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Abstract Hierarchies, as described in mathematical morphology, represent nested regions of interest and provide
mechanisms to create coherent data organization. They facilitate high-level analysis and management of large amounts
of data. Represented as hierarchical trees, they have formalisms intersecting with graph theory and generalizable
applications. Due to the deterministic algorithms, the multiform representations, and the absence of a direct quality
evaluation, it is hard to insert hierarchical information into a learning framework and benefit from the recent advances.
Researchers usually tackle this problem by refining the hierarchies for a specific media and assessing their quality for
a particular task. The downside of this approach is that it depends on the application, and the formulations limit the
generalization to similar data. This work aims to create a learning framework that can operate with hierarchical data
and is agnostic to the input and application. The idea is to transform the data into a regular representation required
by most learning models while preserving the rich information in the hierarchical structure. The proposed methods
use edge-weighted image graphs and hierarchical trees as input, and they evaluate different proposals on the edge
detection and segmentation tasks. The learning model is the Random Forest, a fast and scalable method for working
with high-dimensional data. Results demonstrate that it is possible to create a learning framework dependent only on

the hierarchical data that presents a state-of-the-art performance in multiple tasks.

Keywords: Morphological hierarchies, Random Forest, Machine learning, Graphs, Image processing

1 Introduction

Hierarchies are an inherent property composing several ele-
ments in real life, relating to how we perceive patterns, scenes,
and movement [Marr, 1982]. According to Kurzweil [2013],
a pattern identifier exists in the core of our visual percep-
tion, operating hierarchically to recognize parts, objects, and
abstract concepts.

Hierarchies are broadly defined in the literature and could
represent different concepts. For instance, literature presents
hierarchies as a method’s abstraction [Ilin et al., 2017], a
description of model architectures [Liu et al., 2019], and a
form to organize features [Lin ef al., 2017] or concepts [Fan
et al., 2017]. This broad definition reinforces that hierarchies
are the natural organization form of data. The perceptual
hierarchy is difficult to translate to computer models, but in
visual media processing, mathematical morphology has an
edge in defining, creating, and manipulating hierarchies.

Morphological hierarchies are arranged structures of nested
regions that are easy to navigate and interpret, remaining very
popular since their creation [Beucher, 1994; Najman and
Schmitt, 1996; Krishnammal et al., 2022; Makrogiannis et al.,
2021]. The nested regions of interest provide navigation and
merging operations to build more semantically significant
objects from lower-level instances. In multimedia processing,
the region delineation considers the media’s building blocks,
such as pixels, voxels, frequency transformations, or sound

waves [Bosilj et al., 2018]. In the hierarchical theory, im-
age processing is undoubtedly the principal definition space
and applications, most notably image segmentation [Soille
and Najman, 2012] and remote sensing [Maia et al., 2021].
Nevertheless, similarly structured visual media, such as hyper-
spectral [Tochon et al., 2018] and multi-modal images [Kiran
and Serra, 2015], videos [Xu ef al., 2012], and structured time
measurements [Nguyen ef al., 2019], are also processed with
hierarchical algorithms.

In practical applications, morphological hierarchies require
thorough preprocessing of the data [Nguyen et al., 2019] and
strategies to deal with issues like over/under-partitioning of
the space [Zwettler and Backfrieder, 2015] or selecting an
ideal number of regions [Meyer, 2001]. At the same time, hi-
erarchies produce multiform representations, their algorithms
are primarily deterministic, and there is no direct way to eval-
uate their quality. Therefore, it is difficult to generalize a
successful approach to other media and tasks.

For a generalization of the media type, most challenges
regard the characterization of the information, mainly: the
media data presents different characteristics, and the media’s
building blocks composing the regions have different conno-
tations. These differences in form and connotation eventually
become limiting factors. The models created to solve a prob-
lem could only deal with that particular data type, despite
their eventual similarities. In terms of task, the generaliza-
tion is challenging due to the lack of a measure assessing
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the quality of a hierarchy, which requires an empirical refine-
ment through a series of trial-and-error fittings for a particular
application.

Furthermore, creating a framework to operate on hierar-
chies presents some considerable additional challenges be-
sides the problem of generalization, namely: (i) the product
of the hierarchies is multiform, meaning they have different
sizes, components, and interpretations; and (ii) the same data
could create multiple hierarchical structures depending on the
hierarchical operators and constraints. Therefore, applying
the morphological hierarchies in an agnostic learning frame-
work requires a strategy to overcome the determinism, the
quality assessment, and the heterogeneous aspects.

This work aims to create a learning framework that can
operate on hierarchical data and is agnostic to the media type
and task. In doing so, it must deal with the generalization
challenges and place a strategy to conform the hierarchical
information to a learning framework. It requires: (i) defining
an appropriate representation shared among most media types;
(i) providing a way to retain the information presented in the
original media; and (iii) avoiding assumptions on the data
source in the task definition. Each of these requirements
guides the design of the proposed framework, shaping the
choices in representation, modeling, and evaluation.

In this context, graphs serve as a unifying formalism: they
are structures used to represent objects, with graph theory fo-
cusing on how these objects relate to each other [Bondy et al.,
1976]. In relation to the outlined requirements: (i) graphs
can be constructed to represent a wide variety of media types,
fulfilling the need for a shared representation [Ortega ef al.,
2018]; (ii) graph structures and their attributes enable the
retention and analysis of essential information from the orig-
inal data; and (iii) because graphs are agnostic to domain
or modality, they enable modeling and learning without im-
posing assumptions specific to a given data source or task.
Importantly, hierarchies can be represented as graphs, specif-
ically as hierarchical trees [Cousty ef al., 2013]. Thus, both
media and their hierarchical organization can be described
and processed within the same theoretical and computational
framework, enabling generalization across applications.

The literature in pattern recognition [Wu ez al., 2020; Zhang
et al., 2024], network science [Newman, 2018], and bioin-
formatics [Zitnik ef al., 2019] demonstrates the wide appli-
cability of graph structures. Our proposal aligns with these
broader perspectives: by abstracting the core operations to
work on general graphs and their hierarchies, the method
can be directly adapted to non-image domains, such as tem-
poral event graphs in time-series data [Isella ef al., 2011],
video data [Sakarya and Telatar, 2010; dos Santos Belo et al.,
2016], and document structures [Mihalcea and Radev, 2012].
The shared requirement is that the data can be modeled and
navigated as a graph [Chen et al., 2024; Tong et al., 2005],
allowing the learning framework to operate agnostically with
respect to the specific application domain.

While the proposed framework is, in principle, applicable
to diverse data types and domains, in this work we focus our
experimental validation on two image analysis tasks: edge
detection and segmentation. Future work will explore appli-
cations in other domains to further demonstrate the method’s
generality.
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A critical aspect in hierarchical studies is understanding
how the media’s building blocks relate at the low level to form
homogeneous regions. Visual data are organized structures,
and information such as color, spatial distance, or variance
defines homogeneity. And although defining homogeneous
regions and their connotations are particular for each media
type, the grouping strategy and their storage in the hierarchical
structure follow the same rules.

The main challenge in this proposal concerns the regular
representation required by most machine learning algorithms.
The regular representation is inherently opposed to the un-
constrained nature of graphs. Hence, the proposed strategy
is to represent the graph’s components as vectors of selected
attributes and assess its capability to retain the information
modeled in the hierarchical trees while remaining discrimi-
nant for a task.

Using a selection of graph attributes as input to the learn-
ing framework allows it to be agnostic to the media type.
Modeling at the graph component level enables each entry
to be assigned a task label without imposing assumptions
on the data source. Previous studies [Almeida et al., 2021,
2022] have demonstrated this strategy on non-hierarchical
image graphs, introducing a graph-based image gradient op-
erator (GIG) that produces gradients delineating strong object
contours as well as minor components, textures, and uni-
form regions. Extensive analysis of these gradients in the
segmentation task, using them as input for the watershed
method [Beucher, 1994], demonstrated that GIG achieved
good segmentation performance comparable to leading edge-
map methods, thereby validating the graph attribute selection
strategy.

