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AbstractWith the advancement of multimedia technologies, human-computer conversational interfaces are becom-
ing increasingly important and are emerging as a highly promising area of research. Vocal representations, facial
expressions, and body language can be used to extract various types of information. In the context of vocal rep-
resentations, the complexity of human communication involves a wide range of expressions that vary according
to grammatical rules, languages, accents, slang, disfluencies, and other speech events. In particular, the detection
of disfluencies, i.e., interruptions in the normal flow of speech characterized by pauses, repetitions, and sound
prolongations, is of interest not only for improving speech recognition systems but also for potentially identifying
emotional aspects in audio. Several studies have aimed to define computational methods to identify and classify
disfluencies, as well as appropriate evaluation methods in different languages. However, no studies have compiled
the findings in the literature on this topic. This is important for both summarizing the motivations and applications
of the research, as well as identifying opportunities that could guide new investigations. Our objective is to provide
an analysis of the state of the art, the main limitations, and the challenges in this field. Eighty articles were extracted
from four databases and analyzed through a systematic review. Our results show that research into the detection
of disfluencies has been conducted for various purposes. Some aimed to improve the performance of translation
tools, while others focused on the summarization of spoken dialogues, speaker diarization, and Natural Language
Processing. Most of the research was oriented toward the English language. F-score, precision, and recall were the
most commonly used evaluation measures for the reported methods. Statistical and machine learning techniques
were widely applied, with CRFs (Conditional Random Fields), MaxEnt (Maximum Entropy), Decision Trees, and
BLSTM (Bidirectional Long Short-TermMemory) being especially prominent. In general, newer approaches, such
as BERT and BLSTM, have demonstrated higher performance. However, several challenges remain, opening up
new research opportunities.
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1 Introduction

With the advancement of multimedia technologies, human-
computer conversational interfaces are becoming increas-
ingly important and opening up a highly promising area of
research. Vocal representations, along with facial, and body
expressions, can be used to extract data with great potential
for use in decision-making. In the context of vocal repre-
sentations, human communication involves a complex and
wide range of expressions, which vary according to grammat-
ical rules, languages, accents, slang, disfluencies, and other
events during speech.

Disfluencies are spontaneous speech phenomena in which
the flow is interrupted by pauses, repetitions, sound prolon-
gations, and other occurrences. Topics related to disfluen-
cies are studied across different disciplines, including clin-
ical aspects [Williams et al., 2023; Schettino et al., 2023],
second language learning [Belz et al., 2023; Li et al., 2022],
and speech technology [Teleki et al., 2024; Kouzelis et al.,
2023]. It is worth mentioning that the Disfluency in Sponta-

neous Speech (DiSS)1 conference, an interdisciplinary forum
that has occurred since 1999, has provided opportunities to
explore the phenomenon of disfluency by putting together
researchers from different disciplines to discuss disfluencies
and their implications [Lickley, 2015]. This continuous en-
gagement keeps the topic under discussion and highlights
its significance in understanding human communication. In
this context, different techniques in statistics, mathematics,
machine learning, and syntactic methods have been used to
explore the identification and classification of disfluencies
while considering different categories and objectives.
Previous reviews have considered disfluency analyses in

specific areas, mainly in the context of stuttering. For ex-
ample, in Barrett et al. [2022] a systematic literature review
on machine learning approaches to detect stuttering showed
that speech recognition combined with machine learning can
be applied to the speech evaluation of people who stutter,
where it provided reliable indicators on the presence and
severity of stuttering. In Khara et al. [2018] a survey of tech-

1https://filledpause.org/diss/
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niques for extracting and classifying stuttering recognition
features is presented, highlighting the growing importance
of Automatic Speech Recognition (ASR) systems. Despite
the contributions of these studies, they focus specifically on
stuttering-related disfluencies. This is the key novelty of our
article, which offers a comprehensive analysis of the state-
of-the-art, limitations, and challenges in disfluency detec-
tion across various applications. This objective is achieved
through a systematic review, in which we analyze 80 articles
published between 1996 and 2023. Thus, our main contribu-
tions are:

• Presentation of a disfluency categorization while group-
ing main denominations and their synonyms;

• Compilation of the main databases, transcription tools,
and explored languages;

• Analysis of computational techniques used to detect and
classify disfluencies, as well as their evaluation meth-
ods;

• Indication of the main challenges and research opportu-
nities considering the computer science area.

