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Abstract HighP5 is a new high-level parallel programming language designed to help software developers to
achieve three objectives simultaneously: programmer productivity, program portability, and superior program per-
formance. HighP5 enables this by fostering a new programming paradigm that we call hardware-cognizant parallel
programming. The paradigm uses a uniform hardware abstraction and a declarative programming syntax to allow
programmers to write hardware feature-sensitive efficient programs without delving into the detail of those fea-
ture implementations. This paper is the first comprehensive description of HighP5’s design rationale, language
grammar, and core features. It also discusses the runtime behavior of HighP5 programs. In addition, the paper
presents preliminary results on program performance from HighP5 compilers on three different architectural plat-
forms: shared-memory multiprocessors, distributed memory multi-computers, and hybrid GPU/multi-computers.
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1 Introduction

After several decades of parallel computing, the dominant
parallel programming method is still low-level, platform-
specific parallelization extensions (e.g., PThreads [Butenhof,
1997], MPI [Walker et al., 1996], CUDA [Nickolls et al.,
2008]) to sequential languages such as C and FORTRAN.
Frequently, the so-called ‘bookkeeping’ aspects of paral-
lel computing, such as data decomposition, communication,
synchronization, and load balancing, become a program’s
dominant parts when written in these languages. A lack of
language-level features to systematically deal with these as-
pects makes programming using these extensions challeng-
ing. In particular, eking out good performance becomes a
laborious effort. Furthermore, paradigmatic differences be-
tween these low-level extensions do not allow code written
for one hardware platform to port in another. Porting (and
re-optimizing) parallel programs from platform to platform
consumes additional time, money, and creative energy.
There are two conflicting elements at the heart of the above

programming challenges. First, efficient parallel program-
ming requires making the best use of the features of the target
execution platforms. Second, these execution architectures
are so distinct that low-level parallelization tools that enable
their best use become necessarily different. Data decompo-
sition, communication, synchronization, and load balancing
implementations in a distributed memory environment that
MPI targets are quite different from those in a multicore/mul-
tiprocessor CPU where threading dominates or in GPGPUs
where we use CUDA.
High-level parallel programming tools or languages that

hide the ‘bookkeeping’ aspects of programs, such as re-
cent PGAS languages [El-Ghazawi and Smith, 2006] [Yelick
et al., 1998] [Charles et al., 2005], OpenMP [Dagum and
Menon, 1998], and OpenCL [Stone et al., 2010], have the

problem of not generalizing across hardware architectures.
Furthermore, there is a limit to how much a language com-
piler or library runtime can optimize the machine code with-
out some directions from the programmer [Mallón et al.,
2009]. In his seminal work, ‘Type architectures, sharedmem-
ory, and the corollary of modest potential,’ [Snyder, 1986]
Snyder introduces the notion of type architecture as an inter-
face that describes the hardware. As Snyder shows, unless
the type architecture (and the programming model ) exposes
the relevant architectural features, a programmer’s algorith-
mic design decisions may unwittingly lead to an inefficient
program. Furthermore, the compiler cannot bridge the gap if
there is no efficient mapping of the programming model to
the execution platform.
The recent decades-long trend toward deep memory hier-

archies and hybrid architectures further intensifies the con-
flict between high performance, productivity, and porta-
bility. High-performance programming is challenging in
present-day architectures, even using low-level paralleliza-
tion primitives. The Von Neumann flat-memory architecture
assumption of the underlying sequential languages forces
MPI, PThreads, and CUDA programmers to apply hardware-
based optimizations in sophisticated and ad-hoc manners
[Merrill et al., 2012] [Merrill andGarland, 2016]. The promi-
nence of hybrid architectures in large-scale parallel comput-
ers then requires combining these ad-hoc optimizations for
multiple parallelization primitives, which makes achieving
performance at scale even more difficult [Pennycook et al.,
2011] and often leaves codes in a messy shape. Due to the
pressing need for high performance, productivity and porta-
bility have become an afterthought and are rarely achievable
in that way.
We believe that high performance is only achievable by

writing programs sensitive to the execution platform’s char-
acteristics. However, the programming model should ex-
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pose the hardware features over a generic type-architecture
interface to enable portability with high performance. Mean-
while, the language should make it easy to exploit the hard-
ware features to ensure productivity and performance debug-
ging. HighP5 is the realization of this vision. It offers an
alternative programming paradigm having the above char-
acteristics. We call this programming paradigm hardware-
cognizant. Hardware-cognizant programming is a middle-
ground between hardware-dependent programming using
low-level parallelization primitives and hardware-agnostic
programming with high-level parallel programming lan-
guages. This new programming paradigm retains the ben-
efits of both camps.
There are two components of HighpP5’s hardware-

cognizent programming paradigm: a novel type architecture
called Partitioned Parallel Processing Spaces (PCubeS) and
a declarative language (also called HighP5). The PCubeS
type architecture represents a machine as a hierarchical lay-
ering of physical processing spaces (PPSs). Each PPS con-
sists of physical processing units (PPUs) with memory ca-
pacity, computing capacity (FLOPS), intra-layer communi-
cation bandwidth and latency, and inter-layer communica-
tion bandwidth and latency. Each layer has overall mem-
ory, computing, and communication capabilities, which is
the sum of its PPU capacities. PCubeS reflects present-day
multi-layered (possibly heterogeneous) machines and is an
excellent basis for revolutionizing parallel computing.
PCubeS engenders a programmingmodel of multi-layered

memory spaces reflecting the memory available in the PPUs
of the execution platform. In HighP5, programmers asso-
ciate data structures with one or more logical processing
spaces (LPSes) and specify how to decompose or partition
each data structure into segments (LPUs) where it is defined.
Computations are also associated with LPSes and can op-
erate on local data structures in respective LPUs. Moving
data between spaces and re-partitioning data is a potentially
expensive operation whose cost is evident to the program-
mer. The model combines coarse-grain task parallelism with
data-parallel constructs expressing computations happening
in multiple LPSes to simultaneously achieve high perfor-
mance, productivity, and portability in four ways.
First, HighP5 has a declarative syntax where the program-

mer states what is to be computed but not how. This strategy
gives the compiler the freedom to implement the semantics
of the program using techniques that properly distribute work
to processors and improve cache and memory bandwidth uti-
lization. A declarative syntax also leads to a cleaner code
that looks more like the underlying mathematical equations.
The declarative syntax inspires productivity by allowing pro-
grammers to focus on what they want to accomplish rather
than how to efficiently achieve it on many different architec-
tures.
Second, HighP5 is a PCubeS language. By providing

a programming model that closely maps to existing archi-
tectures and exposes salient architectural features and costs,
HighP5 simplifies the task of writing performant programs.
By highlighting the architectural costs in language structures,
HighP5 permits the programmer to understand the perfor-
mance ramifications of design choices, making it easier to
write fast applications.

Third, HighP5 syntax separates program definition and
semantics from mapping code and data structures to physi-
cal hardware components. This separation of concerns sig-
nificantly enhances program portability. All that needs to
change to port a program to a new architecture is to generate
a new mapping file and recompile it. Similarly, the program-
mer may experiment with the performance ramifications of
moving computations from one layer of the hardware to the
other, e.g., from the cores in a multicore to the warps of a
GPU, simply by changing the mapping file. No re-coding is
required.
Finally, the HighP5 compiler ensures that all data accesses

will be local. In other words, if programmers map an LPS to
a particular cache level or SM on a GPU, the compiler will
break up the computation into corresponding pieces and en-
sure that each piece’s data element will fit into the specified
hardware layer. The data staging happens on-demand at run-
time, with proper indexes and loop boundary transformation
of the declarative code. This mechanism improves perfor-
mance by exploiting the performance benefits using the clos-
est, fastest memory.
Preliminary HighP5 compilers exist for three different ar-

chitecture types: shared memory multicore UMA/NUMA
machines, shared memory multicore nodes connected by
high-speed networks (i.e., distributed shared memory ma-
chines), and both of the above with embedded NVIDIA
GPUs (i.e., hybrid architectures). Compiler support for di-
verse architectures is critical to supporting program portabil-
ity. We claim that HighP5’s approach addresses Seven Ps:
writing portable, people-productive, predictable, and perfor-
mant parallel programs. Specifically:

1. HighP5 programs port without modification from plat-
form to platform.

2. HighP5 programs can achieve performance competitive
with hand-written hardware-specific codes.

3. HighP5 programs are shorter and less complex than
their C/(MPI, OpenMP, CUDA) counterparts.

We will present preliminary results that support these claims.
The organization of the rest of the paper is as follows.

Section 2 does a brief survey of the related work in paral-
lel programming. Section 3 delves into the detail of type
architecture and describes PCubeS with examples. Section
4 explains parallel programming in HighP5 using program
structure discussion and examples. Section 5 describes some
core language features. Section 6 discusses the runtime be-
havior of a HighP5 program and illustrates how a generic
runtime environment for HighP5 can facilitate efficient pro-
gram execution in various PCubeS architectures. Section 7
presents preliminary performance results of some example
HighP5 programs in three different parallel platforms and
compares the performance with efficient hand-written code.
Finally, Section 8 concludes the paper with a discussion of
future language improvement and research directions.

2 Related Work
This section briefly surveys some dominant parallel pro-
gramming models, primitives, and languages for various ar-
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chitectural platforms of present and earlier days. It is not
a comprehensive survey of the landscape of parallel pro-
gramming tools and languages. The goal here is to illus-
trate how HighP5 differs from the existing modes of paral-
lel computing. Therefore, the section ends with a discus-
sion of HighP5’s uniqueness and the advantage of hardware-
cognizant programming that it promotes.

Parallel Programming on Multicore Machines

Intel’s Cilk Plus [Blumofe et al., 1995], followed by Open
Cilk [Schardl et al., 2018], is a C/C++ extension support-
ing fork-join task parallelism and vector operations on multi-
core CPUs. Initially designed for high-performance comput-
ing, it became a more general-purpose language. The pro-
grammer is responsible for identifying and exploiting paral-
lelism using various features such as spawn, sync, parallel
loop, and array extensions. The runtime engine decides how
to distribute tasks to processors and vectorize array opera-
tions. Pthreads [Butenhof, 1997] is a popular library exten-
sion on C and Fortran for task-level parallelism. Pthreads has
thread creation, joining, termination routines, and support for
different forms of explicit synchronization of those threads.
One can fine-tune the performance of a Pthreads program us-
ing programmatic thread affinity management, cache block-
ing, and combining NUMA memory allocation libraries in
NUMA architectures. Pthreads is a low-level but flexible
primitive. OpenMP [Dagum and Menon, 1998] [Chapman
et al., 2007] takes a very different route for parallelization
from Cilk and Pthreads. OpenMP parallelizes a sequential C
or Fortran program using OpenMP pragma constructs. There
are parallel pragmas for loops, code blocks, and reductions
with few attributes controlling their execution. Achieving
good portable performance can be challenging with OpenMP
unless the programmer explicitly tunes the code to the un-
derlying physical architecture. In our experience, getting
OpenMP code to run is easy; getting it to run fast is the trick.
Although programs using these tools and languages often

achieve significant performance boost over their sequential
bases through concurrency and vectorization, a lack of expo-
sure to memory/cache hierarchies limits their efficiency. Fur-
thermore, portability to other execution architectures, such as
distributed-memory machines or accelerators, is not a con-
cern for them.

Parallel Programming on Distributed Memory
Machines

The Message Passing Interface (MPI) [Walker et al., 1996]
has been the standard for parallel programming in distributed
memory for several decades. It implements Hoare’s commu-
nicating sequential processes (CSP) [Hoare, 1978] model for
distributedmemory programming. All process-to-process in-
teractions in MPI happen through pair-to-pair or collective
communication. There is virtually no supercomputer and
compute cluster that does not support MPI now. However,
MPI programming is known to be complex and error-prone.
Nevertheless, MPI remains popular because of its ability to
perform well on purely distributed machines. The advent of

multicore CPUs and accelerators in supercomputers and com-
pute clusters limit MPI’s supremacy. MPI’s treatment of the
execution environment as a flat collection of processes with
uniform characteristics no longer holds. There has been an ef-
fort to combine MPI with OpenMP, Pthreads, and other mul-
ticore parallelization tools [Rabenseifner et al., 2009]. Un-
fortunately, this strategy makes programming even more la-
borious and more error-prone. Therefore, programmer pro-
ductivity and difficulty of performance debugging is a major
problem with MPI and its hybrids.
One can view the DARPA high productivity languages

X10 [Charles et al., 2005] and Chapel [Chamberlain et al.,
2007]; or PGAS languages such as Co-array Fortran [Num-
rich and Reid, 1998], UPC [El-Ghazawi and Smith, 2006],
UPC++ [Bachan et al., 2017], and Titanium [Yelick et al.,
1998] as efforts to find an alternative to MPI for flexible
and expressive parallel programming paradigm without los-
ing performance. These languages have a notion of local and
remote memories and support operations over data structures
residing on any of them. Both X10 and Chapel have numer-
ous parallelization constructs over this basic foundation of a
Partitioned Global Address Space (PGAS). Because of their
flat memory partitioning, these languages suffer from the
same performance problem in hierarchical and hybrid archi-
tectures asMPI. Given that they are not clear winners against
MPI on Non-uniform Cluster Computers where PGAS [Shan
et al., 2012] [Blagojević et al., 2010] is applicable, their fu-
ture success in machines with deep memory hierarchies and
non-uniform compute capacities is uncertain.
MPI and PGAS languages have the advantage that pro-

gramswritten in them are portable acrossmulticore/multipro-
cessor CPUs and distributed memory machines, as one can
treat a shared-memory environment as a distributed memory
environment.

Languages for Co-processors
CUDA [Nickolls et al., 2008] is the programming tool used
for NVIDIA GPGPUs. Initially, it was deemed difficult, but
GPGPUs popularity in high-performance computing gave it
a rapid surge in acceptance. CUDA follows the footsteps
of earlier SIMD/SPMD languages (e.g., pC++ [Mohr et al.,
1994], C** [Larus, 1993], DataParallel C [Adve et al., 1994])
with additional features to manipulate memory unique to
NVIDIA architectures. A CUDA program is a C or Fortran
program with functions to be offloaded to the accelerators
and instructions for data transfers between a CPU host and ac-
companying accelerators. Programmers need to understand
the inner workings of the accelerator threads, programmable
cache configuration, and efficient memory access patterns
details to make their offloading functions behave correctly
and efficiently.
The OpenCL [Stone et al., 2010] standard has a strong

CUDA heritage and originally targeted accelerator platforms
exclusively. It has recently become more of a standard
for parallel programming for multicore and GPUs. We be-
lieve that taking a special-purpose model and applying it
to general-purpose computing has limitations. The model
will be too complex if it allows all special-purpose attributes
to retain efficiency in accelerators that are hardly useful in
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general-purpose architectures. Otherwise, the model must
discard its key special-purpose features and become ineffi-
cient.
There are some high-level alternatives to OpenCL for

general-purpose GPU computing. For example, Futhark
[Henriksen et al., 2017] is a purely functional data-parallel
language for GPU programming that generates efficient ex-
ecutables for AMD and NVIDIA GPU platforms. The lan-
guage defines parallel operations on arrays such as map, re-
duce, and scan that the compilers combine and transform to
generate OpenCL code.
A general problemwith the accelerator programmingmod-

els is that they do not model the cost of communication
that dominates a program’s execution time in large-scale net-
worked architectures.

Multi-Platform Languages
Julia is a dynamically typed programming language that has
recently become popular for scientific computing on various
platforms [Novosel and Slivnik, 2019] [Lin and McIntosh-
Smith, 2021]. It is a multi-paradigm language in the sense
that it combines elements from imperative, functional, and
object-oriented programming. Julia supports multithread-
ing for shared-memory computing and CSP-style distributed-
memory parallel programming where processes interact us-
ing remote procedure calls. Recently Julia has added sup-
port for GPU programming on NVIDIA GPGPUs by pro-
viding extension libraries specifically designed to translate
into efficient CUDA codes [Besard et al., 2019]. Although
it is possible to write Julia programs for different architec-
tural platforms, the structure of the program and its elements
differ depending on the target platform. Furthermore, the
language itself does not facilitate reasoning about hardware
features. Instead, the programmers rely on standard libraries
for high performance and internalize performance-enhancing
tricks specific to the language.
Julia’s approach to tackling architectural differences with

different programming styles within a single language is
comparable to the parallel programming features of the pop-
ular functional programming language Haskell. Haskell has
parallel, distributed, and accelerator-offloading computation
facilities as embedded sub-languages inside it [Chakravarty
et al., 2011] [Mainland and Morrisett, 2010] [Mainland and
Morrisett, 2010]. Programmers use appropriate features de-
pending on the target execution platform. The efficiency of
the program largely depends on the efficiency of the feature
implementationswithin those sub-languages. Therefore, pro-
grammers do not necessarily understand the execution time
behavior of their program, and the same program may not be
portable across platforms despite being written in the same
language.
Julia and Haskell’s approach to supporting multiplat-

form parallel programming is comparable with hybrid
MPI+OpenMP [Rabenseifner et al., 2009], MPI+CUDA
[Zhang et al., 2023], or Hybrid OpenCL [Aoki et al., 2011].
The idea is to allow programmers to use hardware-specific
constructs in their programs without providing them with a
single cohesive framework for parallel programming in arbi-
trary execution platforms. Consequently, programmer pro-

ductivity is compromised for the scheme’s portability across
platforms, and achieving good performance is not necessar-
ily easy.

Type Architecture Based Languages

Few languages focus on a type-architecture foundation as
HighP5 does. Among them are ZPL [Chamberlain et al.,
2000] and Legion [Bauer et al., 2012]. ZPL used Snyder’s
original CTA type architecture [Snyder, 1986] and performed
well on Cray machines. In our opinion, CTA is unsuitable
for most hybrid and hierarchical parallel machines as it de-
scribes a parallel architecture as a connected network of uni-
form processors without further characterizing them. Legion
is a functional language follow-on of Sequoia [Bauer et al.,
2011] that uses a type architecture called ParallelMemoryHi-
erarchy (PMH) [Alpern et al., 1993]. Surprisingly, the type-
architecture aspect is not a highlight in Legion. Like HighP5,
Legion supports hierarchical partitioning and programmer-
controlled mapping of those partitions to different hardware
layers. We suspect its fully-flexible nature of partitions and
list-based language model is inappropriate for common high-
performance computing problems that thrive on regularity
and are replete in data parallelism. The PMH model has the
additional problem of only supporting data movement up and
down the memory hierarchy, which is not the case for many
present-day architectures.

