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Abstract Hierarchies, as described in mathematical morphology, represent nested regions of interest and provide

mechanisms to create coherent data organization. They facilitate high-level analysis andmanagement of large amounts

of data. Represented as hierarchical trees, they have formalisms intersecting with graph theory and generalizable

applications. Due to the deterministic algorithms, the multiform representations, and the absence of a direct quality

evaluation, it is hard to insert hierarchical information into a learning framework and benefit from the recent advances.

Researchers usually tackle this problem by refining the hierarchies for a specific media and assessing their quality for

a particular task. The downside of this approach is that it depends on the application, and the formulations limit the

generalization to similar data. This work aims to create a learning framework that can operate with hierarchical data

and is agnostic to the input and application. The idea is to transform the data into a regular representation required

by most learning models while preserving the rich information in the hierarchical structure. The proposed methods

use edge-weighted image graphs and hierarchical trees as input, and they evaluate different proposals on the edge

detection and segmentation tasks. The learning model is the Random Forest, a fast and scalable method for working

with high-dimensional data. Results demonstrate that it is possible to create a learning framework dependent only on

the hierarchical data that presents a state-of-the-art performance in multiple tasks.
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1 Introduction

Hierarchies are an inherent property composing several ele-

ments in real life, relating to howwe perceive patterns, scenes,

and movement [Marr, 1982]. According to Kurzweil [2013],

a pattern identifier exists in the core of our visual percep-

tion, operating hierarchically to recognize parts, objects, and

abstract concepts.

Hierarchies are broadly defined in the literature and could

represent different concepts. For instance, literature presents

hierarchies as a method’s abstraction [Ilin et al., 2017], a

description of model architectures [Liu et al., 2019], and a

form to organize features [Lin et al., 2017] or concepts [Fan

et al., 2017]. This broad definition reinforces that hierarchies

are the natural organization form of data. The perceptual

hierarchy is difficult to translate to computer models, but in

visual media processing, mathematical morphology has an

edge in defining, creating, and manipulating hierarchies.

Morphological hierarchies are arranged structures of nested

regions that are easy to navigate and interpret, remaining very

popular since their creation [Beucher, 1994; Najman and

Schmitt, 1996; Krishnammal et al., 2022; Makrogiannis et al.,

2021]. The nested regions of interest provide navigation and

merging operations to build more semantically significant

objects from lower-level instances. In multimedia processing,

the region delineation considers the media’s building blocks,

such as pixels, voxels, frequency transformations, or sound

waves [Bosilj et al., 2018]. In the hierarchical theory, im-

age processing is undoubtedly the principal definition space

and applications, most notably image segmentation [Soille

and Najman, 2012] and remote sensing [Maia et al., 2021].

Nevertheless, similarly structured visual media, such as hyper-

spectral [Tochon et al., 2018] and multi-modal images [Kiran

and Serra, 2015], videos [Xu et al., 2012], and structured time

measurements [Nguyen et al., 2019], are also processed with

hierarchical algorithms.

In practical applications, morphological hierarchies require

thorough preprocessing of the data [Nguyen et al., 2019] and

strategies to deal with issues like over/under-partitioning of

the space [Zwettler and Backfrieder, 2015] or selecting an

ideal number of regions [Meyer, 2001]. At the same time, hi-

erarchies produce multiform representations, their algorithms

are primarily deterministic, and there is no direct way to eval-

uate their quality. Therefore, it is difficult to generalize a

successful approach to other media and tasks.

For a generalization of the media type, most challenges

regard the characterization of the information, mainly: the

media data presents different characteristics, and the media’s

building blocks composing the regions have different conno-

tations. These differences in form and connotation eventually

become limiting factors. The models created to solve a prob-

lem could only deal with that particular data type, despite

their eventual similarities. In terms of task, the generaliza-

tion is challenging due to the lack of a measure assessing
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the quality of a hierarchy, which requires an empirical refine-

ment through a series of trial-and-error fittings for a particular

application.

Furthermore, creating a framework to operate on hierar-

chies presents some considerable additional challenges be-

sides the problem of generalization, namely: (i) the product

of the hierarchies is multiform, meaning they have different

sizes, components, and interpretations; and (ii) the same data

could create multiple hierarchical structures depending on the

hierarchical operators and constraints. Therefore, applying

the morphological hierarchies in an agnostic learning frame-

work requires a strategy to overcome the determinism, the

quality assessment, and the heterogeneous aspects.

This work aims to create a learning framework that can

operate on hierarchical data and is agnostic to the media type

and task. In doing so, it must deal with the generalization

challenges and place a strategy to conform the hierarchical

information to a learning framework. It requires: (i) defining

an appropriate representation shared amongmost media types;

(ii) providing a way to retain the information presented in the

original media; and (iii) avoiding assumptions on the data

source in the task definition. Each of these requirements

guides the design of the proposed framework, shaping the

choices in representation, modeling, and evaluation.

In this context, graphs serve as a unifying formalism: they

are structures used to represent objects, with graph theory fo-

cusing on how these objects relate to each other [Bondy et al.,

1976]. In relation to the outlined requirements: (i) graphs

can be constructed to represent a wide variety of media types,

fulfilling the need for a shared representation [Ortega et al.,

2018]; (ii) graph structures and their attributes enable the

retention and analysis of essential information from the orig-

inal data; and (iii) because graphs are agnostic to domain

or modality, they enable modeling and learning without im-

posing assumptions specific to a given data source or task.

Importantly, hierarchies can be represented as graphs, specif-

ically as hierarchical trees [Cousty et al., 2013]. Thus, both

media and their hierarchical organization can be described

and processed within the same theoretical and computational

framework, enabling generalization across applications.

The literature in pattern recognition [Wu et al., 2020; Zhang

et al., 2024], network science [Newman, 2018], and bioin-

formatics [Zitnik et al., 2019] demonstrates the wide appli-

cability of graph structures. Our proposal aligns with these

broader perspectives: by abstracting the core operations to

work on general graphs and their hierarchies, the method

can be directly adapted to non-image domains, such as tem-

poral event graphs in time-series data [Isella et al., 2011],

video data [Sakarya and Telatar, 2010; dos Santos Belo et al.,

2016], and document structures [Mihalcea and Radev, 2012].

The shared requirement is that the data can be modeled and

navigated as a graph [Chen et al., 2024; Tong et al., 2005],

allowing the learning framework to operate agnostically with

respect to the specific application domain.

While the proposed framework is, in principle, applicable

to diverse data types and domains, in this work we focus our

experimental validation on two image analysis tasks: edge

detection and segmentation. Future work will explore appli-

cations in other domains to further demonstrate the method’s

generality.

A critical aspect in hierarchical studies is understanding

how the media’s building blocks relate at the low level to form

homogeneous regions. Visual data are organized structures,

and information such as color, spatial distance, or variance

defines homogeneity. And although defining homogeneous

regions and their connotations are particular for each media

type, the grouping strategy and their storage in the hierarchical

structure follow the same rules.

The main challenge in this proposal concerns the regular

representation required by most machine learning algorithms.

The regular representation is inherently opposed to the un-

constrained nature of graphs. Hence, the proposed strategy

is to represent the graph’s components as vectors of selected

attributes and assess its capability to retain the information

modeled in the hierarchical trees while remaining discrimi-

nant for a task.

Using a selection of graph attributes as input to the learn-

ing framework allows it to be agnostic to the media type.

Modeling at the graph component level enables each entry

to be assigned a task label without imposing assumptions

on the data source. Previous studies [Almeida et al., 2021,

2022] have demonstrated this strategy on non-hierarchical

image graphs, introducing a graph-based image gradient op-

erator (GIG) that produces gradients delineating strong object

contours as well as minor components, textures, and uni-

form regions. Extensive analysis of these gradients in the

segmentation task, using them as input for the watershed

method [Beucher, 1994], demonstrated that GIG achieved

good segmentation performance comparable to leading edge-

map methods, thereby validating the graph attribute selection

strategy.