The content of this article is organized into the following
sections: Section 2 presents the systematic review protocol.
Section 3 provides a global analysis of selected publications,
while Section 4 categorizes the most commonly explored dis-
fluencies. Section 5 presents an analysis of the techniques
used, and Section 6 lists the databases and transcription tools
employed. Main evaluation measures are discussed in Sec-
tion 7. The limitations we encountered and the current chal-
lenges are presented in Section 8. Finally, the conclusion of
this article is presented in Section 9.

2 Research methodology
The systematic review presented in this article consists of
four phases (Planning, Conducting, Data Extraction, and
Analysis) to answer the following research questions:

• What are the main existing methods and techniques for
processing speech disfluencies from audio or text?

• How are the methods evaluated?
• What tools/technologies and databases are used?
• What types of disfluencies are processed?

The summary of each step is shown in Figure 1.
An exploratory analysis was conducted using Google

Scholar to identify the main terms used in this study area. We
considered the following keywords: Acoustic model; Auto-
matic speech analysis; Automatic speech recognition; Dialog
systems; Disfluencies; Disfluency classification; Disfluency
detection; Disfluency event; Prosodic information; Prosody
labeling; Prosody modeling; and Speech recognition. Ac-
cording to the articles obtained in the exploratory analysis,
the scientific databases IEEE2, ACM3, ACL4 and ISCA’s5
were used as sources. In the latter database the search was
restricted to the main conference (InterSpeech).

2https://ieeexplore.ieee.org/
3https://dl.acm.org/
4https://aclanthology.org/
5https://www.isca-speech.org/

The keywords found in this preliminary phase contributed
to the following search string: (“disfluenc*” OR “dys-
fluenc*”) AND (“classification” OR “detection” OR “an-
notation” OR “perception” OR “corpus processing” OR
“sequence-tagging”). Complete studies with results that in-
cluded the search terms in their titles, abstracts, or keywords
were selected. We initially found 268 articles. The adopted
inclusion (I) and exclusion (E) criteria for selection of studies
are presented below:

• (I1) Articles that propose or evaluate techniques for pro-
cessing disfluencies from audios or texts;

• (E1) Articles that propose or evaluate techniques for
processing disfluencies, but that do not use audio or
texts as input data;

• (E2) Articles that propose or evaluate techniques for
processing audio or texts but that do not consider dis-
fluencies;

• (E3) Articles that evaluate disfluencies outside the com-
putational context;

• (E4) Papers that score below the average of the assigned
quality grades (detailed following).

The 117 studies that advanced to the extraction phase were
fully analyzed in order to obtain the following data: exper-
iments performed; assessment measures applied; language;
dataset; transcription tool, when used; disfluency categoriza-
tion; technology used to process disfluencies.
We defined the following criteria to evaluate the quality of

each study: presentation of transcription tool; presentation
or evaluation of a disfluency classification technique; men-
tion of disfluency classification categories; presentation of
assessment measures; detailed presentation of the database;
and execution of experiments. Each criterion was assigned a
score of one when it was fully met, 0.5 when it was partially
met, and zero when it was not met. The average of the scores
was calculated, and the minimum quality threshold was set
as the average score across all studies. Only studies with an
average score above this threshold were included. After this
step, 80 studies were accepted for analysis.

Figure 1. Flow diagram summarizing the steps in developing this system-
atic review.

3 Overall analysis
The main aspects extracted from the accepted articles in this
systematic review are presented in the appendix (Table 5).

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://aclanthology.org/
https://www.isca-speech.org/
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These publications focused mainly on the detection of disflu-
encies (58 articles, approximately 73%), followed by remov-
ing disfluencies (7 articles, approximately 9%), and predic-
tion (4 articles, approximately 5%), as shown in Figure 2.

