applications: (1)
It parallelizes the work of the non-deterministic automaton
that solves the pattern-matching problem and (2) It paral-
lelizes the work of the dynamic programming matrix. There
is a variety of algorithms developed to perform approximate
string or prefix search. Part of them is explored in detail in
Navarro [2001].
The first of them is Shift-OR [Baeza-Yates and Gonnet,

1992]. The algorithm performs a string search by simulat-
ing the computation of a non-deterministic automaton by par-
allelizing its operations. Baeza-Yates [1999] represents the
same automaton presented in Shit-OR, by using unary arith-
metic to represent its states. We here adopt a similar idea for

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

representing each value for the k-diagonals of the dynamic
programming matrix by using a unary representation. Sev-
eral other authors have further explored the bit-parallelism
approach by extending the initial idea [Navarro and Raffinot,
2001; Peltola and Tarhio, 2003; Durian et al., 2009].
Wright [1994] introduced the first approach using bit-

parallelism in dynamic programming matrices. The concept
focuses on secondary diagonals from the upper right to the
bottom left, where each new diagonal can be computed us-
ing the two previous ones. This algorithm stores differences
using mod 4 and updates many diagonal cells in parallel
through vectorized comparisons of pattern and text charac-
ters. Myers [1999] presented a similarly straightforward al-
gorithm, requiring only O(|Σ|+ nm/w) time by computing
a bit representation of the relocatable dynamic programming
matrix, being |Σ| the alphabet size, w the computer word and
n and m two any strings. The algorithm’s performance is
consistent regardless of k, making it more efficient than pre-
vious methods for various choices of k and small m. The
Myers’s algorithm is one of our baselines to compute the edit
distance.
Hyyrö [2003] proposed a novel approach inspired by

Ukkonen’s diagonal restriction method, where vertical delta
vectors are tiled diagonally instead of horizontally by shifting
the vertical vectors upwards before processing each column
with complexity O(|Σ| + ⌈τ/w⌉m). Furthermore, the algo-
rithm explicitly maintains all values along the lower bound-
ary of the filled area of the dynamic programming matrix.
This involves setting values for diagonally consecutive cells
and horizontally consecutive cells based on specific condi-
tions. Hyyro’s algorithm is another of our baselines to com-
pute the edit distance.
In this paper, we are interested in parallelizing the work of

the dynamic programming matrix by using the compact rep-
resentation of the k-diagonals proposed by Ukkonen [1985]
and applying arithmetic operations over the bits.

3 Preliminaries

3.1 Edit Distance using Edit Vectors
We here better define the Edit Vector (EV) proposed by Zhou
et al. [2016] adopted to compute the edit distance. Edit vec-
tors serve as compact representations of the dynamic pro-
gramming matrices utilized for edit distance calculations.
Zhou et al. [2016] have shown the correctness of their al-
gorithm for computing edit distance by using only edit vec-
tors. They noted that a raw edit vector vj , considering a
threshold value of τ , corresponds to a vector of 2τ + 1
positions located at the j-th column of the dynamic pro-
gramming matrix as shown in the Table 3. In this Table,
each element vj [i] within the vector holds a value ranging
from 0 to τ , indicating a reported match with vj [i] errors,
or the value τ + 1 represented by the symbol #, indicat-
ing a mismatch. The edit vector for column 0 consistently
takes the form [τ, τ − 1, . . . , 1︸ ︷︷ ︸, 0, 1, 2, . . . , τ︸ ︷︷ ︸], as the word

in column 0 is empty. This characteristic is labeled as the
initial edit vector and represented by V0. Correspondingly,
the vector containing all values of τ + 1, represented as

[τ + 1, τ + 1, . . . , τ + 1︸ ︷︷ ︸
2τ+1

], is labeled as final edit vector and

represented by V⊥.

p
0 1 2 3
1 p e t

0 ϵ 0 1
1 p 1 0 1
2 l 1 1 #
3 a # #

s

4 n #
V0 V1 V2 V⊥

Table 3. Edit vectors represented in yellow and green for the strings
p and s and τ = 1

The computation of the threshold edit distance involves
calculating the j-th edit vector concerning a given threshold
value τ , starting from j = 0, using the following equation:

vj+1[i] = min(vj [i] + δ(p[j + 1], s[j − τ + i]),
vj [i + 1] + 1,

vj+1[i− 1] + 1),∀1 ≤ i ≤ 2τ + 1.

(2)

For instance, let us consider the strings p = “pet” and s =
“plan” in Table 3 for τ = 1. Then, the calculation of the new
edit vector V1 from V0 follows:

v1[1] = min(1 + δ(p, ϵ), 0 + 1, τ + 1) = 1 (3)

v1[2] = min(0 + δ(p, p), 1 + 1, 1 + 1) = 0 (4)

v1[3] = min(1 + δ(p, l), τ + 1, 0 + 1) = 1 (5)

Finally, the calculation of the edit distance between the
string p and the data string s is determined as v|s|[τ + 1 +
(|p| − |s|)] when |p| ∈ [|s| − τ, |s|+ τ] or more than τ other-
wise.
The edit vectors were defined in a context where the au-

thors were interested in deriving a method for search on large
string datasets, as part of the method BEVA described in the
next section. While Zhou et al. [2016] have not explicitly
considered the possibility of calculating the edit distance, the
comparison between two strings can then be computed by
only computing the values of the edit vectors, given a maxi-
mum error threshold τ . We adopt this algorithm in the exper-
iments and name it as EV algorithm, which can be considered
as a variant of Ukkonen’s algorithm.

3.2 Query Processing in BEVA
In this section, we explain in more detail the query process-
ing in BEVA [Zhou et al., 2016]. BEVA is a method adopted
for processing a prefix query search allowing errors on a
large string dataset. BEVA adopts an automaton strategy to

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

compute the prefix search results. We describe BEVA in de-
tail because we adopted it in the next section to use our bit
parallelism approach instead of their original automaton ap-
proach.
The BEVA employs a technique wherein the edit vector

values of each active node are stored in a structure called
Edit Vector Automata (EVA), enabling them to maintain a
minimal set of boundary active nodes necessary for conduct-
ing the edit distance computation. Hence, a boundary active
node is always associated with an edit vector in the EVA
structure. The calculation of the edit vector vj+1 was mod-
eled by Zhou et al. [2016] as a function f(vj , b), where b is a
bitmap of 2τ+1 bits and b = ¬δ(p[j+1], s[j−τ+i]). For ex-
ample, suppose the edit vectors of Table 3 for calculating the
transition function ¬δ(p, ϵ) = 0, ¬δ(p, p) = 1, ¬δ(p, l) = 0,
the bitmap b = 010. Then f([1, 0, 1], 010) = [1, 0, 1].
The control of the bitmaps during query processing in

BEVA [Zhou et al., 2016] is carried out in a table H that
represents the characters that appeared or not in the prefix
query. The size of H can be at most the size of the alphabet.
The update ofH is performed as the prefix query changes, i.e.
the bitmaps have shifted 1 bit to the left. New characters are
added to H with bitmap 001, and in the iterations following
it is only updated. A bitmap is removed fromH if it gets the
value 000 after updating the bitmaps.
For example, suppose that the edit distance threshold is