Nonetheless, depending on the modeling choices of the
graphs, it can create a particular structured space known as
grid graphs close to the spatial domain of the media. Pre-
suming generalization on a grid graph can be deceptive, and
more than the structural information may be necessary for a
discriminative representation. However, modeling the graphs
from the hierarchical structure provides a non-regular charac-
terization of regions with notions of order and navigation.

Considering the semantical arrangement within the hierar-
chies, any proposal must retain the structures and ordering
relations consistent with the hierarchical principles. Also,
because there is no direct way to evaluate the quality of a
hierarchy, the learning model should support easy navigation
between tasks to assess various aspects through experimenta-
tion.Furthermore, the framework should rely on something
other than strategies to adequately prepare the data for a spe-
cific task or refine the structures in a particular application.

Although recent advances in deep learning, such as Graph
Neural Networks (GNNs) [Wu et al., 2020], enable end-to-
end learning from graph-structured data, these methods typi-
cally require large annotated datasets and often yield models
that are less transparent or interpretable. In contrast, our
framework extracts and uses well-defined hierarchical at-
tributes, allowing the model to directly leverage the semantic
meaning encoded in the structure. This promotes both data
efficiency and model transparency, which are critical in many
scientific and practical domains.

In summary, the main contributions of this work may be
described as follows: (i) proposal of a learning framework
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that can operate with hierarchical data and is agnostic to the
input, considering that all multimedia data can be modeled
as graphs, and application; (ii) discussion about the topology
of the hierarchical structures alone could be used, and it is
possible to directly insert the hierarchical structures in a learn-
ing framework and benefit from the embedded information
to create a model for visual tasks that is agnostic to the media
type and task; (iii) a fast and scalable method for working
with high-dimensional data thanks to the learning model; (iv)
proposal of a machine learning method on a non-regular graph
for image processing provided by hierarchical structures; and
(v) development of experiments with the trivial, topological,
and regional approaches in two image tasks: edge detection
and image segmentation.

We organized this work as follows. Section 3 provides the
theoretical background on graphs and hierarchies. Section 4
discusses common generalization issues with hierarchies. Sec-
tion 5 presents the proposed methodology, followed by the
experiments and results in Section 6. Finally, Section 7 dis-
cusses the main findings of this work, while Section 8 draws
some conclusions and future work proposals.

2 Related work

The study of hierarchical representations spans mathematical
morphology, graph-based modeling, and modern machine
learning. This section reviews foundational and recent work
in each area, emphasizing advances in media-agnostic and
interpretable learning on hierarchies. Our aim is to situate
the proposed framework within this context and clarify its
distinctions and advances over prior work.

Mathematical morphology provides the theoretical and al-
gorithmic foundations for hierarchical representations. Clas-
sical techniques such as the watershed transform [Beucher,
1994; Najman and Schmitt, 1996; Krishnammal et al., 2022;
Makrogiannis ef al., 2021] and its hierarchical variants [Soille
and Najman, 2012; Meyer, 2001] enable multiscale decompo-
sitions of images, supporting efficient region merging, filter-
ing, and navigation. Developments including ultrametric wa-
tersheds, saliency trees, and related structures [Krishnammal
etal.,2022; Makrogiannis et al., 2021; Cousty et al., 2013] for-
malize inclusion and adjacency relationships among regions.
These methodologies have evolved to address increasingly
complex data—multi-channel, volumetric, and multi-modal
sources—with applications in remote sensing [Bosilj et al.,
2018], biomedical imaging [Kiran and Serra, 2015], and other
fields [Maia et al., 2021]. Critically, morphological hierar-
chies prioritize structural and relational properties over purely
pixel-based approaches, underpinning meaningful and inter-
pretable representations.

Machine learning approaches that leverage hierarchical rep-
resentations primarily use them to define or select spatial re-
gions for feature extraction, especially in medical [Grossiord
et al., 2017; Padilla et al., 2021] and remote sensing do-
mains [Hu ef al., 2021]. Max-tree and tree-of-shapes repre-
sentations segment volumetric medical data [Grossiord ef al.,
2017; Padilla et al., 2021], while superpixels and binary par-
tition trees structure high-resolution aerial images [Hu et al.,
2021]. Hierarchies also serve as spatial masks or filters to iso-
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late relevant regions before extracting features, as in 3D point
cloud classification using elevation-based and quasi-flat zone
hierarchies [Serna and Marcotegui, 2014], or text detection
with multi-channel max-trees [Sun et al., 2015]. Across these
strategies, features describing region shape, intensity, texture,
or geometry are extracted from pixels grouped by each hier-
archical node and used to train classifiers such as Random
Forests [Grossiord et al., 2017; Hu et al., 2021], Random
Walks [Padilla et al., 2021], SVMs [Serna and Marcotegui,
2014; Sun et al., 2015; Diaz et al., 2009], or clustering mod-
els. To manage the complexity of hierarchical representations,
practitioners often filter for stable nodes [Padilla ef al., 2021],
sample multiple scales [Hu ef al., 2021], or aggregate features
in a bag-of-features model [Clément et al., 2018]. However,
the effectiveness of these approaches relies heavily on media-
derived features, demanding careful, often domain-specific,
feature design and limiting both interpretability and general-
ization.

The preceding approaches illustrate that hierarchical repre-
sentations have predominantly served as a means to define
regions for feature extraction in classical pipelines. To tran-
scend these modality- and domain-specific constraints, recent
work has shifted towards graph-based models, offering a uni-
fied formalism for both local and global relationships [Bondy
et al., 1976; Ortega et al., 2018; Cousty et al., 2013]. In this
framework, hierarchical trees and region adjacency graphs
are particular cases of edge-weighted graphs, broadening the
scope to domains such as bioinformatics [Zitnik et al., 2019],
event data [Isella et al., 2011], and document structures [Mi-
halcea and Radev, 2012]. Machine learning on graphs en-
ables algorithms to operate in a source-agnostic manner, with
vertices and edges representing entities and their relation-
ships [Wu et al., 2020; Zhang et al., 2024].

However, adapting graph representations to learning frame-
works introduces new challenges. Graphs tend to be large
and densely connected, and their arbitrary, non-Euclidean
structure complicates the use of standard algorithms that ex-
pect fixed, systematic inputs [Makarov et al., 2021]. To
address these challenges, a range of strategies have emerged,
including graph embeddings [Perozzi et al., 2014; Grover
and Leskovec, 2016; Wang ef al., 2016], deep graph learn-
ing [Scarselli et al., 2009; Micheli, 2009; Wu et al., 2020],
and feature vectorization approaches. Each of these seeks to
preserve topological and semantic properties while enabling
efficient learning. Our framework builds on this lineage by
focusing on interpretable, structural features derived directly
from the hierarchy itself.

Recent years have seen rapid growth in deep learning meth-
ods on graphs, with architectures such as graph convolutional
and attention networks [Wu et al., 2020; Zhang et al., 2024].
These have been adapted to image, video, and multi-modal
data by encoding pixels, superpixels, or spatial regions as
graph nodes, and modeling relationships via edges [Chen
et al., 2020; Ji et al., 2020; Huang et al., 2020; Selvan et al.,
2020]. Applications now range from classical tasks like im-
age segmentation and classification [Ji ef al., 2020; Selvan
et al., 2020] to semantic scene understanding and visual rea-
soning [Luo et al., 2019; Yang et al., 2020; Jing et al., 2020].
In each case, graph structure is key to capturing complex in-
teractions not accessible in regular grids. Still, these models
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face obstacles: constructing meaningful graphs from media
data requires non-trivial choices regarding node grouping,
edge definition, and encoding of geometric or temporal rela-
tionships [Qi et al., 2017; Chuang et al., 2018]. Further, most
models act as black-boxes, making it difficult to interpret
which properties of the structure drive their predictions.

