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Abstract There is a exponential growth of data usage, specially due to the proliferation of connected applications
with personalizedmodels for different applications. In this context, Federated Learning (FL) emerges as a promising
solution to enable collaborative model training while preserving the privacy and autonomy of participating clients.
In a typical FL scenario, clients exhibit significant heterogeneity in terms of data distribution and hardware config-
urations. In this way, randomly sampling clients in each training round may not fully exploit the local updates from
heterogeneous clients, resulting in lower model accuracy, slower convergence rate, degraded fairness, etc. In addi-
tion, malicious users could disseminate incorrect weights, which may decrease the accuracy of aggregated models
and increase the time for convergence in FL. In this article, we introduce Resilience-aware Client Selection Mech-
anism for non-IID data and malicious clients in FL environment, called RICA. The proposed mechanism employs
data size and entropy as criteria for client selection. In addition, RICA relies Centroid-Based Kernel Alignment
(CKA) to identify and exclude potentially malicious clients. Our evaluation shows an improvement of 125% in
Accuracy values in a scenario of malicious clients, which means the RICA+CKA demonstrates a more stable and
resilient approach, reaching 90% accuracy in a few rounds compared to the default average approach, reached only
around 30%. Therefore, results of the behavior of RICA+CKA in different datasets show the evaluation of different
numbers of clients reaching around 90% while the other approach does not pass the 50% Accuracy.
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1 Introduction

The use of Big data and deep learning in different applica-
tions makes our lives more intelligent and efficient, since
Machine Learning (ML) has become ubiquitous and essen-
tial among key stakeholders [Kusano et al., 2023]. However,
ML applications require extensive data sharing, which raises
significant communication and privacy concerns [Smestad
and Li, 2023]. For instance, data privacy concerns arise due
to the inherent nature of centralized ML models, where user-
generated data often contains sensitive information. Addi-
tionally, existing ML approaches primarily rely on a cloud-
centric architecture for data storage and processing. This
centralized approach can lead to communication bottlenecks,
resulting in unacceptably high latency and communication
costs.
The convergence of ML and cloud computing is antici-

pated to shift towards a distributed edge computing paradigm
[Zhang et al., 2023b]. In this context, Federated Learning
(FL) emerges as a compelling solution for future ML appli-
cations due to its inherent communication-preserving and
privacy-enhancing characteristics [McMahan et al., 2017].
Specifically, each client independently constructs its own
model without leveraging the data and insights from other

devices [Lobato et al., 2022]. The shared local models are
aggregated at the cloud or edge servers by a given aggrega-
tion policy to produce an accurate global model. In this way,
FL is a key collaborative approach to model development. It
enables the construction of a unified model while preserving
data privacy by keeping the data distributed across various
stakeholders. Additionally, FL facilitates continuous learn-
ing by allowing the adaptation of the ML model without the
need to share raw data.
Client selection is a critical component of the FL train-

ing process. This mechanism strategically chooses a subset
of participating devices, often referred to as clients, to con-
tribute to the model training in each learning round. How-
ever, it is important to select the set of clients with valu-
able samples, i.e., excluding clients who do not add value to
the training and to improve the global model while increas-
ing the cost of communication [Smestad and Li, 2023]. The
FL client selection process is crucial to ensure a diverse and
representative data sample from various clients. Contribut-
ing to the model’s robustness without centralizing data, thus
maintaining privacy. Selecting clients based on data quality,
availability, and computational capacity optimizes training,
improving the model performance in FL systems.
FL faces challenges due to the heterogeneous nature of
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participating clients. Client devices often possess diverse
data distributions and varying hardware characteristics. This
heterogeneity leads to Non-Independent and Non-Identically
Distributed (non-IID) data scenarios. In such scenarios, data
samples from different clients are not statistically indepen-
dent and may exhibit distinct underlying statistical distribu-
tions [Xiong et al., 2023]. The diversity in data distribu-
tion frequently results in diminished model accuracy, slower
convergence rates during training process, and the potential
emergence of fairness concerns if not adequately mitigated.
Furthermore, the reliance of FL on clients sharing trained

weights heightens the vulnerability to malicious clients in-
jecting erroneous updates, thereby compromising the in-
tegrity of the entire model training process [Le et al., 2023].
Model poisoning attacks pose a significant threat in FL,
where adversaries can exploit the distributed nature of model
training [Ghodsi et al., 2023]. This attack occurs when mali-
cious clients intentionally manipulate their model updates to
share them with the aggregation server, potentially including
low-quality weights that decreases the prediction accuracy
of the aggregated model [Yan et al., 2023]. Due to this ma-
nipulation, the model parameters can severely compromise
its integrity and performance once integrated into the global
model. Distinguishing between malicious updates and the in-
herent variations observed in honest client updates presents
a significant challenge in FL. This is because local model up-
dates from legitimate clients naturally exhibit some degree of
variation. Consequently, ensuring model resilience against
poisoned updates is crucial for maintaining the accuracy and
integrity of the FL system.
One approach to mitigating the impact of non-IID data and

malicious users is by clustering clients based on the statis-
tical features of their datasets, optimizing the accuracy of
FL models. In addition, it is important to assess the simi-
larity between trained model representations to mitigate the
effects of non-IID data and malicious users. In this context,
clustering algorithms are an important tool for grouping par-
ticipants with comparable data distributions or learning ob-
jectives, creating clusters with similar models. However, to
the best of our knowledge, the issue of designing an efficient
client selection mechanism in a scenario with poisoning at-
tacks and non-IID data remains a challenge.
This article introduces RiCA (Resilience-aware Client Se-

lection Mechanism). RiCA addresses the challenges of
non-IID data and malicious clients in FL environments. It
achieves this by proposing a novel client selection mecha-
nism that incorporates three key factors, namely, model per-
formance on the client’s data, data size on the client, and the
entropy of the client’s local updates. At the client selection
phase, RiCA filters clients with larger data sizes and selects
the remaining clients after using their Entropy as weights.
In addition, RiCA uses the Centroid-Based Kernel Align-
ment (CKA) method for cluster creation to protect the global
model against poisoning attacks, where CKA creates the clus-
ters and gives them a score of similarity to detect malicious
clients. Our experimental evaluation demonstrates that the
RiCA client selection mechanism achieves superior perfor-
mance compared to the baseline model in terms of both ac-
curacy and loss reduction throughout the training rounds.
This article extends the previous work [Sousa et al., 2023],

where its main research contributions can be summarized as
follows: i) the development of novel approach for client se-
lection based on their data size, while also incorporating en-
tropy to enhance the diversity of data types presented into the
training phase; ii) the use of CKA similarity score as a cluster-
ing criterion to identify malicious clients based on their mod-
els prior to the aggregation step; iii) new evaluation results
to demonstrate the performance of the proposed scheme.
The rest of this article is organized as follows. Section 2

presents an overview of works that explore similar propos-
als related to FL methods of resilience and protection ap-
proaches. Section 3 describes our methodology for pro-
tecting our aggregation, selection, and resilience cluster ap-
proaches. Section 4 explores the simulation model and the
results obtained related to the use of our method. Finally,
Section 5 concludes the article and directions for future work.

