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Abstract Internet of Things (IoT) devices have grown exponentially in recent years, resulting in valuable data
for machine learning applications. Traditionally, machine learning models require centralized data collection and
processing, which is not feasible in the IoT landscape due to high density and growing data privacy concerns. Fed-
erated Learning is a trend in this scenario, as it allows collaborative training of models on IoT devices, distributed
and without the need to share data. This paper examines a federated learning framework for IoT devices, employ-
ing a parameter server topology in a benign node environment without considering strategies for optimizing model
performance. The evaluation is conducted in two distinct scenarios: (i) a testbed of IoT devices equipped with
ARM processors and limited to 2GB of RAM, and (ii) a virtualized cloud environment with a mixture of resource-
constrained virtual machines. The experiments use non-identically distributed (non-IID) datasets—MNIST for the
IoT testbed and CIFAR-10 for the cloud environment—evaluated under various client configurations and aggrega-
tion strategies. In the IoT device scenario, the framework achieved an accuracy of up to 0.6 after ten rounds of
global aggregation, while the cloud environment attained a maximum accuracy of 0.4. These results demonstrate
the feasibility of applying FL in resource-constrained IoT environments, with scalability and accuracy influenced
by the number of clients and local training epochs.
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1 Introduction
The rise of the Internet of Things (IoT) provides ubiquitous
sensor and computing capabilities to connect a wide range
of devices to the Internet. Machine learning techniques have
been widely explored to train predictive models, such as in-
trusion detection, healthcare, transportation, and intelligent
cities [Medeiros et al., 2019], aiming to glean valuable in-
sights from data generated by IoT devices. Traditionally,
data processing is done on a remote server, focused on learn-
ing and data modeling. This approach incurs critical limita-
tions due to the sheer volume of data generated by the IoT
device [Neto et al., 2023; Cunha Neto et al., 2024]. Accord-
ing to Cisco, about 850 ZB of data is generated by all the
people, machines, and things at the edge of the network [Alli
and Alam, 2019]. By contrast, the overall traffic in data cen-
ters is only 20.6 ZB 1. In a recent report, Equinix predicts that
service providers will consume 62% of interconnection band-
width, representing approximately 20.670 Tbps by 2026 2.
As data volumes at the edge of networks continue to grow,
sending all data to remote servers may become unfeasible
due to network resources and latency. The use of third-party
servers for training machine learning models also raises pri-
vacy concerns, such as breaches and information leakage, as

1Available at https://www.cisco.com/c/en/us/solutions/
executive-perspectives/annual-internet-report/index.
html.

2Available at https://www.equinix.com/gxi-report.

training data may contain sensitive information, such as ad-
dresses or personal preferences of users [Neto et al., 2023].
Therefore, developing collaborative and efficient machine
learning models is necessary to ensure privacy during the
training of IoT applications.
Federated learning enables collaborative training in a de-

centralized way. It allows multiple participants to train a
model with the help of a central server, without data shar-
ing [Lim et al., 2020]. An intrusion detection system aimed
at IoT devices, each device monitors a local network and acts
as a participant in the collaborative training using the data
collected from the network as a dataset [Neto et al., 2022].
IoT devices must communicate with an aggregator server to
perform collaborative training. First, the server creates an
initial model with random parameters, and each participant
will start training using that model. Participants receive the
initial model and update it using their local dataset. Then,
each participant submits their updated model to the aggrega-
tor server. The server combines the updates from each local
model and creates a global model. It should be noted that the
server aggregates the local models of only a subset of ran-
domly selected participants. Finally, participants receive the
aggregated global model and compute the updates with their
local data again [Nguyen et al., 2021].
In this paper we present a federated learning framework