In summary, while hierarchical and graph-based models
have provided a solid foundation for representing complex
data, and deep learning on graphs has expanded the reach
of these methods, a persistent gap remains in learning di-
rectly from interpretable, structural features without relying
on extensive media-derived attributes or opaque models. The
present work seeks to address this gap by proposing a frame-
work for transparent, structural, and media-agnostic learning
on hierarchies, extending the landscape of machine learning
with a focus on interpretability and broad applicability. The
sections that follow describe our approach and demonstrate its
practical benefits through rigorous experimental evaluation.

3 Hierarchies and graphs

The hierarchical functions on mathematical morphology are
rooted in the algebraic theory of complete lattices, model-
ing non-linear transformations with set operators to correlate
whole sets of values [Najman and Talbot, 2013]. The scale-set
theory, a sub-area of mathematical morphology, formalizes
the hierarchical principles guiding the morphological opera-
tors [Guigues ef al., 2006]. In the scale-set theory formaliza-
tion, a structure could be defined as a hierarchy if it follows
two hierarchical principles: (i) the principle of causality: a
particular element at one hierarchical level should be present
at any consecutive level; and (ii) the principle of locality:
regions must be stable when creating or removing partitions.

In [Cousty et al., 2013], the authors provided formal links
between the morphological partitions and edge-weighted
graphs. This section formalizes graph concepts describing
their components and terminologies (Section 3.1), connects
graphs and hierarchies (Section 3.2), and describes the dif-
ferent hierarchical model types contemplated in this work
(Section 3.3).

3.1 Graph’s formalism and notions

A graph G = (V, E) consists of a finite set of vertices, de-
noted by V, and a finite set of edges denoted by F, in which
E CV xV.If (u,v) € E for two vertices u,v € V, then u
and v are adjacent vertices. The notion of vertices relates to
the data’s elemental components while edges to the connec-
tions and dynamics between the parts. A graph is non-empty
if V # 0, nontrivial if E # (), complete if E =V x V, and
direct if (u,v) # (v,u),Vu,v € V.

The set £ induces a unique adjacency relation I on
V', which associates © € V with I'(u) = {u} U {v €
E|(u,v) € E}. T'is reflexive (u € I'(u)) and symmetric
(veTl(u) <= u€TI'(v)). In multimedia processing, the
adjacency relation is usually in a regularly structured form as
a grid invariant to translation. Standard grid adjacency in 2D
spaces is the squared orthogonal shape named 4—adjacency,
the octilinear form in the 8—adjacency, or the hexagonal struc-
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ture in the 6— adjacency relation. Alternatives to the grid
adjacency involve distance parameters determining the reach
of each vertex or a selection criterion based on a pattern or
media property.

An edge-weighted graph is denoted by (G, F), in which
F : V. xV — Ris a function that weights the edges of
G = (V, E) and F(FE) is the weighted map for the function
F on the set E. The nature of F determines which character-
istics the graph preserves, and selecting a function could be
considered a similarity measure problem between two finite
sets of points, where {w = F(u,v)|(u,v) € E} is the weight
w of an edge (u,v) € E that could describe the dissimilarity
of u and v.

A path m = (vg, . .., vy) is an ordered sequence of vertices
with size ¢ connecting vg to vy if (v;_1,v;) € E forany i €
{1,...,2¢}. In an edge-weighted graph, a path is descending
ifforanyi € {1,...,0— 1}, F(vi—1,v;) > F(vi,vi41). A
connected graph has a path from v to u for all u,v € V.

Another way to define and interpret a graph is through
subsets of all possible vertices and edges. A graph G' =
(V',E") isasubgraphof G = (V, E) if V' C Vand E' C E,
then G and G" are ordered by the inclusion relation G' C G,
where G' is smaller than G. A lattice is a set of all subgraphs
of G preserving the inclusion order.

A tree is a particular case of a direct graph. In a tree, we
denote vertices as nodes and distinguish them based on their
positions in the structure. The root is the single node at the
top of the tree that connects all the other nodes. From the
root, every subsequent node is a child. They can be either an
internal node, from which other nodes branch, or a leaf with no
children at the bottom of the tree. The root and internal nodes
are the parents of their children. From the root, each node in
the path to a leaf characterizes one level, and the maximum
number of levels defines the depth of a tree. The altitude of
a node starts from the leaves, ascending until reaching the
node, and it is inversely proportional to the depth of the node.

3.2 Hierarchies from graphs to graphs

In classical mathematical morphology, structuring elements
are the parameters for the algebraic operators on lattices. On
graphs, the modeling choices for the edges, weights, and ad-
jacency relation define the parameters. A hierarchy operating
on the edge-weighted graph defines non-gridded regions as
subsets of the vertices. For G = (V, E) and the subgraph
G'= (V', E"), the graph induced by V"' is G = (V", €) where
V'CVande = {(u,v) € E|u,v € V'}. V'is a connected
component of G if V' is connected for G and maximal.

A set H C V, where V denotes the set of all subsets on
V, is a hierarchy on V if H; N Hy € {0, Hy, Hy} for any
two elements Hy, Hy € H and complete if {V} € H and
{{v} € H|Vv € V} € H. Without loss of generalization,
for G denoting the set of all subgraphs of G, H C G is a
hierarchy on G if Hy, Hs € {(0,0), Hy, H»} for any for any
Hi, Hy € H, and it is complete if G € H and {({v},0)} €
H.

These notations characterize a direct forest and tree, re-
spectively, which portray the hierarchy as a Hasse diagram,
also known as a dendrogram representation [Sokal and Rohlf,
1962]. Therefore, a hierarchy is a graph in the form of a
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hierarchical tree. In a hierarchical tree, for Hy, Hy € H, Ho
is a child of H; if Hy is the largest proper subset of H; and
ifHb CHC Hy,H=Hsor H= H, forany H € H. An
element of H without a child is a minimum of #.

A partition P is a set of non-empty disjoint subsets of V,
meaning thatV X,Y € P, X and Y are regions, X NY = () if
X #Y andU{X € P =V}. Any element v € V belongs to
a unique region, a singleton partition of I?, denoted [IP] . The
partition set is ordered from finer in P' to coarser in P" if any
region in P is present in P" for any P', P" € P. The ordered
relation conveys the idea of refinement. Also, navigating the
partition from finer to coarser, commonly codded as bottom-
up, impart the concept of region aggregation. In contrast, the
opposite, top-down, is the concept of region splitting.

A hierarchy of partitions H = (Pg,...,Px) is a se-
quence of partitions on V, such that [IP], , is a refinement
of [P, Vi € {1,...,k} where k is the number of levels in
the hierarchy characterizing its altitude and depth. The hier-
archy preserves the non-empty disjoint sets notion and the
ordered relation. The union of all partitions of H creates the
set of regions of R4, and the inclusion relation induces a tree
structure.

The hierarchical partition tree T3 is the tree representing
the hierarchy H = (P, ..., P)) where:

« the root node represents the single partition P, = {V'},

* the set of leaves L represents the partition Py, where
Py = {[P], [Vv e V),

« the parent of a node n in the set of nodes AV representing
the region R, of R4, is the smallest region of R4 that
is strictly larger than R,,, and

« the depth d,, of a node n € N is its number of parents.

There are multiple ways to represent a hierarchy of parti-
tions, straightforward as a hierarchical partition tree with all
the partitions in a single structure. Another way is by a cut
presenting one partition of the hierarchy at a time. The cut
can be a horizontal cut Perret et al. [2018] if all regions are
extracted at the same hierarchical level or a non-horizontal
cut [Guigues et al., 2006] if searching for regions at different
levels for one representation.