2 Related Work
This section presents key state-of-the-art approaches that en-
hance the resilience of FL against malicious client attacks or
compromised models. In decentralized FL scenarios, client
selection plays a crucial role, particularly when dealing with
non-IID data distributions across participating devices. Thus,
entropy-based selection methods have emerged as a promis-
ing approach [Orlandi et al., 2023]. The authors used an ap-
proach to solve the problem of this type of data by using
an Entropy-based approach to the client’s distributions and
mode balancing during their training step. However, they
did not consider an additional filter of the client’s data size.
Ghodsi et al. [2023] incorporated statistical bounds in

zero-knowledge proofs to identify and discard malicious up-
dates without disclosing private user data, called zPROBE.
It achieves Byzantine-resilient and secure FL. However, it
lacks in terms of detecting malicious clients. RiCA improves
the detection of malicious clients in FL by using CKA. This
method leverages the sum of similarity scores computed us-
ing CKA to identify clusters with clients exhibiting anoma-
lous behavior, potentially indicative of model poisoning at-
tacks.
Yan et al. [2023] introduced a novel defense mechanism

called DeFL. This defense utilizes a federated gradient norm
vector (FGNV) to detect minor but impactful discrepancies
in DNN model updates. DeFL identifies malicious clients
with this fine-grained approach and pinpoints CLPs, adapt-
ing this information to exclude these clients from the aggre-
gation phase. However, this approach does not consider the
model parameters of the clients. In our model, using CKA
improves the detection of the malicious client by comparing
the similarity with the other clients’ parameters.
Sousa et al. [2023] investigated the efficacy of an entropy-

based client selection mechanism within a FL framework
modified for vehicular networks. Through comprehensive
simulations involving a network of 20 vehicles, the study
demonstrates a significant enhancement in learning perfor-
mance when utilizing the entropy-based selection method,
compared to traditional random selection techniques. How-
ever, this approach does not consider the fairness of FL.
Choosing only the clients with the most Entropy values may
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bias the results, which in our proposal will not occur due to
the probability applied and defining a minimum number of
data size values to choose clients.
Albaseer et al. [2021] introduced a client selection mecha-

nism to enhance Clustered Federated Learning (CFL) in wire-
less edge networks, focusing on reducing training time and
improving model convergence without specifically address-
ing data diversity or richness, unlike entropy-based CKA
clusterization methods. This approach ensures equitable
client participation but might not fully leverage the poten-
tial of selecting clients based on data informativeness. That
is crucial for optimizing learning outcomes in environments
with heterogeneous data distributions. However, this ap-
proach needs to consider the malicious clients on their ap-
proach, which means an unsafe aggregation, possibly caus-
ing the strategy of clustering to be frustrated. In that way, a
similar approach to the author’s is using CKA as a resilience
control tool for clients by comparing their parameters.
Souza et al. [2023] proposed DEEV to address commu-

nication challenges and scalability issues by dynamically
adapting the number of participating devices and training
rounds through a client selection strategy that selects the
clients whose accuracy falls below the average. Using a
containerized environment, DEEV showcases significant re-
ductions of up to 60% in communication overhead and an
impressive 90% in computation overhead compared to ex-
isting approaches. Its robust performance in scenarios with
non-independent and non-identically distributed data under-
scores its potential for enhancing FL model efficiency. How-
ever, this approach does not account for malicious clients,
implying that the system might aggregate their clients dur-
ing some filtering rounds. Our method deals with choosing
fewer clients in a round than the DEEV approach does in the
initial rounds.
Regarding malicious clients in FL, Zhang et al. [2022] in-

troduces ”FLDetector,” a technique aimed at identifying and
mitigating model poisoning attacks by detecting malicious
clients. FLDetector leverages the inconsistency in model up-
dates across training iterations to indicate malevolent activ-
ity, proposing a mechanism to predict and compare clients’
updates for anomalies. While showing promise in enhanc-
ing FL security across various datasets and attack models,
this method may only partially address challenges posed by
advanced attackers capable of mimicking benign behavior,
scalability in large networks, privacy implications of the de-
tection process, and adaptability across diverse FL environ-
ments. However, this approach does not improve FLDetec-
tor’s client selection, which is different from our approach;
they can choose a not valuable client to train.
Jee Cho et al. [2022] presented a novel framework

called Power-Of-Choice, a communication and computation-
efficient client selection framework that flexibly spans the
trade-off between convergence speed and solution bias. The
work achieves three times faster convergence and 10%
higher accuracy by the author’s tests. However, the work
does not focus on the data quality or the impact that the data
from each client can have on the FL training. However, this
approach does not use this approach on malicious clients,
which means their approach does not have a detection im-
provement of this client who can worst their results.

Liu et al. [2020] proposed a novel Federated Learning
(FL) model called FedGRU that uses Federated Averaging
(FedAvg) as the core of the secure parameter aggregation
mechanism to collect gradient information from different or-
ganizations, the filtering of clients participating in the train-
ing is not considered for this algorithm. Therefore, client se-
lection still remains an open challenge in the vehicular field.
The proposed model only discussed the reduction of commu-
nication overhead without considering the quality of the data.
Sattler et al. [2020] explores how the Clustered Feder-

ated Learning (CFL) framework functions in environments
with Byzantine clients who behave unpredictably or try to
sabotage the training process. They conducted experiments
with deep neural networks on standard Federated Learning
datasets. They found that CFL can accurately identify and
remove these Byzantine clients without modifying the frame-
work. However, this approach only improves the client selec-
tion in protecting the global model, which means the clients
with no values can be chosenmore often. Our approach intro-
duces a client selection improvement to reduce the number
of rounds and achieve a faster, more stable accuracy.
Ghosh et al. [2022] proposed the Iterative Federated Clus-

tering Algorithm (IFCA), which alternately estimates the
identities of user clusters and optimizes the model parame-
ters for user clusters through gradient descent. The author
shows the advantages of using the clusteringmethod in an FL
approach, which is guaranteed to converge, and discusses the
optimal statistical error rate. However, this approach uses a
different cluster to detect than his cluster but chooses the clus-
ter most relevant to training. Our approach uses the cluster
to be more robust and resilient in malicious scenarios.
Table 1 presents a comprehensive overview of the key at-

tributes of reviewed studies pertaining to the challenge of
client selection, encompassing clustering techniques, client
selection methods, detection of malicious clients, and robust
methodologies for FL approaches. Based on the state-of-the-
art analysis, it is imperative to adopt a robust FL approach
to addresses the challenges of non-IID data and malicious
clients in FL environments. Therefore, efficient client selec-
tion is pivotal for training the global model effectively. To
achieve this objective, insights gleaned from other FL studies
must be leveraged to expedite the identification of the most
suitable approaches. Consequently, by integrating considera-
tions of data distributions and size, the significance of clients
within the client set can be enhanced, thereby establishing a
robust methodology for detecting and eliminating malicious
clients.