τ = 1 and the last 2τ + 1 = 3 characters of the prefix query
is “lov”. The dynamic table of bitmapHmaps “l” to 100, “o”
to 010, “v” to 001, and all the other characters of the alphabet
to 000. If a new character “e” is appended to the prefix query
“lov” changing to “love”, thus with the last 3 characters of
the prefix query being now “ove”. We shift leftwards all the
bitmap values, making the mapping of “l” become 000, “o”
100, and “v” 010. Finally, we mark the bitmap entry of “o”
in H as 001, meaning that it matches with the last character
of the prefix, and does not match with the two previous ones.
The authors of BEVA proposed a structure called Edit Vec-

tor Automata (EVA) that precomputes all the edit vectors that
can be generated based on bitmaps, being a bitmap and a pre-
vious edit vector just the key to finding the correct new edit
vector in this structure. The query processing in the BEVA
method then is performed together with the EVA structure,
and consequently, each node in the trie is associated with an
edit vector incorporated in the automaton. In the following,
we describe the main Algorithms 1 and 2 used in BEVA to
query processing.
Algoritm 1 receives the c, |p| and B as parameters, which

represents the current character from prefix query p, the
length of p, and a boundary active nodes set from the pre-
vious character or empty when |p| = 0, respectively. Ini-
tially, in line 3, the global table of bitmaps H is updated.
When |p| = 1, the unique active node is the root node as-
sociated with the initial edit vector, as described in lines 4
and 5, which remains active until the prefix query p exceeds
a threshold of τ characters (|p| > τ) typed by the user. Sub-
sequently, the method computes and stores the new set of
boundary active nodes after each character is typed by mak-
ing a scan in each child ofB in the trie, using the Algorithm 2.
In the Algorithm 2, the existing list of boundary active

nodes becomes inactive upon the addition of a new charac-

Algorithm 1 Process prefix query p

1: procedureMaintain(c, |p|,B)
2: B′ ← B
3: updateBitmap(c)
4: if |p| = 1 then
5: B′ ← ⟨r, V0⟩ ▷ r is the trie’s root node.
6: else if |p| > τ then
7: B′ ← ∅
8: for each ⟨n,S⟩ in B do
9: B′ ← B′ ∪ findActiveNodes(|p|, ⟨n,S⟩)
10: return B′

ter to the prefix query p. A scan is then performed in each
of their children in the trie to compute their respective edit
vector values by building a bitmap (line 6) and calling the
transaction function f (line 7) that just accesses the Edit Vec-
tor Automata (EVA) to retrieve the correspondent edit vector.
Subsequently, the algorithm classifies the edit vector and the
associated node as either terminal, inactive, or active node
based on their edit vector values as follows:

• terminal - denotes the state of a node when it has no
chance to activate other nodes.

• inactive - denotes the state of a node when it does not
represent a match, although its edit vector value sug-
gests the potential activation of one of its children.

• active - denotes the status of a node when it is included
in the new list of boundary active nodes for the prefix
query.

Algorithm 2 Find active nodes
1: procedure FindActiveNodes(|p|, ⟨n, V ⟩)
2: B′ ← ∅
3: level← n.level + 1
4: k ← |p| − n.level
5: for each child n’ of n do
6: bn′ ← buildBitmap(|p|, level, n′.char)
7: V ′ ← f(V, bn′)
8: if V ′ ̸= V⊥ then ▷ V⊥ is the final edit vector
9: if V ′[τ + 1 + k] ≤ τ then
10: B′ ← B′ ∪ ⟨n′, V ′⟩
11: else
12: B′ ← B′ ∪

findActiveNodes(|p|, ⟨n′, V ′⟩)
13: return B′

Nodes classified as inactive have their children recursively
scanned until either active or terminal nodes are found in all
paths derived from them, as described in lines 8 to 12. The
recursive process extends up to 2τ + 1 levels in the trie as
matches can be identified for paths ranging from |p| − τ to
|p| + τ . After completing this computation, the updated list
of active nodes can be used both to compute the answer to
the current typed prefix and as the seed to compute the new
list of active nodes when the user types a new character.
We here present a novel approach that uses the trie-based

approximate match algorithm proposed in the BEVAmethod.
But instead of using the edit vectors automaton (EVA) for
fast computation of edit vector values on each active node,

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

represents the edit vectors with a bit unary representation
and applies a bit-parallelism approach to calculate efficiently
the edit distance between two strings during the query pro-
cessing. Here we focus on improving the transition function
f performed in line 7 of the Algorithm 2. Through exper-
iments, we demonstrate that this combination results in a
method that is considerably faster than BEVA and has the
advantage of not requiring extra space to store the EVA.

4 BWBEV
In this section, we present a new method called Bitwise
BoundaryEditVector (BWBEV) to edit distance calculation.
BWBEV replaced the EVA structure in BEVA with an algo-
rithm for computing the edit vectors using bitwise operations.
BWBEV performs the calculation of the Equation 2 using
an efficient bit-parallelism approach. Then, from now we
demonstrate how to calculate the Equation 2 efficiently us-
ing our proposed ideas. The complete source code can be
found at GitHub repository1.
The formal notation is given by w, being the length of the

computer word (in bits). The sequence b1...bm is the bits of
a mask of length m. We use the exponentiation to denote
bit repetition (e.g. 0212 = 0011). We use the C-style syn-
tax to denote the bitwise operations. The operations are |
to denote the bitwise-or, & to denote the bitwise-and, <<
to denote the bitwise-shift-left, which moves the bits to the
left and enters zeros from the right, i.e, bmbm−1...b2b1 <<
r = bm−r...b2b10r and >> to denote the bitwise-shift-right,
which moves the bits to the right and enters zeros from the
left, i.e, b1b2...bm−1bm >> r = 0rb1b2...bm−r.

4.1 Unary Representation
To accelerate the calculation of a new edit vector from a pre-
vious edit vector, the same operation we described in Sec-
tion 3.1, we first propose and utilize a fixed unary represen-
tation to pack several values of each position of an edit vector
into a single computer word w. In our representation a num-
ber k is written using n bits as a sequence of k consecutive
zeros at left, followed by a sequence of n−k bits with value
one. Table 4 presents an example of representing numbers
from 0 to 3 using 3-bit numbers. With this unary representa-
tion, we can convert the edit vectorV0 in Table 3, for instance,
from [1, 0, 1] to the number ‘011 111 011’ (the blank space
is only for better visualization but it does not exist in the ac-
tual representation). From now on, the bit edit vectors are
represented as just a number (an unsigned long in C++) and
denoted by v.

4.2 Arithmetic Operations for Edit Vectors
To accelerate the update of edit vectors using bit-parallel op-
erations, we demonstrate some arithmetic operations over the
bits as the addition of 1 to all positions of an edit vector us-
ing our fixed-length unary representation, as well as how to
compute the minimum operation in parallel.

1https://github.com/vdbergg/BWBEV

Decimal Unary
0 111
1 011
2 001
3 000

Table 4. Example of a unary fixed length code with 3 bits. Each
number is represented by a sequence of bits set to zero followed by
bits with value 1.

4.2.1 Add 1

Table 5 illustrates the addition process. To add 1 in parallel
to all positions of an edit vector, we first perform a right shift
of 1 bit on it, and then apply a & (AND) operation with the
control mask to prevent 1’s from the end of a given position
of the vector to be carried to the following position after the
shift operation. The control mask value is a bit mask with
value [0[1τ]](2τ+1), where rn denotes the binary sequence r
repeated n times. For instance, if τ = 2, the control mask
becomes [0[12]](5), corresponding to “011 011 011 011 011”
in binary, with each 3-bit value representing a mask to match
one of the positions of the edit vector with 5 positions.
In the example where τ = 2, the bit edit vector v starts

with ‘001 011 111 011 001’, representing five 3-bit fixed
unary numbers, and thus the decimal values represented are
[2, 1, 0, 1, 2]. After the shift and the & operation with the
control mask, the final value of v becomes ‘000 001 011 001
000’, representing values [3, 2, 1, 2, 3], as shown in Table 5.

v[1] v[2] v[3] v[4] v[5]
Initial decimal values 2 1 0 1 2

v 001 011 111 011 001
v >> 1 000 101 111 101 100

[0[1]τ](2τ+1) 011 011 011 011 011
(v >> 1) & [0[1]τ](2τ+1) 000 001 011 001 000
Final decimal values 3 2 1 2 3

Table 5. Adding 1 to all positions of an edit vector v in parallel.
Example considering τ = 2.

Notice that the proposed add operation yields a convenient
result of τ + 1 when we add 1 to τ + 1, since this is the
maximum value reached by each position of the edit vector
when using the proposed unary representation.