Figure 2. Overall proportion of research objectives.

Disfluencies have been studied since 1996, with some vari-
ation in the number of publications over time (Figure 3).

Figure 3. Distribution of publications over the years.

When analyzing the evolution of techniques used over
time, there is a noticeable trend. In the early years, traditional
statistical techniques such as N-grams, Hidden Markov mod-
els (HMMs), and Maximum Entropy (MaxEnt) were com-
monly used. Over time, machine learning techniques, in-
cluding Decision Trees, Support Vector Machines (SVMs),
and Max-Margin Markov Networks (M3Ns), gained promi-
nence. In the context of machine learning, the last decade
has been marked by the rise of Long Short-Term Memory
(LSTM), Bidirectional Long Short-TermMemory (BLSTM),
and Bidirectional Encoder Representations from Transform-
ers (BERT). This trend is also realized in other computer sci-
ence areas and reflects not only advances in computational
power but also the increasing availability of more robust and
accessible datasets (Figure 4), as well as the availability of
libraries and other artifacts that contribute to faster develop-
ment of programs. Additional details can be found in the ap-
pendix (Table 5). Conferences stood out as the most frequent
publication vehicle (90% of occurrences), possibly due to a
faster publication cycle.
We noted that there was no single trend in the motivation

of studies seeking to detect disfluencies. Those who focused
on removing disfluencies were mainly motivated to improve
the performance of translation tools, summarizing of spoken
dialogues, speaker diarization, and Natural Language Pro-
cessing (NLP). In the context of syntactic analysis, the main
interest was obtaining input that enabled a grammatical struc-
ture from a set of words, as well as exploring syntactic and
semantic information in order to identify repairs (Section 4).

Figure 4. Categories of techniques employed for detecting disfluencies over
time.

In this context, the study Stolcke and Shriberg [1996], for
example, calculates the probability of a specific sequence of
words appearing by taking into account the presence or ab-
sence of disfluencies. The work of Lin and Wang [2020] ad-
dress the joint prediction of spelling scores and disfluencies
in transcribed speech. They also highlight the mutual influ-
ence they exert on each other. For example, the repetition of
“to” in “She decided to, to go home” might be a sign of dis-
fluency or could emphasize the speaker’s choice, introduce a
new idea, or signal a moment of hesitation. The combination
of these tasks is important for error reduction potential and
improving the performance of speech recognizers and NLP
tasks [Wang et al., 2014b].
Since English is considered an international language,

most of the research considers this idiom (60 articles, approx-
imately 70%). Nevertheless, there is a significant portion
of articles focused on Mandarin (8 articles, approximately
9%) and Chinese (4 articles, approximately 5%) as shown
in Figure 5. It is important to remember that papers explor-
ing multiple languages were counted multiple times, so these
percentages may not reflect the number of distinct articles.

Figure 5. Overall proportion of languages explored within this systematic
review.

4 Terminology and categorization of
disfluencies

The composition of disfluencies is independent of language.
However, some factors interfere with this classification, such
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as word position, the presence of other disfluencies in the
same sentence, sentence length, and even a combination of
these factors.
As such, the terminology that is frequently referenced in

the publications was proposed by Shriberg [1994]. This
structure is composed of four elements: “Reparandum
(RM)”, “Interruption point (IP)”, “Interregnum (IM)”, and
“Repair (RR)”, as shown in Figure 6. The “Reparandum”
is the part of the utterance discarded or corrected by the
next words. “Interruption point” is the instant at which the
speaker interrupts the original utterance. “Interregnum” is
the part used as a moment for the speaker to re-plan (without
necessarily implying speech editing) and, finally, “Repair”
is the part of the utterance that corresponds to the content of
the “Reparandum”, whether it was able to correct it or not.
Overall, 10 disfluency categories were identified in the in-

cluded articles. Table 1 summarizes the aggregated results
according to category and its applicable terms, while the com-
prehensive distribution of disfluencies across the approved
studies can be found in appendix (Table 5). Studies that in-
vestigated more than one type of disfluency were counted
for all the disfluencies they explored. Some articles did not
describe the studied disfluencies in detail, thus leaving inter-
pretation open to the reader. In Table 1, applicable terms
refer to terms that were used in a determined position. For
example, in the “Interregnum” position, some articles used
terms like “Fillers/Filled pauses” and “Interjections”.
The most recurrent disfluency class was “Interregnum”