3 A Robust Client Selection Mecha-
nism for Federated Learning

This section introduces RiCA (Resilience-aware Client Se-
lection Mechanism), a novel approach designed to enhance
the robustness and resilience of client selection in FL scenar-
ios. RiCA leverages a two-stage process: (i) Information-
Theoretic Client Selection: The first stage employs infor-
mation theory principles to select clients. This selection
considers both the entropy of client updates, which serves
as a measure of data diversity, and the data size on each
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Table 1. Related Works

Work Malicious Clients Client Selection Clusterization Resilience/Robustness

Ghodsi et al. [2023] Yes No Yes Yes
Yan et al. [2023] Yes No No Yes
Sousa et al. [2023] No Yes No No
Albaseer et al. [2021] No Yes Yes No
Souza et al. [2023] No Yes No Yes
Zhang et al. [2022] Yes No Yes Yes
Jee Cho et al. [2022] No Yes Yes Yes
Liu et al. [2020] No No Yes Yes
Sattler et al. [2020] Yes No Yes Yes
Ghosh et al. [2022] No No Yes Yes
RiCA [2024] Yes Yes Yes Yes

client. Prioritizing clients with smaller data sizes aims to mit-
igate the negative influence of potentially biased or overly
influential large datasets. (ii) CKA-based Clustering: Fol-
lowing client selection, RiCA utilizes Kernel Conditional
Covariance Analysis (CKA) for clustering. This clustering
groups newly selected clients with those that previously par-
ticipated in the training process. This step strengthens sys-
tem resilience by leveraging the historical behavior of trusted
clients to identify potential anomalies in new client updates.

3.1 Scenario overview

We consider a scenario composed of N devices, denoted as
ui ∈ {u1, . . . , uN }. We adopt a typical FL framework, ini-
tiating every communication round by choosing a group of
K client devices, referred to as Client, to receive the global
model, perform the training based on its Dataset Di. The
client selection mechanism must select a set of K clients
with valuable samples to reduce the waste of computation
resources, where it must remove the learning whose data are
no longer critical for the model training. The dataset Di con-
sist of a collection of features xk,i, for k ∈ {1, . . . , ∥Di∥},
with each feature paired with a corresponding label yk,i. The
selected clients improve the Model Mn by training with its
dataset Di.
After the training phase, client updates are transmitted

back to the central aggregation server [Song et al., 2022].
These updates can encompass either the learned model pa-
rameters or the calculated gradients. This approach allows
each device to contribute its unique data to the FL pro-
cess, aiding in developing a comprehensive and robust global
model [Barros et al., 2021]. Upon receiving these updates,
the central server employs a specific aggregation strategy to
integrate the updates into a cohesive model. A common strat-
egy used is the Federated Averaging (FedAVG) [Liu et al.,
2020] algorithm, which calculates the mean of all local mod-
els shared by client devices, which is computed based on Eq.
1. This aggregation process at the edge servers plays a criti-
cal role in consolidating the client updates and generating a
refined global model. The aggregated model, incorporating
the collective learning progress from participating devices, is
subsequently distributed back to the selected clients for the
next training round [Lobato et al., 2022].

Wt = Σm
i=1

ni

n
Wi (1)

Figure 1 illustrates the proposed FL scenario, emphasiz-
ing client selection within a context of poisoning attacks and
non-IID data. This setup divides the dataset into “n” users
for each training participant. The RiCA mechanism uses
datasets size and Entropy Ei as input to select the set of K
clients with relevant data to improve the global model. In ad-
dition, RiCA uses CKA to maintain the system robustly and
adaptable to attacks on the Global Model Gm. Specifically,
CKA evaluates the average similarity among clients within
each cluster, thus safeguarding against the inclusion of mali-
cious users in the aggregation process. As depicted in Figure
1, after the selection process, clients transmit their parame-
ters to the central server, encompassing both their datasets
and the models refined during each iteration. With the sup-
port of the FedAVG algorithm, the central server aggre-
gates the received model updates from participating clients.
This aggregation process combines the collective learning
progress and generates an updated global model. The cen-
tral server subsequently distributes this refined model back
to all participating clients for the next training round. Ta-
ble 2 summarizes the list of main symbols used to introduce
RiCA mechanism.
In FL, the distribution of data among participating clients

can be mathematically expressed using probability distribu-
tions. The distribution of data on each client Ci is repre-
sented by a local dataset Di, and the overall distribution of
data across all clients can be expressed as the union of these
local datasets:

D =
K∪

i=1
Di (2)

Now, let pi denote the probability distribution associated
with the data on client Ci, which can be expressed as:

pi(x) = Number of occurrences of x in Di

Total size of Di
(3)

This probability distribution pi(x) captures the likelihood
of encountering a specific data point x within the local
dataset Di. The FL process involves aggregating informa-
tion from all clients to build a global model. The aggre-
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Figure 1. Scenario overview for robust global model attacks

Table 2. List of Symbols

Acronyms Description

Dn Dataset
Gm Global Model
Mn Model
Wk Client weight within the clus-

ter
Wi Model Weight
K Participating clients
P(k) Probability of K
En The sum result in the total data

from all Entropy
Ek Number of data from that

client Entropy
H Entropy
θglobal Global aggregated parameters

gated model parameters θ are iteratively updated by incor-
porating contributions from individual clients, which can be
represented as:

θglobal = 1
K

K∑
i=1

θi (4)

Here, θglobal represents the global model parameters, and
θi represents the model parameters updated by client Ci.
This distribution, captured by the probability distributions
pi(x) for each client Ci, lays the groundwork for assessing
the diversity of data in the federated network. It is within this
context that entropy emerges as a pivotal tool.

3.2 Clients Selection
The performance of FL training process is heavily linked to
the quality and diversity of the client data. In a typical FL

scenario, clients exhibit significant heterogeneity in terms of
data distribution and hardware configurations. In this way,
randomly sampling clients in each training round may not
fully exploit the local updates from heterogeneous clients,
resulting in lower model accuracy, slower convergence rate,
degraded fairness, etc. In this context, the client selection
scheme based on specific metrics for participation in the FL
process becomes a critical factor in determining the effective-
ness of the learning framework [Fu et al., 2023]. The effec-
tiveness of FL critically depends on the quality and diversity
of data distributed across participating clients
During the client selection phase, the aggregation server

uses the data size as a criterion to identify the top clients.
The server evaluates the performance of the model trained
on each client’s data. Based on this evaluation, a weight is
assigned to each client, reflecting its potential contribution to
the training process. After that, the server calculates the prob-
ability of choosing a client for training based on its relative
importance compared to others within the same cluster. The
Eq. 5 ensures that clients with superior relevance in terms
of the diversity of classes in each client and more extensive
data to train, which have a higher probability of participat-
ing in the training process, preventing the occurrence of an
overly dominant ”superfit” scenario. En denotes the aggre-
gate count of all appearances of eachK in this collective sum,
added to the Ek. We employ these dataset strategies to eval-
uate the P(K) for a client’s submission to our server, show-
casing the ability to identify the most pertinent clients. This
method ensures fairness in FL, unlike other selection strate-
gies that often prioritize a fixed group based on predefined
selection criteria.

P (K = k) = Ek

N∑
n=0

En

(5)

In this context, RiCA correlates directly with the character-
istics of diverse and high-quality client data. Specifically, di-
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versity ensures that the model can generalize well across dif-
ferent data distributions, while high-quality data contributes
to the accuracy and reliability of the learned model. Striking
a balance between these two aspects is essential for robust
and adaptable model training. Traditional client selection
methods may fall short in addressing the nuanced interplay
between data diversity and quality. Biased or suboptimal
model updates may result from overlooking client data’s dis-
tributional characteristics, hindering the FL system’s overall
performance. RiCA leverages entropy as a key metric during
client selection. Entropy serves as a measure of data diver-
sity, allowing RiCA to prioritize a set of top clients. This
approach fosters a more comprehensive and balanced repre-
sentation of the underlying data landscape within the training
process.