aimed at the Internet of Things, designed for the practical
performance assessment of federated learning applications.
The proposed framework adopts the parameter server topol-
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ogy, where several clients join the federation. Local models
are trained on clients and then aggregated on the parameter
server. Two test environments were deployed to evaluate the
framework: (i) IoT devices equipped with ARM processors
and 2GB of RAMmemory; and (ii) a virtualized test environ-
ment in a private cloud, with virtual machines ranging from
2 to 4 CPU cores and 2 to 8GB of RAM. For evaluation in
the IoT device scenario, we use theMNIST 3 dataset, contain-
ing 60,000 training samples and 10,000 handwritten digit test
samples. In the cloud environment scenario, the CIFAR-10 4

was used, consisting of 60,000 color images divided in 10
classes, with 6,000 images per class, 50,000 training images
and 10,000 test images. The framework was implemented
in Python, using the TensorFlow library 5. The test results
demonstrate that, even with limited computational resources,
the federated model achieves an accuracy of 0.6 in just 10
rounds of global aggregation, regardless of the number of
training epochs of the local models.
Previous studies on federated learning in IoT devices

typically evaluate application performance using simula-
tors [Ciftler et al., 2020; Neto et al., 2022] or devices with
higher computational power than real devices [Zhang et al.,
2021; Mills et al., 2019]. Analyzing and assessing the chal-
lenges of federated learning for IoT devices in simulated en-
vironments through high-performance computers is complex.
Similarly, using devices such as Raspberry, which have supe-
rior computational performance compared to traditional IoT
devices, is also challenging. Thus, there is a need for a vali-
dation environment with limited computational resources to
analyze and evaluate the main proposals of federated learn-
ing in real Internet of Things environments. While federated
learning holds promise for improving privacy and efficiency
in distributed environments, this study is limited to exam-
ining its behavior within a benign node environment. This
choice allows for a focused evaluation of federated learning
under typical, non-adversarial conditions. As such, optimiza-
tion strategies formodel performance, including dealingwith
adversarial nodes or network heterogeneity, are beyond the
scope of this work and will be considered in future studies.
The reminder of the paper is organized as follows. Sec-

tion 2 discusses the related work. Federated learning and
challenges of IoT devices are described in Section 3. Sec-
tion 4 describe the evaluation scenarios and the employed
datasets. Section 5 evaluates the accuracy obtained using dif-
ferent approaches. Finally, Section 6 concludes the paper.

2 Related Work
Federated learning is an enabling technology for deploying
machine learning-based applications on Internet of Things
devices. Nguyen et al. [2021] highlight that federated learn-
ing improves data privacy, reduces network communication
latencies, and improves learning quality on constrained de-
vices in the Internet of Things processing [Nguyen et al.,
2021]. Recent work focuses on developing new aggregation
and participant selection techniques for enhancing learning

3Available at http://yann.lecun.com/.
4Available at https://www.cs.toronto.edu/ kriz/cifar.html
5The source code is available upon request from the authors.

efficiency on resource-constrained devices [Lai et al., 2021;
Neto et al., 2022; Mills et al., 2019]. Also, it focuses on
developing new smart applications based on a federation of
models [Yu et al., 2018; Wang et al., 2020; Md. Fadlullah
and Kato, 2022].
In a previous work, Neto et al. [2022] propose the feder-

ated optimization of hyperparameters of the Federated Av-
erage (FedAvg) algorithm [Neto et al., 2022]. The authors
argue that the optimized selection of participants tends to
improve the accuracy and decrease the loss of the federated
global model. To this end, the authors propose the Federated
Simulated Annealing (FedSA), an extension of the simulated
annealing (SA) meta-heuristic to a distributed execution sce-
nario where the objective function tends to undergo modi-
fications with each new round. The results show that the
proposal can achieve the same accuracy as aggregation with
FedAvg [Hard et al., 2018] but with fewer rounds of aggre-
gation and fewer participants. Also aiming to improve the
performance of the federated learning algorithm, Mills et al.
[2019] propose to adapt the FedAvg to use a distributed vari-
ation of Adam optimization algorithm, reducing the number
of rounds for convergence, along with the new compression
techniques, to make the FedAvg efficient in the transmission
of weights [Mills et al., 2019]. Lai et al. [2021] propose the
aggregation method called Oort [Lai et al., 2021]. The Oort
proposal prioritizes selecting participants with data that of-
fers the most significant utility in improving the model’s ac-
curacy and who can perform the training quickly. The Oort
proposal imposes requirements on the distribution of partici-
pant data, reducing the execution time of federated learning.
To avoid privacy breaches due to frequent data transfer