Nonetheless, depending on the modeling choices of the

graphs, it can create a particular structured space known as

grid graphs close to the spatial domain of the media. Pre-

suming generalization on a grid graph can be deceptive, and

more than the structural information may be necessary for a

discriminative representation. However, modeling the graphs

from the hierarchical structure provides a non-regular charac-

terization of regions with notions of order and navigation.

Considering the semantical arrangement within the hierar-

chies, any proposal must retain the structures and ordering

relations consistent with the hierarchical principles. Also,

because there is no direct way to evaluate the quality of a

hierarchy, the learning model should support easy navigation

between tasks to assess various aspects through experimenta-

tion.Furthermore, the framework should rely on something

other than strategies to adequately prepare the data for a spe-

cific task or refine the structures in a particular application.

Although recent advances in deep learning, such as Graph

Neural Networks (GNNs) [Wu et al., 2020], enable end-to-

end learning from graph-structured data, these methods typi-

cally require large annotated datasets and often yield models

that are less transparent or interpretable. In contrast, our

framework extracts and uses well-defined hierarchical at-

tributes, allowing the model to directly leverage the semantic

meaning encoded in the structure. This promotes both data

efficiency and model transparency, which are critical in many

scientific and practical domains.

In summary, the main contributions of this work may be

described as follows: (i) proposal of a learning framework
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that can operate with hierarchical data and is agnostic to the

input, considering that all multimedia data can be modeled

as graphs, and application; (ii) discussion about the topology

of the hierarchical structures alone could be used, and it is

possible to directly insert the hierarchical structures in a learn-

ing framework and benefit from the embedded information

to create a model for visual tasks that is agnostic to the media

type and task; (iii) a fast and scalable method for working

with high-dimensional data thanks to the learning model; (iv)

proposal of a machine learning method on a non-regular graph

for image processing provided by hierarchical structures; and

(v) development of experiments with the trivial, topological,

and regional approaches in two image tasks: edge detection

and image segmentation.

We organized this work as follows. Section 3 provides the

theoretical background on graphs and hierarchies. Section 4

discusses common generalization issues with hierarchies. Sec-

tion 5 presents the proposed methodology, followed by the

experiments and results in Section 6. Finally, Section 7 dis-

cusses the main findings of this work, while Section 8 draws

some conclusions and future work proposals.

2 Related work

The study of hierarchical representations spans mathematical

morphology, graph-based modeling, and modern machine

learning. This section reviews foundational and recent work

in each area, emphasizing advances in media-agnostic and

interpretable learning on hierarchies. Our aim is to situate

the proposed framework within this context and clarify its

distinctions and advances over prior work.

Mathematical morphology provides the theoretical and al-

gorithmic foundations for hierarchical representations. Clas-

sical techniques such as the watershed transform [Beucher,

1994; Najman and Schmitt, 1996; Krishnammal et al., 2022;

Makrogiannis et al., 2021] and its hierarchical variants [Soille

and Najman, 2012; Meyer, 2001] enable multiscale decompo-

sitions of images, supporting efficient region merging, filter-

ing, and navigation. Developments including ultrametric wa-

tersheds, saliency trees, and related structures [Krishnammal

et al., 2022;Makrogiannis et al., 2021; Cousty et al., 2013] for-

malize inclusion and adjacency relationships among regions.

These methodologies have evolved to address increasingly

complex data—multi-channel, volumetric, and multi-modal

sources—with applications in remote sensing [Bosilj et al.,

2018], biomedical imaging [Kiran and Serra, 2015], and other

fields [Maia et al., 2021]. Critically, morphological hierar-

chies prioritize structural and relational properties over purely

pixel-based approaches, underpinning meaningful and inter-

pretable representations.

Machine learning approaches that leverage hierarchical rep-

resentations primarily use them to define or select spatial re-

gions for feature extraction, especially in medical [Grossiord

et al., 2017; Padilla et al., 2021] and remote sensing do-

mains [Hu et al., 2021]. Max-tree and tree-of-shapes repre-

sentations segment volumetric medical data [Grossiord et al.,

2017; Padilla et al., 2021], while superpixels and binary par-

tition trees structure high-resolution aerial images [Hu et al.,

2021]. Hierarchies also serve as spatial masks or filters to iso-

late relevant regions before extracting features, as in 3D point

cloud classification using elevation-based and quasi-flat zone

hierarchies [Serna and Marcotegui, 2014], or text detection

with multi-channel max-trees [Sun et al., 2015]. Across these

strategies, features describing region shape, intensity, texture,

or geometry are extracted from pixels grouped by each hier-

archical node and used to train classifiers such as Random

Forests [Grossiord et al., 2017; Hu et al., 2021], Random

Walks [Padilla et al., 2021], SVMs [Serna and Marcotegui,

2014; Sun et al., 2015; Díaz et al., 2009], or clustering mod-

els. To manage the complexity of hierarchical representations,

practitioners often filter for stable nodes [Padilla et al., 2021],

sample multiple scales [Hu et al., 2021], or aggregate features

in a bag-of-features model [Clément et al., 2018]. However,

the effectiveness of these approaches relies heavily on media-

derived features, demanding careful, often domain-specific,

feature design and limiting both interpretability and general-

ization.

The preceding approaches illustrate that hierarchical repre-

sentations have predominantly served as a means to define

regions for feature extraction in classical pipelines. To tran-

scend these modality- and domain-specific constraints, recent

work has shifted towards graph-based models, offering a uni-

fied formalism for both local and global relationships [Bondy

et al., 1976; Ortega et al., 2018; Cousty et al., 2013]. In this

framework, hierarchical trees and region adjacency graphs

are particular cases of edge-weighted graphs, broadening the

scope to domains such as bioinformatics [Zitnik et al., 2019],

event data [Isella et al., 2011], and document structures [Mi-

halcea and Radev, 2012]. Machine learning on graphs en-

ables algorithms to operate in a source-agnostic manner, with

vertices and edges representing entities and their relation-

ships [Wu et al., 2020; Zhang et al., 2024].

However, adapting graph representations to learning frame-

works introduces new challenges. Graphs tend to be large

and densely connected, and their arbitrary, non-Euclidean

structure complicates the use of standard algorithms that ex-

pect fixed, systematic inputs [Makarov et al., 2021]. To

address these challenges, a range of strategies have emerged,

including graph embeddings [Perozzi et al., 2014; Grover

and Leskovec, 2016; Wang et al., 2016], deep graph learn-

ing [Scarselli et al., 2009; Micheli, 2009; Wu et al., 2020],

and feature vectorization approaches. Each of these seeks to

preserve topological and semantic properties while enabling

efficient learning. Our framework builds on this lineage by

focusing on interpretable, structural features derived directly

from the hierarchy itself.

Recent years have seen rapid growth in deep learning meth-

ods on graphs, with architectures such as graph convolutional

and attention networks [Wu et al., 2020; Zhang et al., 2024].

These have been adapted to image, video, and multi-modal

data by encoding pixels, superpixels, or spatial regions as

graph nodes, and modeling relationships via edges [Chen

et al., 2020; Ji et al., 2020; Huang et al., 2020; Selvan et al.,

2020]. Applications now range from classical tasks like im-

age segmentation and classification [Ji et al., 2020; Selvan

et al., 2020] to semantic scene understanding and visual rea-

soning [Luo et al., 2019; Yang et al., 2020; Jing et al., 2020].

In each case, graph structure is key to capturing complex in-

teractions not accessible in regular grids. Still, these models
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face obstacles: constructing meaningful graphs from media

data requires non-trivial choices regarding node grouping,

edge definition, and encoding of geometric or temporal rela-

tionships [Qi et al., 2017; Chuang et al., 2018]. Further, most

models act as black-boxes, making it difficult to interpret

which properties of the structure drive their predictions.