Performance Portability Programming Models

In recent years, researchers have proposed several program-
ming models for addressing the portability problem of exist-
ing C and Fortran code across diverse hardware architectures
[Marowka, 2022]. Thesemodels vary in their approach to the
problem. Some are library-based, some work as a middle-
layer, while some provide higher abstractions.
RAJA [Beckingsale et al., 2019] is a C++ library based

portability solution. Here programmers specify parallel loop
kernels. Then against these loop kernels, they define an ex-
ecution policy (seq, OpenMP, or CUDA). A notion of iter-
ation spaces allow controlling index distributions of arrays
and programmers write code snippets (called traversal tem-
plates) to be performed inside loop bodies based on specified
execution policies and index distributions.
OpenACC [Herdman et al., 2014] is a solution similar

to OpenCL, but it does not require architectural knowledge
of accelerators to the extent the latter does. OpenACC fo-
cuses on easy portability across accelerator-platforms using
a pragma-based approach similar to the popular OpenMP for
CPUs. In OpenACC, programmers place parallel and ker-
nel directives/pragmas on C++ and Fortran codes that Ope-
nACC translates into low-level accelerator code for NVIDIA
CUDA, AMD GCN, and Intel Mic platforms.
StarPU [Augonnet et al., 2009] offers a unified execu-

tion model for units of heterogeneous architecture involving
manycore CPUs and GPUs. In StarPU, programmers define
high-level tasks and task schedulers that submit those tasks to
a pool of workers. Here the resources of the target heteroge-
neous machine serve as workers that fetch pending tasks and
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execute them. A data management layer automates transfer
of data throughout these workers.
KoKKOS [Edwards and Trott, 2013] is probably the most

extensive among all the performance portability models and
has themost significant community support. KoKKOS is a li-
brary and embedded language based solution. It has range of
primitives for computation and data modeling such as execu-
tion spaces for mapping computation to hardware resources,
execution patterns for parallel Instructions, execution poli-
cies for index distribution of arrays, memory layout for data
assignment, and memory spaces for storage specification.
Furthermore, advanced features such as multi-dimensional
parallel index iteration, scratch memory, and vector paral-
lelism are supported [Trott et al., 2022]. However, hardware
consideration is ad-hoc – not an integral part of the program-
ming model – and all features do not have mapping in all
execution platforms.

Domain-Specific Parallel Languages
Finally, domain-specific languages (DSL) and toolkits are
a persistent trend in high-performance parallel program-
ming [MacNeice et al., 2000]. A DSL grows from a gen-
eral language that provides efficient application-specific ab-
stractions for common data structures and problem patterns.
There are frameworks to develop DSL over low-level prim-
itives such as MPI and threads [MacNeice et al., 2000]
[Olukotun, 2014]. The performance of DSL programs is of-
ten competitive with general-purpose language implementa-
tions. Nevertheless, as their nature suggests, they cannot be
the general solution for high-performance parallel comput-
ing.

Uniqueness and advantages of HighP5
The first noticeable difference between HighP5 and other
existing parallel programming approaches is that HighP5
lets programmers systematically reason about the features
of deeply hierarchical and complex machine architectures
using a uniform type architecture interface. Therefore, pre-
dictable and high performance is achievable without sacrific-
ing productivity. Then the critical aspect of portability using
HighP5 is that the same program ports across hardware archi-
tectures without losing efficiency, which is quite different
from enabling a language or tool to work across execution
platforms. Finally, HighP5’s declarative syntax and clear
separation of various parallel programming aspects enhance
the readability of efficient codes and foster learning parallel
programming in general. These are issues targeted by only a
few other earlier paradigms, such as NESL [Blelloch, 1992].

3 Type Architecture and Program-
ming Model

In this section, we first describe some type-architecture fun-
damentals as it is a relatively new concept to many read-
ers, then discuss how the lack of it affects parallel program-
ming, then explain the PCubeS type-architecture that HighP5

uses and provide PCubeS descriptions of some example ex-
ecution platforms. The section concludes with a discussion
of HighP5’s abstract machine model and how it aligns with
PCubeS type architecture.

3.1 Type Architecture Fundamentals
The vast capacities of present-day massively parallel archi-
tectures may appear impressive, but historically their compu-
tational power lags behind the demandmade by their contem-
porary applications. Most interesting scientific applications
are quadratic or above in their runtime complexity. There-
fore, we can achieve only a modest improvement in problem
size and running time through a linear increase of processors
that parallelism offers.
Snyder, in his 1986’s seminal article [Snyder, 1986],

points out that it is crucial to translate all of the capabilities of
a parallel execution platform into useful computation – rather
than losing much of that in implementation heat – to keep up,
even modestly, with the growing capacity demand of con-
temporary applications. He argues for a hardware-sensitive
programming paradigm for writing parallel applications and
introduces the notion of a Type Architecture.
According to Snyder, writing a program is a two steps

translation process: from algorithm to program, then from
program to executable. The programmer is responsible for
the first transformation and the compiler for the second. The
performance of the program relies on the efficiency of both
steps. Suppose the programmer did his/her best in writing the
program, unwanted overheads may still arise due to limita-
tions of the abstract machine model exposed by the program-
ming language that works as the communication medium be-
tween him/her and the compiler. The abstraction can be pro-
hibitively expensive depending on how the language defines
it, making the programmer work against it to make a program
efficient. Or, it can be so low-level that it allows program-
ming for only a specific class of hardware.
There is a rift between high and low-level programming

techniques regarding their underlying abstract machine mod-
els’ role. Most high-level languages present a simple abstract
machinemodel of the execution environment to simplify cod-
ing and enhance the portability of written codes. However,
that model provides nearly no guidance for efficiently ex-
ploiting the features of the execution environment. Thereby,
getting good program performance in high-level languages is
often a challenge. On the other hand, low-level programming
techniques make the programmer deal with even minute de-
tails of the execution environment. Their abstract machine
model is effectively the bare hardware. Hence efficiency is
attainable but with considerably greater programming effort
and at the expense of program portability.
To resolve this tension between high and low-level pro-

gramming techniques and combine the best of both worlds,
Snyder proposes to adopt an idealized machine model that
should serve as the standard hardware-programming lan-
guage interface. The interface should be the foundation for
the machine abstraction of any parallel programming lan-
guage. This interface is called the Type Architecture. In
other words, the type architecture is a description of the hard-
ware facilities. The type-architecture description should bear
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the following two characteristics to be effective.

1. A type architecture must expose the salient architectural
features of a hardware platform.

2. And it must accurately reflect the costs of those features.

Understanding the distinction between the type architec-
ture and the abstract machine model of a programming lan-
guage is essential. For example, the Von Neumann Archi-
tecture can be considered a type architecture for sequential
machines. FORTRAN [Chapman et al., 1992] and Lisp [Mc-
Carthy, 1978] present two different machine models on top
of that. FORTRAN offers a programming style that fosters
generic array operations; in contrast, Lisp offers a program-
ming style that relies on recursive list manipulations. The
type architecture here tells how the operations and primitives
of these languages will translate and perform in an execu-
tion platform. Successful programmers internalize the cost
of model-to-architecture translation and choose their prim-
itives and operations accordingly to write an efficient pro-
gram.
Several type architecture proposals [Stone et al., 2010]

[Alexandrov et al., 1995] [Culler et al., 1993] [Alpern et al.,
1993] have appeared in literature since Snyder’s original pro-
posal of CTA [Snyder, 1986] as a candidate type architecture
for parallel machines. However, they either fail to generalize
or lack an accompanying programming model that can ad-
dress the challenges of contemporary parallel programming.

3.2 The Consequence of Lacking a Type Ar-
chitecture

Amismatch between the assumptions of the abstract machine
model of a parallel programming paradigm and the actual be-
havior of the features of the execution platform can lead to se-
vere performance degradation. For example, programming
in a non-uniform shared memory machine using a uniform
shared memory programming paradigm may result in signif-
icant performance loss due to memory access inefficiency.
Similarly, a distributed memory programming paradigm that
treats communications among processes as pure information
exchanges devoid of any performance characteristics can be
grossly inefficient as it leaves the programmer in the dark
about the proper choice of message size, nature, and fre-
quency for a particular platform.
The ability to fully control the communication characteris-

tics of a program is one of the most critical factors behind the
success of the current de-facto standard of parallel comput-
ing, the Message Passing Interface (MPI). However, without
a clear type-architecture foundation, writing goodMPI codes
often becomes equivalent to knowing a lot of ad-hoc perfor-
mance tweaking. Therefore, it can be difficult for an average
programmer to write high-performing MPI programs for typ-
ical building-block scientific problems. This problem was
already evident when most supercomputers were plain dis-
tributed memory machines. The advent of accelerators and
multicore CPUs has made this problem only more intense in
recent decades.
The stakes are always high for extracting good perfor-

mance from machines in any manner possible. Therefore

the standard practice in high-performance computing has be-
come to “program against the machine [Snyder, 1986].” MPI
has been coupled with various shared memory and offload-
ing computing models, such as Pthreads, OpenMP, CUDA,
and Cilk, violating MPI’s model of communicating sequen-
tial processes. To clarify this point through an example, if
two different MPI processes running independently on two
CPU cores vie for the same GPU resource during offloading
computations using CUDA, the model of isolated processes
falls apart. In such a situation, the programmer must rely on
intuition rather than the machine model to determine what
should run efficiently and what not.
A hybrid programming model is significantly more chal-

lenging for a typical programmer than a singular, holistic lan-
guage alternative regarding reading, writing, and debugging
a program. Unfortunately, that covers almost all aspects of
programming. Furthermore, a hybrid model is particularly
antagonistic to the portability of knowledge. To elaborate
on the last point, programmers versed in C can easily rewrite
their programs in FORTRAN once they learn the latter’s syn-
tax. Their original programs were not portable, but their un-
derlying logic is. Regrettably, programmers knowing how
to write good MPI + Pthreads hybrid programs, on the other
hand, may miserably fail if given an MPI + CUDA platform.
This problem happens because, unlike the first sequential
programming example, the peculiarities of underlying execu-
tion platforms are closely tied with the behavior of low-level
primitives provided by Pthreads and CUDA in the second
case. In other words, in the latter example, learning a dif-
ferent syntax and a new, entirely different abstract machine
model is required. Thus the need for a unifying modeling
framework, a facility description standard, aka a type archi-
tecture, is badly felt here.
Note that recent high-level PGAS [De Wael et al., 2015]

languages such as Chapel [Chamberlain et al., 2007] or
X10 [Charles et al., 2005] and parallel extensions to sequen-
tial languages such as Co-array Fortran [Numrich and Reid,
1998] and UPC [El-Ghazawi and Smith, 2006] also need con-
vincing type architecture foundations. Without a type archi-
tecture, features like ‘places,’ ‘locations,’ and so on that they
propose for hardware-sensitive reasoning become abstract
concepts for grouping program segments. They do not guide
programmers toward efficient program design.

3.3 PCubeS Type Architecture
The formal description of HighP5’s type architecture, The
Partitioned Parallel Processing Spaces (PCubeS), is as fol-
lows.

PCubeS is a finite hierarchy of parallel processing
spaces, each having fixed, possibly zero, compute and
memory capacities and containing a finite set of uni-
form, independent sub-spaces that can exchange infor-
mation with one another and move data to and from
their parent.

PCubeS differs from Snyder’s notion of type architecture
in two ways that are fundamental to its efficacy in describ-
ing modern hardware and its usefulness as the interface for
reasoning about them.
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1. Programmability: Snyder uses the term ‘structural fea-
ture’ and ‘facility’ interchangeably as he was more con-
cerned about describing hardware features than their
typical use in a program. We believe this approach
of ‘describe first then derive programming models’ is
incorrect as the type architecture’s purpose is to stan-
dardize the hardware-language interface and an inter-
face design has to consider both sides’ demands. There-
fore, PCubeS descriptions focus on the programmatic
usage of hardware’s structural features rather than their
actual working principles. For example, PCubeS cares
not if a vector implementation is a pipeline or a SIMD
lane. That the described hardware has vector comput-
ing capability is the primary concern. For the same rea-
son, PCubeS describes both cache and RAM as memo-
ries. Furthermore, if the hardware is suitable for mul-
tiple modes of programming – as many contemporary
supercomputers are – there may be multiple PCubeS
descriptions presenting its features from different pro-
gramming perspectives. For example, in a heteroge-
neous supercomputer having both CPUs and GPUs per
node, there can be a PCubeS description exposing the
CPU details and another exposing the GPU detail ignor-
ing parallelism inside the CPU. The first will be ideal for
programs having irregular task parallelisms while the
second for programs having regular data parallelisms.

2. Parameterization: PCubeS uses parameterized type-
architecture description to enable programmers accu-
rately estimate their algorithm’s performance for a par-
ticular input set. To understand why it is essential, imag-
ine Snyder’s CTA description of a parallel execution
platform showing processors’ interconnection network
is a fat tree [Leiserson, 1985]. From the description,
programmers can deduce that, on average, communica-
tion between a pair of processors should take steps loga-
rithmic to the number of processors. To determine how
frequently a processor should communicate and what
the individual message sizes should be to balance com-
putation with communication, they need to know the
network’s actual latency and bandwidth. PCubeS has
a core model parameterized by actual values when de-
scribing an execution platform. Thus, programmers can
use the model to design the algorithm and the parameter
values to assess a program’s runtime performance.

3.3.1 Elements of PCubeS

Parallel Processing Space (PPS): The notion PPS describes
any part of a parallel execution platform or the whole where
computations can take place. For example, in a multicore
CPU, both the CPU and its cores are spaces, the latter ly-
ing within the former as sub-spaces. From the perspective of
the former, the latter are its Parallel Processing Units (PPUs).
A space can perform two fundamental operations: floating
point arithmetic and data movement.
The Capacity of a PPS: Parallel processing and memory

access capacities of a PPS are defined as the number of corre-
sponding fundamental operations that the PPS can do in par-
allel. For example, a SIMD thread group within an NVIDIA
GPU’s symmetric multiprocessor has 32 operations per clock

cycle as its parallel processing capacity as 32 threads run in
lock-step within each group. Note that the actual hardware
implementation of a parallelization feature is not essential;
instead, its programmatic manifestation is. This interpreta-
tion allows PCubeS to treat cores, SIMD lanes, and vector
pipelines similarly. The speed of instruction execution is
enough to expose their efficiency differences. A PPS may or
may not have a memory. When it exists, the memory is char-
acterized by its size and the number of transactions that can
be done on it in parallel. PCubeS uses a transaction to repre-
sent a single load/store operation or communication. The vol-
ume of data it carries and latency further characterize a trans-
action. For example, if a read/write operation by a thread
within a dual hyper-threaded CPU core involves 8 bytes of
data, takes 15 clock cycles to complete, and operations from
both threads can take place simultaneously then the core’s
parallel memory access capacity is two transactions of width
8 bytes and latency 15 cycles.
Uniformity and Independence of Sub-spaces: Given

that PCubeS view an execution platform as a hierarchy of
spaces, there must be a guiding principle for breaking bigger
hardware components into smaller components to form sub-
spaces. Otherwise, any hardware can fit the description of a
flat PCubeS hierarchy having a single space only. In that re-
gard, PCubeS uses uniformity and independence as the defin-
ing factors. Uniformity requires that not only all sub-spaces
of a particular PPS have the same processing and memory
capacities, but also their information exchange with one an-
other and data movement to and from their parents have the
same average values for transactional attributes. Meanwhile,
independence requires that operations done by different sub-
spaces are independent. Whenever both of these require-
ments are met for a hardware component, PCubeS divides its
capacities into sub-spaces; otherwise, it does not. To under-
stand how this rule works in practice, consider a supercom-
puter node having two 8-core CPUs. We cannot view a node
as a 2-space hierarchy where the node is the higher space
containing 16 sub-spaces, one for each core. This interpreta-
tion violates the uniformity requirement due to the difference
in intra-CPU and inter-CPU information exchanges among
CPU cores. There should be another space in-between that
represents the individual CPUs to bring uniformity into the
hierarchy. Similarly, the lock-step threads of an NVIDIA
GPU thread block cannot form sub-spaces despite being uni-
form. The reason is that their operations are not independent.
Information Exchange: PCubeS characterizes interac-

tions between sibling PPUs as information exchanges instead
of communication or other platform-specific terms. Conse-
quently, PCubeS can treat shared memory and distributed
memory systems uniformly. Furthermore, within the um-
brella of distributed memory architecture, different execu-
tion platforms may have varying implementations of com-
munication mechanisms. The use of an abstract term enables
PCubeS to dissolve these differences. Information exchange
is characterized solely by its latency. We believe latency is
enough to capture the efficiency differences among different
modes of interaction. For example, consider a shared mem-
ory environment of four CPU cores sharing an L-3 cache.
The information exchange between a pair of CPU cores is
equivalent to sending core writing data in the cache and re-
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ceiving core reading it. The only difference between such an
interaction and a read following a write by a single CPU core
is that the sender must use amutex operation to signal writing
completion. So the latency of information exchange here is
the latency of the mutex operation. For another example, in a
distributed memory system supporting two-sided communi-
cation, the latency of information exchange would be that of
handshaking added to the latency of actual data transfer. On
the other hand, for a system with one-sided communication,
the handshaking cost is replaced by the cost of setting a flag
in the receiver’s memory.
Data Movement: PCubeS uses all three transactional at-

tributes – latency, width, and bandwidth – in characterizing
data movements between a parent space and its sub-spaces.
Transaction latency andwidth expose the cost of a single data
motion between the parent and one of its children. Mean-
while, transaction bandwidth indicates how many data mo-
tion operations can occur in parallel. For example, each sym-
metric multiprocessor (SM) in an NVIDIA K-20 GPU can
read and write global memory at a maximum chunk size of
128 bytes that takes around 100 to 300 clock cycles. Assum-
ing all 15 SMs in the GPU can initiate a global memory op-
eration simultaneously, the data movement between the sub-
spaces representing individual SMs and the space represent-
ing the entire GPU has transactional latency of 100 to 300
cycles, a width of 128 bytes, and a bandwidth of 15. When
the PPS under concern represents a distributed memory seg-
ment of the hardware, PCubeS derives the transactional at-
tributes from the communication channel’s capacity and the
communication protocol’s settings.