between edge and cloud, federated learning employs edge
computing and uploads updated models from the edge server
to the central server for aggregation, rather than directly
transferring data. However, a malicious Edge Server can
infer the update of others from the aggregate model, and
the update can still expose some characteristics of the data
of other servers or even Byzantine poisoning attacks. Liu
et al. [2022] propose a privacy-preserving FL scheme with
robust aggregation in edge computing called FL-RAEC [Liu
et al., 2022]. By utilizing a hybrid privacy-preserving mech-
anism, data integrity and privacy are ensured when themodel
is sent to the cloud server. During the aggregation stage of
the model, the authors propose a phased aggregation strat-
egy that incorporates anomaly detection and anonymous trust
checking. The trustworthiness is estimated based on the re-
sults of an autoencoder-based anomaly detection. Local dif-
ferential privacy consists of adding noise to the weight up-
date to satisfy the privacy requirement, as measured by the
Hamming code distance. Similarly, Lu et al. [2020] integrate
a local differential privacy mechanism to preserve the pri-
vacy of local updates with descending gradient training to
enable secure and robust sharing in federated learning. To
reduce communication costs, the authors propose a decen-
tralized federated learning model that allows aggregating up-
dates of participant models on distributed servers [Lu et al.,
2020].
The reliance on a remote cloud server for federated learn-

ing operations can result in long communication latency.
Therefore, Zhou et al. [2020] present an optimization to co-
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ordinate edge and cloud devices while minimizing commu-
nication latency. Shared data scheduling, admission control,
and accuracy tuning are optimized together. The simula-
tion results verify the feasibility of the proposed algorithm
with reduced latency and increased privacy in various net-
work configurations [Zhou et al., 2020]. Chiu et al. [2020]
note that, in real-world applications, the data on the end de-
vices is non-independent and is not identically distributed
(non-IID) [Chiu et al., 2020]. The distribution of the data
can cause weight divergence during training and result in
a considerable decrease in the performance of the federated
model. Thus, the authors propose an operation called Feder-
ated Swap (FedSwap) to replace partial federated learning op-
erations based on some data shared during federated training.
A semi-supervised learning scheme is adopted to predict ob-
jects for video analytics applications between edge devices.
Savazzi et al. [2020] propose a fully distributed learning

approach, with no parameter aggregation server [Savazzi
et al., 2020]. The concept behind federated learning algo-
rithm proposal is to promote device collaboration by alter-
nating between local computations and mutual interactions
through consensus mechanisms. The experimental datasets
collected within an Industrial IoT environment (IIoT) as-
sesses the proposed methodology. Kong et al. [2020] also
focus on developing a federated learning framework for the
IIoT environment [Kong et al., 2020]. The authors develop
a federated tensor framework for data mining in industrial
IoT. The proposal integrates data from multiple sources, en-
abling tensor-based mining with security guarantees. Indus-
try plants cooperate to get into tensor mining by sharing their
data, which has been encrypted using a homomorphic encryp-
tion technique, with a centralized server. Thus, the server
only collects the encrypted data and federates it on a tensor,
while the raw data is kept in the local plants, keeping data pri-
vacy. While eavesdroppers can attack the centralized server
to compromise the aggregated ciphertext, and attackers can
read the ciphertext on communication channels, they cannot
obtain the key for the decryption of the data. While these
works aim to develop federated applications for massive en-
vironments on IoT devices, the proposals do not consider the
devices’ limited capabilities.
This study distinguishes itself by conducting real-world