3.3 Types of hierarchical models

Thus far, the discussions about hierarchies considered only
the structural components of the graphs: the vertice and edge
sets. The hierarchical construction algorithms use the weights
to regulate how regions are formed, the criterion to merge
and create new ones, and the order to pursue. This work con-
templates two particular hierarchical model types grouped by
their ordering method on the hierarchical tree. Namely: (i)
altitudes ordering based on increasing values of edge-weights
criterion: quasi-flat ones [Cousty ef al., 2018]; and (ii) alti-
tudes ordering based on a geometric criterion: hierarchical
watersheds [Beucher, 1994].

The quasi-flat zones (QFZ) hierarchy is induced directly
from the edge-weight graph. Its construction algorithm takes
the set of ordered weights on the edges and defines each
level as the set of connected component partitions whose
weights are smaller than a threshold value A\. Formally,
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consider an edge-weighted graph (G, F), the set of con-
nected components of G denoted by C, a subgraph G"' of
(G, F), an weight value {w = F(u,v)|(u,v) € E} and the
range of values [E for all weight values of E. The QFZ hi-
erarchy induced by the edge-weighted graph is defined as
QFZ(G',w) = (C(wY (G")|\ € E), where: (i) wx(G") is
the A-level set of all edges of G' whose weight values are
less than \; (ii) w} (G") is the A-level graph whose edges
are wy (G") and vertices V; and (ii) C(w} (G")) is the A-level
partition of connected components partition induced by the
A-level graph of G'.

The hierarchical watershed extends the classical mor-
phological watershed [Beucher, 1979], and it is an intuitive
approach to map weights into partitions. One of the intuitions
behind the classical watershed is the principle of the drop of
water flowing on a topological surface. The watersheds are
the lines separating the multiple downward regional minima.
In media processing, the topological surface is usually created
by magnitude values, in which mountains are the regions with
comparatively higher magnitudes, and basins and valleys are
the ones from lower magnitudes.

This principle is used in the hierarchies of watersheds to
create a sequence of segmentations as connected elements
formalized as a minimum spanning forest (MSF) representing
the flooded regions in all possible levels. For edge-weighted
graphs, the drop of water principle is interpreted as a graph cut,
known as a watershed cut, that is not uniquely defined for a
weight map. However, the watershed hierarchies as a relative
MSF are optimal and unique for a watershed cut [Cousty
et al., 2009]. To obtain a partition in the hierarchy, it takes
the weighted graph, and a subset of graph vertices called
markers representing regional minima on the weight map. If
the markers are ranked and ordered, it creates a sequence
of nested partitions where each hierarchy level represents a
marker’s extinction value [Vachier and Meyer, 1995] (the
minimum value that makes a region be merged into another
region). The extinction values are usually grouped and ranked
based on a given geometric criterion that reflects its region’s
topological properties.

Each construction algorithm has its particular properties
and interpretation of the data. However, the rules on the hier-
archical principles and the ordered representation of regions
create a shared space convenient for commuting from one
type to another if one representation is inadequate for an ap-
plication. Furthermore, efficient implementations [Najman
and Couprie, 2006] make the hierarchies an appealing alter-
native to introducing a semantic interpretation into media
processing.

4 Typical hierarchical pipeline

This section introduces a typical pipeline, illustrated in Fig. 1,
that applies the hierarchies defined for an edge-weighted
graph to an image processing task.

Usually, image applications are tasks defined for three-
channel colored images, and despite the availability of exist-
ing hierarchical methods applied directly on the color chan-
nels [Soille, 2008], operating on colored images requires
strategies to either map dissimilarities between pixels on mul-
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Task

Hierarchical ' Empirical

evaluation

data ! search

Pre- Weighted
processing graph
.

Figure 1. Illustration of a typical pipeline using hierarchies for image processing. First, it transforms each image to the gray-scale magnitudes used to
create the edge-weighted graphs. Then, the hierarchical method computes the desired hierarchy based on its criterion. Because the hierarchical structure is
multi-layered, selecting a certain level, a combination, or a specific number of regions is necessary to create a single output evaluated on the task.

tiple dimensions [Aptoula et al., 2013] or combine the hier-
archies independently defined on each channel [Kurtz et al.,
2014]. Therefore, the general approach is to model the graph
from the monochromatic images, such as the grayscale repre-
sentation of pixel intensities or image gradients.

During the development of our framework, we evaluated
several gradient operators for generating edge weights in the
image graph, namely GIG [Almeida et al., 2022], SED Dollar
and Zitnick, 2015, and the kernel methods Sobel and Lapla-
cian. Any operator that produces meaningful edge informa-
tion can serve as input, since the hierarchical representation
encodes structure beyond the specific gradient details. How-
ever, Laplacian gradients tend to lose important structural
information, and SED, while effective, introduces significant
computational overhead. Sobel provided reasonable results,
but GIG consistently produced better outcomes in terms of de-
tail, contour sharpness, and region separation, without requir-
ing additional parameterization. In addition, GIG is efficient,
producing the image gradient in a fraction of a second. For
these reasons, we chose GIG as our default, as it offers an opti-
mal balance between informative contours and computational
efficiency.

After adequately preparing the image, the following steps
on the pipeline are the graph generation and hierarchy con-
struction. Defining the graph representation is a modeling
question with various connotations, and each hierarchical
model type has its particular characteristics, discussed in Sec-
tion 3.

Once constructed, it is necessary to decide how to represent
the hierarchies to be applied to a task since most ground-
truth references need a flat (i.e., non-hierarchical) form for
comparison. In this step resides the central problem of this
work. The trivial approach is a series of horizontal cuts
selecting multiple independent partitions representing the
hierarchy. The selection could indicate the desired number
of regions portrayed on the partition or a threshold of the
hierarchical levels. This process can be strenuous if searching
for an ideal number of regions. One could search from a single
region to the total number of regions in the hierarchy, which is
variable among the many representations. Or, if thresholding
the levels, one crucial detail present at one hierarchical level
could be merged on the subsequent levels. Even further, as
pointed out in Perret et al. [2018], the metric used to evaluate
the selection can be misleading. Also, a good horizontal cut
for one specific hierarchy does not guarantee that it will be

ideal for another on the same dataset.

Other representation strategies include post-processing the
hierarchies by flattening [Xu et al., 2013], realigning [Adao
et al., 2020], or filtering the structure [Perret et al., 2019b].
These strategies rely on identifying less relevant regions and
re-weight or merging these regions, creating more concise
representations. The problem with these approaches is that
defining the region’s importance is subjective and strongly
related to a media type or task.

Alternatively, one could search for the ideal representation
with a non-horizontal cut [Arbelaez et al., 2014], which is, by
all means, a combinatorial problem. One possible solution is
to create a model that learns this ideal representation directly
from the structure and uses the model to adapt unseen sets
of hierarchies [Chierchia and Perret, 2020]. However, insert-
ing the hierarchies in a learning framework is difficult since
they have heterogeneous representations, for instance, in their
altitudes and number of regions. Furthermore, construction
algorithms are primarily deterministic, and there is no direct
way to evaluate their quality other than applying them to a
task.

To point out these notions is to highlight that beyond the
data modeling, and, despite the abundance of information
embedded in the hierarchies, without careful considerations
in choosing the hierarchical type, the parsing strategy, the
representation for the task, and the metrics, media processing
strategies could overlook the potential in these structures.
For instance, datasets without large quantities of labeled data
or applications that require dependable outputs could rely
upon regional analysis methods that provide a consistent data
organization, such as those offered by hierarchical analysis.

5 Learning on hierarchical attributes

This section presents a learning framework, illustrated in
Fig. 2, formulated on the structural components of the hierar-
chies and a regular representation of the structure attributes.
We present two strategies for selecting attributes from the hier-
archical structures: (i) a regular representation selecting topo-
logical properties from the hierarchical trees (Section 5.1);
and (ii) regional features deduced from the hierarchies and
their conjoined graph (Section 5.2).