(44 articles, 28%), characterized by the presence of
“Fillers/Filled pauses”, “Interjections”, “Discourse markers”
and “Editing terms”. The number of studies focused on this
topic may be related to the fact that “Interregnum” does not
contribute to the semantic content of a speech; thus, their
identification and cleaning improves the readability of tran-
scription tools and speech recognizers.
Disfluencies range from simple structures such as “Repe-

titions” that are exact or approximate copies of an utterance.
These can be easily detected from a set of defined rules or
more complex and arbitrary structures such as “Repairs” in
speech that require further and more sophisticated process-
ing. For example, in Miller and Schuler [2008] the authors
highlight contributions that the syntactic structure of a sen-
tence and some acoustic signals, such as pauses and prosodic
contours, can help in the detection of “Repairs”.
“Repairs” were studied in 29 (19%) of the included arti-

cles. As pointed out in Miller [2009], this type of disfluency
is a problem for speech recognizers and syntactic analysis
applications, since in addition to detecting repairs, such sys-
tems need to know which words should be eliminated in or-
der to form a correct grammatical structure.
“Stuttering” was the less explored disfluency (2 articles,

1%). Its definition presented in Germesin et al. [2008] is
syllables or consonants similar to the beginning of the next
fully articulated word. This structure is similar to a “Word
Fragment” disfluency that was studied in 5 papers (3%) in
this survey. Despite the similarity between “Stuttering” and
“Word Fragment”, we chose not to establish a synonym be-
tween them since most of the scientific community considers
stuttering as a neurobiological disorder rather than amere iso-
lated occurrence that affects verbal fluency.

Figure 6. Example of Shriberg’s terminology.

5 Techniques

Figure 7 shows the techniques used in the included articles ac-
cording to their objectives. The most applied Statistical and
Mathematical techniques were CRFs (Conditional Random
Fields) and Maxent (Maximum Entropy). Among machine-
learning techniques, Decision Tree and BLSTM (Bidirec-
tional Long Short-Term Memory) are the most prominent
ones. Some authors have proposed the application of tech-
niques little explored in the literature, such as the Boosting
algorithm.
In addition to the analysis and the purpose of this study,

disfluency processing techniques were divided into single ap-
proaches when only one technique was used and hybrid ap-
proaches when two or more techniques were employed, as
detailed in the following subsections.

5.1 Single approach techniques

Figure 8 presents an overview of the study areas in which
single techniques were employed. The Machine Learning
field is the one that stands out the most than others. The
main techniques are detailed below.

5.1.1 Statistics and Mathematics

This category encompasses techniques that use approaches
from statistics and/or mathematics in collecting and analyz-
ing data for decision-making.

CRFs (Conditional Random Fields) CRFs are a power-
ful statistical modeling framework designed specifically for
sequence labeling tasks [Fitzgerald et al., 2009]. Unlike tra-
ditional classifiers that treat each label independently, CRFs
consider the global context of the sequence, allowing them to
capture interdependencies between labels. This makes them
particularly well-suited for tasks where the prediction of one
label can influence the prediction of subsequent labels, such
as named entity recognition. A feature function maps the
input sequence and its features to a vector representation,
capturing relevant information for label prediction. A condi-
tional probability distribution then estimates the probability
of each label sequence given the feature vector. This allows
the model to learn the relationships between labels and make
predictions that are consistent with the overall context of the
sequence. As an example, the approach developed in Shahih
and Purwarianti [2016] uses CRFs during the pre-processing
phase of a machine translation system dealing with disflu-
encies, and in Ostendorf and Hahn [2013] this technique is
employed to improve speech transcripts readability.
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Table 1. Summary of disfluency categories (*** means that no additional applicable terms were identified for this category).
Disfluency Applicable terms Description Citations
Interregnum Filler, filled pause,

interjection, discourse
marker, edit term

Optional part of speech that indicates reasoning develop-
ment or confusion. May involve abnormal lengthening
of words. Includes expressions such as “um”, “eh”, “ah”,
“oh”, “uh”, “well”, “you know”, “I mean”, “anyways”,
“basically”, “let’s see”, “like”, “actually”, “so”, “okay”,
“now”, “moreover”. In the structure of Shriberg [1994],
it marks the end of the reparandum. Example: “Show me
flights from Boston on uh, I mean from Denver on Mon-
day”