3.4 PCubeS Description Examples
Now we will discuss the PCubeS description of a multicore
cluster that we frequently use as a HighP5 target platform,
a supercomputer, and a Tesla K20 General Purpose GPU to
give the reader the feel for PCubeS descriptions.

Hermes Multicore Cluster

Hermes cluster has four 64-core nodes connected by a 10-
GBEthernet interconnect. Each node comprises four 16-core
AMD Opteron 6276 server CPUs plugged in 4 sockets of a
Dell 0W13NRmotherboard. RAMper CPU is 64GB. Figure
1 depicts a candidate PCubeS description of the system (the
diagram expands only one PPU at each PPS, but the PPUs
are uniform).
There are six levels/PPSes in the PCubeS hierarchy of Her-

mes. Since PCubeS treats caches as memories, there are four
levels from the CPU to the processing cores that expose how
each 64-core CPU is hierarchically broken down into smaller
units. Further, notice that the breakdown assigns the non-
zero processing capacity to the Core-Pair level. PCubeS does
this because a pair of cores share a single floating point unit
within a CPU. As one goes up from the Core to the Cluster
level, both latency and transaction width generally increase.
However, the information exchange latency between sibling
PPUs of a PPS is uniform from the Core to the CPU layer,
which is the latency of a compare-and-swap instruction. The
latency is uniform because a synchronization via the RAM

Processing Capacity: 1 Operation, Speed: 2.3 GHz

Space 2: Core−Pair
Sub−spaces: 2 
Memory: 2 MB

Memory: 16 KB
Space 1: Core

Processing Capacity: None

Concurrency: 1 transaction

Latency: L2 latency
Transaction width: 8 B

Space 6: Cluster
Memory: None
Processing Capacity: None
Sub−spaces: 4

Concurrency: 4 transactions
Transaction width: 1460 B
Latency: Etharnet Latency

Memory: None
Processing Capacity: None

Space 5: Socket

Sub−spaces: 4

Space 4: CPU
Memory: 64 GB
Processing Capacity: None
Sub−spaces: 2

Transaction width: 64 B
Concurrency: 2 transactions

Latency: Main memory latency

Concurrency: 1 transaction
Transaction width: 64 B
Latency: L3 latency

Concurrency: 4 transactions
Transaction width: unknown
Latency: CPU crossing latency

Sub−spaces: 4

Memory: 8 MB
Processing Capacity: None

Space 3: NUMA−Node

Figure 1. An illustration of PCubeS Description of the Hermis Cluster.

is essential for reliable cross-PPU interaction regardless of
their proximity. Finally, there is no memory beyond the CPU
level. Two essential characteristics of the PCubeS descrip-
tion are evident in Figure 1. First, PCubeS eliminates the
distinction between shared and distributed memories by de-
scribing data storage and transfer attributes in terms of trans-
actions. Second, PCubeS exposes every level of the hierar-
chical machine for programmers’ exploitation.

Tesla K20 General Purpose GPU

The NVIDIA K20, shown in Figure 2, has 2496 streaming
cores running at 706 MHz distributed within 15 streaming
multiprocessors (SM). It has a 6GB on-board DDR2 RAM as
the main memory unit. Shared memory per SM is 64 KB, but
only 48 KB is accessible to programs. The streaming cores
run in lock steps within each SM as a group of 32 threads
known as warps. If we want to use the maximum amount of
shared memory programmatically, each SM can roughly run
up to 16 warps. Each shared memory load/store operation
can process 16 32bit words, and a global memory load/store
is twice that size.
The PCubeS description of the hardware depicts a 3-level

space hierarchy. A warp represents a Space-1 unit. The par-
allel processing capacity of a Space-1 is 32 operations per cy-
cle. However, the clock speed is only 44 MHz instead of 706
MHz. This bandwidth reduction is because warps execute as
a pipeline instead of concurrently, and there are 16 of them.
This clock speed setting in the PCubeS description contrasts
NVIDIA’s advertised value as PCubeS focuses on actual per-
formance characteristics of warps rather than mere numbers
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Space 3:
Processing Capacity: None

Memory: 6 GB

Sub−spaces: 15

Processing Capacity: None

Memory: 48 KB

Sub−spaces: 16

Transaction width: 128 B
Concurrency: 1 transaction

Latency: ~300 clock cycle

Latency: 1 clock cycle at 2.6 GHz
Transaction width: 64 B
Concurrency: 1 transactions

Space 2: Space 1:
Processing Capacity: 32 Operations

Memory: None
Sub−spaces: None

LowHigh

Information Exchange Latency:
register write

Speed 44 MHz

Figure 2. An illustration of PCubeS Description of an NVIDIA K20 GPU.

and structural details. A warp has no memory. Therefore,
any computationmust store its result in the closest space with
memory. In this case, it is the parent Space-2. Space-2 repre-
sents an SM and holds 16 Space-1 PPUs. Only one Space-1
PPU can transfer data to its parent Space-2 at a time due to
the pipelined nature of warp execution. So there is no con-
currency, but the latency is minimal. A transaction carries
64 bytes of data and takes one memory cycle. Sibling SMs
cannot exchange information with one another. Therefore,
information exchange latency is undefined. Finally, there is
only one unit in Level-3 of the hierarchy. A single Space-
3 PPU represents the entire GPU. It has 6 GB memory and
holds 15 Space-2 PPUs as sub-spaces.
The PCubeS description of the accelerator resembles the

hardware abstraction popularized by NVIDIA’s CUDA pro-
gramming model consisting of three levels. Nonetheless,
there are noticeable differences to discover as we examine
the parameters. We see that PCubeS makes the limitations of
the hardware more explicit. For example, in CUDA, threads
of a warp can diverge and execute different instructions. This
capability gives a programmer more flexibility. In reality,
however, divergent paths are executed sequentially. The
PCubeS description makes divergence impossible by cou-
pling the threads together. Such divergence in a program
must be sequential streams of fewer degrees of parallelism.
So the programmer is aware of his wastage of processing ca-
pacity.

MIRA Supercomputer

The Mira Supercomputer [Schlagkamp et al., 2016] in Ar-
gonne Leadership Computing Facility is a Blue Gene Q sys-
tem. It has 48 compute racks hosting 49,152 IBM Pow-
erPC92 A2 nodes. A 5D torus interconnection topology con-
nects the nodes, and each node has 18 cores running at 1.6
GHz clock speed. Mira is a symmetric system of homoge-
neous nodes. Nonetheless, subtleties in the architecture re-
veal a rich hierarchy in the PCubeS description, as illustrated
in Figure 3.
At the bottom, each CPU core can run up to 4 hyper-

threads with access to a SIMD instruction unit of 4 words
wide. So a Space-1 of Mira is a hyper-thread with a process-
ing capacity of 4 parallel operations and no memory. The
computation speed is only 400 MHz, instead of 1.6 GHz, as
there are 4 Space-1 PPUs. Then a single core with its 16
KB L1 cache represents a Space-2 PPU. As the data path
is 64 bits and threads’ data load/store happens in the L1
cache, transactions between Space-1 and Space-2 are 8 B

Space 1: Hyperthread

Memory: None
Sub−spaces: None

Memory: None

Processing Capacity: None

Space 5: Midplane

Space 2: Core
Processing Capacity: None
Memory: 16 KB L1

Sub−spaces: 4

Sub−spaces: 16

Memory: 32MB

Processing Capacity: None

Space 3: L2 Cache

Space 6: Rack
Processing Capacity: None
Memory: None
Sub−spaces: 2

Space 4: Node/CPU
Processing Capacity: None

Memory: 16 GB

Sub−spaces: 1
Information Exchange: 

Informaction Exchange: register write

Sub−spaces: 512
Information Exchange:

Information Exchange:

Width: 64 B

Latency: main memory latency

Concurrency: 2 transactions

torus link traversal delay / 2

Latency:

torus link traversal delay / 2

Latency: 

Concurrency: 1 transaction

Latency: L2 cache latency

Width: 64 B

Concurrency: 1 transaction

Latency: L1 cache latency

Width: 8B

Processing Capacity: 4 operations
Speed 400 MHz

midplane crossing latency

9 links traversal delay

rack crossing latency

Figure 3. An illustration of PCubeS Description of the MIRA Supercom-
puter in Argonne National Lab. Only one PPU is shown in each level.

wide. Transaction concurrency is one as only one hyper-
thread can issue a load or store at a time. The single Space-3
PPU in the next level represents the 32 MB L2 cache shared
by all cores. The common cache line size is 64 B. So, that is
the width for a transaction between a Space-3 and its Space-
2 sub-spaces. A Space-3 has 16 sub-spaces instead of 18 be-
cause only 16 out of the 18 cores can participate in a program.
Above the L2 cache, a CPU or node constitutes a Space-4
with no processing and 16 GB memory capacities. From
Space-4, the 5D torus interconnection network becomes ef-
fective. Nonetheless, there are levels in the hierarchy be-
cause of the non-uniform nature of node wiring.

A single compute rack of Mira holds 1024 nodes. A rack
has two mid-planes containing 512 nodes each. A mid-plane
is the smallest full torus configuration where the average dis-
tance between a pair of nodes is nine torus links. The aver-
age distance between a communicating pair lying in different
mid-planes is thus ten links. Therefore, the PCubeS descrip-
tion has two additional levels on top of Space-4, representing
a mid-plane and a rack as Space-5 and Space-6 PPUs. There
are 48 racks in the system. Hence the PCubeS description
has 48 Space-6 PPUs in total. Notice the Latencies of infor-
mation exchange among sibling spaces and between a parent
and child space starting from Space-4 and above. Space-4
siblings are the 512 nodes connected in a 4 × 4 × 4 × 4 × 2
torus topology. So an information exchange between a pair
of Space-4 PPUs has, on average, nine torus links traversal
delay. Mid-plane crossing adds one more link in the com-
munication path of two nodes. Therefore, PCubeS equally
divides the link traversal cost and assigns that as the commu-
nication cost between a Space-4 and its parent Space-5 PPU.
This cost, augmentedwith any additional delay formid-plane
crossing (set as the information exchange latency in Space-
5), reflects the average communication cost between nodes
of opposite mid-planes. The same logic applies to nodes’
cross-rack communications in Space-6.

The PCubeS description of Mira exposes that the com-
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plexity of the interconnection network in a supercomputer
may lead to a deep hierarchy in its PCubeS modeling. How-
ever, careful attention to the network topology allows us to
construct an accurate model of the cost of communications
throughout the network. This capability is vital to avoid intro-
ducing hotspot contention [Hanawa et al., 1996] in a program
due to the uniform treatment of communication between any
pair of nodes.

3.5 HighP5 Programming Model
HighP5 programming model assumes that a program exe-
cutes in a hierarchy of logical processing spaces. As its
name suggests, a Logical Processing Space (LPS) is an en-
tity where a program can do computations over data struc-
tures. It is not directly associated with the computations or
the data structures; instead, both get assigned to it. The best
way to understand an LPS is how we treat variables and in-
structions in a traditional Von Neumann programming lan-
guage. In a conventional Von Neumann machine, there is a
flat memory. The hardware fetches instructions from mem-
ory and executes them. When an instruction executes, it may
load and store variables in memory. The entire memory is
visible to each instruction. The Von Neumann model is a
single-space model.
HighP5 allows the programmer to define multiple spaces

and hierarchical relationships between those spaces. Each
LPS may have variables assigned to it. A variable assigned
to an LPS is visible to computations executing in that space,
much like variables in the single-space Von Neumann model
are visible to programs. A program may assign a variable to
multiple LPSes - and thus, it may be visible to code executing
in different spaces.
An LPS may have one or more partitioning dimensions.

When partitioned, each partitioning dimension has a cardi-
nality. The partition breaks the LPS into Logical Processing
Units (LPUs). The cross-product of the dimension cardinal-
ities defines the number of LPUs in the LPS. Thus an LPS
is not a characterless vacuum; rather, it is more like a ge-
ometric coordinate space. The programmer partitions data
structures within each LPS and maps them to its LPUs. The
same instruction stream executes in all LPUs of an LPS but
on different parts of data structures.
Further, an LPS may divide another LPS. When this hap-

pens, the former is a subspace of the latter. Each LPU of
the parent space has its complete sub-space. The sub-space
also has some dimensionality (LPUs) and can be further sub-
divided. This hierarchy of LPS and LPU partitions may be
arbitrarily deep. The dimensionality of LPS partitions is in-
dependent across levels of the LPS hierarchy but the same
within a single level. Figure 4 illustrates the relations among
LPSes using an example three-level LPS hierarchy.
A variable can coexist in multiple LPSes, and the program

can partition the variable differently in different LPS levels.
However, given variables are assigned to – not owned by
– LPSes; any update of the shared variable in any LPS is
also visible to all other relevant LPSes. From Figure 4, one
might think that HighP5’s programmingmodel is overly com-
plicated. However, this model naturally corresponds with
how programmers must distribute computation and data for

parent LPU with 5 * 5 * 3
A 3D LPS within a

LPU partitions

A 2D LPS within each
middle layer LPU
having 4 * 2 partitions

Topmost 1D LPS with
3 partitions (LPUs)

Figure 4. An example three-level LPS hierarchy with different dimension-
ality and LPU partition counts in each level.

the best performance in hierarchical machines. Furthermore,
the declarative nature of the language makes it easy to write
programs in terms of an LPS hierarchy and map the logical
hierarchy of LPSes to the PPS hierarchy of the execution plat-
form, as we will see in the following two sections.

4 Parallel Programming in HighP5
One can view HighP5 programming as parallel computa-
tions over multidimensional arrays where coarse-grained
task parallelism encompasses fine-grained data parallelism.
Philosophically, HighP5 adheres to the influential method-
ology proposed by Foster regarding developing parallel pro-
grams [Foster, 1995]. According to Foster, parallel program-
ming combines four different activities: designing the al-
gorithm, defining communication requirements among con-
stituent parts, agglomerating parts into proper grained units
and mapping those units to processors. A good decision re-
garding each of these activities requires considering the fea-
tures of the execution platform. The essence of HighP5’s
hardware-cognizant programming paradigm is to let pro-
grammers decide about all four aspects of parallel program-
ming without being burdened with the specific implementa-
tion of their decision. Therefore, HighP5 has a declarative
syntax that specifies ‘what’ not ‘how’ and ensures a clear sep-
aration of concerns in the program specification. HighP5 pro-
gramming differs significantly from existing low-level and
high-level parallel programming alternatives. In the follow-
ing sub-sections, we first provide a general description of
HighP5 programming and then discuss some example pro-
grams to clarify this distinction and expose some key features
of the language. The current version of HighP5 language
grammar is given in the Appendix.

4.1 HighP5 Program Structure
A HighP5 program is a collection of coarse-grained paral-
lelizable tasks invoked and coordinated by a central con-
troller. A task invocation in the program controller takes the
following form:
execute( task : task−name;

environment : . . . ; / / environment−references
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in i t ia l i ze : . . . ; / / in i t ia l iza t ion−parameters
partition : . . . / / integer part i t ion parameters

)

Here the Initialize and Partition parameters are optional
but must be supplied for tasks needing them. Note that the
execute statement in a program is non-blocking. Further,
the invocation of the execute command does not necessar-
ily launch the task immediately – instead, it schedules the
task for future execution. The task can start only after all
previous tasks, if any, manipulating its environmental data
structures finish executing. Relating tasks through their en-
vironments provides two primary benefits. First, tasks can
share as many data structures as deemed appropriate for the
logic of the program. Second, and more importantly, this al-
lows the compiler to generate code to directly use the data
distribution of preceding tasks in subsequent tasks whenever
applicable. In other words, there is no need for accumulating
intermediate results in a central place.
A HighP5 task is defined in terms of six distinct sections

as follows:
Task ‘Name of the Task ’:
Define : / / l i s t of variable definitions
Environment : / / environmental variables , task input and output
In i t ia l i ze <(optional in i t i a l iza t ion parameters)>:

/ / variable in i t i a l iza t ion instructions
Stages : / / l i s t of parallel procedures the task implements
Computation : / / the flow of computation stages , each in a LPS
Partition <(optional partition parameters)> :

/ / specification of LPSes, their relationship ,
/ / and distribution of data structures in them

The Define, Environment, and Initialize sections do what
you would imagine. The Define Section defines task-global
variables. The Environment Section defines the variables re-
ceived as part of the calling context and will be available
to the caller when task execution is complete. The Initial-
ize Section provides a mechanism to initialize task variables.
Programmers define the list of parallel procedures – called
compute-stages in HighP5 terminology – that are needed to
implement the logic of a task in the Stages Section. The syn-
tax for a compute-stage definition is as follows:
stage_name ( . . . ) / /comma separated parameter names
{

statements+
}

Similar to the Initialize Section, only the name of the stage
parameters, not their types, are given. The difference is that a
compute-stagemust have at least one parameter. All stage pa-
rameters are passed-by-reference, and only task-global vari-
ables or constants can be the arguments for them during
a stage invocation in the subsequent Computation Section.
The compiler infers types of parameters and any local vari-
able used inside a stage from the invocation context.
The Computation Section describes the logic of the task as

a flow of compute-stages in LPSes. The basic idea is that the
programmer specifies a control flow of LPS transitions and
stage executions. Each stage execution occurs in the context
of enclosing space in a data-parallel fashion. A stage may be
executed in different spaces using different or the same pa-
rameters. HighP5 supports loops and conditional constructs
with data-dependent dynamic conditions for controlling the
LPS transitions. These LPS transitions can be nested. As
shown in the example below:

Computation :
Space A {

. . . / / statements including stage executions
Space B {

. . . / / statements including stage executions
Space C { statements }

}
Space C { statements }

}

Finally, the Partition Section specifies the configuration of
the LPSes used in the computation flow, their relationships,
and how to distribute data structure parts among LPUs of an
LPS. Currently, HighP5 provides four standard partitioning
functions as library support.