4.2.2 Mininum Between Two Unary Numbers

Furthermore, to compute the min operation between two
unary numbers u and v, we only need to perform a bitwise |
(OR) operation between v and u, as shown in Table 6.

[1] [2] [3] [4] [5]
Initial decimal values u 2 1 0 1 2
Initial decimal values v 2 2 1 1 2

u 001 011 111 011 001
v 001 001 011 011 001

u | v 001 011 111 011 001
Final decimal values 2 1 0 1 2

Table 6. Applying min operation between two unary numbers u
and v.

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

4.2.3 Align Positions

To align position i + 1 of an edit vector v with position i,
we can shift v τ + 1 bits left, ie, v << τ + 1. Similarly, to
align the position i− 1 with position i, we shift v τ + 1 bits
right, ie, v >> τ + 1. These operations can be performed
in parallel for all positions of the edit vector, as shown in
Table 7. Another advantage of our edit vector representation
is that checking whether its current value represents a match
or not is a low-cost operation. An edit vector represents a
final edit vector with a mismatch when all positions have a
value τ + 1, which means this status can be detected when
v = 0.

v[1] v[2] v[3] v[4] v[5]
Initial decimal values 2 1 0 1 2

v 001 011 111 011 001
v << τ + 1 011 111 011 001 000

Final decimal values 1 0 1 2 3
v >> τ + 1 000 001 011 111 011

Final decimal values 3 2 1 0 1

Table 7. Aligning the position i + 1 of v with position i using the
bitwise operation v << τ + 1 and aligning the position i − 1 of v
with position i using the bitwise operation v >> τ + 1.

With our unary representation to pack each edit vector
value and the arithmetic operations described, we can per-
form efficiently the computation of the Equation 2 using bit
parallel operations. However, we observe that when two
computed strings are completely different, ie. there is a com-
plete mismatch between the two strings, we can simplify the
Equation 2 to accelerate the edit distance calculation. This
improvement is described in the next section.

4.3 Optimizing the Edit Vector Computation
We now show how to optimize the edit vector computation
whenever the bitmap b is zero, which might be a quite com-
mon situation in practical applications. To show that this
modification does not change the edit vector computation,
thus assuring the correctness of our edit distance computa-
tion, We observe that whenever the bitmap b is zero, which
means δ(p[j + 1], s[j − τ + i]) = 1, Equation 2 can be re-
placed by:

vj+1[i] = min(vj [i] + 1,

vj [i + 1] + 1,

vj+1[i− 1] + 1)
(6)

But,

vj+1[i− 1] + 1 = min(vj [i− 1] + 2,

vj [i] + 2,

vj+1[i− 2] + 2)
(7)

Taking the well-known property that |vj [x]−vj [y]| ≤ |x−
y| for any given valid value positions x and y, we have that
vj [i] + 2 > vj [i] + 1, and vj [i − 1] + 2 ≥ vj [i] + 1, as a
consequence of Equations 6 and 7, we have:

vj+1[i] = min(vj [i] + 1,

vj [i + 1] + 1,

vj+1[i− 2] + 2)
(8)

repeating the same reasoning τ + 1 times, we obtain:

vj+1[i] = min(vj [i] + 1,

vj [i + 1] + 1,

vj+1[i− (τ + 1)] + (τ + 1))
(9)

And as τ+1 is themaximumvalue achieved by an edit vec-
tor position, we can remove it from the Equation and have:

vj+1[i] = min(vj [i] + 1,

vj [i + 1] + 1)
(10)

This result is significant because it enables us to reduce
the computational cost of computing the vj+1 from vj . We
also observed that in query autocompletion tasks, our target
application, the prefix queries are usually small and the vo-
cabulary is large, making the scenario of b equals zero quite
common. Therefore, if we can perform add 1 and min oper-
ations in parallel for all cells of the edit vector, we can com-
pute the new edit vector in parallel for such scenarios.

4.4 BWBEV Algorithm
We now present our algorithm for computing new edit vector
values using bit parallelism. Algorithm 3 illustrates how to
compute a new edit vector vj+1, given the current edit vec-
tor vj , the bitmap b indicating whether there is a match or
not in each position of the prefix query and the maximum
number of allowed errors τ . vj and vj+1 represent the edit
vector positions using the unary representation described in
Section 4.1, and contain 2τ + 1 positions, each of them rep-
resented in a τ + 1 number coded as a fixed unary number.
The algorithm starts by assigning to vj+1[i] the min value
between vj [i] + 1 and vj [i + 1] + 1 using a small set of bit-
wise operations. Notice that this operation is performed in
parallel for all positions ∀1 ≤ i ≤ 2τ +1 (lines 2 and 3). We
should shift vj+1 τ + 1 bits to the left, but since adding 1 re-
quires a shift right of 1, we only shift left τ bits at line 2. If b
is zero, the value of vj+1 is already computed, and can be re-
turned. If not, the algorithm finishes the computation of each
position vj+1[x] by computing the minimum between the al-
ready computed value and vj [x] for each position x where b
indicates a match (lines 5 to 11). Finally, we update the value
of each position vj+1[x] with the minimum between the al-
ready computed value and value of vj+1[x− 1] + 1 (lines 12
to 15). To align vj+1[x− 1] with bits of vj+1[x], we need to
shift right τ + 1 bits and to add one to the elements we need
an extra shift, thus a total τ + 2 shift is required at line 14.
The BWBEV algorithm was specially designed for the

context of a QAC system but is important to highlight that
this algorithm can also calculate the online edit distance be-
tween any two strings in a most general context. In Algo-
rithm 4, we describe the changes necessary to process edit

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

Algorithm 3 Computes vj+1 from vj .
1: procedure computeNewEditVector(vj , b, τ)
2: vj+1 ← (vj >> 1) | (vj << τ)
3: vj+1 ← vj+1 & [0[1τ]](2τ+1)

4: if b ̸= 0 then
5: mask ← 1τ+102τ×(τ+1)

6: do
7: if b & 1[0]2τ then
8: vj+1 ← vj+1 | (vj & mask)
9: mask ← mask >> (τ + 1)
10: b← b << 1
11: while b ̸= 0
12: do
13: tmp← vj+1
14: vj+1 ← vj+1 | ((vj+1 >> (τ + 2)) &

[0[1τ]](2τ+1))
15: while tmp ̸= vj+1

16: return vj+1

distance between any two strings and we refer to this algo-
rithm as Bitwise Edit Vector (BWEV).
When implementing both methods, we have empirically

verified the correctness of our edit vector computation code
by computing all possible transitions for τ = 1 to τ = 4with
our simplified and bitwise versions and comparing them to
the original edit vector values. Notice that this simulation is
easily implemented by using the EVA computed by BEVA to
produce the reference value.
First, we need to pre-process the table of bitmaps H, for

each character in p, we mark the position that this character
occurs in the bitmap, setting the j + τ th-bit to 1 starting on
the left, as shown in lines 3 and 4. Second, we need to search
by simply iterating over each character in the string s. And
for each character in s, a value of τ and the Algorithm 3,
calculate the new edit vector from the previous edit vector
and a bitmap extracted from table H correspondent to the
current character in s. This search process follows until the
last character in s or when it reaches a final edit vector, as
shown in lines 7 to 13.

Algorithm 4 Computes edit distance between two strings p
and s limited to a maximum number of errors τ .
1: procedure computeEditDistance(p, s, τ)
2: /* preprocessing */
3: H ← 0 ▷H is the same bitmap table of BEVA.
4: for j = 1, 2, ...|p| do
5: H[p[j]]← H[p[j]] | 1 << (|p| − j + τ)
6:
7: /* searching */
8: v ← v0 ▷ v0 is the initial edit vector
9: for i = 1, 2, ...|s| do
10: b← H[p[c]] >> (|p| − i)
11: b← b << (w − (2τ + 1))
12: v ← computeNewEditVector(v, b, τ)
13: if v = 0 then
14: Break
15: return v[τ + 1 + (|p| − |s|)] ▷ when
|p| ∈ [|s| − τ, |s|+ τ] or more than τ otherwise.