The RiCA entropy is computed by evaluating the probabil-
ity distribution of symbols or messages that a source can pro-
duce [Fu et al., 2023]. By calculating the entropy of individ-
ual clients’ data, RiCA gains an understanding of the degree
of randomness or uncertainty inherent in the data. Leverag-
ing entropy-based client selection allows FL algorithms to
identify the most pertinent and diverse data, thus facilitating
the learning of models that can effectively accommodate het-
erogeneity. Through the selection of clients with high en-
tropy, RiCA can ensure that learned models accurately rep-
resent the entire network, capturing variations in driving be-
havior, traffic patterns, and network connectivity.

We can formally measure the concept of data diversity
by applying the Shannon entropy formula. For instance,
consider two datasets, denoted by A and B. Dataset A pos-
sesses an even distribution of labels, where each label 0, 1
appears with a probability of 50% . Following this, we
can calculate the Entropy of this specific dataset, which is
−0.5 log2(0.5) − 0.5 log2(0.5) = 1bit. In contrast, Dataset
B has a skewed distribution with labels 0, 1, where label 0
occurs in 90% and label 1 occurs in 10% of the time. The
entropy of this scenario is −0.9 log2(0.9) − 0.1 log2(0.1) ≈
0.47bit. This scenario demonstrates that dataset A, with its
higher entropy, exhibits a more balanced and diverse distri-
bution of classes compared to dataset B.

This example illustrates that a high entropy in data labels
signifies diverse data, mitigating overfitting and bias by en-
suring a balanced representation of classes. Such diversity
empowers models to capture general patterns and subtle nu-
ances, thereby enhancing their performance across various
scenarios. By selecting clients with high-entropy datasets,
FL environments gain the capability to enhance model gen-
eralization and fairness, highlighting entropy as a strategic
factor in the development of effective machine learning mod-
els.

RiCA uses the Shannon Entropy formula to calculate the
entropy, as described in Eq. 6. H(X) is the entropy of
the dataset, P (x) is the probability of observing a particu-
lar value x in the dataset, and log is the natural logarithm.
Clients with datasets exhibiting a high entropy level are cho-
sen due to their possession of diverse and informative data,
which has the potential to enhance the performance of the FL
model.

H(X) = −
∑

x

P (x) log P (x) (6)

Applying the Eq. 6 in our scenario gives the entropy cal-
culation for client selection ranking in FL, and the resulting
equation can be described in Eq. 7. In this way, km refers to
the class of the data point dni, which represents an individ-
ual data point in dn. Prioritizing clients with higher entropy
values during selection injects greater data diversity into the
training process. This fosters the development of models
that are more generalizable and adaptable to real-world vari-
ations. Consequently, the resulting model exhibits improved
performance not only in terms of accuracy but also in its ap-
plicability across diverse FL scenarios, making it well-suited
for non-IID environments.

H(dn) = −
m∑

j=1
P (km) log P (km) (7)

Although the entropy-based approach to client selection in
FL presents notable benefits, particularly in bolstering model
resilience and diversity, it is not exempt from limitations. A
prominent drawback is its perceived suitability primarily for
classification tasks, attributed to the conventional application
of entropy in assessing uncertainty or variability within cate-
gorical datasets. This perception emerges from the classical
information theory context, where entropy quantifies the un-
predictability of a system’s state, a concept directly applica-
ble to the distribution of categories or classes in classification
tasks.
The RiCA approach employs a filtering strategy that pri-

oritizes clients based on data size and subsequently utilizes
entropy to determine their probability. This methodology en-
sures equitable selection and distribution of clients, with the
selection process being initiated after the client is established,
considering information relayed to the server, such as clients’
data values and label diversity, among other factors. The use
of probability enhances the efficacy of training the Convolu-
tional Neural Network (CNN), guaranteeing that each itera-
tion or round of the global model training integrates the most
suitable set of clients.
Algorithm 1 illustrates the operational procedure of RICA

on the server for addressing client selection challenges. Be-
ginning with a focus on the fundamental objective of clients,
the algorithm prioritizes filtering clients with greater rele-
vance. In addressing non-IID clients, RiCA aims to identify
optimal fits for training in each round of FL. The initial filter
targets clients with appropriate data sizes, ensuring a suffi-
cient quantity of samples for effective training. Each client
is required to possess numerous samples to facilitate accurate
evaluation during training and enhance the overall round per-
formance.
Initially, the process starts by aggregating the total data

size from all participants, denoted as Dtotal. This step is
instrumental in ascertaining the volumetric contribution of
each client, which subsequently informs the selection of the
top 30% of clients. The inclusion of data size as a selection
criterion reflects the inherent value placed on larger datasets
within the algorithm’s decision-making process. Afterwards,
the algorithm employs Shannon entropy to calculate each
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client’s Entropy Ei. To quantify and assess data diversity
within the client’s dataset, RiCA employs Entropy as a cru-
cial metric for client selection. By integrating data size and
entropy values with the probability of weights, denoted as
Wi, the algorithm identifies the primary clients for training.
The coefficients β in this function balance the weighting as-
signed to both data size and diversity.
Algorithm 1 also presents our second filtering mechanism,

aimed at selecting a subset of clients for training. This fil-
ter enhances the initial selection process by further refining
client selection criteria based on data quality. During the fi-
nal selection phase, it is imperative to calculate the client
selection probabilities Pi based on their weights. The en-
tropy filter is designed to identify clients exhibiting the high-
est entropy, signifying increased diversity or uncertainty in
their data. Prioritizing clients with higher entropy, and subse-
quently filtering out 20% of the client set, the probability Pi

will determine the top clients for training. This ensures a di-
verse dataset with ample size for training the CNN, thereby
enhancing the model training by increasing the quantity of
relevant data. By employing these two strategies to iden-
tify relevant data, a robust learning framework is established,
minimizing the risks of overfitting. This approach allows us
to leverage the benefits of training clients with larger data
sizes and higher entropy, ultimately enhancing the overall
training process and model quality.

Algorithm 1: Client Selection Phase
1 Calculate the total data size Dtotal for all clients;
2 Select top 30% of clients based on data size;
3 for each client i in the top 30% do
4 Calculate the individual entropy Ei of client i

using Shannon entropy:;
5 Ei = −

∑
p(x) log p(x);

6 where p(x) is the probability of occurrence of
class x in client i’s data;

7 end
8 Calculate a combined weight for each client Wi using

a polynomial function of data size and entropy;
9 for each client i in the top 30% do
10 Wi = β · Ei;
11 where β are coefficients that balance the

importance of entropy;
12 end
13 Normalize the weights Wi to get selection

probabilities Pi;
14 for each client i in the top 30% do
15 Pi = Wi∑

j
Wj

where j is in the top 30%;

16 end
17 Use Pi to probabilistically select 20% of the clients;
18 for each client i in the top 30% do
19 Select client i with probability Pi until 20% of

total clients are chosen;
20 end
21 Proceed with FL training using the selected subset of

clients;

3.3 Resilience by Similarity Relevance
RiCA leverages the CKA metric due to its emergence as a
robust tool for evaluating the similarity between representa-
tions across diverse layers of neural networks or distinct mod-
els. CKA quantifies the alignment between two datasets by
assessing the similarity of their respective feature represen-
tations, with similarity values ranging from 0 to 1. A value
of 0 signifies no similarity, while 1 indicates identical repre-
sentations [Raghu et al., 2021].
CKA helps to determine how closely the features learned

by a model on one task align with those learned on another,
guiding the selection of layers for transfer or fine-tuning.
CKA employs various techniques to assess the similarity be-
tween matrices. In our approach, we use the Dot Product-
based Similarity method, which relies on Equation 8 to com-
pute the relative dot products of the samples, where H repre-
sents the centering matrix. The Dot Product-based Similarity
method performs well in dynamic and non-iid FL scenarios.