federated learning experiments on actual low-power IoT de-
vices equipped with ARM processors and 2GB of RAM,
closely resembling the constraints of many real-world IoT
deployments. By incorporating a private cloud environ-
ment, we evaluate the scalability of our proposed framework
in a heterogeneous setting and simulate the common sce-
nario of cloud-based computational offloading. This dual-
environment approach ensures our framework’s adaptability
to isolated IoT setups and hybrid configurations leveraging
cloud support.
The key innovation lies in its ability to effectively imple-

ment federated learning on highly constrained, real-world
IoT devices while seamlessly operating in hybrid environ-
ments. We employ a parameter server topology with a
lightweight client-side implementation optimized for devices
with minimal processing power and memory. To minimize
communication overhead and ensure compatibility with con-
strained IoT networks, we utilize HTTP-based communica-

tion with base64-encoded messages. Unlike previous work
that often relied on simulated conditions or higher-powered
hardware, our framework provides a realistic testbed for as-
sessing FL performance in IoT deployments.
By offering insights into the performance of federated

learning on low-power IoT devices and cloud environments,
this study fills a void in the literature where prior research
has been limited to simulations or more powerful hardware
setups. Our dual-environment testing provides a comprehen-
sive understanding of how FL can be adapted for various IoT
network configurations, ensuring its practical applicability
and scalability.

3 Federated Learning on IoT Devices
Federated learning is a type of machine learning that al-
lows multiple devices or clients to collaboratively train a
shared model while keeping their data stored locally and pri-
vate. Unlike traditional machine learning, where a central-
ized server is responsible for collecting and processing all
the data for model training, in federated learning, each de-
vice contains private data and participates in the model train-
ing process by sending its local updates to the central server,
which aggregates the updates to create an improved global
model. Federated learning is a specialization of decentral-
ized learning about a unit-height tree topology [Neto et al.,
2023]. In decentralized learning, nodes are organized in a
hierarchical tree structure, where each node communicates
only with its parent and child nodes. In the case of feder-
ated learning, the root node is a parameter server responsi-
ble for aggregating the local models sent by leaf nodes. In a
federated learning scenario, data is always processed on the
devices that have it, ensuring data privacy and decreasing
the need for bandwidth for data transmission. When train-
ing a model with data from multiple sources, federated learn-
ing tends to improve the accuracy and generalization of the
model. The fundamental federated learning algorithm can be
summarized in the following steps [Neto et al., 2023]:

1. Bootstrap. The centralized parameter server initializes
a machine-learning model and shares it with participant
clients;

2. Participant Selection. The server selects a subset
of participants from the total set of participant clients
available for model training. The participant selection
can follow different criteria or be random [Neto et al.,
2022];

3. Local Model Training. Each selected participant re-
ceives the current model from the server and performs
the training locally using its data. In turn, the partici-
pant sends the updated model parameters (not the raw
data) back to the server;

4. Model Aggregation. The server receives the local
model updates from all selected participants and aggre-
gates the models to create a new global model. The
main aggregation algorithm is Federated Averaging (Fe-
dAvg);

5. Update Local Models. After the aggregation of a new
global model, the server distributes the newmodel to all
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Figure 1. Federated learning framework for IoT devices. The parameter server runs on a cloud computing platform and implements microservices on top
of an HTTP server. The federated learning client runs an HTTP client that fetches the global model from the server, trains the local model, and sends the
parameters to the server.

Figure 2. Experimental scenario adopted. Each client owns a portion of the dataset. The data are non-identically distributed and non-independent (non-IID).
The data is local to the clients and is not shared across the network. The exchange of messages boils down to the parameters of the models.

clients participating in the training. Clients then start to
use the new model proposed by the server as the basis
for training the following rounds;

6. Repeat. Steps 2 through 5 constitute a round of model
training execution. Therefore, they are repeated for sev-
eral rounds until the global model meets a predefined
stop criterion. The stop criterion is the maximum num-
ber of rounds, expected accuracy, or any other model
quality metric.