We also observed that if the pair of strings is large than the
length of the computer word, ie. |p|+ τ > w or |s|+ τ > w,
we need to build the current bitmap of 2τ + 1 bits for each
character in s, marking the occurrence of the jth-character by
setting to 1 the bit in the bitmap starting on the left as follows:
b ← b | 1 when p[i] = s[j] or b ← b << 1 otherwise,
∀i ≤ j ≤ min((2τ + 1 + i), |s|).

4.5 Computational Cost
The difference between our algorithm and EV [Zhou et al.,
2016] is the way we compute the new values of the edit vec-
tors given the previous values. Such bit parallel computation
does not make sense when the proposed bit parallel edit vec-
tor does not fit in a computer word. In such situations, we
should just switch to the sequential computation of edit vec-
tors, using the EVmethod. For instance, when using a 64-bit
computer word, the maximum value of τ should be 4, since
our algorithm would require (2τ + 1)(τ + 1) bits for the edit
vector, which gives 45 bits. For τ equal to 5, the algorithm
would require 66 bits, so the bit edit vector would not fit into
a computer word. Notice that a virtual edit bit vector that
aggregates more than one computer word would be possible,
but performing bit operations in such a bit edit vector would
become expensive and would not be worth it. The restric-
tion for machine words in bit-wise operations is also present
in previous works that adopt such strategy [Baeza-Yates and
Gonnet, 1992; Silva de Moura et al., 2000; Navarro and Raf-
finot, 2001; Peltola and Tarhio, 2003; Durian et al., 2009].
Further, we need to start our table of bitmapsH with zero

in all positions, and this takes an extra cost O(Σ), being Σ
the size of the vocabulary. Given that, the time complex-
ity of our bit parallel approach is Σ plus the time complex-
ity for computing the edit vectors in the EV algorithm, so
O(Σ + τ ·min(m, n)), which is also close to the cost of EV
algorithm. Despite this not-so-good time complexity when
compared to the baselines, the proposed algorithm is still fast
for important practical scenarios. It takes O(τ) to update the
edit vectors when b ̸= 0, but when b = 0, the edit vector is up-
dated at cost O(1). In practical situations where the chance
of finding symbols not present in the prefix query is high,
such as a short prefix in a natural language text, our proposal
speeds up the query processing for small values of τ . As
we will show in the experiments, this property is particularly
useful for our main target application, QAC.
The restrictions imposed by the τ limit also extend beyond

QAC applications. Any domain that requires high error tol-
erance would face similar limitations. For example, in bioin-
formatics or error-prone data entry systems, where higher er-
ror bounds may be more common, the efficiency gains of our
bit-parallel approach could be minimal, forcing a shift to less
efficient sequential methods.
This discussion highlights the importance of aligning the

τ limit with the application’s error tolerance requirements.
Although our algorithm excels in low-error scenarios typi-
cal of QAC, its applicability decreases as the error threshold
requirement increases. Future research could explore opti-
mizing bit-parallel computations for larger values of τ , po-
tentially through innovative data structures or hardware ad-
vances that accommodate larger bit vectors in single or ag-

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

gregated computer words.

5 Experiments
First, we performed detailed experiments with BWBEV, our
bitwise version of BEVA applied to QAC systems as our tar-
get application, and in the last section, we performed exper-
iments with BWEV, our bitwise version of EV as a method
for online edit distance calculation.

5.1 Setup
The way that algorithms search in a QAC system depends on
the model adopted by the system to match a given user pre-
fix query and the complete queries on a dataset. The match
modes are chosen in a system design and can employ differ-
ent methods and data structures [Krishnan et al., 2017; Fer-
reira et al., 2022]. An approach for matching two distinct
strings in a QAC system performs a prefix match between a
prefix query and the full queries from the dataset, allowing
an approximate match, which is themost popular mode in the
QAC system and we adopt it here for almost all the experi-
ments according for our problem definition. Another alterna-
tive is to tokenize each string from the dataset and the prefix
query already typed by the user into words. Subsequently,
the system proceeds to compute an approximate prefix match
between each word extracted from the user’s entered prefix
query and the words contained within the dataset. An ad-
ditional step is needed to associate the lists of queries where
the matched words appear with the prefix search. This match
mode is also approached in our experiments.
Besides matching modes, another feature that can affect

our experiments is that QAC systems use a standard practice
to avoid presenting all matches directly to users. Instead, an
intrinsic ranking mechanism is essential to carefully select
and showcase the most pertinent results. The ranking can
be established by considering diverse attributes, encompass-
ing the occurrence frequencies of suggestions within indexed
documents, the frequency of user clicks on suggestions, and
other pertinent factors. Here we adopt the Most Popular
Completion (MPC) [Bar-Yossef and Kraus, 2011] technique.
The performance of the proposed method was evaluated

through experiments carried out on three distinct datasets.
While two of these datasets were previously utilized in stud-
ies about approximate prefix search methods, it should be
noted that they lack query logs and were not derived from
an actual query autocompletion service, our main application
here, then we describe them as synthetic datasets. To provide
a comprehensive evaluation, we also incorporated a dataset
extracted from an online query autocompletion service.
MEDLINE2: is the main bibliographic database from the

US National Library of Medicine (NLM), which contains
over 28 million references to articles in health science jour-
nals, with an emphasis on biomedicine topics. The title of
each article was extracted. Each extracted title corresponds
to an item.

2https://www.nlm.nih.gov/databases/download/pubmed_
medline.html

DBLP3: This dataset encompasses approximately 4.3 mil-
lion records of computer science publications. For the pur-
pose of our experiments, we solely focused on the publica-
tion titles within the DBLP dataset. It is worth noting that
DBLP has been extensively employed in the experiments
conducted by various researchers [Li et al., 2011; Xiao et al.,
2013; Qin et al., 2020].
Detailed statistics about the synthetic datasets are pre-

sented in Table 8. In each case, any duplicated items within
the datasets have been removed.

Dataset Size (bytes) Items Avg Item Len
MEDLINE 2,555,416,200 27,941,081 91.4
DBLP 334,999,905 4,378,548 76.5

Table 8. Overview of dataset statistics utilized in the experiments.

For the experiments with QACmethods, we adopted a pro-
cedure introduced in previous work and selected 1,000 sug-
gestions from the collection to serve as the basis for gener-
ating the queries. Random errors were added to all queries
to create a set of queries for each tested edit distance thresh-
old. Additionally, experiments were conducted using vari-
ous prefix sizes by extracting the prefixes from these gener-
ated queries.
We also have performed experiments with QAC methods

using a dataset extracted from a real-world query autocom-
pletion search service. Specifically, we used the query auto-
completion suggestion dataset from the Jusbrasil4, a Brazil-
ian legal technology company offering a vertical search ser-
vice. This dataset, which was previously introduced in Fer-
reira et al. [2022], contains 23,374,740 items and a log of
648,264 prefix queries. The dataset includes the prefixes
typed by users before clicking to issue the query. Table 9
presents details about the JUSBRASIL dataset. The user
queries contain the maximum prefix typed by users when
sending queries to the system. For some queries, the user
types a prefix and clicks on an option suggested by the
site JUSBRASIL, while for others, the user types the entire
query.

File Size (bytes) Items Avg Item Len
query suggestions 829,373,817 30,628,391 27.0
prefix queries 15,441,446 751,313 20.5

Table 9. Overview of metrics regarding query suggestions and pre-
fix queries within the JUSBRASIL dataset.

The experiment compares the performance of the follow-
ing algorithms to QAC methods:

• ICPAN proposed by Li et al. [2011] is a trie-based
method designed for approximate query autocomple-
tion.

• BEVA [Zhou et al., 2016] is a trie-based algorithm for
approximate query autocompletion that reduces the size
of the active nodes set by maintaining the boundary ac-
tive nodes and using the Edit Vector Automaton (EVA)
structure to compute the edit distance operations. The

3https://dblp.uni-trier.de/faq/How+can+I+download+the+
whole+dblp+dataset, dataset release dblp-2019-04-01.xml

4http://www.jusbrasil.com.br

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset
http://www.jusbrasil.com.br

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

default automaton used in BEVA for this experiment is
EVA5.