In summary, while hierarchical and graph-based models

have provided a solid foundation for representing complex

data, and deep learning on graphs has expanded the reach

of these methods, a persistent gap remains in learning di-

rectly from interpretable, structural features without relying

on extensive media-derived attributes or opaque models. The

present work seeks to address this gap by proposing a frame-

work for transparent, structural, and media-agnostic learning

on hierarchies, extending the landscape of machine learning

with a focus on interpretability and broad applicability. The

sections that follow describe our approach and demonstrate its

practical benefits through rigorous experimental evaluation.

3 Hierarchies and graphs

The hierarchical functions on mathematical morphology are

rooted in the algebraic theory of complete lattices, model-

ing non-linear transformations with set operators to correlate

whole sets of values [Najman and Talbot, 2013]. The scale-set

theory, a sub-area of mathematical morphology, formalizes

the hierarchical principles guiding the morphological opera-

tors [Guigues et al., 2006]. In the scale-set theory formaliza-

tion, a structure could be defined as a hierarchy if it follows

two hierarchical principles: (i) the principle of causality: a

particular element at one hierarchical level should be present

at any consecutive level; and (ii) the principle of locality:

regions must be stable when creating or removing partitions.

In [Cousty et al., 2013], the authors provided formal links

between the morphological partitions and edge-weighted

graphs. This section formalizes graph concepts describing

their components and terminologies (Section 3.1), connects

graphs and hierarchies (Section 3.2), and describes the dif-

ferent hierarchical model types contemplated in this work

(Section 3.3).

3.1 Graph’s formalism and notions

A graph G = (V, E) consists of a finite set of vertices, de-
noted by V , and a finite set of edges denoted by E, in which

E ⊆ V × V . If (u, v) ∈ E for two vertices u, v ∈ V , then u
and v are adjacent vertices. The notion of vertices relates to
the data’s elemental components while edges to the connec-

tions and dynamics between the parts. A graph is non-empty

if V 6= ∅, nontrivial if E 6= ∅, complete if E = V × V , and

direct if (u, v) 6= (v, u), ∀u, v ∈ V .

The set E induces a unique adjacency relation Γ on

V , which associates u ∈ V with Γ(u) = {u} ∪ {v ∈
E|(u, v) ∈ E}. Γ is reflexive (u ∈ Γ(u)) and symmetric
(v ∈ Γ(u) ⇐⇒ u ∈ Γ(v)). In multimedia processing, the
adjacency relation is usually in a regularly structured form as

a grid invariant to translation. Standard grid adjacency in 2D

spaces is the squared orthogonal shape named 4−adjacency,

the octilinear form in the 8−adjacency, or the hexagonal struc-

ture in the 6− adjacency relation. Alternatives to the grid

adjacency involve distance parameters determining the reach

of each vertex or a selection criterion based on a pattern or

media property.

An edge-weighted graph is denoted by (G, F), in which
F : V × V → R is a function that weights the edges of

G = (V, E) and F(E) is the weighted map for the function
F on the set E. The nature of F determines which character-

istics the graph preserves, and selecting a function could be

considered a similarity measure problem between two finite

sets of points, where {w = F(u, v)|(u, v) ∈ E} is the weight
w of an edge (u, v) ∈ E that could describe the dissimilarity

of u and v.
A path π = (v0, . . . , v`) is an ordered sequence of vertices

with size ` connecting v0 to v` if (vi−1, vi) ∈ E for any i ∈
{1, . . . , `}. In an edge-weighted graph, a path is descending
if for any i ∈ {1, . . . , ` − 1}, F(vi−1, vi) ≥ F(vi, vi+1). A
connected graph has a path from v to u for all u, v ∈ V .

Another way to define and interpret a graph is through

subsets of all possible vertices and edges. A graph G' =
(V ', E ') is a subgraph of G = (V, E) if V ' ⊆ V and E ' ⊆ E,

then G and G' are ordered by the inclusion relation G' v G,

where G' is smaller than G. A lattice is a set of all subgraphs

of G preserving the inclusion order.

A tree is a particular case of a direct graph. In a tree, we

denote vertices as nodes and distinguish them based on their

positions in the structure. The root is the single node at the

top of the tree that connects all the other nodes. From the

root, every subsequent node is a child. They can be either an

internal node, fromwhich other nodes branch, or a leaf with no

children at the bottom of the tree. The root and internal nodes

are the parents of their children. From the root, each node in

the path to a leaf characterizes one level, and the maximum

number of levels defines the depth of a tree. The altitude of

a node starts from the leaves, ascending until reaching the

node, and it is inversely proportional to the depth of the node.

3.2 Hierarchies from graphs to graphs

In classical mathematical morphology, structuring elements

are the parameters for the algebraic operators on lattices. On

graphs, the modeling choices for the edges, weights, and ad-

jacency relation define the parameters. A hierarchy operating

on the edge-weighted graph defines non-gridded regions as

subsets of the vertices. For G = (V, E) and the subgraph
G' = (V ', E '), the graph induced by V ' is G = (V ', ε) where
V ' ⊆ V and ε = {(u, v) ∈ E | u, v ∈ V '}. V ' is a connected

component of G if V ' is connected for G and maximal.

A set H ⊆ V, where V denotes the set of all subsets on

V , is a hierarchy on V if H1 ∩ H2 ∈ {∅, H1, H2} for any

two elements H1, H2 ∈ H and complete if {V } ∈ H and

{{v} ∈ H | ∀ v ∈ V } ∈ H. Without loss of generalization,

for G denoting the set of all subgraphs of G, H ⊆ G is a

hierarchy on G if H1, H2 ∈ {(∅, ∅), H1, H2} for any for any
H1, H2 ∈ H, and it is complete if G ∈ H and {({v}, ∅)} ∈
H.

These notations characterize a direct forest and tree, re-

spectively, which portray the hierarchy as a Hasse diagram,

also known as a dendrogram representation [Sokal and Rohlf,

1962]. Therefore, a hierarchy is a graph in the form of a
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hierarchical tree. In a hierarchical tree, for H1, H2 ∈ H, H2
is a child of H1 if H2 is the largest proper subset of H1 and
if H2 ⊆ H ⊆ H1, H = H2 or H = H1 for any H ∈ H. An

element of H without a child is a minimum of H.

A partition P is a set of non-empty disjoint subsets of V ,

meaning that ∀ X, Y ∈ P, X and Y are regions, X ∩Y = ∅ if
X 6= Y and ∪{X ∈ P = V }. Any element v ∈ V belongs to

a unique region, a singleton partition of P, denoted [P]v . The
partition set is ordered from finer in P' to coarser in P'' if any
region in P' is present in P'' for any P',P'' ∈ P. The ordered
relation conveys the idea of refinement. Also, navigating the

partition from finer to coarser, commonly codded as bottom-

up, impart the concept of region aggregation. In contrast, the

opposite, top-down, is the concept of region splitting.

A hierarchy of partitions H = (P0, . . . ,Pk) is a se-

quence of partitions on V , such that [P]i−1 is a refinement
of [P]i ∀i ∈ {1, . . . , k} where k is the number of levels in

the hierarchy characterizing its altitude and depth. The hier-

archy preserves the non-empty disjoint sets notion and the

ordered relation. The union of all partitions of H creates the

set of regions of RH, and the inclusion relation induces a tree

structure.

The hierarchical partition tree TH is the tree representing

the hierarchy H = (P0, . . . ,Pk)where:

• the root node represents the single partition Pk = {V },
• the set of leaves L represents the partition P0, where
P0 = {[P]v | ∀ v ∈ V },

• the parent of a node n in the set of nodes N representing

the region Rn of RH is the smallest region of RH that

is strictly larger than Rn, and

• the depth dn of a node n ∈ N is its number of parents.

There are multiple ways to represent a hierarchy of parti-

tions, straightforward as a hierarchical partition tree with all

the partitions in a single structure. Another way is by a cut

presenting one partition of the hierarchy at a time. The cut

can be a horizontal cut Perret et al. [2018] if all regions are

extracted at the same hierarchical level or a non-horizontal

cut [Guigues et al., 2006] if searching for regions at different

levels for one representation.