HSIC(K, L) = 1
(n − 1)2 tr(KHLH), (8)

The alignment is then normalized to provide a similarity
score between 0 and 1 based on Eq. 9, where 1 indicates
perfect alignment.

CKA(K, L) = HSIC(K, L)√
HSIC(K, K)HSIC(L, L)

(9)

TheAlgorithm 2 introduces an approachmethod formodel
protection global model based on the CKA similarity matrix.
RiCA leverages client similarity to identify potential anoma-
lies or malicious actors within the FL framework. RiCA
focuses on clients whose data distributions exhibit minimal
similarity to the expected patterns for the specific classifica-
tion task. For instance, in an image classification scenario,
clients with data containing irrelevant or significantly differ-
ent imagery would be flagged for further investigation.
RICA relies on CKA similarity scores between clients’

weights. The crux of the algorithm lies in its capacity to
compute an average similarity, Si_avg , for each client by av-
eraging their similarity scores with every other client. This
average serves as a metric to gauge the extent of alignment
between the data distributions of different clients.
The CKA-based clustering stage in RiCA employs param-

eters to seek similarity by generating a confusion matrix for
each client, which then transmits weights to the server, as-
signing a value to each client. Thus, it is essential to assign
values to clients trained using similar data modalities, such as
images, sounds, or natural language processing. This value
aggregates clients within a cluster based on their similarity,
with clusters exhibiting low similarity likely to contain mali-
cious clients for FL aggregation. Consequently, it becomes
necessary to exclude selected clients from clusters with low
similarity, thereby enhancing the safety of FL aggregation
for Refined Clients.
The similarity threshold, denoted as τ , acts as a hyper-

parameter determining the necessary level of similarity for
excluding a client from the current set. Clients exceeding
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this threshold are deemed to have an adequate level of sim-
ilarity and are therefore expected to make more meaningful
contributions to the federated learning model. This threshold
also represents the probability that a client was not trained for
the same objectives as the other clients. By employing this
thresholding mechanism, the algorithm ensures the retention
of clients whose weights align closely with the broader data
distribution, thereby potentially reducing variability and im-
proving the robustness of the model. Thus, the algorithm
assures the intricate considerations involved in optimizing
client selection for FL, highlighting the intricate relationship
between similarity, diversity, and model effectiveness.

Algorithm 2: Pulling Out Clients Phase
1 Selected clients with their weights Wi, CKA

similarity threshold τ ;
2 Initialize an empty list, RefinedClients;
3 Compute the CKA similarity matrix S for all pairs of

selected clients;
4 for each client i in the selected clients do
5 Compute the average similarity Si_avg by

averaging all values in row i of S;
6 if Si_avg > τ then
7 Add client i to RefinedClients along with their

weight Wi;
8 end
9 end
10 return RefinedClients

4 Evaluation
This section presents the simulation setup employed to eval-
uate the performance and efficiency of RiCA. We first de-
scribe the simulated FL scenario, including the underlying
framework, database characteristics, and simulation param-
eters. We also present the obtained results, focusing on the
metrics of accuracy and loss for the global model. This anal-
ysis aims to assess the effectiveness and resource utilization
of RiCA compared to baseline approaches.

4.1 Simulation Description
We conducted an extensive simulation study utilizing the
PFLib, a versatile framework introduced [Zhang et al.,
2023a]1. The framework was executed on a server with the
following specifications: i9-13900K(32), 128 GBRAM, and
Dual RTX 4090 GPUs, running on a Ubuntu Server operat-
ing system. We used the MNIST, FMNIST, and CIFAR-10
datasets for our experiments (widely used public datasets for
training and testing model validations). The MNIST dataset
consists of several images, FMNIST comprises other images,
and CIFAR-10 features color images of animals and objects.
Therefore, our evaluation methodology will assess the per-
formance of RiCA across these three distinct types of data.

1https://github.com/TsingZ0/PFLlib

The CNN model architecture employed in the experiment
consisted of two convolutional layers with 5x5 filter sizes,
followed by 2x2 max-pooling operations after each convo-
lutional layer. To ensure a realistic representation of data
distribution challenges, we employed non-IID data through-
out the experiments. This non-IID data was modeled using a
Dirichlet distribution. We use label distribution to character-
ize the local data distribution among clients by a proportion,
as described in Ma et al. [2022]). The Dirichlet distribution,
with a concentration parameter of β = 0.2, determines this
proportion of samples, as outlined in [Li et al., 2021].
In addition, we evaluate the RICA+CKA approach across

various client scenarios to demonstrate how it can enhance
accuracy more rapidly while preserving the security of the
global model. We also assess the RICA scheme under ma-
licious scenarios to compare its efficacy in selecting clients,
despite the potential selection of malicious clients compared
to the Accuracy and Loss. The evaluation of client selec-
tion based on their entropy-weighted weights will serve as a
benchmark comparison to the default FL approach. The de-
fault FL means the most common strategy base for FL, using
only random selection. Table 3 summarizes the simulation
setup and parameters.

Table 3. Simulation Parameters

Description Values

Number of Clients 30, 40, 50, 60 Clients
Number of Clusters 2, 3, 5 clusters
Datasets used MNIST, CIFAR-10, FMNIST
Default number of clients 50 clients
Default number of clusters 5 clusters
Default dataset MNIST

We compare these mechanism with metrics commonly
used for authentication, namely Accuracy and Loss. The Ac-
curacy metric is calculated by dividing the number of hits
(positive) by the total number of examples. This calculation
applies to data that include examples for each class and ac-
counts for misses. Moreover, hit penalties for each class are
the same.
We evaluate the performance of the proposed mechanisms

using established metrics commonly employed in FL envi-
ronments, namely, Accuracy and Loss. Accuracy is com-
puted by dividing the number of correct predictions (positive)
by the total number of examples. In a more formal mathe-
matical representation, where TP denotes true positives, TN
denotes true negatives, and FP and FN denote false posi-
tives and false negatives, respectively, Equation 10 can be
expressed as:

Accuracy = TP + TN

TP + TN + FP + FN
(10)

This equation suggests that Accuracy is inherently straight-
forward and intuitive, offering a quick assessment of the
model’s performance. However, the simplicity of the accu-
racy metric also brings about limitations, particularly in sce-
narios with imbalanced datasets.