• BEV adjusts BEVA to not use the EVA structure. In this
method, the edit vector is built during the query process-
ing instead of consulting the EVA structure to obtain the
next edit vector.

• BWBEV is our proposed method that improves BEVA
by computing the edit distance through a bit parallelism
approach without the need to maintain the EVA struc-
ture.

The experiments were executed on a system featuring an
Intel Xeon E5-4617 with a processor of 2.90 GHz, 64 GB
of memory RAM, and running the Ubuntu 18.04.1 LTS op-
eration system. The algorithms were coded in C++ and com-
piled using GCC version 7.4.0. We have tried to include the
method IncNGTrie in the experiments, however, its memory
requirements did not allow us to run it on our servermachines
for the datasets included in the experiments. 6.

5.2 Experiments Utilizing Synthetic Datasets
The results obtained from processing queries on the syn-
thetic datasets DBLP and MEDLINE are presented in Ta-
bles 10 and 11, respectively. The tables display the outcomes
achieved while varying the number of errors and prefix sizes.
We report times for prefix sizes 9 and 17. The values re-
ported for each prefix query size represent the cumulative
time required to obtain the final results for both datasets. For
example, when reporting the time for a prefix size of 17, we
report the cumulative time to process prefixes from size 1 to
17. The times are reported with a 99% confidence interval.

Methods
Time (ms)

τ = 1 τ = 2 τ = 3
9 17 9 17 9 17

BEVA 0.13
± 0.002

0.14
± 0.004

1.12
± 0.018

1.15
± 0.018

5.56
± 0.084

5.65
± 0.088

BEV 0.11
± 0.002

0.12
± 0.002

1.40
± 0.022

1.43
± 0.023

7.12
± 0.100

7.22
± 0.103

BWBEV 0.05
± 0.001

0.06
± 0.001

0.55
± 0.011

0.57
± 0.012

3.14
± 0.058

3.20
± 0.060

ICPAN 0.21
± 0.004

0.24
± 0.006

3.11
± 0.071

3.19
± 0.074

24.14
± 0.568

24.53
± 0.583

Table 10. DBLP - Processing times when using BEVA, BEV, IC-
PAN, and BWBEV to prefix queries size 9 and 17 and varying τ
from 1 to 3.

We have observed that our method has the best query pro-
cessing time compared to the BEVA, BEV, and ICPANmeth-
odswhen processing theDBLP andMEDLINE datasets. The
advantage is more significant when τ is large. For example,
we can achieve up to a 7x speed up against ICPAN, up to a
2x speed up against BEV, and up to a 2x speed up against
BEVA in DBLP. Additionally, the confidence intervals of
BWBEV are smaller than those of the baselines. This find-
ing is important because it demonstrates minimal variation in

5We verified the performance and accuracy of our implementation by
comparing its output to the output from the original binary code made avail-
able by the authors. The findings indicate that our implementation exhibits
superior speed compared to the provided binary code.

6The source codes and instructions for the experiments are publicly
available on GitHub repository https://github.com/vdbergg/BWBEV
to allow reproduction of the results.

Methods
Time (ms)

τ = 1 τ = 2 τ = 3
9 17 9 17 9 17

BEVA 0.22
± 0.005

0.24
± 0.005

2.14
± 0.040

2.20
± 0.042

9.92
± 0.167

10.12
± 0.175

BEV 0.17
± 0.004

0.19
± 0.004

2.32
± 0.043

2.38
± 0.045

13.43
± 0.215

13.65
± 0.224

BWBEV 0.10
± 0.002

0.11
± 0.003

1.11
± 0.026

1.14
± 0.027

6.10
± 0.118

6.21
± 0.122

ICPAN -
-

-
-

-
-

-
-

-
-

-
-

Table 11. MEDLINE - Processing times when using BEVA, BEV,
ICPAN, and BWBEV to prefix queries size 9 and 17 and varying τ
from 1 to 3.

the processing times of prefix queries, indicating a consistent
and stable time expectation across different queries.

5.3 Comparison to QAC Baselines Methods
In Table 12, we show the comparison of processing times be-
tween our proposed method BWBEV, and the baseline meth-
ods. The confidence interval adopted is 99%. The query pro-
cessing times for the JUSBRASIL dataset using our proposed
method were almost twice as fast as the times for the BEVA,
more than twice the times for BEV, and almost ten times
faster than the time for ICPAN when allowing 3 errors. In
such cases, BWBEV processed queries in an average time of
5.94 milliseconds, while BEVA, BEV, and ICPAN resulted
in a time of 9.34, 12.91, and 57.12milliseconds, respectively.
This indicates that BWBEV was 36.41% faster than BEVA,
which was the fastest method among the baseline methods.

Methods Time (ms)
τ = 1 τ = 2 τ = 3

BEVA 0.13
± 0.001

1.53
± 0.013

9.34
± 0.026

BEV 0.12
± 0.004

1.86
± 0.048

12.91
± 0.327

BWBEV 0.07
± 0.002

0.84
± 0.026

5.94
± 0.177

ICPAN 0.31
± 0.002

5.37
± 0.067

57.12
± 0.241

Table 12. JUSBRASIL - Processing times when using BEVA, BEV,
ICPAN, and BWBEV and varying τ from 1 to 3.

5.4 Results with Larger Prefix Queries and
Number of Errors

We also investigated the behavior of BWBEV when applied
to a wider range of prefix sizes and edit distance thresholds.
The experimental results, as illustrated in Figure 2, showcase
the outcomes obtained by varying the prefix size from 3 to
30. ICPANwas removed from this experiment because of its
high processing time, which would impair the visualization
of the other results. As expected, the time performance of
the methods remained in the same proportion as reported in
the previous section for all tested prefix sizes. This finding
is particularly important for larger prefixes. These findings
also remain consistent when altering the edit distance thresh-
old. In summary, our experiments demonstrate that BWBEV

https://github.com/vdbergg/BWBEV

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

outperforms BEVA and BEV in terms of processing time for
all scenarios tested.

3 6 9 12 15 18 21 24 27 30
0

0.5
1

1.5
2

2.5
3

Ti
m
e
(m
s)

τ = 2

3 6 9 12 15 18 21 24 27 30
0
4
8

12
16
20

τ = 3

3 6 9 12 15 18 21 24 27 30
0

15
30
45
60
75

Prefix Query Size

Ti
m
e
(m
s)

τ = 4

BWBEV BEVA BEV

Figure 2. Time performance (in milliseconds) while adjusting the prefix
query size and the permissible number of errors within the JUSBRASIL
dataset.

5.5 Baseline Comparison on a Term-by-Term
We here consider another potential use case for the BWBEV
method which involves performing matches term-by-term or
just word-by-word, but with the added capability of allowing
approximate matches. In this novel scenario, a query sugges-
tion vocabulary is stored, consisting of all unique words, the
matching is performed word by word, and post-processing
is performed to select the best query suggestions. We only
focus on evaluating the performance of matching, as we are
utilizing data structures to carry out the prefix match opera-
tions.
The performance results of the compared methods when

conducting word prefix matching in the JUSBRASIL dataset
are presented in Table 13. The time achieved by BWBEV
was 42% better than BEVA when analyzing τ = 3. The
time performance of BEV was worse when compared to the
times achieved by BEVA, being 22% slower. ICPAN demon-
strated significantly inferior time performance compared to
both BEVA and BWBEV.