Federated Average (FedAvg) is a commonly used aggre-
gation method for updating the model received from multi-
ple participant clients [Neto et al., 2023]. The technique is
widely used in neural network-based learning models, as the
model training can be expressed by weight vectors represent-
ing each layer of the trained neural network. The key idea of
Federated Average is to calculate a weighted average of the
local model updates received from each participant client to
create a more up-to-date global model. Thus, given a set of
N participant clients, each i client performs local training on
its data and computes an update vector δwi. Upon receiv-
ing the update vectors from all clients, the server calculates
the new global model by taking a weighted average of the
updates:

wt+1 =
∑n

i wt,i ∗ ni∑n
i ni

, (1)

where wt,i is the vector of client i model weights in round
t and ni is the number of data samples used by client i for
local training. The new global model with wt+1 weight vec-
tor is then used by all clients to train the next round of fed-
erated learning. It should be noted that the weight vector
contains the weights of all the layers for the neural network-
based learning model.

Figure 1 presents the proposal for implementing federated
learning in a network of IoT devices. Because IoT devices
are limited in processing and memory, the proposal consid-
ers that the parameter server runs on a cloud computing plat-
form while the participants are IoT devices. Communication
between the participants and the parameter server is carried
out using the HTTP protocol. The model and parameter vec-
tors are serialized into a binary message and then encoded
in base64. The message encoded in base64 is transmitted as
the contents of HTTP messages. The adopted architecture
allows the code on the participant to be simple enough to
not compromise its capacity. Simultaneously to local model
training, the participant client performs only HTTP call ac-
tions and encodes messages in base64.

4 Experimental Scenario
Training and testing for the IoT devices’ scenario were per-
formed using machine learning algorithms on the MNIST
dataset, which comprises several handwritten digit images.
The dataset consists of 60,000 samples for training and
10,000 for validation, making it a widely used dataset for im-
age processing tasks. In this proposed scenario, we chose
MNIST because of its versatility and small size, which is
suitable for devices with limited storage capacity. To carry
out the distributed training, IoT devices known as TV Box6
were used as clients. These devices are equipped with ARM
Cortex-A53 processors clocked at 1.2GHz and 2GB of RAM.
They run the Ubuntu 22.04 LTS operating system with Linux

6The term TV Box refers to low-cost equipment usually marketed as set
top boxes for IPTV services. The Federal Revenue Service of Brazil donated
the equipment used in this work to the University for recharacterization of
the product and its use for social purposes.
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kernel version 5.9.0-arm-64, which supports multiple pro-
cessing cores. The aggregation server runs on an Ubuntu
22.10 virtual machine with Linux kernel version 5.15.0-69-
generic in an OpenStack 7 environment.
For the cloud-based heterogeneous environment, we

employed the CIFAR-10 dataset for training and testing.
CIFAR-10 comprises 60,000 color images, each sized 32x32
pixels, spanning ten distinct classes. The dataset is split into
50,000 training images and 10,000 test images. Notably, the
training batches are meticulously balanced across all classes,
while the test batch incorporates 1,000 randomly chosen im-
ages from each class. In contrast to the prior setup, the cloud-
based heterogeneous scenario involves virtual machines op-
erating atop an OpenStack private cloud. These virtual ma-
chines boast diverse resource configurations, with virtual
CPUs ranging from 2 to 4 cores and RAM ranging from 2
to 8 GB. The CIFAR-10 dataset was chosen for this setting
due to its complexness, demanding substantial hardware re-
sources to handle the uneven data distribution effectively.
Python 3.7 8 was the programming language used, along

with the Sklearn9 and TensorFlow10 libraries. The architec-
ture of the evaluated IoT scenario is presented in Figure 2.
The advantage of simplification for conducting tests lies