1. block_size(s): divides an array dimension into parti-
tions of size s.

2. block_count(c): divides an array dimension into c
parts.

3. stride(l): distributes the indices of a dimension into
processing units using strides of size l.

4. block_stride(s, l): distributes the indices of a dimen-
sion into processing units using s-sized blocks of l
strides.

The partition configuration for an LPS subdivides the
space into a multi-dimensional coordinate system of LPUs
discussed in the previous section. The number of data par-
titions, controlled by the partitioning arguments of the task
execute command, determines the number of LPUs along dif-
ferent dimensions. An LPS may have named or un-named
sub-partitions. An un-named sub-partition tells the compiler
that all of the data in an LPUmay not fit into memory. There-
fore, the compiler should generate code to stage data in and
out of the memory in chunks during compute-stage execu-
tions. A named sub-partition defines how a lower LPS di-
vides each LPU of its parent LPS. The following example
illustrates various features of hierarchical LPS partitioning.
Partition (k , l , m, n) {

Space A <1d> {
matrix : block_count(k)

}
/ / Named sub−partitioning through LPS hierarchy
Space B <2d> divides Space A partitions {

matrix : block_count(m, n)
vector : replicated , block_count(n)

/ / unnamed sub−part i t ion for controlled loading
/ / of data in an LPU
Sub−partition <1d> <unordered> {

matrix<dim1>: block_size ( l )
}

}
}

Control flow in the Computation Section is sequential but
branches out horizontally in different LPUs independently
in parallel. Different LPUs might be executing different
compute-stages simultaneously on their respective data parts.
When a transition between LPSes happens within the control
flow, data structures used in both spaces are re-partitioned
across the LPUs to ensure that all data access is local in the
newly entered LPS. Re-partitioningmay require moving data
up or down through the LPS hierarchy or horizontally be-
tween LPUs in a particular LPS.
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Let us now relate HighP5’s program specification to Fos-
ter’s parallel programming methodology. One would ob-
serve that the calculations within the compute-stages and the
linear flow of stages within the Computation section define
the parallel algorithm. The embedding of the control flow
within a hierarchy of LPS dictates the communication needs
among constituent parts. Then partitioning of that LPS hi-
erarchy performs parts agglomeration. HighP5 excludes the
last activity of mapping those parts to processors from the
source code. Instead, HighP5 associates that activity with
the compilation process. At that time, programmers explic-
itly dictate how the logical hierarchy of LPSes within dif-
ferent tasks of a program maps to the PPS hierarchy of the
execution platform. We will discuss the mapping process in
a subsequent section.
The compiler and run-time are responsible for keeping

track of which data is where, moving data, and keeping
track of all of the loop and index transformations required
for proper compute-stage executions within their enclosing
LPUs. However, given that the programmers have to map
the LPS hierarchy to the PPS hierarchy of the execution plat-
form, the cost of data movement and re-arrangement is evi-
dent to them.

4.2 UnderstandingHighP5 throughExamples
We now look at the classic block matrix-matrix multiplica-
tion program as a comprehensive example of programming
in HighP5. Listing 1 presents a single-task implementation
of block matrix multiply to illustrate HighP5 concepts.

1Program ( args ) {
2 / / create an environment for matrix−matrix multiplication task
3 mmEnv = new TaskEnvironment(name: ‘ ‘Matrix Matrix Multiply”)
4
5 / / specify how input f i l es are associated with environment
6 bind_input (mmEnv, ‘ ‘a” , args . input_file_1 )
7 bind_input (mmEnv, ‘ ‘b” , args . input_file_2 )
8
9 / / execute the task
10 execute ( task : ‘ ‘Matrix Matrix Multiply”; environment : mmEnv;
11 partition : args .k , args . l , args .q)
12
13 / / specify where the output should be written to
14 bind_output (mmEnv, ‘ ‘c” , args . output_file )
15}
16
17Task ‘ ‘Matrix Matrix Multiply”:
18 Define :
19 a , b , c : 2d Array of Real double−precision
20 Environment :
21 a , b: l ink
22 c : create
23 In i t ia l i ze :
24 c .dimension1 = a .dimension1
25 c .dimension2 = b.dimension2
26 Stages :
27 / / stage holding the logic of matrix−matrix multiplication
28 multiplyMatrices (x, y , z) {
29 do { x[ i ][ j ] = x[ i ][ j ] + y[ i ][k] * z[k][ j ]
30 } for i , j in x; k in y
31 }
32 Computation :
33 Space A {
34 / / the stage has to be repeated for each sub−part i t ion
35 / / of Space A to have a block implementation as opposed
36 / / to a tradi t ional one
37 Repeat foreach sub−partition {

38 multiplyMatrices (c , a , b)
39 }
40 }
41 Partition (k , l , q) :
42 / / 2D partitioning of space giving a block of c in each
43 / / part i t ion along with a chunk of rows of a and a chunk
44 / / of columns of b
45 Space A <2d> {
46 c : block_size (k, l )
47 a : block_size (k) , replicated
48 b: replicated , block_size ( l )
49 / / block−by−block flow of data inside a PPU is governed
50 / / by the sub−part i t ion specification
51 Sub−partition <1d> <unordered> {
52 a<dim2>, b<dim1>: block_size (q)
53 }
54}

Listing 1: A Block Matrix-Matrix Multiplication HighP5
Program

The program consists of a coordinator program and a sin-
gle task definition,Matrix Matrix Multiply. The coordinator
program creates a new task environment (Line 3), binds the
environment variables a and b to input files (Line 6 and 7),
executes the single task (Line 10), and binds the result vari-
able c to the output file (Line 14). The matrix-matrix multi-
plication task runs in a single space. The heart of the com-
putation is the multiplyMatrices stage defined in the Stages
Section. The code inside the compute-stage is a declarative
specification for a set of vector dot products over the indices
of the matrices. The multiplyMatrices compute-stage repeat-
edly executes in parallel within Space A in the Computation
Section once for each sub-partition of Space A data structures
defined in the partition section. Here each Space A LPU is
responsible for computing a k× l block of c. For that, k rows
of a is horizontally replicated in l LPUs and l columns of b is
vertically replicated in k LPUs in the 2D Space A LPU parti-
tion. Finally, note that the for loop inside the compute-stage
(Line 29 and 30) is a data-parallel loop. The compiler will
translate the loop to ensure the maximum utilization of the
vector computation capacity of the execution platform.
The reason for structuring a simple block matrix-matrix

multiplication program as above becomes apparent when we
consider the mapping of tasks to processors. Suppose we
want to run the program in the Hermis cluster of Figure 1
utilizing the four CPUs of a single socket. Then a possible
mapping configuration for the program can be as follows.
‘ ‘Matrix Matrix Multiply” {

Space Root : Socket
Space A: Core−Pair

}

The mapping of the default Root LPS to the socket PPS
limits the scope of the task to a single socket of Hermis. If
the root LPS mapping is absent, the entire cluster engages in
the matrix-matrix multiplication. The mapping of Space-A
to the Core-Pair PPS instructs that each core pair will do a
single LPU computation at a time. The runtime will pick an
arbitrary core among the couple to do the computation dur-
ing the task execution time and let it use the entire memory
capacity of that PPU. As there are 16 core pairs within a sin-
gle Hermis socket, the overall degree of parallelism for the
multiplication task will be 16. The parallel for loop inside
the compute-stage has to execute sequentially in this envi-
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ronment as there is no vector processing capacity available
in the cores.
Assume that we want to run the same matrix-matrix multi-

plication task on an NVIDIA K20 GPU (as shown in Figure
2) attached to a host computer. Then a possible alternative
LPS to PPS mapping for the task can be as follows.
‘ ‘Matrix Matrix Multiply” {

Space Root : GPU
Space A: Warp

}

In this mapping, each warp within the symmetric multi-
processor of the GPU will execute the compute-stage for in-
dividual Space-A LPUs. Given that a warp can perform 32
operations in parallel, the for loop of Line 29 in Listing 1 will
run in a 32-way data-parallel fashion. However, as there is
no memory associated with a warp, the data for LPUs (e.g.,
the blocks of matrices) will be stored in the nearest layer with
a memory, the SM.
This simple program highlights the essence of HighP5’s

hardware-cognizant declarative parallel programming. Pro-
grammers write a flexible program using a declarative syntax
that they can map to the processing layers of their various tar-
get execution platforms. No code change is needed to port
a single program to multiple platforms. The right decision
for mapping LPSes to PPSes and the appropriate parameter
values for data partitions within LPUs requires understand-
ing the capacities of the hardware, which becomes easy due
to PCubeS abstraction that describes different machine archi-
tectures uniformly.
To understand the role of the program coordinator in a

HighP5 program, let us investigate a slightly more compli-
cated problem of conjugate gradient calculation of a sparse
system of linear equations. Conjugate gradient calculation is
an iterative optimization problem involving vector addition,
dot-product, and sparse matrix-vector multiplication in each
iteration. Listing 2 illustrates a HighP5 implementation of
this algorithm. All underlying tasks in the program are sim-
ple, so we only focus on the program coordinator’s behavior.

1Program ( args ) {
2 / / creating environment objects for component tasks
3 vaEnv1 = new TaskEnvironment(name: ‘ ‘Vector Addition”)
4 vaEnv2 = new TaskEnvironment(name: ‘ ‘Vector Addition”)
5 dpEnv = new TaskEnvironment(name: ‘ ‘Vector Dot Product”)
6 mvmEnv1 = new TaskEnvironment(
7 name: ‘ ‘CSR Matrix Vector Multiply”)
8 mvmEnv2 = new TaskEnvironment(
9 name: ‘ ‘CSR Matrix Vector Multiply”)
10
11 / / make the argument sparse matrix stored in compressed
12 / / row format from f i les to be read during f i r s t−time
13 / / execution of the matrix−vector multiply task
14 bind_input (mvmEnv1, ‘ ‘columns” , args . arg_matrix_cols )
15 bind_input (mvmEnv1, ‘ ‘rows” , args . arg_matrix_rows)
16 bind_input (mvmEnv1, ‘ ‘values” , args . arg_matrix_values )
17
18 / / bind the prediction (x_0) and the known vector (b)
19 / / to the tasks ’ environment that uses them in i t i a l l y
20 bind_input (vaEnv1, ‘ ‘u” , args .known_vector)
21 bind_input (mvmEnv1, ‘ ‘v” , args . prediction_vector )
22
23 / / run the conjugate gradient logic
24 i terat ion = 0
25 maxIterations = args . maxIterations
26 do {
27 / / calculate A * x_i

28 execute( task : ‘ ‘CSR Matrix Vector Multiply”;
29 environment : mvmEnv1; partition : args . r )
30
31 / / determine the residual error r_i = b − A * x_i
32 vaEnv1. alpha = 1
33 vaEnv1.v = mvmEnv1.w
34 vaEnv1. beta = −1
35 execute( task : ‘ ‘Vector Addition”;
36 environment : vaEnv1; partition : args .b)
37
38 / / determine the dot product of r_i to i t s e l f as
39 / / the residual norm
40 dpEnv.u = dpEnv.v = vaEnv1.w
41 execute( task : ‘ ‘Vector Dot Product”;
42 environment : dpEnv; partition : args .b)
43 norm = dpEnv. product
44
45 / / in the f i r s t i terat ion setup duplicate environment
46 / / references for the sparse matrix components
47 i f ( i terat ion == 0) {
48 mvmEnv2.columns = mvmEnv1.columns
49 mvmEnv2. rows = mvmEnv1. rows
50 mvmEnv2. values = mvmEnv1. values
51 }
52
53 / / determine A * r_i
54 mvmEnv2.v = vaEnv1.w
55 execute( task : ‘ ‘CSR Matrix Vector Multiply”;
56 environment : mvmEnv2; partition : args . r )
57
58 / / determine dot product of r_i to A * r_i
59 dpEnv.v = mvmEnv2.w
60 execute( task : ‘ ‘Vector Dot Product”;
61 environment : dpEnv; partition : args .b)
62
63 / / determine the next step size alpha_i as
64 / / ( r_i . r_i ) / ( r_i . (A * r_i ))
65 alpha_i = norm / dpEnv. product
66
67 / / calculate the next estimate x_i = x_i + alpha_i * r_i
68 vaEnv2.u = mvmEnv1.v
69 vaEnv2. alpha = 1
70 vaEnv2.v = vaEnv1.w
71 vaEnv2. beta = alpha_i
72 execute( task : ‘ ‘Vector Addition”;
73 environment : vaEnv2; partition : args .b)
74
75 / / prepare x_i for the next i terat ion
76 mvmEnv1.v = vaEnv2.w
77 iterat ion = iterat ion + 1
78
79 } while i terat ion < maxIterations and norm > args . precision
80
81 / / store the final solution vector in an output f i l e
82 bind_output (vaEnv2, ‘ ‘w” , args . solution_vector )
83}
84
85Task ‘ ‘Vector Addition”:
86 Define :
87 u, v, w: 1d Array of Real double−precision
88 alpha , beta : Real double−precision
89 Environment :
90 u, v, alpha , beta : l ink
91 w: create
92 In i t ia l i ze :
93 w.dimension = u.dimension
94 Stages :
95 addVectors(w, u, v, alpha , beta ) {
96 do { w[ i ] = alpha * u[ i ] + beta * v[ i ] } for i in u
97 }
98 Computation :
99 Space A {
100 addVectors(w, u, v , alpha , beta )
101 }
102 Partition (b) :
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103 Space A <1d> {
104 u, v, w: block_size (b)
105 }
106
107Task ‘ ‘Vector Dot Product”:
108 Define :
109 u, v: 1d Array of Real double−precision
110 product : Real double−precision Reduction
111 Environment :
112 u, v: l ink
113 product : create
114 Stages :
115 computeDotProduct( result , u , v) {
116 do { reduce( result , ”sum” , u[ i ] * v[ i ]) } for i in u
117 }
118 Computation :
119 Space B {
120 computeDotProduct(Space A: product , u , v)
121 }
122 Partition (b) :
123 Space A <un−partitioned> {u, v}
124 Space B <1d> divides Space A partitions {
125 u, v: block_size (b)
126 }
127
128Task ‘ ‘CSR Matrix Vector Multiply”:
129 Define :
130 columns, rows: 1d Array of Integer
131 values , v , w: 1d Array of Real double−precision
132 Environment :
133 values , columns, rows, v: l ink
134 w: create
135 In i t ia l i ze :
136 w.dimension = rows. dimension
137 Stages :
138 multiply (w, v, rows, columns, values ) {
139 s ta r t = rows. local . dimension1 . range .min
140 i f ( s ta r t == 0) { s ta r t = −1 }
141 do {
142 i f ( i > 0) { beginIndex = rows[ i − 1] + 1 }
143 else { beginIndex = 0 }
144 endIndex = rows[ i ]
145 do {
146 w[ i ] = w[ i ] + values [ j ] * v[columns[ j ]]
147 } for j in columns and j >= beginIndex and j <= endIndex
148 } for i in rows and i > s ta r t
149 }
150 Computation :
151 Space A {
152 multiply (w, v, rows, columns, values )
153 }
154 Partition ( r ) :
155 Space A <1d> {
156 values , columns, v: replicated
157 rows: block_size ( r ) padding(1 , 0)
158 w: block_size ( r )
159 }

Listing 2: A HighP5 Program for Computing Sparse Matrix
Conjugate Gradient

One can view a HighP5 program as a collection of tasks,
each doing some computation in a logical environment con-
sisting of data distributed over an LPS hierarchy. The pro-
gram coordinator supplies any external input a task needs
through the binding process (Line 11 to 21). The latter’s exe-
cution updates some environmental data and (or) creates new
data in the environment. A task does not produce any output
data per se. Instead, its output is the change in its environ-
ment. Tasks are interrelated to one another by their environ-
mental data dependency. A dependent task gets the data it
needs for calculation from an earlier task’s environment that
created/updated it (Line 33, 47, 54, etc.). The programmer

extracts the program’s final output (or outputs) through the
output binding process as in Line 82.
We believe this particular style of task coordination

through environmental dependencies in a parallel program
fosters efficiency. When programmers map LPS hierarchies
of a program’s component tasks in nearby PPSes, a latter task
can collect the pieces of distributed data directly from its pre-
decessor’s environment. There is no need for data consoli-
dation during task transitions. In the terminal case, where
the partition specification and mapping configuration are the
same between two tasks for a particular environmental data,
there is no runtime cost of data re-distribution.

5 Major Language Features
HighP5 adheres to Niklaus Wirth’s classic advice of having
a few generalizable features with similar structural abstrac-
tions that facilitate efficient program writing and compiler
construction [Wirth, 1974]. The HighP5 language feature set
will grow from its current inception phase to cover the com-
mon cases of high-performance parallel programming and
to enhance the compactness of HighP5 programs. However,
we are committed to maintaining a lean language core hav-
ing simple but easy-to-understand structural features. This
section briefly describes some basic features of the HighP5
language.

5.1 HighP5 Type System
HighP5 is a strongly-typed language that uses a mixture of
implicit and explicit typing. Programmers must specify the
types of environmental variables of component tasks of a
program in the Define Section of those tasks. The com-
piler derives the types of all other variables (e.g., local vari-
ables in compute-stages and variables in the coordinator pro-
gram) from environmental data types. The compilation pro-
cess fails if the compiler cannot unambiguously determine
the types of all variables from their context.
HighP5 supports common numerical and character data

types and strings as basic and user-defined custom data types.
A user-defined data type can have attributes of basic types,
static arrays, and other custom types. Below is an example
of a custom type declaration in HighP5.
Type Rectangle :

Array[4] of Point
Type Point :

x: Integer
y: Integer

HighP5 custom types are a mechanism to group co-related
data only. They are not like classes in an object-oriented lan-
guage that supports behavior specification in terms of mem-
ber functions. We adopt a simple strategy for custom types to
ensure that efficient compilation is possible across different
parallel architectures.