5.6 Scalability
We conducted experiments using Vegeta7, a versatile HTTP
load-testing tool developed to test HTTP services with a con-
stant request rate.
The target application that we address in our experiments

does not require the system to provide all the matches as
a result when searching for a prefix. Then only the top-k
best-scored results are retrieved. To address the challenge

7https://github.com/tsenart/vegeta

Methods Time (ms)
τ = 1 τ = 2 τ = 3

BEVA 0.09
± 0.002

0.95
± 0.016

5.06
± 0.101

BEV 0.08
< 0.0001

1.18
± 0.005

6.51
± 0.037

BWBEV 0.04
< 0.0001

0.50
± 0.003

2.92
± 0.019

ICPAN 0.19
± 0.001

3.34
± 0.016

33.31
± 0.175

Table 13. Processing time (ms) to mode word by word in BEVA,
BWBEV, BEV and ICPANwhen indexing the JUSBRASIL dataset.

of computing top-k results in the BWBEV and baselines al-
gorithms for approximate prefix search, we have adopted an
alternative Bar-Yossef and Kraus [2011] for fast retrieval of
the best-scored matches. We adopted the well-known most
popular completion (MPC) approach, which is based on the
search popularity of queries matching the prefix typed by the
user.

Figure 3 presents the results obtained by BEVA, BEV,
BWBEV, and Elasticsearch completion methods on the JUS-
BRASIL dataset for τ = 1, τ = 2 and τ = 3. The reported
times encompass the complete server response durations, en-
compassing communication and other relevant times needed
to generate the responses. We have configured Elasticsearch
with the setup closest to the results of our system and in-
cluded this option in the experiments to allow a comparison
with a tool that is popularly adopted as a search engine. We
used the standard completion sorting function, which utilized
the BM25 sorting method, while our method used the sorting
function based on the frequency of each suggestion in the log
and the number of errors. Both sorting functions retrieved
only the top-10 results.

Elasticsearch adopts a structure called the Finite State
Transducer (FST), a finite state automaton optimized for pre-
fix matches stored in memory. It also supports typo correc-
tion in completion queries using the n-gram-based typo cor-
rection technique. The N-gram technique is a text-shaping
technique that breaks text into fixed-length strings of charac-
ters called n-grams. When indexing completion fields, Elas-
ticsearch splits the text into fixed-length n-grams and stores
these n-grams as completion tokens. This technique allows
Elasticsearch to find suggestions that match a part of the
query, even if the query has typos.

As shown in Figure 3, the servers using BEV and BEVA
were the first to exceed the 100-millisecond threshold in
τ = 1, while BWBEV and elasticsearch maintained a limit
of request per second (RPS) close to it. We remember that the
100 milliseconds threshold is commonly regarded as suitable
for autocompletion services. BWBEV supported more than
twice the workload of the baselines tested when analyzing
τ = 2 and τ = 3. For instance, for τ = 3, BWBEV achieved
a processing rate of approximately 760 requests per second,
delivering responses under 100 milliseconds, while BEVA
and elasticsearch were only able to process less than 600 re-
quests per second, which is approximately a 25% greater abil-
ity to process requests.

https://github.com/tsenart/vegeta

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

1 600 1,2001,8002,400
0

50
100
150
200
250
300

Ti
m
e
(m
s)

τ = 1

1 400 800 1,200 1,600
0

50
100
150
200
250
300

τ = 2

1 200 400 600 800
0

50
100
150
200
250
300

Requests per second

Ti
m
e
(m
s)

τ = 3

BWBEV BEV BEVA elasticsearch
100ms

Figure 3. Processing time (in milliseconds) with increasing requests per sec-
ond while varying τ (ranging from 1 to 3) within the JUSBRASIL dataset.

5.7 Performance as Dataset Size Increases
We conducted additional experiments by varying the size
of the indexed base, ranging from 20% to 100% of JUS-
BRASIL. ICPAN was not included in this analysis due to
its significant disparity in time performance, which would
make it challenging to compare with the other methods. The
behavior of the methods is shown in Figure 4.
Across all portions of the dataset tested, BWBEV consis-

tently outperformed BEVA. As an example, with only 20%
of the dataset indexed, BEVA demonstrated a performance
20% slower than BWBEV. This gap expanded gradually as
more substantial portions of the dataset were indexed, reach-
ing 25% when the entire dataset was indexed. This expand-
ing difference indicates that BWBEV exhibits superior per-
formance compared to BEVA when indexing larger query
suggestion datasets.

5.8 Online Edit Distance Calculation
As a final experiment to evaluate the performance of BWEV
- our online version of edit distance calculation, we compare
its performance with other edit distance algorithms proposed
in the literature. The experiment compares the performance
of the following algorithms to edit distance calculation:

• BWEV is our proposed method that uses bitwise oper-
ations and edit vectors proposed by Zhou et al. [2016]
for online edit distance calculation.

• MYERS is a fast method to edit distance calculation that
employs bit parallel operations in the diagonal of the
dynamic programming matrix.

• HYYROS is another fast method to edit distance calcu-
lation that also employs bit parallel operations to calcu-
late the k-diagonals proposed by Ukkonen [1985].

• EV is the computation of edit vectors proposed by Zhou
et al. [2016], adapted by us here to allow online edit

20% 40% 60% 80% 100%

4

6

8

10

12

14

Vary Dataset Size (%)

Ti
m
e
(m
s)

JUSBRASIL - TIME - τ = 3

BWBEV BEV BEVA
Figure 4. Time performance (ms) of BEVA, BEV, and BWBEV when in-
dexing distinct amounts of JUSBRASIL.

.
distance calculation.

We randomly extract for each synthetic dataset a total of
16,255 pairs of strings that represent a sample of the dataset
with a 99% confidence level and 5% margin of error. With
these samples, we create two scenarios to test. The first one
we name as distinct strings set, is a set randomly taking pairs
of strings limited to 5, 50, and 150 characters. The second
we name as same strings adding errors set is a set with pairs
of strings also limited to 5, 50, and 150 characters, but each
pair is derived from the same string, with one of the strings
being the original form and the second being the string by
randomly adding up to 4 errors.
We tested the two synthetic datasets DBLP andMEDLINE

for τ varying from 1 to 4 and the pairs of strings with sizes
5, 50, and 150. When searching in the distinct strings set,
as shown in the tables 14 and 15, Myer’s method was faster
when searching for prefixes with size 5 and for τ values 3
and 4. Myer’s method was better in this scenario because
it does not increase the time when the τ values increase, es-
pecially to short string sizes. However, for the strings with
large sizes of 50 and 150, BWEV was faster for all τ values
experimented. This happened because BWEV stops the com-
putation when reaches a final edit vector and this is very com-
mon for τ values and large prefix strings that are not so sim-
ilar to each other. Another factor is that BWEV processing
strings have no similarities in their best case using fewer bit
parallel operations to the edit vector computation as shown
in lines 2 and 3 in the Algorithm 3. When the strings are not
similar, BWEV just needs to process the Equation 10 instead
of the full Equation 2.
In the same strings adding errors set, as shown in the ta-

bles 16 and 17, Myer’s method was faster for all values of
τ and strings sizes tested. Myer’s method was better in this
scenario because processing very similar strings represents
the worst scenario to BWEV due to the need to complete the
edit vector computation as shown in lines 5 to 15 in the Al-
gorithm 3 to process the full Equation 2.
In front of these tests, we can conclude that BWEV is also

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

Methods
Time (ms)

m = n = 5 m = n = 50 m = n = 150
τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

BWEV 1.80 2.19 2.88 2.96 5.75 5.75 7.27 8.44 14.07 16.29 19.56 31.67
MYERS 2.41 2.43 2.38 2.39 16.75 16.72 16.77 16.84 36.22 36.29 36.26 36.67
HYYROS 2.65 2.61 2.75 2.79 9.24 9.35 9.25 9.14 41.43 41.49 41.56 41.63
EV 16.16 26.38 37.55 45.53 20.88 32.70 45.95 64.08 26.06 40.24 55.16 75.91

Table 14. Query processing of pair of strings no similarity in DBLP dataset.