3.3 Types of hierarchical models

Thus far, the discussions about hierarchies considered only

the structural components of the graphs: the vertice and edge

sets. The hierarchical construction algorithms use the weights

to regulate how regions are formed, the criterion to merge

and create new ones, and the order to pursue. This work con-

templates two particular hierarchical model types grouped by

their ordering method on the hierarchical tree. Namely: (i)

altitudes ordering based on increasing values of edge-weights

criterion: quasi-flat ones [Cousty et al., 2018]; and (ii) alti-

tudes ordering based on a geometric criterion: hierarchical

watersheds [Beucher, 1994].

The quasi-flat zones (QFZ) hierarchy is induced directly

from the edge-weight graph. Its construction algorithm takes

the set of ordered weights on the edges and defines each

level as the set of connected component partitions whose

weights are smaller than a threshold value λ. Formally,

consider an edge-weighted graph (G, F), the set of con-
nected components of G denoted by C, a subgraph G' of

(G, F), an weight value {w = F(u, v)|(u, v) ∈ E} and the
range of values E for all weight values of E. The QFZ hi-

erarchy induced by the edge-weighted graph is defined as

QFZ(G', w) = (C(wV
λ (G'))|λ ∈ E), where: (i) wλ(G') is

the λ-level set of all edges of G' whose weight values are

less than λ; (ii) wV
λ (G') is the λ-level graph whose edges

are wλ(G') and vertices V ; and (ii) C(wV
λ (G')) is the λ-level

partition of connected components partition induced by the

λ-level graph of G'.

The hierarchical watershed extends the classical mor-

phological watershed [Beucher, 1979], and it is an intuitive

approach to map weights into partitions. One of the intuitions

behind the classical watershed is the principle of the drop of

water flowing on a topological surface. The watersheds are

the lines separating the multiple downward regional minima.

In media processing, the topological surface is usually created

by magnitude values, in which mountains are the regions with

comparatively higher magnitudes, and basins and valleys are

the ones from lower magnitudes.

This principle is used in the hierarchies of watersheds to

create a sequence of segmentations as connected elements

formalized as a minimum spanning forest (MSF) representing

the flooded regions in all possible levels. For edge-weighted

graphs, the drop of water principle is interpreted as a graph cut,

known as a watershed cut, that is not uniquely defined for a

weight map. However, the watershed hierarchies as a relative

MSF are optimal and unique for a watershed cut [Cousty

et al., 2009]. To obtain a partition in the hierarchy, it takes

the weighted graph, and a subset of graph vertices called

markers representing regional minima on the weight map. If

the markers are ranked and ordered, it creates a sequence

of nested partitions where each hierarchy level represents a

marker’s extinction value [Vachier and Meyer, 1995] (the

minimum value that makes a region be merged into another

region). The extinction values are usually grouped and ranked

based on a given geometric criterion that reflects its region’s

topological properties.

Each construction algorithm has its particular properties

and interpretation of the data. However, the rules on the hier-

archical principles and the ordered representation of regions

create a shared space convenient for commuting from one

type to another if one representation is inadequate for an ap-

plication. Furthermore, efficient implementations [Najman

and Couprie, 2006] make the hierarchies an appealing alter-

native to introducing a semantic interpretation into media

processing.

4 Typical hierarchical pipeline

This section introduces a typical pipeline, illustrated in Fig. 1,

that applies the hierarchies defined for an edge-weighted

graph to an image processing task.

Usually, image applications are tasks defined for three-

channel colored images, and despite the availability of exist-

ing hierarchical methods applied directly on the color chan-

nels [Soille, 2008], operating on colored images requires

strategies to either map dissimilarities between pixels on mul-
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Figure 1. Illustration of a typical pipeline using hierarchies for image processing. First, it transforms each image to the gray-scale magnitudes used to

create the edge-weighted graphs. Then, the hierarchical method computes the desired hierarchy based on its criterion. Because the hierarchical structure is

multi-layered, selecting a certain level, a combination, or a specific number of regions is necessary to create a single output evaluated on the task.

tiple dimensions [Aptoula et al., 2013] or combine the hier-

archies independently defined on each channel [Kurtz et al.,

2014]. Therefore, the general approach is to model the graph

from the monochromatic images, such as the grayscale repre-

sentation of pixel intensities or image gradients.

During the development of our framework, we evaluated

several gradient operators for generating edge weights in the

image graph, namely GIG [Almeida et al., 2022], SED Dollar

and Zitnick, 2015, and the kernel methods Sobel and Lapla-

cian. Any operator that produces meaningful edge informa-

tion can serve as input, since the hierarchical representation

encodes structure beyond the specific gradient details. How-

ever, Laplacian gradients tend to lose important structural

information, and SED, while effective, introduces significant

computational overhead. Sobel provided reasonable results,

but GIG consistently produced better outcomes in terms of de-

tail, contour sharpness, and region separation, without requir-

ing additional parameterization. In addition, GIG is efficient,

producing the image gradient in a fraction of a second. For

these reasons, we chose GIG as our default, as it offers an opti-

mal balance between informative contours and computational

efficiency.

After adequately preparing the image, the following steps

on the pipeline are the graph generation and hierarchy con-

struction. Defining the graph representation is a modeling

question with various connotations, and each hierarchical

model type has its particular characteristics, discussed in Sec-

tion 3.

Once constructed, it is necessary to decide how to represent

the hierarchies to be applied to a task since most ground-

truth references need a flat (i.e., non-hierarchical) form for

comparison. In this step resides the central problem of this

work. The trivial approach is a series of horizontal cuts

selecting multiple independent partitions representing the

hierarchy. The selection could indicate the desired number

of regions portrayed on the partition or a threshold of the

hierarchical levels. This process can be strenuous if searching

for an ideal number of regions. One could search from a single

region to the total number of regions in the hierarchy, which is

variable among the many representations. Or, if thresholding

the levels, one crucial detail present at one hierarchical level

could be merged on the subsequent levels. Even further, as

pointed out in Perret et al. [2018], the metric used to evaluate

the selection can be misleading. Also, a good horizontal cut

for one specific hierarchy does not guarantee that it will be

ideal for another on the same dataset.

Other representation strategies include post-processing the

hierarchies by flattening [Xu et al., 2013], realigning [Adão

et al., 2020], or filtering the structure [Perret et al., 2019b].

These strategies rely on identifying less relevant regions and

re-weight or merging these regions, creating more concise

representations. The problem with these approaches is that

defining the region’s importance is subjective and strongly

related to a media type or task.

Alternatively, one could search for the ideal representation

with a non-horizontal cut [Arbelaez et al., 2014], which is, by

all means, a combinatorial problem. One possible solution is

to create a model that learns this ideal representation directly

from the structure and uses the model to adapt unseen sets

of hierarchies [Chierchia and Perret, 2020]. However, insert-

ing the hierarchies in a learning framework is difficult since

they have heterogeneous representations, for instance, in their

altitudes and number of regions. Furthermore, construction

algorithms are primarily deterministic, and there is no direct

way to evaluate their quality other than applying them to a

task.

To point out these notions is to highlight that beyond the

data modeling, and, despite the abundance of information

embedded in the hierarchies, without careful considerations

in choosing the hierarchical type, the parsing strategy, the

representation for the task, and the metrics, media processing

strategies could overlook the potential in these structures.

For instance, datasets without large quantities of labeled data

or applications that require dependable outputs could rely

upon regional analysis methods that provide a consistent data

organization, such as those offered by hierarchical analysis.

5 Learning on hierarchical attributes

This section presents a learning framework, illustrated in

Fig. 2, formulated on the structural components of the hierar-

chies and a regular representation of the structure attributes.

We present two strategies for selecting attributes from the hier-

archical structures: (i) a regular representation selecting topo-

logical properties from the hierarchical trees (Section 5.1);

and (ii) regional features deduced from the hierarchies and

their conjoined graph (Section 5.2).