5.1.1 Function Types

All HighP5 functions are type polymorphic. The com-
piler generates proper implementation versions of a function
based on the argument types found in its call contexts. These
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functions are sequential and callable from both the coordina-
tor program and compute-stages of tasks. Furthermore, pro-
grammers can embed sequential codes from other languages
inside a function. The following example shows a function
declaration that executes a certain number of Monte-Carlo
sampling trials for area estimation within a rectangular cell
of a larger area.
Function perform_sampling( cell , seed , trial_count ) {

cell_height = cell . top − cell . bottom + 1
cell_width = cell . right − cell . l e f t + 1
internal_points = 0
t r i a l = 0
do {

/ / generate a point within the cell boundary and
/ / calculate i t s position relat ive to the shape
@Extern {

@Language ‘ ‘C++”
@Includes { math.h , cstdlib }

${
int x = rand_r(&seed) % cell_width + cell . l e f t ;
int y = rand_r(&seed) % cell_height + cell . bottom;

/ / tested polynomial is 10 sin x^2 + 50 cos y^3
double r = 10 * sin (pow(x, 2)) + 50 * cos(pow(y, 3));
i f ( r <= 0.0) {

internal_points++;
}

}$
}
t r i a l = t r i a l + 1

} while ( t r i a l < trial_count )
return internal_points

}

Listing 3: A HighP5 function that uses an embedded C++
code to execute some Monte-Carlo area estimation sampling
trials.

We understand that supporting interoperability with exist-
ing languages is essential to minimize the effort during a pro-
gram migration. However, our conscious decision is to re-
strict language interoperability to sequential functions only
for two reasons:

• First, allowing parallel code from other languages to
mingle with a HighP5 code would promote the old way
of thinking that we want to avoid.

• Second, the predictable program performance require-
ment fromHighP5 demands that the HighP5 runtime ac-
curately assesses the state of hardware resources when
the program executes. If we allow arbitrary parallel
codes to compete for resources with HighP5 tasks, then
accurate resource status estimation is unattainable.

Finally, note that we do not encourage including codes
written in other languages in a HighP5 program, as that
would hurt the portability of a HighP5 program in architec-
ture not supporting those languages.

5.2 Multi-versioned Data Management
Managing multiple versions of the same data structures is
a common requirement in many scientific computing prob-
lems. For example, finite difference approximation for nu-
merical fluid dynamics [Scannapieco and Harlow, 1995] typ-
ically requires new values of a cell being computed based on
some previous values of that cell and its neighbors. Explic-
itly declaring these various versions of the same data hurts
the readability of the code. HighP5 supports automatic multi-
versioning to handle this programming pattern cleanly. The

compiler deduces whether or not a variable needs version
management by checking the presence of expression of the
following form in the code.

variable_name at (current − i )

Here the keyword current stands for the latest version and
i is a positive numerical constant specifying how far in the
past the compiler needs to track older versions of the underly-
ing variable. The compiler searches for each such expression
to determine what different versions of a variable should the
runtime library maintain. Note that not all individual updates
of a multi-versioned data structure may necessitate a version
upgrade. It is up to the programmers to define the boundary
of changes that lead to a new version using the epoch con-
struct. The following code snippet shows the application of
multi-versioning in a compute-stage definition of a 5-point
iterative stencil task for heat propagation and corresponding
version advancement control in the task’s Computation Sec-
tion.
. . .
Stages :

. . .
refineEstimates ( plate ) {

localRows = plate . local . dimension1 . range
localCols = plate . local . dimension2 . range
do { plate [ i ][ j ] at (current )

= 0.25 * ( plate [ i−1][j ]
+ plate [ i +1][ j ]
+ plate [ i ][ j−1]
+ plate [ i ][ j +1]) at (current − 1)

} for i , j in plate
and ( i > localRows .min and i < localRows .max)
and ( j > localCols .min and j < localCols .max)

}
Computation :

. . .
Space B {

. . .
Repeat for counter in [ 1 . . . partition .p2] {

. . .
/ / epoch needs to be advanced after each refinement step
Epoch {

refineEstimates ( plate )
}
. . .

}
. . .

}
. . .

5.3 Built-in Support for Reduction
HighP5 takes reduction or data aggregation as a basic prim-
itive (i.e., an expression type) of the language. This unique
treatment of that parallel programming pattern is due to sev-
eral reasons:

• First, various forms of reduction are frequent in parallel
computing.

• Second, the performance of the reduction operations sig-
nificantly contributes to the overall performance of a
parallel program.

• Third, efficient implementation of a reduction requires
careful consideration of the communication behavior of
the execution platform, which may result in a perfor-
mance portability issue for a HighP5 program when the
target platforms are different in that regard.

• Finally, most large-scale parallel machines such as su-
percomputers employ a separate data aggregation net-
work or hardware-level features to efficiently imple-
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ment reductions and low-level reduction primitives
[Stunkel et al., 2020]. HighP5 compilers can directly
use those primitives to ensure that the performance of a
reduction operation in HighP5 is as good as it can be in
the underlying execution platform.

To use reductions in a HighP5 task, programmers first de-
fine the target of a reduction operation using the Reduction
keyword after the variable type declaration. Although effi-
cient compilation does not require this demarcation of the
reduction target, we decided to have it to ensure that pro-
grammers are aware of the distinction between a reduction
variable and a standard variable regarding their memory al-
location. For example, the count and dimensions of LPU par-
titions in the LPS a reduction takes place dictate the dimen-
sions and cardinalities of the underlying reduction variable.
On the other hand, its dimensions and cardinalities are either
predefined or derived from other environmental variables for
a standard environmental variable.
The reduction expression has the following general form:
for {

reduce( result−variable ,
‘accumulator−function−name ’ , expression )

} index−range

This generic expression covers most standard forms of re-
ductions common in parallel programming. The third argu-
ment of the reduction expression is an arbitrary expression
to be evaluated on all elements of an array (or arrays) satis-
fying an index range expression. The second argument tells
how the runtime should combine the values of those individ-
ual expressions. The first argument specifies the result vari-
able that should receive the reduction output. Programmers
should invoke the compute-stage having a reduction within
the LPS that supplies the data for the third argument. The
compiler determines the span of each reduction operation
based on the first argument. If the result variable is in an
ancestor LPS then there will be one separate reduction for
each LPU in the ancestor LPS spanning across all LPUs of
the descendent LPS that supplied the reduction input.
Let us now see an example to clarify the concept of reduc-

tion. Suppose we want to solve an area estimation problem
using the Monte Carlo method [Quinn, 2003], and we struc-
ture theHighP5 task as illustrated in Figure 5. The uppermost
level generates a single estimate for the overall area under the
curve. Each LPU in the middle-layer LPS computes the part
of a 2D grid cell that falls inside the curve. Finally, each
LPU in the bottom LPS performs the Monte Carlo sampling
for a horizontal stripe of the 2D grid cell belonging to its par-
ent LPU. The goal is to do area estimation for each grid cell
in the middle LPS repeatedly until further sampling trials do
not improve an estimate.
Efficient implementation of this task should involve re-

peated reductions from the bottom LPS’s LPUs to their mid-
dle LPS’s LPU parents. Once all grid cell estimates are sat-
isfactory, there should be a single reduction from the middle
layer LPUs to the single top layer LPU. Listing 4 shows how
programmers can implement this logic in the HighP5 task.
Notice how the scope and target of each reduction are speci-
fied in Line 88 and 97 for the computation stages monteCar-
loSampling (Line 50) and estimateTotalArea (Line 73).

Each LPU
1. Accumulate point placement
results from the next level
2. Makes and estimate of the
area of the shape within a
designated grid block

Middle LPS: 2D

Bottom LPS: 1D

Each LPU
1. Generates a series
of points in a
vertical area stripe
2. Calculates the number
of points inside and
outside within the
shape

Top LPS: Un−partitioned

The LPS
1. Accumulates sub−area
estimates from the
next level
2. Calculates total area
within the shape

Figure 5. A logical breakdown of an area estimation task using the Monte
Carlo method.

1Task ‘ ‘Monte Carlo Area Estimation”:
2 Define :
3 grid : 2d Array of Rectangle
4 internal_points : 2d Array of Integer
5 placement_result : Integer Reduction
6 local_estimates , estimate_diffs :
7 2d Array of Real double−precision
8 round , cell_length , points_per_cell , max_rounds: Integer
9 precision_threshold : Real double−precision
10 area : Real double−precision Reduction
11 Environment :
12 area : create
13 In i t ia l i ze ( precision_threshold , max_rounds, cell_length ,
14 grid_dim , points_per_cell ) :
15 grid . dimension1 . range .min = 0
16 grid . dimension1 . range .max = grid_dim − 1
17 grid . dimension2 = grid . dimension1
18 internal_points . dimension = grid . dimension
19 local_estimates . dimension1 . range .min = 0
20 local_estimates . dimension1 . range .max
21 = grid_dim / partition .b − 1
22 local_estimates . dimension2 = local_estimates . dimension1
23 estimate_diffs . dimension = local_estimates . dimension
24 / / in i t i a l i ze the random number generator
25 init_rand ()
26 Stages :
27 setupGridCells (grid , cell_length ) {
28 do {
29 cell_height = cell_length
30 cell_width = cell_length
31 grid [ i ][ j ] . l e f t = cell_width * i
32 grid [ i ][ j ] . right = cell_width * ( i + 1) − 1
33 grid [ i ][ j ] . bottom = cell_height * j
34 grid [ i ][ j ] . top = cell_height * ( j + 1) − 1
35 } for i , j in grid
36 }
37 initializeEstimateDiffs ( diffs , threshold ) {
38 do {
39 diffs [ i ][ j ] = threshold + 1
40 } for i , j in diffs
41 }
42 monteCarloSampling(sample_count , grid , points , result ) {
43 do {
44 cell = grid [ i ][ j ]
45 seed = lpuId[0]
46 points [ i ][ j ] = perform_sampling( cell ,
47 seed , points_per_cell )
48 } for i , j in grid
49 do {
50 reduce( result , ‘ ‘sum” , points [ i ][ j ] )
51 } for i , j in points
52 }
53 estimateSubarea( internal_points ,
54 sample_count , round , diff , estimates ) {
55 row = estimates . local . dimension1 . range .min
56 col = estimates . local . dimension2 . range .min
57 cell_size = cell_length * cell_length
58 curr_estimate =
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59 cell_size * internal_points / sample_count
60 weight = 1.0 / round
61 old_estimate = estimates [row][ col ]
62 updated_estimate = curr_estimate * weight
63 + old_estimate * (1 − weight)
64 estimates [row][ col ] = updated_estimate
65 i f (updated_estimate > old_estimate ) {
66 diff [row][ col ] = updated_estimate − old_estimate
67 } else {
68 diff [row][ col ] = old_estimate − updated_estimate
69 }
70 }
71 estimateTotalArea ( result , sub_area_estimates ) {
72 do {
73 reduce( result , ‘ ‘sum” , sub_area_estimates [ i ][ j ] )
74 } for i , j in sub_area_estimates
75 }
76 Computation :
77 Space A {
78 Space B {
79 Space C {
80 setupGridCells (grid , cell_length )
81 }
82 initializeEstimateDiffs ( estimate_diffs ,
83 precision_threshold )
84 Repeat for round in [ 1 . . .max_rounds] {
85 If estimate_diffs [ lpuId [0]][ lpuId [1]]
86 > precision_threshold {
87 Space C {
88 monteCarloSampling(points_per_cell ,
89 grid , internal_points ,
90 Space B: placement_result )
91 }
92 estimateSubarea(placement_result ,
93 points_per_cell , round ,
94 estimate_diffs , local_estimates )
95 }
96 }
97 estimateTotalArea (Space A: area , local_estimates )
98 }
99 }
100 Partition (b) :
101 Space A <un−partitioned> { local_estimates }
102 Space B <2d> divides Space A partitions {
103 grid , internal_points : block_size (b, b)
104 local_estimates , estimate_diffs : block_size (1 , 1)
105 }
106 Space C <2d> divides Space B partitions {
107 grid , internal_points : block_size (1 , 1)
108 }

Listing 4: A HighP5 task withn three layer LPS hierarchy
for solving an area estimation problem using Monte Carlo
method.

5.4 Automatic Data Synchronization
Data synchronization happens in the LPS boundaries of a
task. When the control flow of a task moves from one LPS
to another LPS, then the HighP5 runtime synchronizes data.
Furthermore, data synchronization happens only when it is
needed. A HighP5 compiler performs static analysis of the
control flow to determine whether the enclosed computation
within the subsequent LPS depends on any data modified
by any computation in earlier LPSes. Then it inserts appro-
priate data synchronization code before the LPS transition.
The exact nature of the synchronization implementation de-
pends on the mapping of LPSes to the PPSes of the under-
lying execution platform. Note that HighP5 supports over-
lapping data partitioning among the LPUs of a single LPS.

In that case, programmers must put explicit LPS transition
boundaries between successive computations within a single
LPS, as shown in the following code snippet (Listing 5) taken
from an iterative stencil program for estimating heat propa-
gation. Overlapping data partitions is the only special case
for data synchronization that programmers need to be con-
scious about. In this code, the repeat statements are outside
the LPS boundaries in Line 4 and 9 to ensure that the runtime
synchronizes overlapping boundary regions of plate data in
neighboring LPUs of Space A and B in regular intervals.

1Computation :
2 / / the whole computation should i te ra te for max_iterations
3 / / number of times
4 Repeat for counter_1 in [ 1 . . . max_iterations ] {
5 / / after part i t ion .p1/ part i t ion .p2 upper level i terat ions
6 / / the flow should exit for upper level padding
7 / / synchronization
8 Space A {
9 Repeat for counter_2 in [ 1 . . . partition .p1]
10 step partition .p2 {
11 / / after part i t ion .p2 i terat ions the flow exits
12 / / Space B for lower level padding synchronization
13 Space B {
14 Repeat for counter_3 in [ 1 . . . partition .p2] {
15 / / epoch needs to be advanced after each
16 / / refinement step
17 Epoch {
18 refineEstimates ( plate )
19 }
20 }
21 }
22 }
23 }
24}
25 Partition (k , l , m, n, p1, p2) :
26 Space A <2d> {
27 plate : block_count(k , l ) padding(p1)
28 }
29 Space B <2d> divides Space A partitions {
30 plate : block_count(m, n) padding(p2)
31 }

Listing 5: Computation and Partition Sections of a 5-point
stencil program for estimating heat propagation on a 2D
plate.

We consider the uniform treatment of all data synchroniza-
tion requirements a significant advantage of HighP5’s style
of parallel programming. Data synchronization is a frequent
source of errors and performance bottlenecks in parallel pro-
grams. HighP5 ensures that the cognitive burden for dealing
with data synchronization is minimal and its implementation
is efficient also by delegating that responsibility to the com-
piler. Note that although programmers do not deal with the
nitty-gritty of data synchronization, they can debug its cost
based on the PCubeS description of the execution platform
and their mapping of LPS hierarchies to PPSes. The data
transfer latency and bandwidth-related attributes reflect the
cost ofmoving data along the PPS hierarchy andwithin PPUs
of identical PPS.

6 Run-time Environment
A central element of HighP5’s hardware cognizant program-
ming paradigm is that the performance of a HighP5 program
must be predictable. That requires that programmers can
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assess the runtime behavior of their programs, and HighP5
compilers generate executable codes that meet programmers’
expectations. In this section, we first explain the runtime be-
havior of a HighP5 program and then discuss the common
runtime model all HighP5 compilers implement to achieve
both predictable and high performance in their respective tar-
get execution platforms.

6.1 HighP5 Program Behavior
Each HighP5 task specifies a flow of computation along a
hierarchy of LPSes happening concurrently on the LPUs of
those LPSes. An LPU execution takes place on data lo-
cal to that LPU. Therefore, appropriate data synchronization,
movement, and reorganization are precursors to a successful
computation. Programmers’ mapping of the LPS hierarchy
to the PPS hierarchy of the execution platform dictates the ac-
tual data synchronization, movements, and reorganizations
at runtime corresponding to the declarative task specification
and the degree of parallelism during its execution. The de-
gree of parallelism for the overall program varies from task
to task as programmers do LPS-PPS mapping for individual
tasks separately. Programmers’ LPS-PPS mapping for a task
is a binding regarding hardware resource allocation on the
compiler such that not only the computation and memory ca-
pacity of those mapped PPSes but also the communication
capacity of the network (sub-network) connecting their PPUs
are committed to the task during its execution. Consequently,
two tasks in a HighP5 program do not execute concurrently
even with no data dependency between them if their LPS to
PPS mapping does not allow concurrent execution without
resource conflicts. This characteristic makes it easy to de-
bug the program’s overall performance based on the analysis
of individual tasks.

6.1.1 Degree of Parallelism in a Task

When mapping the LPS hierarchy of a task to the PPS hierar-
chy of the execution platform, programmers can skip PPSes
and map multiple LPSes to a single PPS. The degree of par-
allelism within the task varies depending on the number of
PPUs available in a PPS. The LPUs of the LPS get multi-
plexed into the PPUs of the PPS. Therefore for a specific LPS
to PPS mapping, the degree of parallelism is proportional to
the number of PPUs in the PPS. Consider the following three
mappings of LPSes of the 5-point iterative stencil task (List-
ing 5) in the Hermis cluster (Figure 1) as shown in Table 1:
In Case A, the degree of parallelism for Space A compu-

tations is 16, as there are 16 CPUs if we start counting from
the top cluster level. Within the confinement of each Space
A LPU, the degree of parallelism for Space B computation is
eight, as there are eight core-pairs within each CPU. There-
fore, the overall degree of parallelism for Space B LPU com-
putations is 16 × 8 = 128. Notice that in Hermes’s PCubeS
model (Figure 1), there is no computation capacity at the
CPU level. HighP5 compilers deal with LPS mappings on
PPSes with no computation or memory capacity using the
following PPS Substitution Rule:

1. If an LPS is assigned to a PPS having no compute capac-
ity, then a single PPU in the nearest lower/upper-level

PPS that is capable of computation executes all LPUs
of that LPS.

2. If a PPU has insufficient memory to hold the data of
LPUs it operates on, then it will use the memory of the
nearest ancestor PPU that can store that data and stages
data in and out as needed.