Methods
Time (ms)

m = n = 5 m = n = 50 m = n = 150
τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

BWEV 1.77 2.21 2.88 2.98 5.04 5.70 7.19 8.54 11.67 13.98 17.22 28.61
MYERS 2.37 2.39 2.27 2.47 17.08 17.18 17.10 17.28 41.20 41.22 41.10 41.25
HYYROS 2.65 2.60 2.62 2.45 19.77 19.79 19.87 19.57 47.11 47.18 47.19 47.27
EV 16.50 26.77 36.67 45.55 20.39 32.06 45.68 63.09 26.55 40.71 57.21 79.06

Table 15. Query processing of pair of strings no similarity in MEDLINE dataset.

Methods
Time (ms)

m = n = 5 m = n = 50 m = n = 150
τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

BWEV 2.87 3.45 3.83 4.26 16.86 19.54 22.53 25.12 51.34 57.02 66.07 79.31
MYERS 2.26 2.36 2.21 2.29 14.39 14.29 14.31 14.19 35.60 35.65 35.69 35.50
HYYROS 2.59 2.49 2.68 2.65 16.53 16.50 16.51 16.43 41.12 41.10 41.19 41.12
EV 31.56 35.98 40.40 45.30 215.07 221.67 234.71 254.08 210.34 230.15 253.16 282.72

Table 16. Query processing of pair of strings with similarity between 0 and 4 errors in DBLP dataset.

Methods
Time (ms)

m = n = 5 m = n = 50 m = n = 150
τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

BWEV 2.90 3.54 3.77 4.12 17.32 19.77 22.58 25.49 55.23 61.32 65.64 79.93
MYERS 2.27 2.29 2.17 2.37 14.42 14.48 14.49 14.52 38.52 38.42 38.57 38.50
HYYROS 2.51 2.58 2.50 2.61 16.67 16.69 16.57 16.70 44.78 44.68 44.79 44.78
EV 31.50 36.02 40.34 44.82 217.34 226.22 241.79 257.50 235.61 254.26 284.24 310.45

Table 17. Query processing of pair of strings with similarity between 0 and 4 errors in MEDLINE dataset.

a good option to be used as a method of online edit distance
calculation, but it is good just for scenarios where the number
of errors is small and when there are many mismatches in the
compared strings, commons scenarios in QAC methods, for
example.

6 Conclusion
We have proposed a Bitwise Boundary Edit Vector (BW-
BEV) method based on a bit-parallelism approach to calcu-
late efficiently the edit distance between two strings. We
incorporate BWBEV for a QAC method by improving the
ideas presented in the BEVA method, one of the state-of-the-
art methods for QAC systems. The experiments presented
in this study have demonstrated that the BWBEV method is
a new competitive method and as key conclusions, we can
present:

• BWBEV outperforms state-of-the-art approximate pre-
fix search methods in all tested scenarios.

• BWBEV is specifically designed for scenarios where
the dataset can be indexed for fast prefix search.

• BWBEV can enable the development of faster andmore

scalable search systems.
• BWBEV is a competitive method for approximate pre-
fix search on large datasets.

For future work, we plan to study the application of prun-
ing algorithms to BWBEV, combining other alternative rank-
ing methods, including learning-to-rank methods, to acceler-
ate query processing. Also, we plan to study how we can
apply BWBEV to practical scenarios of big companies by
enabling it to be used in a distributed system. Finally, a pos-
sible future direction would be to explore possible adaptation
of QACmethods to take advantage of parallel Single Instruc-
tion Multiple Data (SIMD) machines, such as GPUs.

Declarations

Funding

This research is partially supported by FAPEAM under the POS-
GRAD 2022 Program and the NeuralBond Project (UNIVER-
SAL 2023 Proc. 01.02.016301.04300/2023-04); by Coorde-
nação de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil
(CAPES) financial code 001; and by CNPq under Project IAIA

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

(406417/2022-9) and individual grants from CNPq to Altigran da
Silva (307248/2019-4) and Edleno Moura (310573/2023-8).

Authors’ Contributions
Edleno S. de Moura contributed to Conceptualization, Methodol-
ogy, Data curation, Formal analysis, Investigation, Software,Writ-
ing – original draft, Supervision, and Project administration. Berg
Ferreira collaborated on Conceptualization,Methodology, Data cu-
ration, Formal analysis, Investigation, Software, andWriting – orig-
inal draft. Altigran da Silva contributed to Supervision andWriting
– review & editing, while Ricardo Baeza-Yates participated in Su-
pervision and Writing – review & editing. All authors read and ap-
proved the final manuscript.

Competing interests
The authors declare that they have no competing interests or con-
flicts of interest that could have influenced the results or conclusions
of this study.

References
Alaofi, M., Gallagher, L., Mckay, D., Saling, L. L., Sander-
son, M., Scholer, F., Spina, D., and White, R. W. (2022).
Where do queries come from? In Proceedings of the 45th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’22, page
2850–2862, New York, NY, USA. Association for Com-
puting Machinery. DOI: 10.1145/3477495.3531711.

Baeza-Yates, R. (1999). Faster approximate string matching.
Algorithmica, 23:127–158. DOI: 10.1007/PL00009253.

Baeza-Yates, R. and Gonnet, G. H. (1992). A new approach
to text searching. Commun. ACM, 35(10):74–82. DOI:
10.1145/135239.135243.

Bar-Yossef, Z. andKraus, N. (2011). Context-sensitive query
auto-completion. In Proceedings of the 20th International
Conference on World Wide Web, WWW ’11, page 107–
116, NewYork, NY, USA. Association for ComputingMa-
chinery. DOI: 10.1145/1963405.1963424.

Cai, F. and de Rijke, M. (2016). A survey of query auto
completion in information retrieval. Foundations and
Trends® in Information Retrieval, 10(4):273–363. DOI:
10.1561/1500000055.

Chaudhuri, S. and Kaushik, R. (2009). Extending auto-
completion to tolerate errors. In Proceedings of the
2009 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’09, pages 707––718, New
York, NY, USA. Association for Computing Machinery.
DOI: 10.1145/1559845.1559919.

Cucerzan, S. and Brill, E. (2004). Spelling correction as
an iterative process that exploits the collective knowledge
of web users. In Conference on Empirical Methods in
Natural Language Processing, volume 4, pages 293–300.
https://aclanthology.org/W04-3238.

Deng, D., Li, G., Wen, H., Jagadish, H. V., and Feng,
J. (2016). Meta: An efficient matching-based method
for error-tolerant autocompletion. Proc. VLDB Endow.,
9(10):828––839. DOI: 10.14778/2977797.2977808.

Durian, B., Holub, J., Peltola, H., and Tarhio, J. (2009).
Tuning bndm with q-grams. In Proceedings of the Meet-
ing on Algorithm Engineering & Experiments, page 29–
37, USA. Society for Industrial and Applied Mathematics.
DOI: 10.1137/1.9781611972894.3.

Ferreira, B., de Moura, E. S., and Silva, A. d. (2022). Apply-
ing burst-tries for error-tolerant prefix search. Inf. Retr.,
25(4):481–518. DOI: 10.1007/s10791-022-09416-9.

Fredkin, E. (1960). Trie memory. Commun. ACM, 3(9):490–
–499. DOI: 10.1145/367390.367400.

Heinz, S., Zobel, J., and Williams, H. E. (2002). Burst tries:
A fast, efficient data structure for string keys. ACM Trans.
Inf. Syst., 20(2):192–223. DOI: 10.1145/506309.506312.

Hu, S., Xiao, C., and Ishikawa, Y. (2018). An ef-
ficient algorithm for location-aware query autocomple-
tion. IEICE TRANSACTIONS on Information and Systems,
101(1):181–192. DOI: 10.1587/transinf.2017EDP7152.

Hyyrö, H. (2003). A bit-vector algorithm for
computing levenshtein and damerau edit dis-
tances. Nord. J. Comput., 10(1):29–39. Avail-
able at: https://www.semanticscholar.org/
paper/A-Bit-Vector-Algorithm-for-
Computing-Levenshtein-Hyyr%C3%B6/
813e26d8920d17c2afac6bf5a15c537b067a128a.