44 (28%)

Repair Correction, revision,
restart

In the structure of Shriberg [1994], it is the part of the
utterance that corrects and modifies the original utterance.
Example: “Show me flights from Boston on uh, I mean
from Denver on Monday”

29 (19%)

Edition *** It is the reparandum – interregnum – repair structure de-
fined in Shriberg [1994]. Example: “Show me flights
[(fromBoston on) * uh, I mean fromDenver on]Monday”
where the expression “(from Boston on)” is the reparan-
dum, “*” marks the interruption point, “uh, I mean” is the
interregnum and “from Denver on” is the repair

22 (14%)

Repetition *** Exact or approximate copy of a statement. Ignoring the in-
terregnum (filling in), occurswhen the reparandum equals
the repair. Example: “This is this is an example”

19 (12%)

Interruption point *** It marks the end of the reparandum, it is the moment when
the speaker interrupts an utterance, which may involve
a revision, repetition, or abandonment of content in the
sequence. In the structure of Shriberg [1994], it marks
the end of the reparandum. Example: “We need to do the
review * uh, I mean the reading”

12 (8%)

Reparandum *** In the structure of Shriberg [1994], it is the part of the
utterance that is discarded or corrected by the next words.
Example: “Show me flights from Boston on uh, I mean
from Denver on Monday”

12 (8%)

False start Exclusion, rupture Moment when the speaker abruptly starts a new sen-
tence without completing the previous sentence, generat-
ing abandoned and incomplete clauses. Example: “We’ll
never what about next month?”

8 (5%)

Word fragment *** Occurs when a word is interrupted in mid-speech. Exam-
ple: “th-that was”

5 (3%)

Insertion *** Occurs when a word is inserted without context into the
sentence. Example: “Of a that’s really good”

3 (2%)

Stuttering *** Occurs when a spokenword is part of the followingwords.
Example: “This is an exa example”

2 (1%)

HMM (Hidden Markov Model) This technique is a pow-
erful statistical tool for understanding and predicting sequen-
tial data. They are particularly useful when the data contains
hidden states that are not directly observable but influence
the observed outcomes. HMMs leverage the Markov chain
property, assuming that the probability of transitioning to the
next state depends only on the current state, not on the en-
tire history of the sequence. This allows them to efficiently
capture temporal dependencies and make predictions about
future observations. In Liu et al. [2006] this technique was
explored with the purpose of enriching speech recognition
output and in Liu et al. [2005] the performance of the HMM
approach was compared to a Maxent and a CRF model for
disfluency detection.

HHMM (Hierarchical Hidden Markov Model) HHMM
is a sophisticated extension of the traditional HiddenMarkov
Model (HMM), designed to address the complexities of
stochastic and dynamic processes in various real-world ap-
plications. The HHMM introduces a structure where hidden
states are organized into a hierarchy, allowing the model to
represent more complex dependencies and transitions across
different levels [Bui et al., 2004]. In Miller and Schuler
[2008] and Miller [2009], HHMM is used to capture the hi-
erarchical organization inherent in spoken language while
also accommodating disfluencies. In Miller and Schuler
[2008], HHMM is used to better capture this structure, while
Miller [2009] focuses on how HHMM enables efficient, in-
cremental parsing of spontaneous speech with disfluencies
by adding random variables for speech repair, enhancing ro-
bustness.
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Figure 7. Main objectives and techniques from the publications in this review.

Figure 8. Distribution of single techniques by field of study.