Therefore, a single core-pair will execute the LPUs of
Space A on behalf of its owner CPU for the first LPS-PPS
mapping scenario, and all core-pairs will execute the LPUs
of each Space B confined within a single Space A LPU. From
so far discussion, it is clear that in Case B mapping, the de-
gree of parallelism for both Space-A and Space-B computa-
tions is 4 sockets × 4 CPUs × 2 NUMA Nodes = 32.
The LPS-PPS mapping in Case C is similar to that of Case A,
except that the entire task’s resource allocation is restricted
to a single socket of the cluster. Therefore, the degree of
parallelism for Space A and B computations is four and 32
respectively. HighP5 compilers search scope for concurrent
task executions only in the last case.

6.1.2 Intra-Task Data Movement and Synchronization

A PPU executes instruction streams on local data or data
parts. Therefore, the compiler ensures that data belonging
to an LPU being multiplexed to the PPU is available before
a computation needing that data begins. We call this execu-
tion model local-compute. This model is different from the
owner-computes model [Lee and Kedem, 2002] as the same
datamay exist in different LPSes that programmersmay have
mapped to different PPSes. If two PPUs have overlapped
or shared data, the compiler ensures that their common data
part is synchronized between compute-stage executions. The
implementation of data synchronization varies depending on
the nature of physical memory. If the two PPUs share a mem-
ory, then only a single version of the data exists that the run-
time passes between the PPUs. Otherwise, there are multiple
versions of the same data that the runtime updates as needed.
In both cases, the compiler ensures that the data synchro-

nization initiates at the sender’s end as soon as the update
is done, and the receiver’s end joins in the data synchroniza-
tion process as late as possible. The sender’s side is asyn-
chronous, while the receiver’s side is not. The compiler
tries to fit in as many independent compute-stages as pos-
sible between the send and receive to maximize the over-
lapping of computation with communication. The overall
approach of local-compute ensures that the memory access
latency for any computation is predictable and the inter-
PPU communication-related parameters accurately reflect
the worst-case data movement cost of the underlying execu-
tion platform.

6.1.3 Inter-task Data Dependency Resolution

When there is a data dependency between two tasks, the de-
pendent task waits for the completion of the data updater task.
Even in the case of a conditional data dependency, HighP5
compilers take the conservative approach and generate code
to schedule the probably independent task later. Data de-
pendency resolution is typically costlier for inter-dependent
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Table 1. Three different LPS to PPS mapping configuration of 5-point Stencil task to the Hermes cluster.

‘‘5−point Stencil ’ ’ {
Space A: CPU
Space B: Core−Pair

}

‘‘5−point Stencil ’ ’ {
Space A: NUMA−Node
Space B: NUMA−Node

}

‘‘5−point Stencil ’ ’ {
Spare Root : Socket
Space A: CPU
Space B: Core−Pair

}
A B C

tasks than for inter-dependent LPS computations within a sin-
gle task.
In the case of intra-task data movement and synchroniza-

tion, once the inputs and partitioning parameters are avail-
able during task initialization, the runtime can readily de-
cide the sizes of various data communication buffers and
the nature of synchronization and data movement primitives.
Therefore, there is no additional overhead during the actual
data communication/synchronization. However, doing the
same for inter-task data dependency resolution is difficult
as that would require monitoring the progress of an ongo-
ing task and setting up communication/synchronization re-
sources for the subsequent dependent task premeditatively.
This strategy is both complex and potentially wasteful due
to conditional data dependencies. Furthermore, the poten-
tial benefit is slim as the communication/synchronization re-
sources have a lower chance of repeated use.
Currently, tasks scheduled for executions from the coordi-

nator program remain in a task pool. Whenever a running
task completes its execution, the runtime checks what other
tasks from the pool can execute next and then select one or
more depending on hardware resource availability. If there
is any data dependency to resolve before running a new task,
then the necessary data movement/synchronization happens
before the task starts. The only optimization in the process
for data dependency resolution is that if the PPUs responsi-
ble for handling computation using the dependent data parts
are the same for the earlier and the later task, then no data
movement happens.

6.2 HighP5 Runtime Model

As long as the language model and mapping configuration re-
quirements are satisfied, different implementations are possi-
ble for the HighP5 runtime engine (RTE) for tasks and PPU
handling. It is better to choose an implementation model that
can utilize the strength of the underlying low-level program-
ming primitives a HighP5 compiler uses to generate the exe-
cutable in a specific PCubeS platform. Nonetheless, the three
compilers we have developed so far implement a common
RTE.
The runtime process model for HighP5 is straightforward.

A single process executes on each computing node of the tar-
get execution environment. The process runs the HighP5 pro-
gram that includes references to the HighP5 runtime libraries.
The main program initializes global variables and then starts
the program controller.
Applications compiled with the multicore compiler have

just a single process running on the host. At run time, par-
allelism is achieved by using Pthreads threads that play the
role of PPUs. LPUs are assigned to PPUs, and PPUs run a

loop in which they execute the LPUs that have been given to
them and synchronize as necessary.
Applications compiled for distributed memory machines

use one MPI process per node with one corresponding Unix
process for each node. When the node has multiple cores
– almost always the case today – then Pthreads threads are
used for intra-node parallelism in much the same way as in
the multicore compiler. Communication and synchroniza-
tion within a node are achieved using shared memory and
Pthreads barriers. Processes perform inter-node communica-
tion and synchronization using MPI.
Applications that use accelerators, particularly GPUs,

have a slightly different execution model. As above, each
node executes a single Unix process. If the cores are to be
used, then there is one Pthread per PPU specified by the user
in the mapping file. The PPU controllers get the next LPU to
execute from an internal data structure and execute them as
required. If a set of LPUs is to be executed on the GPU, a sin-
gle popup controller thread starts that manages interactions
with the GPU. The GPU controller thread is responsible for
copying LPU data structures onto GPU card memory, initiat-
ing the kernel calls on the GPU, and staging data back from
the cards.
An LPU management code running within each GPU SM

manages LPU executions on the GPU. The code stages data
into the SM from the card memory, executes LPUs, then
copies data back to card memory. The SMLPUmanagement
code in the kernel continues executing until it has executed
its entire batch of LPUs, at which point it terminates.
Once the GPU kernel calls complete their execution, the

GPU controller thread on the host first copies data back from
the GPU. Then if there are more LPUs to execute, the GPU
controller thread sends another batch of LPUs to the GPU.
This process repeats until there are no more LPUs.

7 Experiments
HighP5 claims that programmers can effortlessly write
portable, high-performant parallel programs with predictable
runtime behavior using a declarative, hardware-cognizant
paradigm. Our approach to proving that claim was to build
multiple HighP5 compilers for different present-day archi-
tectures and then enable building block parallel programs
on those platforms. We currently have three preliminary
HighP5 compilers for shared-memory multicore machines,
distributed shared-memory supercomputers and commodity
clusters, and hybrid supercomputers having multicore CPUs
and NVIDIA GPUs in their nodes. We choose the building
block problems from the characteristic application classes
identified by the landmark paper ‘The Landscape of Paral-
lel Computing Research: A view from Berkeley.’[Asanovic
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et al., 2006] The paper identifies seven core and six emerg-
ing characteristic classes, or dwarfs, that capture different
computation and communication patterns common in impor-
tant applications. HighP5 paradigm supports all core dwarfs.
However, the compiler support is lacking for some features
in the hybrid platform. In general, all three compilers gener-
ate code competitive with efficient hand-written code. How-
ever, they are still not optimized in-depth to compete with
complex low-level library implementations of representative
problems from the dwarf application classes.
We asked some competent programmers to write efficient

low-level C++ code parallelized with Pthreads and MPI for
five problems from four dwarf application classes to use as
the reference implementations in multicore and distributed
shared-memory platforms. Then we asked an experienced
industry expert to verify those implementations and remove
any obvious inefficiencies. These building block problems
are block matrix-matrix multiplication, block LU factoriza-
tion, conjugate gradient on a sparse matrix, 5-point iterative
stencil on a regular grid, and Monte Carlo area estimation.
Table 2 describes the characteristics of these dwarf applica-
tions. This paper has already discussed HighP5 programs for
these problems, except for the LU factorization code (which
is shared in the Appendix). We emphasize that we used the
same HighP5 programs discussed in this paper with differ-
ent mapping configurations to compile and execute them on
various platforms.
For the hybrid platform, we used highly optimized sin-

gle GPU CUDA programs. The hybrid HighP5 compiler
is currently in an elementary stage. It still does not sup-
port multi-task programs and point-to-point lateral commu-
nications in a single LPS. Consequently, we could not test
conjugate gradient and iterative stencil in this platform and
only collected implementations and tested the performance
of other three applications. Table 3 presents the line of code
(LoC) comparison between implementing the tested applica-
tions using low-level tools and using HighP5. Note that the
low-level implementations are quite lengthy due to various
optimizations, such as, cache blocking, thread pinning, and
non-blocking communications. Although the core algorith-
mic logic is portable across platforms, compared to HighP5
versions, the time and effort required to implement the indi-
vidual low-level programs is significantly high.
Finally, note that HighP5 compilers are source-to-source

compilers. They generate C++ code parallelized with
Pthreads, MPI, and CUDA depending on the mapping con-
figuration and target hardware platform. Integrated GCC,
MPICC, and NVCC compilers then compile a HighP5 com-
piler’s output to produce the final executable. To ensure par-
ity, we compiled the hand-written reference programs with
the same compiler optimization flags enabled as we have for
HighP5 compilers. All HighP5 compilers use -O3 compiler
optimization for the underlying GCC, MPICC, and NVCC
compilers.

7.1 Experiments on a Multicore Environment
We used an Intel(R) Xeon(R) Gold 6438Y+ machine with
128 cores and 251 GB RAM for our multicore platform ex-
periments. It is a NUMA machine with cores divided into

two groups of 64 having 60 MB L3 cache each. 64 cores of
each NUMA node are then divided into core pairs. Each pair
of cores share a 2 MB L2 cache and 48 KB L1 cache. The
Instruction cache size for a core pair is 32 kB.
As mentioned earlier, we compared HighP5 programs

against handwritten optimized Pthreads programs. Different
degrees of parallelism for both HighP5 and reference imple-
mentations have been achieved by progressively doubling
the number of threads. Consequently, we have results for
1, 2, 4, 8, 16, 32, 64, and 128-way parallel versions. We
ran each version of the executables 50 times and measured
the end-to-end execution time. The maximum standard de-
viations among different degrees of parallelism for the five
applications are given in Table 4. The maximum standard
deviations on LU factorization code is quite high in both
Pthreads and HighP5 programs, which occurred for single-
threaded execution. We do not know the exact reason for
these variations. The standard deviations for higher degree
parallel versions of this program are significantly lower than
that of the single-thread case.
Figure 6 illustrates the average execution time difference

of reference Pthreads and HighP5 executables for all appli-
cations. Here the horizontal axis presents thread counts in
logarithmic scale (20 = 1 · · · 27 = 128).
We observe that HighP5 and reference implementations

follow almost the same trajectory for the Monte Carlo area
estimation problem. There is a deviation in matrix-matrix
multiplication problem for 21 = 2 threads. The performance
is otherwise similar with HighP5 always slightly outperform-
ing the reference implementation. On the other hand, refer-
ence implementations slightly outperform HighP5 for high
degrees of parallelism in conjugate gradient and LU factor-
ization. The reason is that HighP5 compiler generates syn-
chronization code based on data dependency analysis. Al-
though a lot of optimizations are in place inside the compiler
to avoid redundant synchronizations, there are still a few ad-
ditional synchronizations in the HighP5 versions that do not
exist in the reference code. Upon investigation, we found
that the reference implementations do some duplicate local
computations on scalar variables to reduce synchronization
overhead. This is an optimization that HighP5 compiler cur-
rently does not support. However, we believe the overall
performance in these two problems is quite satisfactory.
The most interesting result is observed for the 5-point sten-

cil problem. The HighP5 implementation starts with a much
better performance for 20 = 1 thread and slowly improves
in performance up to 24 = 16 threads. Then its performance
becomes flat. On the other hand, the reference implementa-
tion keeps getting better until it crosses HighP5 at 25 = 32
threads then its improvement slows down. This divergence
in behavior is due to the different nature of the two imple-
mentations. HighP5 compiler generates code for overlap-
ping data movement in the stencil program1 using data dis-
tribution analysis. For a single thread, there is no data to
share: consequently, no synchronization. However, the ref-
erence implementation does not treat it as a corner case and
two Pthreads barrier synchronizations happen at periodic in-

1Parallel implementations of 5-Stencil must have overlapping partitions
among neighboring threads/processes.
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Table 2. Descriptions of the Dwarf Applications Used for Performance Experiments
Application Name ID Sequential Time Complexity Communication or Synchronization Memory Access
Matrix-Matrix Multiplication mmult(M,N) O(n3) for M,N of O(n2) None Regular
Block LU Decomposition bluf(A) O(n3) for A of O(n2) Iterative Collective Comm/Sync Regular
Monte Carlo Estimation monte(curv, count) O(countk) for curve of O(k) Infrequent Collective None
Iterative Stencil stencil(plate, iter) O(n2 × iter) for a plate of O(n2) Iterative point-to-point Regular
Conjugate Gradient conjgrad(M, V, iter) O(nm × iter) for M O(n) and V O(m) Iterative Collective Irregular

Figure 6. Performance comparisons of HighP5 and Pthreads implementations. Problem sizes: (a) 7168 × 7168 square matrices for matrix-matrix multipli-
cation (b) 8192×8192 square argument matrix for LU Factorization (c) 1024×1024 square grid and 2000 samples per grid cell for Monte Carlo Estimation
(d) 8192 × 8192 square plate and 2000 iterations for 5-point stencil (e) 30720 × 30720 symmetric matrix with 90% sparsity for conjugate gradient.

Table 3. Comparison Between Line of Code in Writing Efficient
Implementation of the Dwarf Applications using HighP5 and Low-
Level Alternatives

App ID Low Level LoC HighP5 LoC
Pthreads MPI CUDA Total

mmult 157 290 315 762 51
bluf 431 588 580 1599 166
monte 162 113 154 429 124
stencil 300 336 N/A 636 59
conjgrad 308 360 N/A 686 152

tervals despite no data copying taking place. On the other
hand, the same two barrier synchronizations are used to pro-
tect data exchanges among neighboring threads for higher
degree of parallelism that seems to scale well as the thread
count increases. HighP5 implementation has twice the num-
ber of threads pair-wise semaphore-based synchronizations
that seems to scale poorly as their number grows. This is an
issue we want to address in the future for better code genera-
tion in multicore platforms.

Table 4. The Maximum Standard Deviations in Execution Time
for Different Degrees of Parallelism of HighP5 and Handwritten
Pthreads Programs

App ID Pthreads HighP5
Parallelism STD Parallelsim STD

mmult 4 0.0673s 4 0.86s
bluf 1 23.212s 1 23.21s
monte 1 0.067s 8 0.207s
stencil 2 0.166s 1 2.085s
conjgrad 64 0.737s 32 0.34s

7.2 Experiments on a Distributed Shared-
memory Environment

We faced amachine access issue when doing the experiments
on distributed shared-memory environment. We first tested
strong and weak scalability of HighP5 executables compared
to efficient sequential baseline in a compute cluster. The
strong scalability test shows how performance of a HighP5
executable improves compared to a sequential baseline as we
increase the number of processors. The weak scalability test,
on the other hand, shows whether the efficiency gain of par-
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allelism remains consistent as we increase the problem size
proportionally with the processor count. We were able to do
scalability testing up to 1000 CPU cores. However, later we
loose access to the cluster and could not do performance com-
parison with parallelMPI code andHighP5 executable on the
same platform. Rather, we had to do the comparative analy-
sis on just 8 machines connected in a 1 GBPs Ethernet LAN
network in a larger research lab. We provide the results of
scalability testing in the Appendix so that readers can exam-
ine the performance of HighP5 executables at high degrees
of parallelism.
Our configured small cluster setup has 8 machines with

13th Gen Intel(R) Core(TM) i5-13600KF processor nodes
where per node RAM is 15 GB. This is a hybrid architecture
with 6 dual-way hyper-threaded high performance cores and
8 single-threaded efficient cores. This gives us two different
PCubeS models for the cluster, one using the performance
cores and another using efficient cores per node. We found
that the efficient cores are 3 to 4 times slower than the perfor-
mance cores in single node application performance. Conse-
quently, we only used the performance cores model for the
comparative performance analysis.
We installed OpenMPI 4.1.2 in the cluster. However, we

faced the main difficulty with the slow LAN network with a
large collision domain. Altough the connection is 1GBEther-
net, we got less than 10MBps speed for cross node communi-
cation. Consequently, MPI communication primitives’ per-
formance was quite poor and increasing parallelism did not
improve program performance in applications as much as it
would do otherwise. Hence, we encourage readers to rely on
the scalability test of Appendix for assessing the efficiency
of HighP5 in distributed shared-memory platforms and use
the comparative performance analysis with the hand-written
MPI programs given below as a tool for evaluating only the
relative merits of HighP5 against low-level programming.
As in the multicore platform case, we ran each version

of the reference MPI and HighP5 implementations 50 times.
We increased the degree of parallelism by increasing the num-
ber of nodes by 1 from 1 to 8 nodes. For matrix-matrix multi-
plication, Monte Carlo area estimation, and 5-point stencils;
each node ran a 6-way multi-threaded HighP5 MPI process.
The reference implementations are, on the other hand, pure
MPI code. Consequently, we had 6 MPI processes per node
for the reference runs. Figure 7 shows the average end-to-end
execution times of HighP5 and handwritten MPI implemen-
tations for these three applications. In all three applications,
HighP5 and the handwritten implementations’ performance
follow the same trajectory.
We faced a strange scalability problem with OpenMPI col-

lective communication primitives when running the other
two applications. Both LU factorization and conjugate gra-
dient use multiple collective communications per iteration.
Consequently, good performance of the MPI collective com-
munication primitves is critical for overall good performance
of these applications. However, even with just two/three pro-
cesses per node, the collective communications were getting
slow to the extent that increasing node counts was consis-
tently decreasing performance for both HighP5 and Hand-
written MPI implementations. Hence, we had to ran these
two applications with one MPI process (and thread) per node

configuration. Figure 8 shows the performance comparison
between HighP5 and Handwritten MPI for this configura-
tion.
We observe that HighP5 implementation maintains a con-

sistent lead with the handwritten MPI version for all degrees
of parallelism for LU factorization. There is no clear expla-
nation of this behavior other than that the larger number of
collective communications in the handwritten version that
HighP5 compiler handled using direct sends/receives slowed
the former more (Currently, HighP5 compiler can only trans-
lates reduction operations to MPI broadcasts and other forms
of group communications are translated into multiple non-
blocking MPI send/receives.). There is a large difference in
running time at single-node configuration also. This happens
because HighP5 implementation avoid calls to MPI commu-
nication primitives in this terminal case but the handwritten
implementation does not.
The difference in behavior at the single-node terminal case

is even more prominent in the conjugate gradient application
performance. Readers should also notice a large spike in
HighP5 implementation’s execution time as we go from a
single node to 2 nodes. This reflects the extreme slow per-
formance of the group communication primitives. Despite
doubling the number of nodes halving per-node computation
cost, the overhead of communication actually made the ex-
ecution time twice as slow. Afterwards, HighP5 and the
handwritten MPI implementations follow similar trajectory
for higher degrees of parallelism.
Overall, we would say that the experiments show that the

HighP5 compiler does not have any inherent limitation that
would make it difficult to generate executables that are com-
petitive with efficient handwritten low-level code in the dis-
tributed shared-memory environment. However, there are
rooms to improve inside the compiler regarding better com-
munication code generation.
The maximum standard deviations of the Handwritten

MPI and HighP5 implementations are given in Table 5 for
the sake of completeness.