Ji, S., Li, G., Li, C., and Feng, J. (2009). Efficient interactive
fuzzy keyword search. In Proceedings of the 18th Interna-
tional Conference on World Wide Web, WWW 09, pages
371––380, New York, NY, USA. Association for Comput-
ing Machinery. DOI: 10.1145/1526709.1526760.

Krishnan, U., Moffat, A., and Zobel, J. (2017). A tax-
onomy of query auto completion modes. In Proceed-
ings of the 22nd Australasian Document Computing
Symposium, ADCS 2017, pages 2271–2280, New York,
NY, USA. Association for Computing Machinery. DOI:
10.1145/3166072.3166081.

Levenshtein, V. (1966). Binary Codes Capable of Correct-
ing Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707. Available at: https://nymity.ch/
sybilhunting/pdf/Levenshtein1966a.pdf.

Li, G., Ji, S., Li, C., and Feng, J. (2011). Efficient fuzzy
full-text type-ahead search. VLDB J., 20:617–640. DOI:
10.1007/s00778-011-0218-x.

Miller, R. B. (1968). Response time in man-computer con-
versational transactions. In Proceedings of the Decem-
ber 9-11, 1968, Fall Joint Computer Conference, Part
I, AFIPS ’68 (Fall, part I), pages 267––277, New York,
NY, USA. Association for Computing Machinery. DOI:
10.1145/1476589.1476628.

Myers, G. (1999). A fast bit-vector algorithm for approxi-
mate string matching based on dynamic programming. J.
ACM, 46(3):395–415. DOI: 10.1145/316542.316550.

Navarro, G. (2001). A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88. DOI:
10.1145/375360.375365.

Navarro, G. and Raffinot, M. (2001). Fast and flex-
ible string matching by combining bit-parallelism and
suffix automata. ACM J. Exp. Algorithmics, 5. DOI:
10.1145/351827.384246.

Peltola, H. and Tarhio, J. (2003). Alternative algo-

https://doi.org/10.1145/3477495.3531711
https://doi.org/10.1007/PL00009253
https://doi.org/10.1145/135239.135243
https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1561/1500000055
https://doi.org/10.1145/1559845.1559919
https://aclanthology.org/W04-3238
https://doi.org/10.14778/2977797.2977808
https://doi.org/10.1137/1.9781611972894.3
https://doi.org/10.1007/s10791-022-09416-9
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/506309.506312
https://doi.org/10.1587/transinf.2017EDP7152
https://www.semanticscholar.org/paper/A-Bit-Vector-Algorithm-for-Computing-Levenshtein-Hyyr%C3%B6/813e26d8920d17c2afac6bf5a15c537b067a128a
https://www.semanticscholar.org/paper/A-Bit-Vector-Algorithm-for-Computing-Levenshtein-Hyyr%C3%B6/813e26d8920d17c2afac6bf5a15c537b067a128a
https://www.semanticscholar.org/paper/A-Bit-Vector-Algorithm-for-Computing-Levenshtein-Hyyr%C3%B6/813e26d8920d17c2afac6bf5a15c537b067a128a
https://www.semanticscholar.org/paper/A-Bit-Vector-Algorithm-for-Computing-Levenshtein-Hyyr%C3%B6/813e26d8920d17c2afac6bf5a15c537b067a128a
https://doi.org/10.1145/1526709.1526760
https://doi.org/10.1145/3166072.3166081
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://doi.org/10.1007/s00778-011-0218-x
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/316542.316550
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/351827.384246

BWBEV: A Bitwise Query Processing Algorithm for Approximate Prefix Search De Moura et al. 2024

rithms for bit-parallel string matching. In Nascimento,
M. A., de Moura, E. S., and Oliveira, A. L., editors,
String Processing and Information Retrieval, pages 80–
93, Berlin, Heidelberg. Springer Berlin Heidelberg. DOI:
10.1007/978-3-540-39984-1_7.

Phophalia, A. (2011). A survey on learning to rank (letor) ap-
proaches in information retrieval. In 2011 Nirma Univer-
sity International Conference on Engineering, pages 1–6.
DOI: 10.1109/NUiConE.2011.6153228.

Qin, J., Xiao, C., Hu, S., Zhang, J., Wang, W., Ishikawa,
Y., Tsuda, K., and Sadakane, K. (2020). Efficient query
autocompletion with edit distance-based error tolerance.
The VLDB Journal, 29:1–25. DOI: 10.1007/s00778-019-
00595-4.

Silva de Moura, E., Navarro, G., Ziviani, N., and Baeza-
Yates, R. (2000). Fast and flexible word searching on com-
pressed text. ACM Transactions on Information Systems
(TOIS), 18(2):113–139. DOI: 10.1145/348751.348754.

Ukkonen, E. (1985). Algorithms for approximate string
matching. Information and Control, 64(1):100–118. Inter-
national Conference on Foundations of Computation The-
ory. DOI: https://doi.org/10.1016/S0019-9958(85)80046-
2.

Wang, J. and Lin, C. (2020). Fast error-tolerant
location-aware query autocompletion. In 2020
IEEE 36th International Conference on Data En-
gineering (ICDE), pages 1998–2001. IEEE. DOI:
10.1109/ICDE48307.2020.00223.

Wang, P.-W., Kolter, J. Z., Mohan, V., and Dhillon,
I. S. (2018). Realtime query completion via deep lan-
guage models. CEUR Workshop Proceedings. Avail-
able at: https://www.huan-zhang.com/pdf/sigir_
ecom18.pdf.

Wright, A. H. (1994). Approximate string matching using
within-word parallelism. Softw. Pract. Exper., 24(4):337–
362. DOI: 10.1002/spe.4380240402.

Xiao, C., Qin, J., Wang, W., Ishikawa, Y., Tsuda, K., and
Sadakane, K. (2013). Efficient error-tolerant query auto-
completion. Proc. VLDB Endow., 6(6):373––384. DOI:
10.14778/2536336.2536339.

Zhong, Q., Zhi, J., and Guo, G. (2022). Dynamic is op-
timal: Effect of three alternative auto-complete on the
usability of in-vehicle dialing displays and driver dis-
traction. Traffic injury prevention, 23(1):51–56. DOI:
10.1080/15389588.2021.2010052.

Zhou, X., Qin, J., Xiao, C., Wang, W., Lin, X., and Ishikawa,
Y. (2016). Beva: An efficient query processing algorithm
for error-tolerant autocompletion. ACM Trans. Database
Syst., 41(1). DOI: 10.1145/2877201.

https://doi.org/10.1007/978-3-540-39984-1_7
https://doi.org/10.1109/NUiConE.2011.6153228
https://doi.org/10.1007/s00778-019-00595-4
https://doi.org/10.1007/s00778-019-00595-4
https://doi.org/10.1145/348751.348754
https://doi.org/https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1109/ICDE48307.2020.00223
https://www.huan-zhang.com/pdf/sigir_ecom18.pdf
https://www.huan-zhang.com/pdf/sigir_ecom18.pdf
https://doi.org/10.1002/spe.4380240402
https://doi.org/10.14778/2536336.2536339
https://doi.org/10.1080/15389588.2021.2010052
https://doi.org/10.1145/2877201

	Introduction
	Contributions

	Related Work
	Computing the Edit Distance
	Approximate Prefix Search in Tries
	Pattern Matching using Bit-Parallelism Approach

	Preliminaries
	Edit Distance using Edit Vectors
	Query Processing in BEVA

	BWBEV
	Unary Representation
	Arithmetic Operations for Edit Vectors
	Add 1
	Mininum Between Two Unary Numbers
	Align Positions

	Optimizing the Edit Vector Computation
	BWBEV Algorithm
	Computational Cost

	Experiments
	Setup
	Experiments Utilizing Synthetic Datasets
	Comparison to QAC Baselines Methods
	Results with Larger Prefix Queries and Number of Errors
	Baseline Comparison on a Term-by-Term
	Scalability
	Performance as Dataset Size Increases
	Online Edit Distance Calculation

	Conclusion