A Robust Client Selection Mechanism for Federated Learning Environments Veiga et al. 2024

The loss metric quantifies the discrepancy between the
model’s predictions and the actual labels. Lower loss val-
ues indicate better model performance. In essence, the loss
metric reflects the cost associated with prediction errors. For
classification tasks, Cross-Entropy Loss (also known as Log
Loss) measures the performance of a classification model
whose output is a probability value between 0 and 1. Cross-
entropy loss increases as the predicted probability diverges
from the actual label, making it practical for assessing the
certainty of predictions. The cross-entropy loss for that sam-
ple is the sum of log(ŷic) across all classesC. The overall loss
is obtained by averaging these sums over allN samples. This
approach penalizes confident but incorrect predictions, with
the penalty increasing as the predicted probability diverges
from the actual class. The objective of model training is to
minimize this Loss, thereby enhancing the model’s accuracy
in classifying samples.

4.2 Results
Figure 2 shows the accuracy of the RiCA algorithm with the
default state-of-the-art method, employing FedAVG with a
random client selection. The default approach encounters nu-
merous challenges when handling unexpected attacks within
the scenario. Consequently, the default method yields poor
results, failing to surpass 40% accuracy in our simulation.
RiCA improves the client selection process and the accuracy
(approximately 50%) when compared to the default scheme.
The RiCA+CKA proposal surpasses other approaches within
just a few rounds. RiCA+CKA achieves superior results
even when compared to using only RiCA for five rounds,
demonstrating an improvement of 125% over the other meth-
ods. Based on these accuracy results, the RICA+CKAmech-
anism shows in the evaluation a robustness and resilience
approach to identify malicious clients and faster train eval-
uation.
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Figure 2. Accuracy measurements

Figure 3 analyzes the loss measurements and provides in-
sight into the performance of our FL algorithm RiCA+CKA.
The Default baseline algorithm starts with a significantly
higher loss that gradually declines but remains above 1.5
throughout the training rounds. The RiCA algorithm exhibits
an improvement in reducing loss, stabilizing just below the
1.0 threshold. The RiCA+CKA solution outperforms the
other approaches and demonstrates a swift reduction in loss,

dipping below 0.5 within the first 20 rounds and consistently
maintaining this low level after that. This pattern signifies
that RiCA+CKA rapidly converges to a robust solution and
sustains a minimal loss, indicative of a high model resilience
and accuracy level. Such performance underscores the ef-
fectiveness of configuring RiCA with CKA for FL applica-
tions, especially when model stability and reliability are crit-
ical. Based on this, the RICA mechanism also shows an im-
provement related to the loss patterns in the evaluation step.
In that way, the RICA+CKA comparison demonstrates the
improvement of that approach in a resilient FL method dur-
ing this evaluation, which can improve the protection of the
global model.
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Figure 3. Loss measurements

Figure 4 presents a comparative evaluation of the
three client selection approaches (Default, RiCA, and
RiCA+CKA) across three datasets (CIFAR-10, FMNIST,
and MNIST). The graphs depict the impact of varying client
numbers (30 to 60) on model accuracy. The bar graphs al-
low for a clear visual comparison of the performance across
different selection strategies and datasets.
Figure 4(a) presents the evaluation results of the three

approaches with 30 clients on each dataset. RiCA+CKA
demonstrates the highest evaluation across all datasets. Even
in cases where results did not surpass 90%, such as MNIST,
RiCA+CKA achieved approximately 90% accuracy with a
consistent standard deviation. For the FMNIST dataset,
RiCA+CKA achieves around 70% accuracy, while the de-
fault approach only reaches approximately 30% accuracy
and exhibits a larger standard deviation. Only RiCA ex-
hibits a minimal standard deviation and a potential value ex-
ceeding 40%. This observation holds true for the CIFAR-
10 dataset as well, where a similar distribution is observed.
However, CIFAR-10 presents a more arduous training sce-
nario compared to others, resulting in lower values. The
RiCA+CKA mechanism improved the results by approxi-
mately 26% with a deviation of around 5%, while the default
scheme on CIFAR-10 only reached 12% of accuracy.
Figure 4(b) presents the evaluation results of the three

approaches with 40 clients on each dataset. RICA+CKA
demonstrates enhanced stability and yields results reaching
approximately 95% when it is configured with MNIST. The
RICA accuracy is of around 20%, 35%, and 50% for CIFAR-
10, FMNIST, and MNIST, respectively. In contrast, the De-
fault approach yields improvements of approximately 15%,
30%, and 40% for the same datasets, respectively.
Figures 4(c) and 4(d) depict the evaluation results of con-
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(c) Experiments with 50 clients.
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(d) Experiments with 60 clients.

Figure 4. Evaluation results of Client Variation Impact Across Comparative Dataset Analyses.

figuring the system with 50 and 60 clients, respectively.
RiCA+CKA still achieves better accuracy results in all sce-
narios. For instance, the RiCA+CKA accuracy reaches
around 90%, 78%, and 38% when the system is configured
with CIFAR-10, FMNIST, and MNIST, respectively. In that
way, based on the resilience of RICA+CKA, it shows possi-
ble to compare and find the malicious clients in each dataset,
improving the Accuracy values in all evaluations on these
figures.

Figure 5 illustrates the influence of cluster variation on the
accuracy of the RiCA+CKA mechanism across 100 rounds.
The accuracy steadily increases when utilizing 2 clusters,
reaching near the 80% mark. This trend suggests efficient
learning with a restricted number of clusters. The results
show that configuring the system with 3 clusters results in
only a marginal improvement. However, when utilizing 5
clusters, there is a minor decline in the convergence rate,
leading to accuracy stabilizing slightly below that of the con-
figurations with 2 and 3 clusters. That suggests that increas-
ing the number of clusters may introduce complexity beyond
a certain threshold without producing proportional gains in
performance. While the method with 3 and 5 clusters shows
evaluations around 90%, which means the method with 3

clusters already satisfies our criteria. The results suggest that
while the RiCA+CKA algorithm exhibits resilience across
various clustering configurations, achieving an optimal clus-
ter quantity entails balancing the trade-off between accuracy
and algorithmic efficiency. Based on this evaluation, differ-
ent numbers of clusters in the RICA+CKAdirectly link to the
number of malicious clients or the total number of clients.
That parameter possibly removes clients from the aggrega-
tion step without necessarily being malicious to the global
model.
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Figure 5. Cluster variation measurements
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Examining the accuracy and cluster variation Figures for
the RiCA+CKA mechanism uncovers nuanced insights into
its behavior across various federated environments. In sce-
narios featuring fewer clusters, there is a rapid accuracy in-
crease followed by a plateau, signifying that a smaller cluster
set enables swift and effective model convergence. However,
as the number of clusters increases, the accuracy benefit di-
minishes, implying the presence of an optimal cluster count
for attaining peak performance without unnecessary compu-
tational complexity. In varying numbers of clients, the en-
hancement in accuracy is more noticeable in larger groups,
emphasizing the benefit of a diverse dataset intrinsic to a
broader client base. Nonetheless, one must consider the in-
cremental gains alongside potential increases in communica-
tion and computational overhead. These findings underscore
the significance of optimizing the FL environment, striking a
balance between cluster quantity and client diversity to fully
leverage the capabilities of the RiCA+CKA mechanism.