The hierarchical construction contemplates the hierarchies

in Section 3.3. Without loss of generality, the conjoined edge-

weighted graphs in this pipeline are defined on the image
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Figure 2. Illustration of the framework from the input image to the Random forest predictions performing the task. First, it computes the GIG gradient for

each image in the dataset. Then, it calculates the edge-weighted graphs, here illustrated with the 4−adjacency relation. The next step constructs the hierarchies

from the graphs and creates a regular representation with topological attributes of the hierarchical trees to serve as input for the Random Forest model. The

regular input for the training set includes the associated label: the unique discrete label on the task for each tree leaf. During the test, the Random Forest

subject each leaf of the test hierarchies to prediction, where the estimated values are mapped back to the image coordinates for evaluation.

domain. A structured grid obtains the adjacency relation

Γ, and the set of vertices V = {v1, v2, . . . , vN } represents
the N pixels of the image. Each vertex is associated with a

function f : V ⊂ Z2 → R mapping gray-scale magnitudes

of the GIG [Almeida et al., 2022] gradient computed from

the original image. For the edges, a weighting function F
characterizes similarities.

The representations are aggregated using Random Forests

(RF) [Breiman, 2001], a fast, simple, and scalable model

capable of dealing with high dimensional data and with satis-

factory results in multiple tasks. It allows for extensive ex-

perimentation without the need for additional model-specific

engineering or scalability adjustments.

The RF described in Breiman [2001] is a non-parametric

machine learning method for classification and regression.

At the core of the RF is the randomization of sampled data

distributed to supervise the training of independent decision

trees and the aggregation of the results for the final predic-

tion. The randomness performs as an implicit regularization

process promoting consistency and noise suppression [Wyner

et al., 2017].

For a graph created from the image pixels, there is a di-

rect correspondence between the pixels, the vertices, and the

leaves in the tree. Therefore, the task label attribution is per-

formed at the leaf level at the bottom of the tree, and each

leaf has a unique discrete label. It creates a model agnostic to

the task since no assumptions are made on the media type for

the label attribution, and the single label represents multiple

regions that share a path on the tree. At inference time, the

RF predictions are mapped to the image space to be evaluated

on the task.

A notable property of our framework is that learning is

driven entirely by the hierarchical and structural features of

the data, independent of low-level appearance cues. During

training, the model receives labels paired only with specific

leaves of the hierarchy. The Random Forest thus learns to

distinguish structural roles based on the hierarchy, rather than

relying on raw visual similarity. This makes the approach

naturally robust in settings with ambiguous boundaries, in-

complete annotation, or the presence of multiple objects that

may be visually similar but structurally distinct. As a result,

our method is well suited to real-world situations where an-

notation may be sparse or ambiguous, and where classical,

appearance-based methods may be misled.

5.1 Topological attributes

The first strategy creates a regular representation by selecting

topological properties from the hierarchical trees. Formally,

consider a hierarchical tree TH representing the hierarchy of

partitions H = (P0, . . . ,Pk) created from the edge-weighted

graph (G, F) has a set of nodes N . The depth dn of a node

n ∈ N is its number of parents. At the bottom of this tree,

there is a collection of leaves L representing the partition P0,
where P0 = {[P]v | ∀ v ∈ V } and each l ∈ L corresponds

to a v ∈ V . The proposed representation depicts each leaf

l ∈ L as a vector Tl of selected attributes. The selection

corresponds to one of the following attributes:

• Altitude: the value inversely proportional to the depth

of the node n: altn = 1/dn.

• Area: sum of the number of leaves on the subtree τn

rooted on the node n: arean = |{Ln} |, for Ln =
{l | ∀ l ∈ τn}, Ln ⊆ L.

The selected attribute is computed for all parents of l. Each
leaf has a variable number of parents; therefore, the dimension

pt of the vector Tl is standardized by the maximum depth in

all TH computed for a dataset. Also, the leaves with a set of

parents smaller than the maximum depth receive a padding

value of -1 because the attributes considered for the selection

have all positive values (alt ∈ [ 0, 1 ] and area ∈ [ 0, |L| ]).
The semantical meaning is kept by representing the par-

ents of a leaf node in the order they appear transversing the

hierarchical tree. The order could be ascending (from leaf

to root) or descending (from root to leaf). Early experiments

showed that essential attributes occur at the initial positions

of the feature vector and are favored by the RF model during

training. Therefore, we use the ascending order in this work.

The regular representation on topological attributes is

formalized as TH = ((T1, Y1), . . . , (T|L|, Y|L|)), where
each leaf l ∈ L is represented as a vector Tl with a single

label Yl . Tl = [[topo(par1), . . . , topo(parpar)]] for all
par parent nodes in the set Pl of parents of l, and topo ∈
{alt, area} for the attribute candidates. The size of Tl is

pt and pt = max(dn) , ∀n ∈ N in all TH in the set T of all

hierarchies in a dataset. The training input Dt on topological

attributes for the RF concatenates all theTH of the hierarchies

TH ∈ T that corresponds to a training instance on the dataset,

where Dt = ((T1, Y1), . . . , (TTl
, YTl

)) and Tl is the total

number of leaves in the training set.
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5.2 Regional attributes

The second strategy uses a set of regional attributes created on

the conjoined graph by the hierarchical structure. Formally,

each node n ∈ N represents a region Rn that is the union of

all regions on the subtree τn rooted on the node n. A cut is

a partition P of V made of regions of H, where a horizontal

cut is a partition P = Pi for i ∈ {0, . . . , k} for all k altitude

levels on the tree. A horizontal cut by altitude levels defines

the partition by a threshold σ on its altitude values. Two

regions R and R′ are in the same region Rn if n is their

lowest common ancestor that have altn > σ.
Consider β as a series of altitude levels to cut the hierarchy.

The proposed representation depicts each leaf l ∈ L as a

vectorRl of size |β|. At each position of this vector, there is a
cut Pσ for σ ∈ β. Thus, the leaf l is represented by a selected
regional attribute for the region Rn where n is the lowest

parent of l whose altn > σ. The selection corresponds to
one of the following:

• Contour strength: The contour ζ of a node is the num-
ber of edges on the conjoined weighted graph shared

among the regions merged by a node. The contour

strength is the average of edge weights on the con-

tour: contourRn
=

∑
(u,v)∈ζ F(u, v), in which ζ =

{(u, v) ∈ E | ∀ u ∈ R ∧ v ∈ R′ and ∀ R, R′ ⊆ Rn}.
• Gaussian: Estimates the Gaussian distribution of leaf

weights in the region Rn defined by the node n. The
function returns two values: the mean and the variance.

The leaf weights could be defined for any attribute or set

of attributes (on which one could calculate the covari-

ance). Here, they are the sum of the weights of the edges

that comprise the vertice equivalent of the leaf. Hence,

gaussianRn
= [meanRn

, varRn
], in which:

areaRn
=|{LRn

}|, meanRn
= WRn

areaRn

and

varRn = (meanRn)2

areaRn

− (meanRn)2

for LRn
= {l | ∀ l ⊆ Rn}, with LRn

⊆ L and

WRn
=

∑
u∈Γ(u) and v=l∈LRn

F(u, v).

The selected attribute is computed for all regions created

by the cut σ ∈ β, and the ordered representation is preserved
on the cut despite not representing every possible region in

the hierarchy. It is proposed to select only a few steps in

the normalized altitudes creating a reduced set of features

guaranteed to be present in all hierarchical types.

The regular representation on regional attributes is for-

malized asRH = ((R1, Y1), . . . , (R|L|, Y|L|)), where each
leaf l ∈ L is represented as a vector Rl with a single label

Yl . Rl = [reg(σ1), . . . , reg(σ|β|)] for all σ cuts in β and

reg ∈ {contour, gaussian}. The size of Rl is | β |, de-
fined in the range ]0, 1[ with a 0.1 step adding 0.01 and 0.99
for the extremal regions in the structure. The training input

Dr on regional attributes for the RF concatenates all the RH
of the hierarchies TH ∈ T that corresponds to a training in-

stance, where Dr = ((R1, Y1), . . . , (RTl
, YTl

)) and Tl is

the total number of leaves in the training set.