Maxent (Maximum Entropy) MaxEnt models are widely
used in NLP tasks like text segmentation, part-of-speech tag-
ging, and named entity recognition. The principle of Max-
Ent suggests that in situations of restricted information, the
most impartial approach involves embracing uncertainty and
refraining from making assumptions about unobserved data.
The intuition lies in the concept of information gain. Each
observation provides some information about the underlying
process that generated it. MaxEnt seeks to maximize this in-
formation gain by choosing a model that is consistent with
the data but avoids making unnecessary assumptions about
the unobserved aspects of the process. This approach leads to
robust models that are less likely to overfit the training data
and generalize better to unseen examples. One challenge lies
in formulating appropriate constraints that capture the essen-
tial features of the problem. Additionally, finding the maxi-
mum entropy distribution can be computationally expensive
for complex systems. The research in Chen and Yoon [2011]
employed thismethod to detect disfluencies in non-native En-
glish speakers and in Lin and Lee [2005] it is used to identify

interruption points in Mandarin idiom.

NCM (Noisy Channel Model) Widely used in statistical
speech recognition and automatic translation [Zwarts and
Johnson, 2011], NCM assumes that when a message is cre-
ated and transmitted over a communication channel, it is sub-
ject to degradation that corrupts the original message. The
NCM is characterized by two primary probabilities. The first
is P(x|s), representing the conditional probability of receiv-
ing message x given that the source message was s. This
probability encapsulates the impact of noise on the channel.
The second probability is P(s), denoting the prior probability
of the source message being s. This probability incorporates
any pre-existing knowledge about the types of messages the
source is inclined to generate. Leveraging these probabili-
ties, the NCM employs diverse decoding algorithms to recon-
struct the original message [Honal and Schultz, 2005]. NCM
was applied in Zwarts et al. [2010] to detect repairs and help
speech recognizers interrupt or correct a speaker´s mistake.
In Zwarts and Johnson [2011] the detection of repairs was
investigated through an NCM that proposes a list of the 25
best hypotheses for disfluency.

N-grams N-grams are a fundamental concept in NLP and
other fields that deal with sequential data. They represent
sequences of n consecutive elements, such as words, charac-
ters, or syllables. N-grams are used to capture the statistical
dependencies between these elements, which are crucial for
understanding the structure and meaning of the data. There
are various types of n-grams, depending on the value of n.
Unigrams are individual elements, such as single words or
characters. Bigrams are composed of consecutive pairs of
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elements, while Trigrams are sequences of three consecutive
elements. Higher-order n-grams extend this pattern where
“n” holds any higher value. They capture increasingly com-
plex dependencies but may be computationally more expen-
sive to process. In Stolcke and Shriberg [1996] a model is
developed to predict disfluencies. In Germesin et al. [2008]
this approach was used to develop a system capable of deal-
ing with various types of disfluency, focusing on improving
the structure of documented meetings.

5.1.2 Machine learning

In this category, algorithms for classification or prediction
based on models learned from data were included as follows.

DT (Decision Tree) This approach relies on sequential as-
sessments of information organized within a tree-like struc-
ture. The process initiates from a root node representing the
entire dataset, and at each level of the tree, a division is made
based on a chosen attribute to homogenize the samples in the
leaves. Each leaf represents a decision or estimation, depend-
ing on whether the tree is used for classification or regression.
Additionally, Decision Trees can handle both categorical and
numerical data, providing versatility in addressing diverse
datasets. Overfitting occurs when the tree captures noise in
the data, resulting in a model that performs well on training
data but poorly on new, unseen data. Techniques like lim-
iting the tree’s depth or implementing minimum sample re-
quirements per leaf node aid in preventing overfitting. More-
over, ensemble methods such as Random Forests or Gradi-
ent Boosting combine multiple trees to enhance predictive
accuracy and generalization. These techniques mitigate the
limitations of individual Decision Trees and bolster the ro-
bustness of the model in handling diverse datasets. By using
this technique, existing problems in summarizing spoken di-
alogues were addressed in Zechner [2001], mainly in corpo-
rate meeting conversations, sales, and customer support. An-
other example is presented in Womack et al. [2012], where
medical narratives were analyzed, and the use of fillers in
speech was compared between experienced doctors and doc-
tors in training.