in the fact that both the parameter server running on top of
OpenStack and all clients are either connected by a local net-
work or sharing a virtual network environment. Every client
is initialized with a specific dataset partition. However, it’s
important to note that the data partition among clients is in-
herently unbalanced, characterized by a non-identical distri-
bution and non-independence (non-IID) of the data.
The training model adopted in the experimental scenario

is the convolutional neural network. For this purpose, the
LeNet-5 network is used, a simple convolutional neural net-
work, as shown in Figure 3. Convolutional neural networks
are commonly used in large-scale image processing, as they
perform satisfactorily in bitmap segmentation [Andreoni and
Mattos, 2021]. The model takes as input a bitmap of dimen-
sion 28 × 28 with one channel, for the IoT device scenario,
and a bitmap of dimension 32 × 32 with three channels, for
the cloud-based scenario. The activation function used is the
hyperbolic tangent. However, in the last dense layer, the soft-
max activation function is used. The regularization layers ap-
ply the average to the regularization window (AveragePool-
ing2D).

5 Experimental Results
The datasets were partitioned randomly, resulting in an un-
balanced, non-independent, and non-identically distributed
pattern. Six scenarios were evaluated for each dataset.The
first scenario involved training with two clients, ten rounds,
and ten local epochs. The second and third scenarios were
evaluated with three and four clients, respectively, while
maintaining the same number of local rounds and epochs
as the first. The fourth scenario also included training with

7Available at https://www.openstack.org/
8Available at https://www.python.org/
9Available at https://scikit-learn.org/stable/
10Available at https://www.tensorflow.org/

two clients, maintaining the ten aggregation rounds but us-
ing twenty local model training epochs. The fifth and sixth
scenarios also used three and four clients, respectively, with
twenty local epochs and ten global aggregation rounds.
The first step of the proposal assessment focuses on the

MNIST dataset processed by low-cost IoT devices. Figure 4
presents the three scenarios evaluated using ten local epochs,
varying the number of clients selected for training the model.
Figure 5 shows the training using twenty local epochs for the
MNIST dataset.
In scenarios in which only two clients were used, the

global model showed minimal accuracy improvement in
each training round.It suggests that these clients contributed
little to the training process since their combined training
data was insufficient. Figures 4(b) and 5(b) depict the sce-
narios with three clients, with ten and twenty local epochs
being utilized, respectively. These scenarios showed an im-
provement in the accuracy of the aggregation server. In the
case of ten local epochs, a significant improvement in server
accuracy was observed, with an increase of approximately
40% between the second and third rounds. In the scenario
with twenty local epochs, an increase in accuracy of approx-
imately 14% was observed. However, it is unclear whether
this improvement is attributable to the specific variation in
training or the distribution of the dataset.
Additionally, Figures 4(c) and 5(c) show the scenarios that

used four clients, with ten and twenty local epochs, respec-
tively. These scenarios indicate a significant improvement
in the accuracy of the aggregation server compared to train-
ing with two clients, with an increase of approximately 52%
for ten epochs and 34% for twenty epochs. However, the
variation between the three and four client scenarios was mi-
nor, showing only a 7% improvement in the case of ten local
epochs. There was no significant percentage improvement
for twenty epochs. Notably, fewer clients can directly influ-
ence local accuracy, making it constant. On the other hand,
some clients may have data that improves the global model
but does not influence the accuracy of the local model.
It is possible to notice a slight difference in accuracy when

comparing the scenarios with three and four clients in the
aggregation server. However, we found a significant im-
provement in accuracy when utilizing four clients for train-
ing. This indicates that client-4 has a large amount of data
crucial for training the global model. Around 40% of the
original dataset is allocated to client-4. As the data set is dis-
tributed unevenly, such variations are expected. The impact
of client-4 on global training can be observed by the fact that
when this client starts training with more information, accu-
racy significantly improves for all other clients.
Regarding the CIFAR-10 dataset, the proposal assessment