5 Conclusion
This article introduces RiCA, a Resilience-aware Client Se-
lection Mechanism aimed at enhancing the performance
of Federated Learning (FL) environments, particularly in
scenarios involving non-Independently and Identically Dis-
tributed (non-IID) data and malicious clients. RiCA im-
proves the FL client selection scheme by introducing a novel
mechanism that considers three crucial factors during the se-
lection process: the model performance on the client’s data,
the data size of the client, and the entropy of the client’s lo-
cal updates. Simulation results demonstrate that both RiCA
alone and when configured alongside CKA (RiCA+CKA)
outperform the results obtained from the baseline approach.
For instance, the accuracy results for RiCA and RiCA+CKA
are 49% and 95%, respectively, when the system is config-
ured with MNIST and 40 clients.
For future work, the authors pretend to improve the se-

lection approach by using parameters with other weights be-
sides entropy. That means that Alan inspires a client’s net-
work parameters and processing to choose more adaptations
and faster clients. Another approach dealing with resilience
methods using the FL approach is to determine whether mali-
cious clients are more realistic and different from each other
to create a scenario with more variety. In that way, the simu-
lation will improve by simulating sophisticated attacks in the
global model.

Declarations

Acknowledgements
This research was partially funded by CNPq grant #405940/2022-
0 and CAPES grant #88887.954253/2024-00. This study was also
funded, in part, by the São Paulo Research Foundation (FAPESP),
Brazil, under Process Number #2023/00673-7, and received addi-
tional support from the Amazon Foundation for Studies and Re-
search Support (FAPESPA). This project was supported by the
Brazilian Ministry of Science, Technology, and Innovations, with
resources from Law nº 8,248, of October 23, 1991, within the scope

of PPI-SOFTEX, coordinated by Softex, and published under Ar-
quitetura Cognitiva (Phase 3), DOU 01245.003479/2024-10.

Authors’ Contributions
R.V and R.M conceived and planned this study and experiments.
R.V. and R.M. carried out the experiments, the simulations and com-
puted the results. L.B., W.L, D.R., E.C. contributed to the interpre-
tation of the results. R.V took the lead in writing the manuscript
with final review of L.B, D.R and E.C. All authors provided critical
feedback and helped shape the research, analysis and manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data and materials used in this work are based
on the PFLib framework, publicly available at
https://github.com/TsingZ0/PFLlib. Our modifications and con-
tributions to the framework, including all the work related to this
paper, can be accessed at https://github.com/OrenanM/Trabalho-
IC/tree/master/PFL-Non-IID-RESILIENCE. Additional datasets
used in our experiments and instructions on how to use and extract
them are also provided through the original PFLib repository.

References
Albaseer, A., Abdallah, M., Al-Fuqaha, A., and Erbad,
A. (2021). Client Selection Approach in Support of
Clustered Federated Learning over Wireless Edge Net-
works. 2021 IEEE Global Communications Conference,
GLOBECOM 2021 - Proceedings. DOI: 10.1109/GLOBE-
COM46510.2021.9685938.

Barros, A., Rosário, D., Cerqueira, E., and da Fonseca,
N. L. (2021). A strategy to the reduction of com-
munication overhead and overfitting in federated learn-
ing. In Anais do XXVI Workshop de Gerência e Op-
eração de Redes e Serviços, pages 1–13. SBC. DOI:
10.5753/wgrs.2021.17181.

Fu, L., Zhang, H., Gao, G., Zhang, M., and Liu, X. (2023).
Client Selection in Federated Learning: Principles, Chal-
lenges, and Opportunities. IEEE Internet of Things Jour-
nal, 10(24):21811–21819.

Ghodsi, Z., Javaheripi, M., Sheybani, N., Zhang, X., Huang,
K., and Koushanfar, F. (2023). zprobe: Zero peek
robustness checks for federated learning. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 4860–4870. Available at: https://
openaccess.thecvf.com/content/ICCV2023/html/
Ghodsi_zPROBE_Zero_Peek_Robustness_Checks_
for_Federated_Learning_ICCV_2023_paper.html.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K.
(2022). An efficient framework for clustered fed-
erated learning. IEEE Transactions on Information
Theory, 68(12):8076–8091. Available at: https:
//proceedings.neurips.cc/paper_files/paper/
2020/hash/e32cc80bf07915058ce90722ee17bb71-
Abstract.html.

https://github.com/TsingZ0/PFLlib
https://github.com/OrenanM/Trabalho-IC/tree/master/PFL-Non-IID-RESILIENCE
https://github.com/OrenanM/Trabalho-IC/tree/master/PFL-Non-IID-RESILIENCE
https://ieeexplore.ieee.org/document/9685938
https://ieeexplore.ieee.org/document/9685938
https://doi.org/10.5753/wgrs.2021.17181
https://openaccess.thecvf.com/content/ICCV2023/html/Ghodsi_zPROBE_Zero_Peek_Robustness_Checks_for_Federated_Learning_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Ghodsi_zPROBE_Zero_Peek_Robustness_Checks_for_Federated_Learning_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Ghodsi_zPROBE_Zero_Peek_Robustness_Checks_for_Federated_Learning_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Ghodsi_zPROBE_Zero_Peek_Robustness_Checks_for_Federated_Learning_ICCV_2023_paper.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/e32cc80bf07915058ce90722ee17bb71-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/e32cc80bf07915058ce90722ee17bb71-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/e32cc80bf07915058ce90722ee17bb71-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/e32cc80bf07915058ce90722ee17bb71-Abstract.html


A Robust Client Selection Mechanism for Federated Learning Environments Veiga et al. 2024

Jee Cho, Y., Wang, J., and Joshi, G. (2022). Towards
understanding biased client selection in federated learn-
ing. In Camps-Valls, G., Ruiz, F. J. R., and Valera,
I., editors, Proceedings of The 25th International Con-
ference on Artificial Intelligence and Statistics, vol-
ume 151 of Proceedings of Machine Learning Research,
pages 10351–10375. PMLR. Available at: https://
proceedings.mlr.press/v151/jee-cho22a.

Kusano, K. D., Scanlon, J. M., Chen, Y.-H., McMurry, T. L.,
Chen, R., Gode, T., and Victor, T. (2023). Comparison of
waymo rider-only crash data to human benchmarks at 7.1
million miles.

Le, J., Zhang, D., Lei, X., Jiao, L., Zeng, K., and Liao,
X. (2023). Privacy-preserving federated learning with
malicious clients and honest-but-curious servers. IEEE
Transactions on Information Forensics and Security. DOI:
10.1109/TIFS.2023.3295949.

Li, Q., He, B., and Song, D. (2021). Model-
contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 10713–10722. Avail-
able at: https://openaccess.thecvf.com/
content/CVPR2021/html/Li_Model-Contrastive_
Federated_Learning_CVPR_2021_paper.html.

Liu, Y., Yu, J. J., Kang, J., Niyato, D., and Zhang, S. (2020).
Privacy-Preserving Traffic Flow Prediction: A Federated
Learning Approach. IEEE Internet of Things Journal,
7(8):7751–7763. DOI: 10.1109/JIOT.2020.2991401.

Lobato, W., Costa, J. B., Souza, A. M., Rosario, D.,
Sommer, C., and Villas, L. A. (2022). FLEXE:
Investigating Federated Learning in Connected Au-
tonomous Vehicle Simulations. IEEE Vehicular Tech-
nology Conference, 2022-Septe. DOI: 10.1109/VTC2022-
Fall57202.2022.10012905.