CART (Classification and Regression Trees) CART is
a particular method for building decision trees, focusing on
both classification and regression tasks. Classification trees
are employed when the target variable consists of a finite
number of unordered values. On the other hand, regression
trees are used to handle continuous or ordered discrete target
variables [Loh, 2011]. The studies in both Liu [2003] and
Medeiros et al. [2013] employed CART to analyze speech
features. In Liu [2003], CART helped identify the acoustic-
prosodic features most influential in predicting word frag-
ments. Similarly, in Medeiros et al. [2013], CART not only
achieved the best overall classification of disfluent sequences
but also helped researchers understand which acoustic and
prosodic features were most crucial for identifying different
parts of a disfluency.

SVM (Support Vector Machine) SVM represents a pow-
erful and versatile class of supervised learning algorithms

employed in both classification and regression tasks. As a
linear classifier, SVM seeks to delineate optimal hyperplanes
within the feature space to segregate distinct categories. It ac-
complishes this by identifying support vectors—data points
lying closest to the decision boundary—and determining the
hyperplane that maximally separates these vectors, thus es-
tablishing a clear margin between classes. SVM’s efficacy
extends beyond linear scenarios, as it can be adapted through
kernel functions to address non-linear relationships in the
data. This technique was highlighted in Deng et al. [2020]
in the context of second language fluency assessment meth-
ods. Another example is presented in Tsvetkov et al. [2013],
where an SVMclassifier was built to identify word fragments
after the degradation caused by disfluencies in the perfor-
mance of speech recognizers.

BERT (Bidirectional Encoder Representations from
Transformers) Represents a significant advancement in
NLP due to its remarkable ability to understand the context
and meaning of words within a sentence [Lin and Wang,
2020]. Unlike previous models, which relied solely on left-
to-right word order, BERT is “bidirectional”, meaning it an-
alyzes the entire sentence simultaneously, allowing it to cap-
ture deeper semantic relationships within text, leading to su-
perior performance on tasks requiring a nuanced understand-
ing of language. For example, in Rocholl et al. [2021] BERT
was used to ensure high performance in the detection of
reparandums and speech markers, and in Yang et al. [2020]
generated disfluent sentences from fluent sentences while
seeking to understand how the generated sentences could
help in the task of detecting disfluencies.

BLSTM (Bidirectional Long Short-Term Memory) Is a
powerful recurrent neural network architecture designed to
address the challenges of processing sequential data with
long-range dependencies. While LSTMs process informa-
tion sequentially, from the beginning to the end of a sequence,
BLSTMs utilize two LSTMs operating in opposite directions.
One LSTManalyses the sequence from left to right, while the
other reads it from right to left. This allows BLSTMs to cap-
ture contextual information from both the past and the future,
significantly enhancing their ability to handle long-range de-
pendencies. BLSTM was applied in Zayats et al. [2016] in
order to understand the connections between disfluencies and
cognitive load, as well as a speaker’s social context. Another
example of BLSTM application is presented in Wang et al.
[2016], which reinforces the importance of detecting disflu-
encies in natural language comprehension while treating the
problem through a sequence-to-sequence approach.

Multilayer Perceptrons Neural networks are inspired by
the human brain and designed to learn by processing in-
formation. They are built from simple processing units
called neurons, connected in layers. Each connection has
a weight that determines its influence. As the network pro-
cesses data, the weights between neurons are adjusted to
improve future performance. This ongoing process allows
the network to learn and establish relationships between
the data it receives and the results it produces [Abdi et al.,
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1999]. When there are more than two layers, the network
is referred to as “deep”. Previous research has explored
this technique for self-training a neural disfluency detection
model [Jamshid Lou and Johnson, 2020] and jointly mod-
eling punctuation prediction and disfluency detection [Cho
et al., 2015].