was conducted on running the federated learning framework
in a cloud-based heterogeneous environment. The results
show that, similarly to the MNIST dataset results, the num-
ber of epochs had little influence on the accuracy during the
runs. However, it was possible to observe a new scenario in
which a client with a significantly larger sample of data than
the other had a greater accuracy than the aggregation server
itself. Figures 7(a) show this scenario. It can also be seen
that although this event took place, all participants had an im-
provement in accuracy at the end of the ten rounds. On the

https://www.openstack.org/
https://www.python.org/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
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Figure 3. LeNet-5 neural network model trained on federated learning. The model is feed-forward with eight layers, two convolutional layers interspersed
with regularization layers, and, at the end, a planning layer precedes three dense layers.

(a) 2 clients

(b) 3 clients

(c) 4 clients

Figure 4. Distributed training using an unbalanced MNIST dataset with ten
rounds of global aggregation and ten epochs of local training. a) Training
using two clients. b) Training using three clients. c) Training using four
clients.

other hand, Figure 6(a) presents a scenario in which clients
have an equivalent data sample, and the aggregation server

(a) 2 clients

(b) 3 clients

(c) 4 clients

Figure 5. Distributed training using an unbalanced MNIST dataset with
twenty rounds of global aggregation and ten epochs of local training. a)
Training using two clients. b) Training using three clients. c) Training using
four clients.

presents a better overall accuracy.

Figures 6(b) and 7(b) present the accuracy using three
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(a) 2 clients

(b) 3 clients

(c) 4 clients

Figure 6. Distributed training using an unbalanced CIFAR-10 dataset with
ten rounds of global aggregation and ten epochs of local training. a) Training
using two clients. b) Training using three clients. c) Training using four
clients.

clients over ten rounds, with ten and twenty epochs, respec-
tively. It was possible to observe the same scenario, in which
clients with more data stand out in final accuracy, including
in front of the aggregation server. However, when the dif-
ference in the amount of data between clients decreases, the
aggregation server significantly increases, as shown in Fig-
ure 7(b). Figures 6(c) and 7(c) demonstrate the accuracy
results achieved using four clients for ten and twenty epochs,
respectively. The experiment was conducted similarly to the
MNIST dataset, where the global accuracy increases with the
number of clients. Although the achieved accuracies were
relatively low, around 0.35, each round showed a noticeable
improvement. It shows that federated learning is a feasible
approach from a privacy perspective, as each client has their
data, ensuring increased model quality for all participants.

Additionally, the results highlight the influence of each client
on the training process. Clients with a more significant por-
tion of information have little effect on the final accuracy,
indicating that training needs to be continuous and always
with new data.

(a) 2 clients

(b) 3 clients

(c) 4 clients

Figure 7. Distributed training using an unbalanced CIFAR-10 dataset with
ten rounds of global aggregation and twenty epochs of local training. a)
Training using two clients. b) Training using three clients. c) Training using
four clients.

6 Conclusion
The upsurge of Internet of Things (IoT) devices has ush-
ered in a new era, embedding processing capabilities into
everyday objects. However, these devices strugle with in-
herent limitations in processing power and memory, often
idling during operation. This paper presented and assessed
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a framework designed to harness federated learning among
IoT devices. Federated learning facilitates collaborative
training of a global model by diverse clients, each contribut-
ing with their local model’s weight vector. This approach
empowers individual devices to conduct local training on
reduced datasets privately, minimizing their computing bur-
den. Through cooperative efforts, the collective array of de-
vices trains a learning model with performance similar to
traditional machine learning algorithms and methods. The
paper deployed a federated learning prototype on low-cost
IoT devices characterized by constrained computing power,
evaluating the global model’s efficiency on the MNIST and
CIFAR-10 datasets. Findings indicated that augmenting the
number of participants impacts the models’ quality while
escalating local training epochs yields negligible enhance-
ments in final classification quality. According to the results,
the accuracy achieved for the MNIST dataset was up to 0.6,
whereas for the CIFAR-10 dataset, it was up to 0.4. Although
this study identifies that increasing data and rounds can en-
hance model performance, this was not the primary focus of
the current research. Instead, future work will focus on de-
ploying the framework in a hybrid environment and evalu-
ating the computational resource efficiency of IoT devices.
The expansion of rounds and data is less of a concern be-
cause, in a hybrid setting, we expect that cloud resources will
offset the limitations seen in purely IoT environments, thus
alleviating the need for extensive rounds in such constrained
devices.
This paper presented the results obtained through a survey