The procedure for test instances in both proposed represen-

tations takes the regular representation of each hierarchy in the

test set and individually subjects them to the RF estimations

without the labels.

6 Experiments and results

This section presents experiments with the trivial, topological,

and regional approaches in two image tasks: edge detection

and segmentation. It also includes results using selected at-

tributes extracted directly from graphs before hierarchy con-

struction, as described in [Almeida et al., 2022]. In these

experiments, the objective is to assess the learning framework

based solely on hierarchical and structural information de-

rived from the input graph, independent of how the graph was

generated. While preprocessing could improve task-specific

results, our focus is on validating the generality and effective-

ness of the framework itself.

6.1 Datasets

The edge detection dataset is the Berkeley Segmentation

Dataset and Benchmark (BSDS500) [Martin et al., 2001],

illustrated in Fig. 3. It contains 500 (200 train, 100 validation,

and 200 test) natural images, presenting complicated/high-

contrast patterns, occluded objects, and objects indistinguish-

able from the background by color. Each image has multiple

labels performed by different annotators; thus, we performed

a majority vote to obtain a single label.

For segmentation, Birds [Mansilla and Miranda, 2016], a

binary segmentation public dataset. It contains 50 images

of birds with manual annotations and no official train/test

sets division. Therefore, a random selection split the dataset

into 35/15 train/test. Fig. 4 illustrates the Birds dataset and

its challenges. Namely, the images usually portray the birds

close to a body of water, with areas of high-intensity lights

and annotations covering only one leading object, despite the

presence of multiple similar objects in the surroundings. This

design introduces a challenging scenario for segmentation,

as both annotated and unannotated objects may be visually

indistinguishable. We intentionally selected this dataset to

assess the capacity of our method to go beyond low-level

visual cues and instead leverage structural and hierarchical

information.

6.2 Experimental setup

The pipeline takes the colored images and computes the GIG

gradient without any additional preprocessing. Next, it con-

structs the graph with a 4−adjacency relation and the Eu-
clidean distance on the gradient magnitudes for the weighting

function. The hierarchy construction explores the aforemen-

tioned quasi-flat zones (QFZ) and the hierarchical watershed

using the number of parents (WATER-PAR) as topological

criterion [Perret et al., 2018], which counts the number of

parents a node has on the MST representing the graph to de-

termine its extinction values. It does not perform additional

post-processing, such as filtering, realigning, or balancing the

hierarchical levels.

For the BSDS500, the pipeline uses an RF regressor as a

model, where the average predictions are mapped back to
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Figure 3. BSDS500 dataset sampled images with their respective boundary ground truths. It contains colored natural images presenting complicated patterns,

occluded objects, main objects indistinguishable from the background by color, and objects with patterns of high contrast. Each image contains multiple labels

where line intensities indicate the annotators’ agreement.

Figure 4. Birds dataset sampled images with their respective segmentation ground truths. The images usually portray the birds close to a body of water, with

areas of high-intensity lights and the annotations for only one main object, despite the presence of multiple similar objects in the surroundings.

the image domain for evaluation. This dataset proposes an

evaluation system for methods using it. The evaluation takes

an edge map and threshold the values in the range [0, 1[ with
a 0.01 step computing the precision-recall F1−score at all
threshold values. The results were then assessed in terms

of the optimal dataset scale (obtained in the threshold that

best represents most of the images), the optimal image scale

(obtained for each image at its best scale), the average pre-

cision through all scales. For non-hierarchical methods, this

evaluation works to process soft edge maps. For hierarchical

methods, this evaluation allows the assessment of different

levels of details in the hierarchical partitions. However, for

clarity, the results presented in this section for the BSDS500

dataset are only for the optimal dataset scale, which gives the

average score obtained in the threshold that best represents

most images, which is the most challenging and the best to

evaluate the overall performance.

For the segmentation dataset, the pipeline considers an RF

classifier whose predictions for each leaf on the binary seg-

mentation labels are directly mapped back to the image space.

The evaluation metric use the Jaccard similarity coefficient

score as the metric, which measures in the interval [0, 1] the

intersection size divided by the union size of two sets. It is

equivalent to the precision-recall F1−score on binary sets.

The parameters for the RF models were obtained using a

grid search on the validation set of the BSDS500 dataset and

set as 500 trees in the forest, 5 minimum number of samples

to split an internal node, 20 the minimum number of samples

to be a leaf node, 10% percent for the bootstrap sample size,

squared function on the whole set of features to amount to

the sampled features for the split, and 10 as the maximum

depth of the trees. The trivial approach does not involve a

learning step. The experiments explored a range of parameters

defining the number of desired regions for a cut by the number

of regions and multiple horizontal cuts by threshold. The

results presented are for the best parameters, namely: (i) 1000

regions for QFZ and 60 for WATER-PAR using the cut by

the number of regions; and (ii) threshold at 0.22 for QFZ and

0.53 for WATER-PAR using the horizontal cuts by threshold.

The graph comparison uses an attribute selection belonging

to two categories: (i) vertex attributes, representing low-level

color descriptors proposed in Dollar et al. [2010] (named

onlyColor); and (ii) edge weights, representing the weight

values in every edge on the adjacency of a vertex (named
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Table 1. Quantitative comparison of the results obtained in all

datasets for the compared approaches. F 1−score for the optimal

dataset scale for the BSDS500 and average Jaccard score for Birds.

The best score for approach variation is shown in bold and underline

emphasis the best score per dataset. Perfect scores=1.

BSDS Birds

G
r
a
p
h GIG 0.65 0.29

GIG-Edge 0.64 0.28

onlyColor 0.61 0.27

T
r
iv
ia
l Hierarchy Threshold Regions Threshold Regions

QFZ 0.26 0.28 0.14 0.05

WATER-PAR 0.24 0.53 0.28 0.24

T
o
p
o
lo
g
ic
a
l

Hierarchy Altitude Area Altitude Area

QFZ 0.60 0.52 0.30 0.37

WATER-PAR 0.63 0.54 0.32 0.41

R
e
g
io
n
a
l

Hierarchy Contour Gaussian Contour Gaussian

QFZ 0.63 0.67 0.53 0.51

WATER-PAR 0.63 0.65 0.71 0.64

GIG-Edge). The graph representation with both categories of

attributes is named GIG.

6.3 Quantitative analysis

Table 1 shows the results for the proposed strategies on the

two datasets compared with the typical trivial approach (cut

by threshold on altitude levels and by the number of regions)

and the representations from graph attributes.

While the results with the trivial approach are considerably

worst compared with the other strategies, they are presented

to establish a baseline, not to say that hierarchical structures

are ineffectual for the edge detection task. On the contrary,

many hierarchical proposals in this dataset present competi-

tive results. However, each successful method also gives one

strategy to improve or filter the hierarchical contours. For

instance, Arbelaez et al. [2009] proposed a technique that con-

structs hierarchical boundary maps from an edge map where

the boundaries between consistent regions are reinforced and

small areas removed (reaching 0.71 on the optimal dataset

scale). In Maninis et al. [2018], they take pre-computed con-

tours using the side outputs of a convolutional network for

constructing the hierarchies (with a 0.73 score). In Taylor

[2013], they use normalized cuts to reduce internal regions

and sharpen the contours between contrasting areas (with a

0.67 score). And Arbelaez et al. [2014] creates the hierarchies

at multiple image scales independently and combines them

into a single contour map weighing the strength of each con-

tour using machine learning (with a 0.73 score). Furthermore,

Perret et al. [2018] shows the gain quantitatively in score by

filtering small areas on another dataset with the same task.

As for the segmentation task with Birds, the illumination

conditions on the images create a scenario that is very chal-

lenging for many of the best image processing methods, as it

creates peaks in the magnitude values that make it difficult

to distinguish the main objects and the body of water in the

background. With the hierarchical methods, the algorithms

will create similar partitions for the many objects portrayed

in the images, while only one is considered a valid answer.

Compared with the typical approach, the topological strat-

egy improves the results for almost all hierarchical types for

all datasets (except for WATER-PAR with altitudes in Birds).