The hierarchical construction contemplates the hierarchies
in Section 3.3. Without loss of generality, the conjoined edge-
weighted graphs in this pipeline are defined on the image
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Figure 2. Illustration of the framework from the input image to the Random forest predictions performing the task. First, it computes the GIG gradient for
each image in the dataset. Then, it calculates the edge-weighted graphs, here illustrated with the 4—adjacency relation. The next step constructs the hierarchies
from the graphs and creates a regular representation with topological attributes of the hierarchical trees to serve as input for the Random Forest model. The
regular input for the training set includes the associated label: the unique discrete label on the task for each tree leaf. During the test, the Random Forest
subject each leaf of the test hierarchies to prediction, where the estimated values are mapped back to the image coordinates for evaluation.

domain. A structured grid obtains the adjacency relation
T, and the set of vertices V' = {v1,va,..., vy} represents
the N pixels of the image. Each vertex is associated with a
function f : V C Z? — R mapping gray-scale magnitudes
of the GIG [Almeida ef al., 2022] gradient computed from
the original image. For the edges, a weighting function F
characterizes similarities.

The representations are aggregated using Random Forests
(RF) [Breiman, 2001], a fast, simple, and scalable model
capable of dealing with high dimensional data and with satis-
factory results in multiple tasks. It allows for extensive ex-
perimentation without the need for additional model-specific
engineering or scalability adjustments.

The RF described in Breiman [2001] is a non-parametric
machine learning method for classification and regression.
At the core of the RF is the randomization of sampled data
distributed to supervise the training of independent decision
trees and the aggregation of the results for the final predic-
tion. The randomness performs as an implicit regularization
process promoting consistency and noise suppression [ Wyner
etal., 2017].

For a graph created from the image pixels, there is a di-
rect correspondence between the pixels, the vertices, and the
leaves in the tree. Therefore, the task label attribution is per-
formed at the leaf level at the bottom of the tree, and each
leaf has a unique discrete label. It creates a model agnostic to
the task since no assumptions are made on the media type for
the label attribution, and the single label represents multiple
regions that share a path on the tree. At inference time, the
RF predictions are mapped to the image space to be evaluated
on the task.

A notable property of our framework is that learning is
driven entirely by the hierarchical and structural features of
the data, independent of low-level appearance cues. During
training, the model receives labels paired only with specific
leaves of the hierarchy. The Random Forest thus learns to
distinguish structural roles based on the hierarchy, rather than
relying on raw visual similarity. This makes the approach
naturally robust in settings with ambiguous boundaries, in-
complete annotation, or the presence of multiple objects that
may be visually similar but structurally distinct. As a result,
our method is well suited to real-world situations where an-
notation may be sparse or ambiguous, and where classical,
appearance-based methods may be misled.
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5.1 Topological attributes

The first strategy creates a regular representation by selecting
topological properties from the hierarchical trees. Formally,
consider a hierarchical tree T3 representing the hierarchy of
partitions H = (P, ..., Px) created from the edge-weighted
graph (G, F) has a set of nodes AV. The depth d,, of a node
n € N is its number of parents. At the bottom of this tree,
there is a collection of leaves L representing the partition Py,
where Py = {[P], |Vv € V} and each | € L corresponds
toawv € V. The proposed representation depicts each leaf
I € L as a vector T of selected attributes. The selection
corresponds to one of the following attributes:

+ Altitude: the value inversely proportional to the depth
of the node n: alt,, = 1/d,.

e Area: sum of the number of leaves on the subtree 7,
rooted on the node n: area, = [{L,}], for £, =
{I|Vler,}, L, CL.

The selected attribute is computed for all parents of /. Each
leaf has a variable number of parents; therefore, the dimension
p¢ of the vector T is standardized by the maximum depth in
all 73, computed for a dataset. Also, the leaves with a set of
parents smaller than the maximum depth receive a padding
value of -1 because the attributes considered for the selection
have all positive values (alt € [0,1] and area € [0, |L]]).

The semantical meaning is kept by representing the par-
ents of a leaf node in the order they appear transversing the
hierarchical tree. The order could be ascending (from leaf
to root) or descending (from root to leaf). Early experiments
showed that essential attributes occur at the initial positions
of the feature vector and are favored by the RF model during
training. Therefore, we use the ascending order in this work.

The regular representation on topological attributes is
formalized as Ty, = ((T1,Y1),..., (T, Y|z))), where
each leaf [ € L is represented as a vector T; with a single
label Y;. T; = [[topo(par,),...,topo(par,,,)]] for all
par parent nodes in the set P; of parents of [, and topo €
{alt,area} for the attribute candidates. The size of T} is
p: and p; = max(d,), Vn € N in all T3 in the set T of all
hierarchies in a dataset. The training input D, on topological
attributes for the RF concatenates all the T'5; of the hierarchies
Tx € T that corresponds to a training instance on the dataset,
where D; = ((T1,Y1),...,(Tx,Yr)) and 7; is the total
number of leaves in the training set.
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5.2 Regional attributes

The second strategy uses a set of regional attributes created on
the conjoined graph by the hierarchical structure. Formally,
each node n € N represents a region R, that is the union of
all regions on the subtree 7,, rooted on the node n. A cut is
a partition P of V' made of regions of H, where a horizontal
cut is a partition P = P; for i € {0,...,k} for all k altitude
levels on the tree. A horizontal cut by altitude levels defines
the partition by a threshold o on its altitude values. Two
regions R and R’ are in the same region R,, if n is their
lowest common ancestor that have alt,, > o.

Consider [ as a series of altitude levels to cut the hierarchy.
The proposed representation depicts each leaf [ € £ as a
vector R, of size | 3]. Ateach position of this vector, there is a
cut P, for o € 3. Thus, the leaf [ is represented by a selected
regional attribute for the region R,, where n is the lowest
parent of [ whose alt,, > o. The selection corresponds to
one of the following:

+ Contour strength: The contour ¢ of a node is the num-
ber of edges on the conjoined weighted graph shared
among the regions merged by a node. The contour
strength is the average of edge weights on the con-
tour: contourg, = >, ¢ F (4, v), in which ¢ =
{(u,v) e E|IVue RAvER andVR, R’ C R,}.

* Gaussian: Estimates the Gaussian distribution of leaf
weights in the region R,, defined by the node n. The
function returns two values: the mean and the variance.
The leaf weights could be defined for any attribute or set
of attributes (on which one could calculate the covari-
ance). Here, they are the sum of the weights of the edges
that comprise the vertice equivalent of the leaf. Hence,

gaussian, = [meang,,varg,], in which:
0%
areag, =|{Lr,}|, meang,K = —"— and
arear,,
(meaan)Q 9
varg, = ——=— — (meang, )
areag,

for Lr, ={l|VIC R,}, with L, C L and
WRn = Zuéf(u) and v=I€LR,, .F(U, U)'

The selected attribute is computed for all regions created
by the cut ¢ € 3, and the ordered representation is preserved
on the cut despite not representing every possible region in
the hierarchy. It is proposed to select only a few steps in
the normalized altitudes creating a reduced set of features
guaranteed to be present in all hierarchical types.

The regular representation on regional attributes is for-
malizedas Ry = ((R1,Y1),..., (Rz), Y|g))), where each
leaf [ € L is represented as a vector R; with a single label
Y;. R; = [reg(01),...,reg(o|z)] for all o cuts in 3 and
reg € {contour,gaussian}. The size of R, is | 3|, de-
fined in the range |0, 1] with a 0.1 step adding 0.01 and 0.99
for the extremal regions in the structure. The training input
D, on regional attributes for the RF concatenates all the R
of the hierarchies T3 € T that corresponds to a training in-
stance, where D, = ((R1,Y1),...,(Rp,Yr)) and 7} is
the total number of leaves in the training set.

The procedure for test instances in both proposed represen-
tations takes the regular representation of each hierarchy in the
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test set and individually subjects them to the RF estimations
without the labels.