Table 5. TheMaximum Standard Deviations in Execution Time for
Different Degrees of Parallelism of HighP5 and Handwritten MPI
Programs

App ID HandWritten MPI HighP5
Parallelism STD Parallelsim STD

mmult 8 0.185s 1 0.1089s
bluf 2 7.042s 1 18.724s
monte 8 0.193s 2 0.948s
stencil 2 4.6649s 1 1.2858s
conjgrad 2 1.2335s 4 3.0118s

7.3 Experiments on a Hybrid Environment

We used the gpu queue in a supercomputer (we will call it
Super 1 for anonymity) of another University as the back-
end for the hybrid compiler. Each node in the queue has a
16-core AMDOpteron 6276 server processor (the same CPU
used in the Hermes machines) and an NVIDIA K20 GK110
GPU. Host CPU memory per node is 31 GB, and the GPU
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Figure 7. The Average Execution Time Comparison Between HighP5 and Handwritten MPI implementations of a) Matrix-Matrix Multiplication, b) 5-point
Stencil, and c) Monte Carlo Area Estimation

Figure 8. The Average Execution Time Comparison between HighP5 and HandwrittenMPI implementation of a) LU Factorization and b) Conjugate Gradient
Applications.

has a 6 GB card memory. AK20GPU has 13 symmetric mul-
tiprocessors (SMs) instead of 15 of the K20 GPU described
in Figure 2. The remaining configurations are the same in
both GPUs. Due to availability restrictions, we have used a
maximum of 8 nodes to run the programs. Super 1 is a Cray
machine that provides an integrated Cray environment for
compiling and running programs. At the time of the exper-
iments, the environment had PrgEnv-cray/5.2.82 set as the
default. The underlying C++ compiler was crayc++, and the
MPI implementation was cray-MPICH/7.3.2. The CUDA
compiler was NVCC 7.0, V7.0.27. In addition, CUDA codes
have been compiled with compute architecture setting 3.5
(arch=sm_35 parameter).

As the hybrid HighP5 compiler is only in its initial stage
and it lacks some features for cross-task data sharing and data
synchronization within a task for overlapping LPU partitions,
we cannot run the conjugate gradient and 5-point stencil pro-
grams in the hybrid platform yet. Furthermore, when doing
the experiments, our LPS-PPSmappings of the HighP5 tasks
exploit parallelisms in the GPUs only. The part of the code
that runs on the host CPUs is single-threaded for each pro-
gram. We chose this mapping strategy as we already knew
the performance in multicore and distributed-memory archi-
tectures from the earlier experiments and were interested in
investigating HighP5 program performance on GPUs. How-
ever, a multi-GPU computation in Super 1 requires the host
CPUs to handle communication across machines and staging

in and out of data to/from the GPUs. Hence, we recorded the
host execution time, other overheads at the host for commu-
nication and resource setup, and the data transfer time for the
host-GPU interaction besides the GPU code (kernel) execu-
tion time.
Figure 9 depicts the strong and weak scaling results for

theHighP5 blockmatrix-matrixmultiplication program. The
strong scalability experiment is done for 10, 240 × 10, 240
square input matrices. 1-GPU version is almost six times
slower than the CUDA reference implementation, mostly
because of the generated kernel’s relative inefficiency com-
pared to the hand-written version. We are currently investi-
gating the reason for this slowdown. The HighP5 implemen-
tation’s performance almost linearly improves with increas-
ing GPU count. This result indicates that if we can solve the
inefficiency problem for the 1-GPU version, the performance
gain will be substantial.
The host-level overhead for the HighP5 implementation

is also higher than that of the reference implementation. The
overhead is more prominent because managing small data
parts for LPUs involves more computation overhead than
initialization of a single large block of memory as done in
the reference implementation. However, this overhead does
not alarm us as it exhibits a downward trend with increasing
parallelism. The weak scalability results are consistent with
earlier results from the parallel cluster. Thus we believe the
current hybrid compiler is adequate in that regard.
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Figure 9. Strong and Weak scaling results for block matrix-matrix multiplication on Super 1

Figure 10 shows the strong and weak scaling results for
HighP5 block LU factorization. Again, the input argument
matrix size for strong scalability experiment is 10, 240 ×
10, 240.
The most noticeable feature in both graphs is the large data

transfer and host execution costs. Other than that, the results
are consistent with the findings from the previous matrix-
matrix multiplication experiments. The host execution time
part is significant in the HighP5 versions primarily because
the hybrid compiler still cannot generate CUDA kernels for
stages with reduction operations and epoch version updates.
Consequently, the near 5% part of the computation executed
in the host has become the more significant contributor to
runtime cost due to a massive speed difference in the kernel
and host code executions. This part of the running time is
not scaling with increasing parallelism either. We need to
emphasize this issue most in the future development of the
hybrid compiler.
Despite having a downward trend, the data transfer time

is also high due to the memory-less nature of the host and
GPU interactions. The HighP5 implementation exchanges
two whole matrices between the GPU and the host in each
encounter of the same GPU Offloading Context when only
a tiny fraction of the matrices are updated in-between suc-
cessive encounters. With a more sophisticated data transfer
mechanism, we should be able to eliminate most of this data
transfer cost.
Finally, Figure 11 illustrates the strong and weak scaling

results for HighP5 Monte Carlo area estimation. We investi-
gated the same curve from earlier multicore and distributed
shared memory experiments. The code again divided the
bounding area into a square grid of 10, 240 × 10, 240 cells
for the strong scalability test. The samples per cell are, how-
ever, set to 10,000 to produce enough work for the warps of
the GPU SMs.
The results of both experiments are excellent, as can be

seen in Figure 11. Unlike the previous two programs, the 1-
GPU version of the HighP5 program performs nearly as well
as the hand-written CUDA program. Then there is a linear

reduction of running time – equivalently, a linear increase
of speedup – with more GPUs. The difference between the
Monte Carlo area estimation HighP5 kernel and that of the
previous two programs is that the former has an insignificant
memory access overhead compared to the latter. The three
kernels involve comparable overhead calculations for LPU
generation. This result suggests that the kernel execution
time slowdown we have observed for the earlier two pro-
grams is probably related to sub-optimal memory accesses
instead of overhead computations.
Overall, we take the current experiments in the hybrid plat-

form as proof that we can port the same HighP5 programs in
this architecture and a strong indicator that we have a feasible
target for performance improvement to be competitive with
efficient hand-written code for this platform.

8 Conclusion
Hybrid and deeply hierarchical machine architectures have
become increasingly common in parallel and everyday com-
puting. While writing efficient programs for these increas-
ingly complex machines is becoming harder and harder as
good program performance requires careful utilization of
these machines’ computing, memory, and communication
capacities. In this paper, we described a new paradigm for
parallel computing that we named hardware cognizant pro-
gramming. In this paradigm, a uniform type architecture de-
scription exposes the salient features of the hardware plat-
form. Programmers reason over that common abstraction
and write platform-feature sensitive, portable code using a
declarative programming language. That makes productiv-
ity and portability attainable across diverse parallel platforms
without sacrificing performance.
HighP5 programming language is the embodiment of our

vision. The paper shows how HighP5 realizes that vision
by discussing its underlying type architecture, programming
model, language features, and runtime environment. Experi-
ments on three different architectural platforms using build-
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Figure 10. Strong and Weak scaling results for block LU factorization on Super 1
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Figure 11. Strong and Weak scaling results for Monte Carlo area estimation on Super 1

ing block parallel applications shows the utility and potential
of the HighP5 style of parallel programming. In particular,
the simplicity of HighP5 programming and program portabil-
ity across execution platforms is evident from the discussion
and experiments. The performance results are promising, but
there is significant scope for achieving general competitive-
ness against efficient low-level library codes.
HighP5 is currently in its inception phase. We must

solve several crucial future research problems to make
HighP5 an acceptable alternative to the dominant low-level
platform-specific parallelization techniques and the high-
level hardware-agnostic programming languages. We recog-
nize the following targets for our immediate future research
on HighP5:

1. Reduce the runtime overhead of data dependency reso-
lution during transitions between tasks of a multi-task
HighP5 program in distributed memory and hybrid en-
vironments.

2. Enable efficient forms of data synchronization for code
running inside the GPU and optimize data transfers be-
tween host CPU and attached GPUs in hybrid comput-
ing platforms.

3. Improve HighP5 loop translations in CPUs that support
vectored instructions.

4. Enhance IO handling features in the language.
5. Incorporate some fundamental and efficient features for

better expressing irregular parallelisms in the language.

Feature streamlining to reduce the amount of typing, multi-
file source code compilations, and library import support are
things we want to consider after we solve the problems men-
tioned above.
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Appendix

HighP5 Language Grammar
⟨program⟩ ::= ⟨components⟩

⟨components⟩ ::= ⟨component⟩ | ⟨components⟩ ⟨component⟩

⟨component⟩ ::= ⟨tuple⟩ | ⟨task⟩ | ⟨function⟩ | ⟨coordinator⟩

⟨tuple⟩ ::= Type ⟨Type_Name⟩ ‘:’ ⟨element_defs⟩

⟨element_defs⟩ ::= ⟨element_def ⟩ | ⟨element_defs⟩ ⟨element_def ⟩

⟨element_def ⟩ ::= ⟨names⟩ ‘:’ ⟨static_type⟩

⟨names⟩ ::= ⟨Variable_Name⟩ | ⟨names⟩ ‘,’ ⟨Variable_Name⟩

⟨static_type⟩ ::= ⟨scalar_type⟩ | ⟨static_array⟩

⟨scalar_type⟩ ::= ⟨numeric_type⟩ | String | Range | ⟨Type_Name⟩

⟨numeric_type⟩ ::= Integer | T_Real Single | Real Double | Character |
Boolean

⟨static_array⟩ ::= Array ⟨static_dims⟩ Of ⟨scalar_type⟩

⟨static_dims⟩ ::= ⟨static_dims⟩ ‘[’⟨Integer⟩‘]’ | ‘[’⟨Integer⟩‘]’

⟨task⟩ ::= Task String ‘:’ ⟨define⟩ ⟨environment⟩ ⟨initialize⟩ ⟨stages⟩
⟨computation⟩ ⟨partition⟩

⟨define⟩ ::= Define ‘:’ ⟨definitions⟩

⟨definitions⟩ ::= ⟨definition⟩ | ⟨definitions⟩ definition>

⟨definition⟩ ::= ⟨names⟩ ‘:’ ⟨dynamic_type⟩ | ⟨names⟩ ‘:’ ⟨static_type⟩
| names ‘:’ ⟨numeric_type⟩ Reduction

⟨dynamic_type⟩ ::= ⟨list⟩ | ⟨dynamic_array⟩

⟨list⟩ ::= List Of ⟨static_type⟩

⟨dynamic_array⟩ ::= ⟨Dimensionality⟩ Array Of ⟨static_type⟩ ⟨format⟩

⟨format⟩ ::= | Format ⟨Type_Name⟩

⟨environment⟩ ::= Environment ‘:’ ⟨linkages⟩

⟨linkages⟩ ::= ⟨linkage⟩ | ⟨linkages⟩ ⟨linkage⟩

⟨linkage⟩ ::= ⟨names⟩ ‘:’ ⟨mode⟩

⟨mode⟩ ::= Link | Create | Link_or_Create

⟨initialize⟩ ::= | Initialize ⟨arguments⟩ ‘:’ ⟨code⟩

⟨arguments⟩ ::= | ‘(’ ⟨names⟩ ‘)’

⟨stages⟩ ::= Stages ‘:’ ⟨stage_list⟩

⟨stage_list⟩ ::= ⟨compute_stage⟩ | ⟨stage_list⟩ ⟨compute_stage⟩

⟨compute_stage⟩ ::= Variable_Name ‘(’ ⟨names⟩ ‘)’ ‘{’ ⟨code⟩ ‘}’

⟨computation⟩ ::= Computation ‘:’ ⟨compute_flow⟩

⟨compute_flow⟩ ::= ⟨flow_part⟩ | ⟨compute_flow⟩ ⟨flow_part⟩

⟨flow_part⟩ ::= ⟨lps_transition⟩ | ⟨repeat_cycle⟩ | ⟨condition_block⟩ |
⟨epoch_block⟩ | ⟨stage_invoke⟩

⟨lps_transition⟩ ::= Space ⟨Space_ID⟩ ‘{’ ⟨compute_flow⟩ ‘}’

⟨repeat_cycle⟩ ::= Repeat ⟨repeat_control⟩ ‘{’ ⟨compute_flow⟩ ‘}’

⟨repeat_control⟩ ::= For ⟨Variable_Name⟩ In ⟨expr⟩ ⟨step_expr⟩
| Foreach Sub_Partition | While ⟨expr⟩

⟨condition_block⟩ ::= Where ⟨expr⟩ ‘{’ ⟨compute_flow⟩ ’’
| Where ⟨field⟩ In ⟨expr⟩ ‘{’ ⟨compute_flow⟩ ‘}’

⟨epoch_block⟩ ::= Epoch ‘{’ ⟨compute_flow⟩ ‘}’

⟨stage_invoke⟩ ::= ⟨Variable_Name⟩ ‘(’ ⟨args⟩ ‘)’

⟨partition⟩ ::= Partition ⟨arguments⟩ ‘:’ ⟨partition_specs⟩

⟨partition_specs⟩ ::= ⟨partition_spec⟩ | ⟨partition_specs⟩ ⟨partition_spec⟩

⟨partition_spec⟩ ::= Space ⟨Space_ID⟩ ‘<’ Dimensionality ‘>’ ⟨dynamic⟩
⟨divides⟩ ‘{’ ⟨main_dist⟩ ⟨sub_dist⟩ ‘}’

| Space ⟨Space_ID⟩ ‘<’ Unpartitioned ‘>’ ‘{’ ⟨names⟩ ‘}’

⟨dynamic⟩ ::= | ‘<’ Dynamic ‘>’

⟨divides⟩ ::= | Divides Space ⟨Space_ID⟩ Partitions
| Divides Space ⟨Space_ID⟩ ⟨Sub_Partitions⟩

⟨main_dist⟩ ::= ⟨data_spec⟩ | ⟨main_dist⟩ ⟨data_spec⟩

⟨data_spec⟩ ::= ⟨var_list⟩ ‘:’ ⟨instr_list⟩ ⟨relativity⟩

⟨var_list⟩ ::= ⟨var⟩ | ⟨var_list⟩ ‘,’ ⟨var⟩

⟨var⟩ ::= ⟨Variable_Name⟩ | ⟨Variable_Name⟩ ‘<’ ⟨dimensions⟩ ‘>’

⟨dimensions⟩ ::= ‘dim’[0-9]+ | dimensions ‘,’ ‘dim’[0-9]+

⟨instr_list⟩ ::= ⟨instr⟩ | ⟨instr_list⟩ ‘,’ ⟨instr⟩

nstr ::= Replicated | ⟨Variable_Name⟩ ‘(’ ⟨partition_args⟩ ‘)’
| ⟨Variable_Name⟩ ‘(’ ⟨partition_args⟩ ‘)’ Padding ‘(’

⟨partition_args⟩ ‘)’

⟨partition_args⟩ ::= | ⟨partition_arg⟩ | ⟨partition_args⟩ ‘,’

⟨partition_arg⟩ ::= | ⟨Variable_Name⟩ | ⟨Integer⟩

⟨relativity⟩ ::= | ‘;’ Relative_To Space ⟨Space_ID⟩

⟨sub_dist⟩ ::= | Sub_Partition ‘<’ ⟨Dimensionality⟩ ‘>’ ‘<’ ⟨nature⟩ ‘>’ ‘{’
⟨data_sub_dist⟩ ‘}’

⟨nature⟩ ::= Ordered | Unordered

⟨data_sub_dist⟩ ::= ⟨data_sub_spec⟩ | ⟨data_sub_dist⟩ ⟨data_sub_spec⟩

⟨data_sub_spec⟩ ::= ⟨var_list⟩ ‘:’ ⟨ordered_instr_list⟩

⟨ordered_instr_list⟩ ::= ⟨ordered_instr⟩ | ⟨ordered_instr_list⟩ ‘,’
⟨ordered_instr⟩

⟨ordered_instr⟩ ::= ⟨instr⟩ ⟨order⟩

⟨order⟩ ::= | Ascends | Descends

⟨coordinator⟩ ::= Program ‘(’ ⟨Variable_Name⟩ ‘)’ ‘{’ ⟨meta_code⟩ ‘}’

⟨meta_code⟩ ::= ⟨stmt_block⟩

⟨create_obj⟩ ::= New ⟨dynamic_type⟩ | New ⟨static_type⟩ ‘(’ ⟨obj_args⟩
‘)’