The additional benefit is that it does not require an empirical

search on the hierarchical levels and regions for evaluation.

Furthermore, the topological approach presents best results

than the trivial and the graph in the Birds dataset. In edge

detection, the graph and the topological perform better than

using only the color features, with the GIG approach perform-

ing better than the best on the topological strategy.

The regular representation with topological attributes cap-

tures enough information for the learning model to better

discriminate between classes. And the padding values did

not disturb the model performance in any hierarchical type.

Regarding the topological attributes, the altitudes perform

better on the edge detection and the area on the segmentation,

which matches the task goals with the attributes’ properties.

The regional attributes present the best results in all datasets.

Even for the challenging Birds, there is at least one attribute

for all hierarchical types that give a satisfactory result. The

Gaussian presents, in general, superior results on the different

tasks. Because the Gaussian attribute quantifies the region

distribution on the hierarchical trees, it assimilates the repre-

sentation with the task. Future applications of this strategy

may consider the hierarchical type that most agrees with the

objectives and use the Gaussian attribute for the representa-

tion.

6.4 Computational efficiency and scalability

All experiments were run on a HPE ProLiant DL385 Gen 10+

v2 (AMD EPYC 7431, 8 cores, 32GB RAM, Linux). Hier-

archical computations used the Higra Python library [Perret

et al., 2019a], and learning models were implemented with

Scikit-learn [Pedregosa et al., 2011], using parallel training

over 50 CPU cores.

Despite the additional cost of graph and hierarchy construc-

tion, the overall runtime remains competitive with standard

image-based pipelines. For the full BSDS500 dataset, cre-

ating the regular sets takes 500 seconds for the topological

approach and 110 seconds for the regional approach; for the

Birds dataset, these steps require just 40 seconds (topological)

and 10 seconds (regional). Training the Random Forest mod-

els is also efficient, requiring at most 2 hours (topological)

or 10 minutes (regional), which is considerably faster than

typical deep learning models for similar tasks.

The framework is well suited to large datasets and scal-

able to even larger graphs or non-image domains, especially

when annotation or visual data is limited. Efficient library

implementations and hardware parallelism contribute to its

practicality in real-world scenarios. For non-image data that

are already graph-structured, the initial graph construction

step is unnecessary, further reducing the runtime.

Overall, our method is competitive in computational cost

with both traditional and learning-based approaches, while

remaining straightforward to scale and deploy. The reliance

on open-source libraries and commodity hardware makes the
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framework accessible for both research and practical applica-

tions.

6.5 Qualitative analysis

One significant advantage of working with image data is the

ability to directly and intuitively inspect outputs, making it

possible to qualitatively assess the practical strengths and

weaknesses of each method. In this section, we leverage this

property to present a qualitative analysis that complements

the global quantitative results and illustrates how image-based

tasks enable a deeper understanding of model behavior and

representational properties. This visual perspective is par-

ticularly valuable given the general, media-agnostic nature

of the proposed framework: although the input data here

are images, the results illustrate properties of the structural

representations themselves, independent of domain.

Figure 5 presents segmentation results for a representative

sample from the Birds dataset: the ”flamingos” image from

Figure 4. This image poses several challenges—multiple

visually similar birds near water, strong background reflec-

tions, and only the foreground bird annotated as ground truth.

This example typifies the main experimental difficulties and

illustrates the distinctive strengths and limitations of each

method. From left to right: (a) GIG representation; (b) trivial

approach (WATER-PAR, filtered by number of regions); (c)

topological approach (WATER-PAR, area); and (d) regional

approach (WATER-PAR, Contour).

The GIG representation in Figure 5(a) performs poorly

(Jaccard 0.40), producing a mask that fails to distinguish the

annotated bird from other similar objects. As GIG relies on

edge weights and local color, it is sensitive to background

clutter and reflections, which results in over-segmentation

and confusion. The trivial approach in Figure 5(b) fares even

worse (Jaccard 0.04). By selecting a fixed number of promi-

nent regions (60), it isolates only small, irrelevant fragments

and covers almost none of the target object. The lack of learn-

ing or adaptation means region selection depends purely on

graph topology, not semantic content.

The topological approach in Figure 5(c) achieves a sub-

stantial improvement (Jaccard 0.63). By capturing parent

relationships through area features in the hierarchical tree,

it groups more relevant regions and suppresses some back-

ground noise. Nonetheless, faint outlines of other birds and

background artifacts persist. This reflects the fact that while

the topological representation captures the merging and rela-

tive importance of regions within the hierarchy, it does not

encode more detailed region-level statistics that might help

to resolve ambiguous or closely packed objects. Thus, re-

gions that are structurally similar in the hierarchy may remain

grouped or partially segmented together, particularly in visu-

ally complex images.

The regional approach Figure 5(d) yields the best result

(Jaccard 0.96), accurately segmenting the annotated bird with

minimal background interference or confusion from unan-

notated objects. Here, contour-related features quantify the

strength and structure of region boundaries within the hierar-

chical graph. By systematically encoding how strongly each

region is delineated, these features provide richer information

about spatial and structural coherence. As a result, the model

more reliably isolates the correct region even with visual am-

biguity or cluttered backgrounds. The segmentation closely

matches the ground truth, with only minor mislabeling inside

the bird or along diffuse boundaries.

Figure 6 presents edge detection results for a representative

sample from the BSDS500 dataset: the “airplane” image in

Figure 3, which is frequently used in the literature for bench-

marking. This image contains an object with many small,

intricate components (airplane details), set against a complex

background of clouds. The combination of detailed annota-

tions and a visually busy scene makes it a strong test case

for evaluating method behavior and limitations. From left to

right: (a) GIG representation; (b) trivial approach (WATER-

PAR, filtered by number of regions); (c) topological approach

(WATER-PAR, altitude); and (d) regional approach (QFZ,

Gaussian). Individual F1-score for this image: GIG: 0.59,
trivial: 0.22, topological: 0.56, regional: 0.72.

The GIG method, Figure 6(a) with 0.59 F1-score, pro-
duces edge maps where the main object contours are strongly

delineated, and fine details are preserved—including intricate

airplane components such as wheels, markings, and propellers.

The output typically highlights both object and background

contours, resulting in an appearance similar to an image gra-

dient. This characteristic arises from the construction of the

GIG features, which aggregate local edge weights and rela-

tional differences across the graph structure. As discussed in

our earlier work, the GIG method is designed to emphasize

strong transitions and relational structure in the pixel grid,

rather than focusing solely on semantic object boundaries.

Consequently, the GIG edge maps retain not just the principal

boundaries but also reinforce responses at textured regions

and spurious gradients, leading to broader edge markings and

the inclusion of background elements. This provides rich

structural information but can result in thicker boundaries and

some background clutter, particularly when fine details are

densely annotated in the ground truth.

The topological approach in Figure 6(c) with F1-score of
0.56, produces results that are visually similar to the GIG rep-

resentation, with the main object boundaries and small struc-

tural details clearly marked. However, this method sometimes

predicts solid regions, filling in areas within the main object

instead of only outlining them. This behavior arises because

topological features such as altitude capture the persistence

and merging of regions in the hierarchy. While these features

effectively represent the stability and importance of different

regions, they do not focus solely on the transitions between

regions that define object boundaries. As a result, the learned

model occasionally produces thick or filled boundaries, es-

pecially for regions that are prominent or merge late in the

hierarchical tree.

The trivial approach Figure 6(b) with 0.22 F1-score, which
uses WATER-PAR filtered by the number of regions, per-

forms better in edge detection than in segmentation. Most

selected regions align with object boundaries, but the number

remains insufficient to reconstruct the complete contour, so

the result is fragmented and incomplete. This reflects a well-

known aspect of watershed-based methods: while they can

produce precise boundaries, their practical success often de-

pends on careful parameter selection and additional filtering

of the partition results. In this task, the trivial method’s over-
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(a) GIG (b) Trivial (c) Topological (d) Regional
Figure 5. Qualitative segmentation results for a challenging Birds dataset image with multiple similar birds by water, where only the foreground bird is

annotated as ground truth. GIG and trivial both fail to distinguish the annotated bird: GIG includes excessive background detail, while trivial misses most of

the object. The topological approach partially segments the target but retains some noise. The regional method clearly delineates the annotated bird with

minimal confusion.