6 Experiments and results

This section presents experiments with the trivial, topological,
and regional approaches in two image tasks: edge detection
and segmentation. It also includes results using selected at-
tributes extracted directly from graphs before hierarchy con-
struction, as described in [Almeida et al., 2022]. In these
experiments, the objective is to assess the learning framework
based solely on hierarchical and structural information de-
rived from the input graph, independent of how the graph was
generated. While preprocessing could improve task-specific
results, our focus is on validating the generality and effective-
ness of the framework itself.

6.1 Datasets

The edge detection dataset is the Berkeley Segmentation
Dataset and Benchmark (BSDS500) [Martin et al., 2001],
illustrated in Fig. 3. It contains 500 (200 train, 100 validation,
and 200 test) natural images, presenting complicated/high-
contrast patterns, occluded objects, and objects indistinguish-
able from the background by color. Each image has multiple
labels performed by different annotators; thus, we performed
a majority vote to obtain a single label.

For segmentation, Birds [Mansilla and Miranda, 2016], a
binary segmentation public dataset. It contains 50 images
of birds with manual annotations and no official train/test
sets division. Therefore, a random selection split the dataset
into 35/15 train/test. Fig. 4 illustrates the Birds dataset and
its challenges. Namely, the images usually portray the birds
close to a body of water, with areas of high-intensity lights
and annotations covering only one leading object, despite the
presence of multiple similar objects in the surroundings. This
design introduces a challenging scenario for segmentation,
as both annotated and unannotated objects may be visually
indistinguishable. We intentionally selected this dataset to
assess the capacity of our method to go beyond low-level
visual cues and instead leverage structural and hierarchical
information.

6.2 Experimental setup

The pipeline takes the colored images and computes the GIG
gradient without any additional preprocessing. Next, it con-
structs the graph with a 4—adjacency relation and the Eu-
clidean distance on the gradient magnitudes for the weighting
function. The hierarchy construction explores the aforemen-
tioned quasi-flat zones (QFZ) and the hierarchical watershed
using the number of parents (WATER-PAR) as topological
criterion [Perret et al., 2018], which counts the number of
parents a node has on the MST representing the graph to de-
termine its extinction values. It does not perform additional
post-processing, such as filtering, realigning, or balancing the
hierarchical levels.

For the BSDS500, the pipeline uses an RF regressor as a
model, where the average predictions are mapped back to
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Figure 3. BSDS500 dataset sampled images with their respective boundary ground truths. It contains colored natural images presenting complicated patterns,
occluded objects, main objects indistinguishable from the background by color, and objects with patterns of high contrast. Each image contains multiple labels
where line intensities indicate the annotators’ agreement.

Figure 4. Birds dataset sampled images with their respective segmentation ground truths. The images usually portray the birds close to a body of water, with

areas of high-intensity lights and the annotations for only one main object, despite the presence of multiple similar objects in the surroundings.

the image domain for evaluation. This dataset proposes an
evaluation system for methods using it. The evaluation takes
an edge map and threshold the values in the range [0, 1] with
a 0.01 step computing the precision-recall F'1—score at all
threshold values. The results were then assessed in terms
of the optimal dataset scale (obtained in the threshold that
best represents most of the images), the optimal image scale
(obtained for each image at its best scale), the average pre-
cision through all scales. For non-hierarchical methods, this
evaluation works to process soft edge maps. For hierarchical
methods, this evaluation allows the assessment of different
levels of details in the hierarchical partitions. However, for
clarity, the results presented in this section for the BSDS500
dataset are only for the optimal dataset scale, which gives the
average score obtained in the threshold that best represents
most images, which is the most challenging and the best to
evaluate the overall performance.

For the segmentation dataset, the pipeline considers an RF
classifier whose predictions for each leaf on the binary seg-
mentation labels are directly mapped back to the image space.
The evaluation metric use the Jaccard similarity coefficient
score as the metric, which measures in the interval [0, 1] the

intersection size divided by the union size of two sets. It is
equivalent to the precision-recall F'1—score on binary sets.

The parameters for the RF models were obtained using a
grid search on the validation set of the BSDS500 dataset and
set as 500 trees in the forest, 5 minimum number of samples
to split an internal node, 20 the minimum number of samples
to be a leaf node, 10% percent for the bootstrap sample size,
squared function on the whole set of features to amount to
the sampled features for the split, and 10 as the maximum
depth of the trees. The trivial approach does not involve a
learning step. The experiments explored a range of parameters
defining the number of desired regions for a cut by the number
of regions and multiple horizontal cuts by threshold. The
results presented are for the best parameters, namely: (i) 1000
regions for QFZ and 60 for WATER-PAR using the cut by
the number of regions; and (ii) threshold at 0.22 for QFZ and
0.53 for WATER-PAR using the horizontal cuts by threshold.
The graph comparison uses an attribute selection belonging
to two categories: (i) vertex attributes, representing low-level
color descriptors proposed in Dollar ef al. [2010] (named
onlyColor); and (ii) edge weights, representing the weight
values in every edge on the adjacency of a vertex (named
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Table 1. Quantitative comparison of the results obtained in all
datasets for the compared approaches. F'1—score for the optimal
dataset scale for the BSDS500 and average Jaccard score for Birds.
The best score for approach variation is shown in bold and underline
emphasis the best score per dataset. Perfect scores=1.

BSDS Birds

= GIG 0.65 0.29
s GIG-Edge 0.64 0.28
&} onlyColor 0.61 0.27
3 Hierarchy Threshold Regions Threshold Regions
>
E QFzZ 0.26 0.28 0.14 0.05

WATER-PAR 0.24 0.53 0.28 0.24
E Hierarchy Altitude Area Altitude Area
2 Qrz 0.60 052 030 0.37
&  WATER-PAR 0.63 0.54 0.32 0.41
=
—g' Hierarchy Contour Gaussian Contour Gaussian
=
W QFZ 0.63 0.67 0.53 0.51
&  WATER-PAR 0.63 0.65 0.71 0.64

GIG-Edge). The graph representation with both categories of
attributes is named GIG.

6.3 Quantitative analysis

Table 1 shows the results for the proposed strategies on the
two datasets compared with the typical trivial approach (cut
by threshold on altitude levels and by the number of regions)
and the representations from graph attributes.

While the results with the trivial approach are considerably
worst compared with the other strategies, they are presented
to establish a baseline, not to say that hierarchical structures
are ineffectual for the edge detection task. On the contrary,
many hierarchical proposals in this dataset present competi-
tive results. However, each successful method also gives one
strategy to improve or filter the hierarchical contours. For
instance, Arbelaez ef al. [2009] proposed a technique that con-
structs hierarchical boundary maps from an edge map where
the boundaries between consistent regions are reinforced and
small areas removed (reaching 0.71 on the optimal dataset
scale). In Maninis et al. [2018], they take pre-computed con-
tours using the side outputs of a convolutional network for
constructing the hierarchies (with a 0.73 score). In Taylor
[2013], they use normalized cuts to reduce internal regions
and sharpen the contours between contrasting areas (with a
0.67 score). And Arbelaez et al. [2014] creates the hierarchies
at multiple image scales independently and combines them
into a single contour map weighing the strength of each con-
tour using machine learning (with a 0.73 score). Furthermore,
Perret et al. [2018] shows the gain quantitatively in score by
filtering small areas on another dataset with the same task.

As for the segmentation task with Birds, the illumination
conditions on the images create a scenario that is very chal-
lenging for many of the best image processing methods, as it
creates peaks in the magnitude values that make it difficult
to distinguish the main objects and the body of water in the
background. With the hierarchical methods, the algorithms

Almeida et. al 2026

will create similar partitions for the many objects portrayed
in the images, while only one is considered a valid answer.

Compared with the typical approach, the topological strat-
egy improves the results for almost all hierarchical types for
all datasets (except for WATER-PAR with altitudes in Birds).
The additional benefit is that it does not require an empirical
search on the hierarchical levels and regions for evaluation.
Furthermore, the topological approach presents best results
than the trivial and the graph in the Birds dataset. In edge
detection, the graph and the topological perform better than
using only the color features, with the GIG approach perform-
ing better than the best on the topological strategy.