⟨obj_args⟩ ::= | ⟨named_args⟩

⟨named_args⟩ ::= ⟨named_arg⟩ | ⟨named_args⟩ ⟨named_arg⟩

⟨named_arg⟩ ::= ⟨Variable_Name⟩ ‘:’ ⟨expr⟩
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⟨task_invocation⟩ ::= Execute ‘(’ ⟨multi_args⟩ ‘)’

⟨multi_args⟩ ::= ⟨multi_arg⟩ | ⟨multi_args⟩ ‘;’ ⟨multi_arg⟩

⟨multi_arg⟩ ::= ⟨Variable_Name⟩ ‘:’ ⟨invoke_args⟩

⟨invoke_args⟩ ::= ⟨expr⟩ | ⟨invoke_args⟩ ‘,’ ⟨expr⟩

⟨function⟩ ::= Function ⟨Variable_Name⟩ ‘(’ ⟨function_args⟩ ‘)’ ‘{’
⟨code⟩ ‘}’

⟨function_args⟩ ::= | ⟨function_arg⟩ | ⟨function_args⟩ ‘,’ ⟨function_arg⟩

⟨function_arg⟩ ::= ‘&’ ⟨Variable_Name⟩ | ⟨Variable_Name⟩

⟨extern_block⟩ ::= Extern ‘{’ Language ⟨String⟩ ⟨header_includes⟩
⟨extern_links⟩ ⟨native⟩ ‘}’

⟨header_includes⟩ ::= | Header_Includes ‘{’ ⟨includes⟩ ‘}’ ⟨new_lines⟩

⟨includes⟩ ::= ⟨String⟩ | ⟨includes⟩ ‘,’ ⟨String⟩

⟨extern_links⟩ ::= | Library_Links ‘{’ ⟨library_links⟩ ‘}’

⟨library_links⟩ ::= ⟨String⟩ | ⟨library_links⟩ ‘,’ ⟨String⟩ ⟨new_lines⟩

⟨code⟩ ::= ⟨stmt_block⟩

⟨stmt_block⟩ ::= ⟨stmt⟩ | ⟨stmt⟩ ⟨new_lines⟩ | ⟨stmt⟩ ⟨new_lines⟩
⟨stmt_block⟩

⟨new_lines⟩ ::= New_Line | New_Line ⟨new_lines⟩

⟨stmt⟩ ::= ⟨parallel_loop⟩ | ⟨sequencial_loop⟩ | ⟨if_else_block⟩ |

⟨extern_block⟩ | ⟨return_stmt⟩ | ⟨reduction⟩ | ⟨expr⟩

⟨return_stmt⟩ ::= Return ⟨expr⟩

⟨reduction⟩ ::= Reduce ‘(’ ⟨Variable_Name⟩ ‘,’ ⟨String⟩ ‘,’ ⟨expr⟩ ‘)’

⟨sequencial_loop⟩ ::= Do In Sequence ‘{’ ⟨stmt_block⟩ ‘}’ For ⟨id⟩ In
⟨sloop_attr⟩

⟨sloop_attr⟩ ::= ⟨field⟩ ⟨step_expr⟩ | ⟨field⟩ O_AND ⟨expr⟩

⟨parallel_loop⟩ ::= Do ‘{’ ⟨stmt_block⟩ ‘}’ For ⟨index_ranges⟩
| Do ‘{’ ⟨stmt_block⟩ ‘}’ While ⟨expr⟩

⟨index_ranges⟩ ::= ⟨index_range⟩ | ⟨index_ranges⟩ ‘;’ ⟨index_range⟩

⟨index_range⟩ ::= ⟨names⟩ In ⟨Variable_Name⟩ ⟨restrictions⟩ | ⟨names⟩ In
⟨Variable_Name⟩ ’.’ ⟨Dimension_No⟩ ⟨restrictions⟩

⟨restrictions⟩ ::= | O_AND ⟨expr⟩

⟨if_else_block⟩ ::= If ‘(’ ⟨expr⟩ ‘)’ ‘{’ ⟨stmt_block⟩ ‘}’ ⟨else_block⟩

⟨else_block⟩ ::= | ⟨else⟩ | ⟨else_if ⟩ ⟨else_block⟩

⟨else⟩ ::= Else ‘{’ ⟨stmt_block⟩ ‘}’

⟨else_if ⟩ ::= Else If ‘(’ ⟨expr⟩ ‘)’ ‘{’ ⟨stmt_block⟩ ‘}’

⟨step_expr⟩ ::= | Step ⟨expr⟩

⟨expr⟩ ::= ⟨expr⟩ ⟨binary_operator⟩ ⟨expr⟩ | ‘!’ ⟨expr⟩ | ‘[’ ⟨expr⟩ ‘...’
⟨expr⟩ ‘]’

| ⟨constant⟩ | ⟨field⟩ | ⟨function_call⟩ | ⟨task_invocation⟩ | ⟨create_obj⟩
| ⟨expr⟩ At ‘(’ ⟨epoch_lag⟩ ‘)’ | ‘(’ ⟨expr⟩ ‘)’

⟨b_op⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’
| LSHIFT | RSHIFT | POWER
| BITWISE_AND | BITWISE_OR | BITWISE_XOR
| LT | GT | OR | AND | ‘==’ | ‘!=’ | LTE | GTE | ‘=’

⟨constant⟩ ::= ⟨sign⟩ ⟨number⟩ | Boolean | Character | String

⟨sign⟩ ::= | ‘-’

⟨number⟩ ::= Integer | Real_Single | Real_Double

⟨field⟩ ::= ⟨id⟩ Field | ⟨field⟩ ‘.’ ⟨id⟩ | ⟨field⟩ ‘[’ ⟨array_index⟩ ‘]’

⟨array_index⟩ ::= ⟨expr⟩ | ⟨expr⟩ ‘...’ ⟨expr⟩ | ‘...’

⟨function_call⟩ ::= Variable_Name ‘(’ ⟨args⟩ ‘)’

⟨arg⟩ ::= Space Space_ID ‘:’ Variable_Name | ⟨expr⟩

⟨args⟩ ::= | ⟨arg⟩ | ⟨args⟩ ‘,’ ⟨arg⟩

⟨epoch_lag⟩ ::= Current | Current ‘-’ Integer

⟨id⟩ ::= Variable_Name | Dimension_No | Range | Local | Index

Scalability Experiments on Distributed Shared-
memory Environment
We used the parallel partition in a compute cluster of our
organization as the back-end for the distributed-shared mem-
ory compiler. The parallel partition has two 2.50 GHz Intel
Xeon E5-2670 CPUs in each computing node. An Infiniband
interconnect connects these nodes where each CPU has ten
cores and three cache levels. Ten CPU cores share a 25 MB
L3 cache segment. Then each has a 256 KB L2 and a 32 KB
L1 cache. In the
Although the parallel partition has many more nodes, our

allocation restriction limited the nodes count to 50 in the ex-
periments. Thus the maximum number of cores we used in
the experiments is 1000. The native MPI compiler in this
platform is mpic++, which uses Intel’s ICPC version 14.0.2
C++ compiler underneath and the OpenMPI Intel implemen-
tation (openmpi/intel/1.8.4) for message passing. Finally,
note that Intel Xeon E5-2670 supports vector instructions,
but automatic vectorization through the underlying ICPC
compiler was working for neither HighP5 executables nor
reference implementations. Therefore, we ignored that ca-
pacity.
We did both strong scaling experiments by gradually in-

creasing the number of cores (aka. parallelism) for a fixed
problem size and weak scaling experiments by increasing the
problem size proportionately with the increasing number of
CPU cores. Furthermore, we distinguished two speedups for
the HighP5 programs against the sequential baseline code in
the distributed shared memory execution platform. The com-
putation speedup only considers the running time of the tasks,
and the execution speedup includes any other overhead for re-
source preparation and communication buffers setup added
with the task computation time in the parallel versions.
Figure 12 shows the strong and weak scaling results for

the block matrix-matrix multiplication problem.We observe
a super-linear speedup of computation with increasing par-
allelism. The 1000-Cores version performs 1180 times bet-
ter than the sequential implementation. The speedup tapers
off when we consider the additional overhead. The execu-
tion speedup against the sequential implementation for the
1000-Cores version is only 238 times. Our investigation sug-
gests that this happens because of the drastic reduction of
the computation time that makes the overhead cost a larger
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percentage of the overall running time. The actual <compu-
tation time, overhead cost> combinations for the 500-Cores
and 1000-Cores versions are <3.34861 sec, 6.49955 sec> and
<1.638 sec, 6.46373 sec> respectively. We could not run
the experiment for a much larger input size due to a maxi-
mum memory per node limitation set on the cluster by its
job scheduling system.
We used a more gradual increase of core counts to cap-

ture the trend for the weak scaling experiment. As shown in
the graph, the computation time remains almost flat. These
are the best possible results. The overhead computation per
node increases with larger input sizes. For this problem, the
entire overhead is due to the initial serial preparation of ar-
ray data parts and auxiliary management data structures. We
should be able to reduce the cost drastically in the future by
parallelizing the steps of the resource preparation process.
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Figure 12. Strong (matrix size 10, 239 × 10, 239) and weak scaling results
for block matrix-matrix multiplication on parallel cluster

The speedups for the strong scaling experiment with the
block LU factorization problem (Figure 13) are relatively
modest compared to the block matrix-matrix multiplication
problem. We expected this as each iteration of LU fac-
torization involves multiple collective MPI communications

on top of intra-node CPU core synchronizations. The dif-
ferences between computation and execution speedups are
minor as the cost of data structures and communication re-
sources setup is negligible compared to the cost of actual task
computation. We further distinguished between time spent
on actual computation and communication for the weak scal-
ing experiment to understand program behavior better. There
are fluctuations in the computation time, but the overall trend
is flat. On the other hand, communication time tends to in-
crease gradually as the cost of collective communication in-
creases with increasing problem size and processor count.
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Figure 13. Strong (argument matrix size 20, 480 × 20, 480) and Weak
scaling results for block LU Factorization on parallel cluster

For strong scaling experiments with Monte Carlo area es-
timation and 5-point iterative stencil problems, we used the
same problem configurations we used for respective experi-
ments in the multicore platform. Figures 14 and 15 show that
the results are promising for both problems. Furthermore,
both problems exhibit almost perfect weak scaling behavior
by keeping the speedup flat for a proportionate increase of
problem size and the degree of parallelism. This behavior is
because the former is embarrassingly parallel, and the latter
uses localized communications only whose cost gets evenly
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distributed with increasing parallelism.
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Figure 14. Strong andWeak scaling results for Monte Carlo area estimation
(1000 samples per cell) on parallel cluster

We did only the strong scaling experiment for the conju-
gate gradient problem. Given our lack of improvement for
increasing threading parallelism per process in the multicore
environment, we decided to scale up the resources in terms
of node count instead of core count and let each node do its
part of the computation sequentially. We expected a steady
increase of speedup with more parallelism with this strategy.
The results as shown in Figure 16 are the most significant
revelation in the performance testing in this platform.
The computation does improve with increasing paral-

lelism, but the increasing cost of the concomitant overhead
calculation tramples any performance gain in the overall exe-
cution. Our investigation revealed that the repeated creation
of LPU data structures and communication resources for re-
solving inter-task data dependency is much higher than the
running time of the actual tasks that collaboratively solve the
conjugate gradient problem. This observation reveals that
minimization of inter-task transitions overhead should be our
core focus on compiler improvement in the distributed shared
memory platform.
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Figure 15. Strong and Weak scaling results for 5-point stencil (10,000 iter-
ations) on parallel cluster

HighP5 LU Factorization Code

1Program ( args ) {
2 luEnv = new TaskEnvironment(name: ‘ ‘Block LU Factorization”)
3 bind_input (luEnv , ‘ ‘a” , args . input_matrix_file )
4 execute ( task : ‘ ‘Block LU Factorization ”;
5 environment : luEnv; partition : args . block_size )
6 bind_output (luEnv , ‘ ‘u” , args . upper_matrix_file )
7 bind_output (luEnv , ‘ ‘ l ” , args . lower_matrix_file )
8 bind_output (luEnv , ‘ ‘p” , args . pivot_matrix_file )
9}
10
11Task ‘ ‘Block LU Factorization ”:
12 Define :
13 a , u , l : 2d Array of Real double−precision
14 p: 1d Array of Integer
15 l_row , l_column , p_column: 1d Array of Real double−precision
16 u_block , l_block : 2d Array of Real double−precision
17 pivot : Integer Reduction
18 k, r , block_size : Integer
19 row_range: Range
20 Environment :
21 a : l ink
22 u, l , p: create
23 In i t ia l i ze :
24 u.dimension1 = l . dimension1 = a .dimension2
25 u.dimension2 = l . dimension2 = a .dimension1
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Figure 16. Strong scaling results for conjugate gradient on parallel cluster

26 p. dimension = a .dimension1
27 block_size = partition .b
28 l_row .dimension = l . dimension2
29 l_column .dimension = p_column.dimension = l . dimension1
30 u_block .dimension1 = u.dimension1
31 u_block .dimension2 . range .min
32 = l_block .dimension1 . range .min = 0
33 u_block .dimension2 . range .max
34 = l_block .dimension1 . range .max = block_size − 1
35 l_block .dimension2 = l . dimension2
36 Stages :
37 prepareLU(a , u , l ) {
38 do { u[ j ][ i ] = a[ i ][ j ] } for i , j in a
39 do { l [ i ][ i ] = 1 } for i in l
40 }
41 calculateRowRange(a , row_range , block_size ) {
42 last_row = r + block_size − 1
43 i f ( last_row > a .dimension1 . range .max) {
44 last_row = a .dimension1 . range .max
45 }
46 row_range .min = r
47 row_range .max = last_row
48 }
49 selectPivot (pivot , u , k) {
50 do { reduce(pivot , ‘ ‘max_entry” , u[k][ j ])
51 } for j in u and j >= k
52 }
53 storePivot (p, k , pivot ) {
54 p[k] = pivot
55 }
56 interchangeRows(pivot , k , u , l ) {
57 do { pivot_entry = u[ i ][k]
58 u[ i ][k] = u[ i ][ pivot ]
59 u[ i ][ pivot ] = pivot_entry
60 } for i in u and i >= k
61 do { pivot_entry = l [ i ][k]
62 l [ i ][k] = l [ i ][ pivot ]
63 l [ i ][ pivot ] = pivot_entry
64 } for i in l and i < k
65 }
66 updateL( l , k , l_row) {
67 do {l [k][ j ] = u[k][ j ] / u[k][k]
68 u[k][ j ] = 0
69 l_row[ j ] = l [k][ j ]
70 } for j in l and j > k
71 }
72 updateURowsBlock(u, l_row , k, row_range) {
73 do { u[ i ][ j ] = u[ i ][ j ] − l_row[ j ] * u[ i ][k]
74 } for i , j in u and i > k
75 and i <= row_range .max and j > k
76 }
77 collectLColParts (l_column , l , k , row_range) {
78 do { l_column[ i ] = l [ i ][k]
79 } for i in l and i >= row_range .min and i < k
80 }
81 generatePivotColumn(p_column, l_column , row_range , k) {

82 do { p_column[ i ] = l_column[ i ]
83 } for i in l_column and i >= row_range .min and i < k
84 }
85 updateUColsBlock(u, p_column, k, row_range) {
86 do {u[ i ][k] = u[ i ][k] − u[ i ][ j ] * p_column[ j ]
87 } for i , j in u and i > row_range .max
88 and j >= row_range .min and j < k
89 }
90 copyUpdatedUBlock(u_block , row_range , u) {
91 do {column = j − row_range .min
92 u_block[ i ][column] = u[ i ][ j ]
93 } for i , j in u and i > row_range .max
94 and j >= row_range .min and j <= row_range .max
95 }
96 copyUpdatedLBlock( l_block , row_range , l ) {
97 do {row = i − row_range .min
98 l_block[row][ j ] = l [ i ][ j ]
99 } for i , j in l and i >= row_range .min
100 and i <= row_range .max and j > row_range .max
101 }
102 saxpy(u, u_block , l_block , row_range) {
103 do {
104 tota l = 0.000000
105 do {tota l = tota l + u_block[ i ][m] * l_block[m][ j ]
106 } for m in u_block
107 u[ i ][ j ] = u[ i ][ j ] − to ta l
108 } for i , j in u and i > row_range .max and j > row_range .max
109 }
110 Computation :
111 Space A {
112 Space B {
113 prepareLU(a , u , l )
114 }
115 Repeat for r in a .dimension1 . range step block_size {
116 calculateRowRange(a , row_range , block_size )
117 Repeat for k in row_range {
118 Space B {
119 Where k in u. local . dimension1 . range {
120 selectPivot (Space A: pivot , u , k)
121 }
122 }
123 storePivot (p, k , pivot )
124 Space B {
125 If k != pivot { interchangeRows(pivot , k , u , l ) }
126 Where k in l . local . dimension1 . range {
127 updateL( l , k , l_row)
128 }
129 updateURowsBlock(u, l_row , k, row_range)
130 collectLColParts (l_column , l , k , row_range)
131 }
132 generatePivotColumn(p_column, l_column , row_range , k)
133 Space B {
134 updateUColsBlock(u, p_column, k, row_range)
135 }
136 }
137 Space B {
138 copyUpdatedUBlock(u_block , row_range , u)
139 Where r in l . local . dimension1 . range {
140 copyUpdatedLBlock( l_block , row_range , l ) }
141 Space C {
142 Repeat foreach sub−partition {
143 saxpy(u, u_block , l_block , row_range)}
144 }
145 }
146 }
147 }
148 Partition (b) :
149 Space A <un−partitioned> {
150 a , p, l_column , l_row , p_column, l_block , u_block
151 }
152 Space B <1d> divides Space A partitions {
153 a<dim2>, u<dim1>, u_block<dim1>,
154 l<dim1>, l_column: block_stride (b)
155 l_row , p_column, l_block : replicated
156 }
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157 Space C <2d> divides Space B partitions {
158 u: block_size (b, b)
159 u_block : block_size (b) , replicated
160 l_block : replicated , block_size (b)
161 Sub−partition <1d> <unordered> {
162 u_block<dim2>, l_block<dim1>: block_size (b)
163 }
164 }

Listing 6: HighP5 Code for Block LU Factorization.
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