answered by 90 professionals from Brazilian software star-
tups about the UX work in these companies. More precisely,
we investigated the UX attitudes and the perception of these
professionals regarding the usefulness of UX methods and
techniques (RQ1), the moments of Long-Term UX in which
these attitudes are held for collecting and evaluating UX data
(RQ2), and challenges regarding product, market, team, and
the impact of UX attitudes on challenges faced by startups
(RQ3).
From the quantitative descriptive and inferential analysis

for RQ1, we found that although the most used method, the
interviewwas not considered themost useful in any of the dif-
ferent phases. Usability testing was the most useful for pro-
fessionals of software startups in stage 1, competitive analy-
sis for professionals of startups in stage 2, and high-fidelity
prototyping for professionals of software startups in stages
3 and 4. From this result, we conclude that the perceived
usefulness of methods varies according to the stage of the
software startup that the professional is inserted. This con-
clusion suggests caution when recommending or identifying
methods to be used in these companies. On the other hand,
the methods considered least useful, not surprisingly, are the
least used: storyboard and card sorting.
Concerning the results of RQ2, we realized that software

startups have been collecting and evaluating UX data in all
moments of Long-Term UX. However, interventions that in-
volve more than one moment of Long-Term UX to evaluate
user interaction with the product or service received fewer
responses. Unlike other literature, Momentary UX is the mo-
ment of Long-Term UX at which software startups most of-
ten collect and evaluate UX data. Regarding the usefulness

of UX data, software startups rate the currently obtained UX
data as very useful for software development. However, the
amount of professionals who agree with this usefulness de-
creases according to the stage of the software startup. Finally,
improving product/service quality and producing what the
user wants to consume are the main motivations for software
startups to adopt UX attitudes and methods. These motiva-
tions confirm recent findings in the literature on the same
topic.
According to the results of RQ3, our study reveals that

Brazilian software startups face challenges in applying UX
research practices, particularly in team training and defining
UX strategies. These challenges, supported by tight devel-
opment schedules, impact the quality of UX work and ulti-
mately affect customer satisfaction and business success. Fi-
nancial challenges are also linked to optimizing research and
evaluation processes, vital to balancing costs and improving
product quality. Furthermore, while startups recognize the
importance of analyzing data to generate insights, there is a
need to better implement collaborative artifacts to expedite
the development of minimum viable products (MVPs). By
prioritizing UX as a core component of their strategic plan-
ning, startups can overcome these challenges, improve prod-
uct development, and strengthen their market position.
Options for future works are visualized. From the knowl-

edge of the importance of all UX attitudes, we emphasize
that more significant efforts should be made to verify how
to motivate and prepare professionals to use UX attitudes in
these software startups, aiming to generate a competitive ad-
vantage. Our research also opens room to investigate why the
interview is themost usedUXmethod but not themost useful
in any of the stages. We understand it is useful in future work
to investigate which UX attitudes and methods software star-
tups apply for each Long-Term UXmoment. We believe it is
important to understand what UX data is collected and eval-
uated by software startups (i.e., user behaviors, user context,
or user emotions) and how useful each UX data is for soft-
ware development. These findings can guide the develop-
ment of proposals that help software startups professionals
to work with UX attitudes, methods, and Long-Term UX in
an efficient and lean way.
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