The regular representation with topological attributes cap-
tures enough information for the learning model to better
discriminate between classes. And the padding values did
not disturb the model performance in any hierarchical type.
Regarding the topological attributes, the altitudes perform
better on the edge detection and the area on the segmentation,
which matches the task goals with the attributes’ properties.

The regional attributes present the best results in all datasets.
Even for the challenging Birds, there is at least one attribute
for all hierarchical types that give a satisfactory result. The
Gaussian presents, in general, superior results on the different
tasks. Because the Gaussian attribute quantifies the region
distribution on the hierarchical trees, it assimilates the repre-
sentation with the task. Future applications of this strategy
may consider the hierarchical type that most agrees with the
objectives and use the Gaussian attribute for the representa-
tion.

6.4 Computational efficiency and scalability

All experiments were run on a HPE ProLiant DL385 Gen 10+
v2 (AMD EPYC 7431, 8 cores, 32GB RAM, Linux). Hier-
archical computations used the Higra Python library [Perret
et al., 2019a], and learning models were implemented with
Scikit-learn [Pedregosa et al., 2011], using parallel training
over 50 CPU cores.

Despite the additional cost of graph and hierarchy construc-
tion, the overall runtime remains competitive with standard
image-based pipelines. For the full BSDS500 dataset, cre-
ating the regular sets takes 500 seconds for the topological
approach and 110 seconds for the regional approach; for the
Birds dataset, these steps require just 40 seconds (topological)
and 10 seconds (regional). Training the Random Forest mod-
els is also efficient, requiring at most 2 hours (topological)
or 10 minutes (regional), which is considerably faster than
typical deep learning models for similar tasks.

The framework is well suited to large datasets and scal-
able to even larger graphs or non-image domains, especially
when annotation or visual data is limited. Efficient library
implementations and hardware parallelism contribute to its
practicality in real-world scenarios. For non-image data that
are already graph-structured, the initial graph construction
step is unnecessary, further reducing the runtime.

Overall, our method is competitive in computational cost
with both traditional and learning-based approaches, while
remaining straightforward to scale and deploy. The reliance
on open-source libraries and commodity hardware makes the



Learning on hierarchical trees with Random Forest

framework accessible for both research and practical applica-
tions.

6.5 Qualitative analysis

One significant advantage of working with image data is the
ability to directly and intuitively inspect outputs, making it
possible to qualitatively assess the practical strengths and
weaknesses of each method. In this section, we leverage this
property to present a qualitative analysis that complements
the global quantitative results and illustrates how image-based
tasks enable a deeper understanding of model behavior and
representational properties. This visual perspective is par-
ticularly valuable given the general, media-agnostic nature
of the proposed framework: although the input data here
are images, the results illustrate properties of the structural
representations themselves, independent of domain.

Figure 5 presents segmentation results for a representative
sample from the Birds dataset: the ”flamingos” image from
Figure 4. This image poses several challenges—multiple
visually similar birds near water, strong background reflec-
tions, and only the foreground bird annotated as ground truth.
This example typifies the main experimental difficulties and
illustrates the distinctive strengths and limitations of each
method. From left to right: (a) GIG representation; (b) trivial
approach (WATER-PAR, filtered by number of regions); (c)
topological approach (WATER-PAR, area); and (d) regional
approach (WATER-PAR, Contour).

The GIG representation in Figure 5(a) performs poorly
(Jaccard 0.40), producing a mask that fails to distinguish the
annotated bird from other similar objects. As GIG relies on
edge weights and local color, it is sensitive to background
clutter and reflections, which results in over-segmentation
and confusion. The trivial approach in Figure 5(b) fares even
worse (Jaccard 0.04). By selecting a fixed number of promi-
nent regions (60), it isolates only small, irrelevant fragments
and covers almost none of the target object. The lack of learn-
ing or adaptation means region selection depends purely on
graph topology, not semantic content.

The topological approach in Figure 5(c) achieves a sub-
stantial improvement (Jaccard 0.63). By capturing parent
relationships through area features in the hierarchical tree,
it groups more relevant regions and suppresses some back-
ground noise. Nonetheless, faint outlines of other birds and
background artifacts persist. This reflects the fact that while
the topological representation captures the merging and rela-
tive importance of regions within the hierarchy, it does not
encode more detailed region-level statistics that might help
to resolve ambiguous or closely packed objects. Thus, re-
gions that are structurally similar in the hierarchy may remain
grouped or partially segmented together, particularly in visu-
ally complex images.

The regional approach Figure 5(d) yields the best result
(Jaccard 0.96), accurately segmenting the annotated bird with
minimal background interference or confusion from unan-
notated objects. Here, contour-related features quantify the
strength and structure of region boundaries within the hierar-
chical graph. By systematically encoding how strongly each
region is delineated, these features provide richer information
about spatial and structural coherence. As a result, the model
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more reliably isolates the correct region even with visual am-
biguity or cluttered backgrounds. The segmentation closely
matches the ground truth, with only minor mislabeling inside
the bird or along diffuse boundaries.

Figure 6 presents edge detection results for a representative
sample from the BSDS500 dataset: the “airplane” image in
Figure 3, which is frequently used in the literature for bench-
marking. This image contains an object with many small,
intricate components (airplane details), set against a complex
background of clouds. The combination of detailed annota-
tions and a visually busy scene makes it a strong test case
for evaluating method behavior and limitations. From left to
right: (a) GIG representation; (b) trivial approach (WATER-
PAR, filtered by number of regions); (c) topological approach
(WATER-PAR, altitude); and (d) regional approach (QFZ,
Gaussian). Individual F'1-score for this image: GIG: 0.59,
trivial: 0.22, topological: 0.56, regional: 0.72.

The GIG method, Figure 6(a) with 0.59 F'1-score, pro-
duces edge maps where the main object contours are strongly
delineated, and fine details are preserved—including intricate
airplane components such as wheels, markings, and propellers.
The output typically highlights both object and background
contours, resulting in an appearance similar to an image gra-
dient. This characteristic arises from the construction of the
GIG features, which aggregate local edge weights and rela-
tional differences across the graph structure. As discussed in
our earlier work, the GIG method is designed to emphasize
strong transitions and relational structure in the pixel grid,
rather than focusing solely on semantic object boundaries.
Consequently, the GIG edge maps retain not just the principal
boundaries but also reinforce responses at textured regions
and spurious gradients, leading to broader edge markings and
the inclusion of background elements. This provides rich
structural information but can result in thicker boundaries and
some background clutter, particularly when fine details are
densely annotated in the ground truth.

The topological approach in Figure 6(c) with F'1-score of
0.56, produces results that are visually similar to the GIG rep-
resentation, with the main object boundaries and small struc-
tural details clearly marked. However, this method sometimes
predicts solid regions, filling in areas within the main object
instead of only outlining them. This behavior arises because
topological features such as altitude capture the persistence
and merging of regions in the hierarchy. While these features
effectively represent the stability and importance of different
regions, they do not focus solely on the transitions between
regions that define object boundaries. As a result, the learned
model occasionally produces thick or filled boundaries, es-
pecially for regions that are prominent or merge late in the
hierarchical tree.

The trivial approach Figure 6(b) with 0.22 F'1-score, which
uses WATER-PAR filtered by the number of regions, per-
forms better in edge detection than in segmentation. Most
selected regions align with object boundaries, but the number
remains insufficient to reconstruct the complete contour, so
the result is fragmented and incomplete. This reflects a well-
known aspect of watershed-based methods: while they can
produce precise boundaries, their practical success often de-
pends on careful parameter selection and additional filtering
of the partition results. In this task, the trivial method’s over-
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(a) GIG (b) Trivial (c) Topological (d) Regional
Figure 5. Qualitative segmentation results for a challenging Birds dataset image with multiple similar birds by water, where only the foreground bird is
annotated as ground truth. GIG and trivial both fail to distinguish the annotated bird: GIG includes excessive background detail, while trivial misses most of
the object. The topological approach partially segments the target but retains some noise. The regional method clearly delineates the annotated bird with
minimal confusion.