Ma, X., Zhu, J., Lin, Z., Chen, S., and Qin, Y. (2022). A
state-of-the-art survey on solving non-iid data in federated
learning. Future Generation Computer Systems, 135:244–
258. DOI: 10.1016/j.future.2022.05.003.

McMahan, H. B., Moore, E., Ramage, D., Hampson,
S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized
data. Available at: https://proceedings.mlr.press/
v54/mcmahan17a?ref=https://githubhelp.com.

Orlandi, F. C., Dos Anjos, J. C., Santana, J. F. d. P., Lei-
thardt, V. R., and Geyer, C. F. (2023). Entropy to mitigate
non-iid data problem on federated learning for the edge in-
telligence environment. IEEE Access. DOI: 10.1109/AC-
CESS.2023.3298704.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang,
C., and Dosovitskiy, A. (2021). Do vision trans-
formers see like convolutional neural networks?
Advances in Neural Information Processing Sys-
tems, 34:12116–12128. Available at: https:
//proceedings.neurips.cc/paper_files/paper/
2021/hash/652cf38361a209088302ba2b8b7f51e0-
Abstract.html.

Sattler, F., Müller, K.-R., Wiegand, T., and Samek, W.
(2020). On the byzantine robustness of clustered fed-
erated learning. In ICASSP 2020-2020 IEEE Inter-

national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8861–8865. IEEE. DOI:
10.1109/ICASSP40776.2020.9054676.

Smestad, C. and Li, J. (2023). A systematic literature review
on client selection in federated learning. In Proceedings of
the 27th International Conference on Evaluation and As-
sessment in Software Engineering, EASE ’23, page 2–11,
New York, NY, USA. Association for Computing Machin-
ery. DOI: 10.1145/3593434.3593438.

Song, R., Zhou, L., Lakshminarasimhan, V., Festag, A.,
and Knoll, A. (2022). Federated Learning Frame-
work Coping with Hierarchical Heterogeneity in Coop-
erative ITS. In IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC). IEEE. DOI:
10.1109/ITSC55140.2022.9922064.

Sousa, J. L. R., Lobato, W., Rosário, D., Cerqueira, E., and
Villas, L. A. (2023). Entropy-based client selection mech-
anism for vehicular federated environments. In Proceed-
ings of the 22nd Workshop on Performance of Computer
and Communication Systems (WPERFORMANCE), pages
37–48. SBC. DOI: 10.5753/wperformance.2023.230700.

Souza, A., Bittencourt, L., Cerqueira, E., Loureiro, A., and
Villas, L. (2023). Dispositivos, eu escolho vocês: Se-
leção de clientes adaptativa para comunicação eficiente
em aprendizado federado. In Anais do XLI Simpósio
Brasileiro de Redes de Computadores e Sistemas Dis-
tribuídos, pages 1–14, Porto Alegre, RS, Brasil. SBC.
DOI: 10.5753/sbrc.2023.499.

Xiong, Y., Wang, R., Cheng, M., Yu, F., and Hsieh,
C.-J. (2023). Feddm: Iterative distribution match-
ing for communication-efficient federated learn-
ing. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recogni-
tion, pages 16323–16332. Available at: https:
//openaccess.thecvf.com/content/CVPR2023/
html/Xiong_FedDM_Iterative_Distribution_
Matching_for_Communication-Efficient_
Federated_Learning_CVPR_2023_paper.htmll.

Yan, G., Wang, H., Yuan, X., and Li, J. (2023). Defl: defend-
ing against model poisoning attacks in federated learning
via critical learning periods awareness. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
pages 10711–10719. DOI: 10.1609/aaai.v37i9.26271.

Zhang, J., Hua, Y., Wang, H., Song, T., Xue, Z., Ma, R.,
and Guan, H. (2023a). Fedala: Adaptive local aggrega-
tion for personalized federated learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
pages 11237–11244. DOI: 10.1609/aaai.v37i9.26330.

Zhang, X., Liu, J., Hu, T., Chang, Z., Zhang, Y., and
Min, G. (2023b). Federated learning-assisted vehicu-
lar edge computing: Architecture and research directions.
IEEE Vehicular Technology Magazine, pages 2–11. DOI:
10.1109/MVT.2023.3297793.

Zhang, Z., Cao, X., Jia, J., and Gong, N. Z. (2022). FLDetec-
tor: Defending Federated Learning AgainstModel Poison-
ing Attacks via Detecting Malicious Clients. Proceedings
of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 2545–2555. DOI:
10.1145/3534678.3539231.

https://proceedings.mlr.press/v151/jee-cho22a
https://proceedings.mlr.press/v151/jee-cho22a
 https://ieeexplore.ieee.org/document/10184496
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Model-Contrastive_Federated_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Model-Contrastive_Federated_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Model-Contrastive_Federated_Learning_CVPR_2021_paper.html
 https://doi.org/https://ieeexplore.ieee.org/document/9082655
https://ieeexplore.ieee.org/document/10012905
https://ieeexplore.ieee.org/document/10012905
https://doi.org/10.1016/j.future.2022.05.003
https://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://ieeexplore.ieee.org/abstract/document/10192897
https://ieeexplore.ieee.org/abstract/document/10192897
https://proceedings.neurips.cc/paper_files/paper/2021/hash/652cf38361a209088302ba2b8b7f51e0-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/652cf38361a209088302ba2b8b7f51e0-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/652cf38361a209088302ba2b8b7f51e0-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/652cf38361a209088302ba2b8b7f51e0-Abstract.html
https://ieeexplore.ieee.org/document/9054676
https://doi.org/10.1145/3593434.3593438
https://ieeexplore.ieee.org/document/9922064
https://doi.org/10.5753/wperformance.2023.230700
https://doi.org/10.5753/sbrc.2023.499
https://openaccess.thecvf.com/content/CVPR2023/html/Xiong_FedDM_Iterative_Distribution_Matching_for_Communication-Efficient_Federated_Learning_CVPR_2023_paper.htmll
https://openaccess.thecvf.com/content/CVPR2023/html/Xiong_FedDM_Iterative_Distribution_Matching_for_Communication-Efficient_Federated_Learning_CVPR_2023_paper.htmll
https://openaccess.thecvf.com/content/CVPR2023/html/Xiong_FedDM_Iterative_Distribution_Matching_for_Communication-Efficient_Federated_Learning_CVPR_2023_paper.htmll
https://openaccess.thecvf.com/content/CVPR2023/html/Xiong_FedDM_Iterative_Distribution_Matching_for_Communication-Efficient_Federated_Learning_CVPR_2023_paper.htmll
https://openaccess.thecvf.com/content/CVPR2023/html/Xiong_FedDM_Iterative_Distribution_Matching_for_Communication-Efficient_Federated_Learning_CVPR_2023_paper.htmll
https://doi.org/10.1609/aaai.v37i9.26271
https://doi.org/10.1609/aaai.v37i9.26330
https://ieeexplore.ieee.org/document/10214588
https://doi.org/10.1145/3534678.3539231

	Introduction
	Related Work
	A Robust Client Selection Mechanism for Federated Learning
	Scenario overview
	Clients Selection
	Resilience by Similarity Relevance

	Evaluation
	Simulation Description
	Results

	Conclusion