(a) GIG (b) Trivial

(c) Topological (d) Regional
Figure 6. Qualitative edge detection results for a standard BSDS500 image containing an airplane with detailed structure and a complex sky background. GIG

and topological methods both detect the main object boundaries and fine details but include more background noise and thicker contours. The trivial approach

yields fragmented and incomplete edges. The regional method produces thinner, more precise boundaries with less background clutter, providing the closest

visual match to the ground truth.

all performance is closer to the learning-based approaches,

but its outputs are still more fragmented and strongly affected

by the chosen parameters. This outcome highlights the value

of adaptive, data-driven strategies when working with hierar-

chical structures.

Finally, the regional approach Figure 6(d) with 0.72 F1-
score (QFZ, Gaussian features) achieves the best performance

for this image and for the dataset overall. Its prediction cap-



Learning on hierarchical trees with Random Forest Almeida et. al 2026

tures most of the object boundaries and key structural details,

producing thinner and more precisely localized edges com-

pared to the other methods. Regional features systematically

summarize the statistical distribution of values within regions

at multiple hierarchy levels, allowing the model to better

suppress spurious edges from background texture and noise.

While some background contours and small inaccuracies re-

main, the result is visually cleaner and more focused along

the annotated contours. Although the global and individual

scores for the GIG, topological, and regional methods are

similar, the regional approach produces edges that are less

cluttered and more concentrated along relevant structures.

These qualitative results show how structural represen-

tations influence performance in real image tasks. Visual

inspection clarifies how each method approaches object lo-

calization, background suppression, and resistance to noise,

aspects that are not always reflected in quantitative metrics

alone. Regional and topological features derived from hier-

archical structures improve robustness and interpretability,

particularly when boundaries are ambiguous or annotation is

sparse.

7 Discussion

The great incentive to center the considerations towards graph

processing is that they are critical for hierarchical analyses,

and machine learning operating on graphs provides a form to

create an agnostic model regarding the media type. Machine

learning on graphs is a topic of great interest due to: (i) its

autonomy—once you have your learning system operating

in the vertices and edges, the data’s source becomes virtually

irrelevant; (ii) the multiple possibilities of applications; and

(iii) the capacity to represent multivariate information.

The hierarchical structure provides a non-regular charac-

terization of regions with notions of order and navigation

without needing many parametrizations other than those of-

fered by the already modeled edge-weighted graph. They

introduce a semantic interpretation into media processing

through meaningful partitioning of the perceptual space. Hi-

erarchical operators are idempotent and provide a consistent

data organization.

By keeping the formulation on the structures, the proposed

framework evades decisions at the media level. It avoids

any feature extracted from the media and only uses the in-

formation on the hierarchical tree and their conjoined graph.

Also, it does not select any particular region that better suits

an application. Instead, the entire structure is represented in

a vectorial form that preserves its semantical arrangement.

Furthermore, the task label attribution is performed at the

leaf level at the bottom of the tree; therefore, each leaf has

a unique discrete label and does not demand any considera-

tions specific to a task. This is illustrated in our experiments

with the Birds dataset, where segmentation relies entirely on

hierarchical and structural features. Our framework achieves

robust results even when there are visually similar, unlabeled

objects and ambiguous boundaries. Such scenarios are known

to be difficult for appearance-based models.

By contrast, similar methods in the literature use attributes

and regions defined in the hierarchies to gather features from

the media for the learning model. For instance, in Grossiord

et al. [2017], they use the hierarchies aggregated with RF,

but the features used as input for the RF are taken from the

media guided by the regions defined in the hierarchies. In Hu

et al. [2021], they also use the RF as the learning method but

only for a few sampled regions in the hierarchy described by

media features and information about the regions’ geometry.

In Padilla et al. [2021], besides using the hierarchies to model

the correspondence between different media, they also define

the features to be applied in a Randomwalkmethod. However,

they do not use all regions in the hierarchy. Instead, to reduce

the number of nodes, they filter the structure by searching for

stable areas regarding each attribute and perform a majority

vote to determine the most critical regions.

On the topological approach proposed, the hierarchical

structures are represented by taking the entire set of parents

of a leaf that retains the semantical information embedded on

the hierarchical trees without the need to filter or select a par-

ticular level for evaluation. Experiments with the topological

approach showed that it not only contains crucial information

about the hierarchies but also improves the typical approach’s

performance in both tasks. The topological strategy constructs

a regular representation that could be used in most available

learning models, but the representation’s dimensions could be

challenging regarding computational resources. The efficient

implementations for hierarchical structures and the flexibility

of the RF model allow working with these sizable structures.

The second strategy with the regional attributes performs

best in both tasks. Procedurally, this approach is equivalent to

performing horizontal cuts by altitude levels. However, rather

than creating a representation for each cut and evaluating them

individually, the method gathers all of them systematically as

a regular representation. Equally to the topological approach,

the regional strategy avoids any feature extracted from the

media, the representation is leaf-centered, and only uses the

information on the hierarchical tree and the conjoined graph.

Furthermore, the regional strategy is considerably easier

to standardize than the topological approach. While the topo-

logical approach took the maximum possible depth in all

datasets, resulting in high-dimensional data that often had

multiple padding positions due to the multiform structures,

the regional approach has only a fixed number of steps in the

normalized altitudes available in all hierarchical model types.

One advantage of working with explicit hierarchical fea-

tures is the ability to directly observe and interpret how dif-

ferent structural attributes influence outcomes for specific

tasks. As shown in our qualitative analysis, we can identify

which aspects of the hierarchical structure improve results

in challenging scenarios. This interpretability enables tar-

geted selection or adjustment of attributes for each applica-

tion. In contrast, black-box methods provide little visibility

into which attributes drive predictions or how representations

can be adapted to domain-specific needs. This limitation is

particularly relevant in fields where explainability or bias

mitigation are critical, such as in medical or human-centered

applications.
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8 Conclusions

This work introduced a general learning framework for operat-

ing directly on hierarchical data, independent of media type or

specific task. By focusing on structural and relational proper-

ties derived from hierarchical trees and their associated graphs,

the proposed approach enables robust and interpretable learn-

ing while avoiding reliance on features extracted from the

original media.

Unlike most previous methods, which define regions or

masks to extract media-dependent features, our framework

encodes the entire hierarchical structure in a vector representa-

tion. This preserves semantic relationships and enables label

assignment without making application-specific assumptions.

All components of the hierarchy are utilized, with label attri-

bution performed at the leaf level, ensuring that the model

remains generalizable and task-agnostic.

Experiments on edge detection and segmentation tasks

demonstrate that learning with explicit hierarchical features

can achieve performance comparable to state-of-the-art ap-

proaches that depend on pixel or appearance-based attributes.

Furthermore, the qualitative analyses highlight the inter-

pretability of the method, showing how structural attributes

influence model predictions and making it possible to select

or refine features for domain-specific requirements.

While Random Forests were chosen for their scalability

and effectiveness in high-dimensional spaces, the framework

is not limited to any single classifier and can be adapted to

alternative models, including those optimized for large-scale

or structured data. This flexibility, along with the ability to

represent a variety of hierarchical models, supports a wide

range of potential applications beyond the image domain.

Future work will explore the use of more sophisticated

learning models within this framework, the incorporation of

data reduction techniques that preserve hierarchical informa-

tion, and the extension to new modalities and application

areas. The approach may also be enhanced by selectively

integrating certain media-specific attributes where appropri-

ate, provided the hierarchical structure remains central to the

representation and learning process.

Overall, this study demonstrates that structural, inter-

pretable, and media-agnostic learning on hierarchies is both

feasible and effective, offering a foundation for further de-

velopments in generalized, explainable, and domain-agnostic

machine learning.
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