(c) Topological (d) Regional

Figure 6. Qualitative edge detection results for a standard BSDS500 image containing an airplane with detailed structure and a complex sky background. GIG
and topological methods both detect the main object boundaries and fine details but include more background noise and thicker contours. The trivial approach
yields fragmented and incomplete edges. The regional method produces thinner, more precise boundaries with less background clutter, providing the closest
visual match to the ground truth.

all performance is closer to the learning-based approaches,  chical structures.
but its outputs are still more fragmented and strongly affected
by the chosen parameters. This outcome highlights the value
of adaptive, data-driven strategies when working with hierar-

Finally, the regional approach Figure 6(d) with 0.72 F'1-
score (QFZ, Gaussian features) achieves the best performance
for this image and for the dataset overall. Its prediction cap-
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tures most of the object boundaries and key structural details,
producing thinner and more precisely localized edges com-
pared to the other methods. Regional features systematically
summarize the statistical distribution of values within regions
at multiple hierarchy levels, allowing the model to better
suppress spurious edges from background texture and noise.
While some background contours and small inaccuracies re-
main, the result is visually cleaner and more focused along
the annotated contours. Although the global and individual
scores for the GIG, topological, and regional methods are
similar, the regional approach produces edges that are less
cluttered and more concentrated along relevant structures.

These qualitative results show how structural represen-
tations influence performance in real image tasks. Visual
inspection clarifies how each method approaches object lo-
calization, background suppression, and resistance to noise,
aspects that are not always reflected in quantitative metrics
alone. Regional and topological features derived from hier-
archical structures improve robustness and interpretability,
particularly when boundaries are ambiguous or annotation is
sparse.

7 Discussion

The great incentive to center the considerations towards graph
processing is that they are critical for hierarchical analyses,
and machine learning operating on graphs provides a form to
create an agnostic model regarding the media type. Machine
learning on graphs is a topic of great interest due to: (i) its
autonomy—once you have your learning system operating
in the vertices and edges, the data’s source becomes virtually
irrelevant; (ii) the multiple possibilities of applications; and
(ii1) the capacity to represent multivariate information.

The hierarchical structure provides a non-regular charac-
terization of regions with notions of order and navigation
without needing many parametrizations other than those of-
fered by the already modeled edge-weighted graph. They
introduce a semantic interpretation into media processing
through meaningful partitioning of the perceptual space. Hi-
erarchical operators are idempotent and provide a consistent
data organization.

By keeping the formulation on the structures, the proposed
framework evades decisions at the media level. It avoids
any feature extracted from the media and only uses the in-
formation on the hierarchical tree and their conjoined graph.
Also, it does not select any particular region that better suits
an application. Instead, the entire structure is represented in
a vectorial form that preserves its semantical arrangement.
Furthermore, the task label attribution is performed at the
leaf level at the bottom of the tree; therefore, each leaf has
a unique discrete label and does not demand any considera-
tions specific to a task. This is illustrated in our experiments
with the Birds dataset, where segmentation relies entirely on
hierarchical and structural features. Our framework achieves
robust results even when there are visually similar, unlabeled
objects and ambiguous boundaries. Such scenarios are known
to be difficult for appearance-based models.

By contrast, similar methods in the literature use attributes
and regions defined in the hierarchies to gather features from
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the media for the learning model. For instance, in Grossiord
et al. [2017], they use the hierarchies aggregated with RF,
but the features used as input for the RF are taken from the
media guided by the regions defined in the hierarchies. In Hu
et al. [2021], they also use the RF as the learning method but
only for a few sampled regions in the hierarchy described by
media features and information about the regions’ geometry.
In Padilla et al. [2021], besides using the hierarchies to model
the correspondence between different media, they also define
the features to be applied in a Random walk method. However,
they do not use all regions in the hierarchy. Instead, to reduce
the number of nodes, they filter the structure by searching for
stable areas regarding each attribute and perform a majority
vote to determine the most critical regions.

On the topological approach proposed, the hierarchical
structures are represented by taking the entire set of parents
of a leaf that retains the semantical information embedded on
the hierarchical trees without the need to filter or select a par-
ticular level for evaluation. Experiments with the topological
approach showed that it not only contains crucial information
about the hierarchies but also improves the typical approach’s
performance in both tasks. The topological strategy constructs
a regular representation that could be used in most available
learning models, but the representation’s dimensions could be
challenging regarding computational resources. The efficient
implementations for hierarchical structures and the flexibility
of the RF model allow working with these sizable structures.

The second strategy with the regional attributes performs
best in both tasks. Procedurally, this approach is equivalent to
performing horizontal cuts by altitude levels. However, rather
than creating a representation for each cut and evaluating them
individually, the method gathers all of them systematically as
a regular representation. Equally to the topological approach,
the regional strategy avoids any feature extracted from the
media, the representation is leaf-centered, and only uses the
information on the hierarchical tree and the conjoined graph.

Furthermore, the regional strategy is considerably easier
to standardize than the topological approach. While the topo-
logical approach took the maximum possible depth in all
datasets, resulting in high-dimensional data that often had
multiple padding positions due to the multiform structures,
the regional approach has only a fixed number of steps in the
normalized altitudes available in all hierarchical model types.

One advantage of working with explicit hierarchical fea-
tures is the ability to directly observe and interpret how dif-
ferent structural attributes influence outcomes for specific
tasks. As shown in our qualitative analysis, we can identify
which aspects of the hierarchical structure improve results
in challenging scenarios. This interpretability enables tar-
geted selection or adjustment of attributes for each applica-
tion. In contrast, black-box methods provide little visibility
into which attributes drive predictions or how representations
can be adapted to domain-specific needs. This limitation is
particularly relevant in fields where explainability or bias
mitigation are critical, such as in medical or human-centered
applications.
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8 Conclusions

This work introduced a general learning framework for operat-
ing directly on hierarchical data, independent of media type or
specific task. By focusing on structural and relational proper-
ties derived from hierarchical trees and their associated graphs,
the proposed approach enables robust and interpretable learn-
ing while avoiding reliance on features extracted from the
original media.

Unlike most previous methods, which define regions or
masks to extract media-dependent features, our framework
encodes the entire hierarchical structure in a vector representa-
tion. This preserves semantic relationships and enables label
assignment without making application-specific assumptions.
All components of the hierarchy are utilized, with label attri-
bution performed at the leaf level, ensuring that the model
remains generalizable and task-agnostic.

Experiments on edge detection and segmentation tasks
demonstrate that learning with explicit hierarchical features
can achieve performance comparable to state-of-the-art ap-
proaches that depend on pixel or appearance-based attributes.
Furthermore, the qualitative analyses highlight the inter-
pretability of the method, showing how structural attributes
influence model predictions and making it possible to select
or refine features for domain-specific requirements.

While Random Forests were chosen for their scalability
and effectiveness in high-dimensional spaces, the framework
is not limited to any single classifier and can be adapted to
alternative models, including those optimized for large-scale
or structured data. This flexibility, along with the ability to
represent a variety of hierarchical models, supports a wide
range of potential applications beyond the image domain.

Future work will explore the use of more sophisticated
learning models within this framework, the incorporation of
data reduction techniques that preserve hierarchical informa-
tion, and the extension to new modalities and application
areas. The approach may also be enhanced by selectively
integrating certain media-specific attributes where appropri-
ate, provided the hierarchical structure remains central to the
representation and learning process.

Overall, this study demonstrates that structural, inter-
pretable, and media-agnostic learning on hierarchies is both
feasible and effective, offering a foundation for further de-
velopments in generalized, explainable, and domain-agnostic
machine learning.
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