M3Ns (Max-Margin Markov Networks) M3Ns are a
powerful framework for structured prediction tasks, where
the output space is not simply a set of independent labels
but rather a complex structure with dependencies between its
components. This framework combines the strengths of both
discriminative and generative models, leveraging the advan-
tages of both approaches while minimizing their limitations
[Taskar et al., 2004]. It was described in Wang et al. [2014a]
as a kind of SVM analogous to the CRF seeking to maxi-
mize the probabilistic difference between a true sequence and
an incorrectly predicted sequence. Researches carried out in
Wang et al. [2014a] and Qian and Liu [2013] use this tech-
nique, highlighting the importance of improving transcript
readability and improving the performance of tasks inserted
into NLP.

5.1.3 Syntactic methods

This category considers techniques that applied sequential
encodings to represent structural patterns.

TAG (Tree Adjoining Grammar) Represents linguistic
constructions as trees, allowing for the recursive combina-
tion of elementary trees through tree adjoining operations.
These operations facilitate the modeling of syntactic relation-
ships and dependencies, offering a nuanced approach to lan-
guage analysis. Initial trees represent elements such as noun
phrases and verb phrases. Adjoining trees, on the other hand,
represent substructures that can be “adjoined” to initial trees
at specific locations, enriching the overall syntactic structure.
This allows TAGs to capture complex linguistic phenomena.
The research presented in Lease et al. [2006] shows the im-
portance of enriched transcripts that consider disfluencies by
using the TAG technique. In Lease and Johnson [2006] the
authors investigated the benefit of deleting speech comple-
tions in advance to improve the performance of text-based
processing.

Arc-Eager-based parser Initially, a single root node is es-
tablished to represent the entire sentence. Subsequently, in
the shift operation, tokens from the input buffer are succes-
sively added to the stack, becoming the current node. If pos-
sible, a dependency arc is formed between the top two nodes
on the stack, establishing the current node as the child and
the preceding node as the parent—this step is termed Arc-
Left. Upon the current node having all its children connected,
it is removed from the stack and incorporated into the de-
pendency tree—a process termed Reduce. This sequence—
Shift, Arc-Left, Reduce—is reiterated until the input buffer is
exhausted, and solely the root node remains within the stack,
encapsulating the complete dependency structure of the sen-
tence [Rasooli and Tetreault, 2014]. In Yoshikawa et al.

[2016] a syntactic analysis method based on theArc-Eager al-
gorithm was proposed to deal with disfluencies directly from
speech recognizer outputs. In Honnibal and Johnson [2014]
the technique was used to detect repairs and restarts.

5.2 Hybrid techniques
As shown in figure 9, the results highlight the dominance of
Machine Learning combined with Statistics and Mathemat-
ics, showcasing their powerful synergy in this field. This
trend is evident in various combinations like Decision Tree-
Maxent [Lin and Lee, 2009], BLSTM-CRFs [Tanaka et al.,
2019], and LSTM-Noisy Channel Model [Jamshid Lou and
Johnson, 2017]. These approaches leverage the strengths
of different methods to achieve superior performance. As
pointed out in Hristea [2011], the application of statistical
methods andmachine learning algorithms to solve NLP prob-
lems has been occurring since the 90s. This is due to their pre-
diction robustness based on some input and data inference on
different variable relationships.
While less common, statistical and mathematical tech-

niques combined with linear programming also emerged as
a significant approach. This is seen in the integration of
methods like Maxent and CRFs with linear programming
[Georgila et al., 2010; Georgila, 2009].
Finally, the combination of machine learning and linear

programming, exemplified by HELM-ILP [Georgila, 2009],
appears to be a less developed area, suggesting that there is
potential for further exploration.

Figure 9. Distribution of single techniques by field of study.

6 Databases and transcription tools
A challenge in the context of disfluency analysis is the com-
position of databases that are adequate for evaluating meth-
ods and techniques. In this context, the EARS (Effective,
Affordable, Reusable Speech-to-Text) program was created
by the North American research agency DARPA, with the
aim of advancing the state of the art in speech recognition.
Under the administration of the NIST (National Institute of
Standards and Technology), the program’s efforts focused on
research in conversion from speech to text (Speech-to-text /
STT) and the readability of this information, also known as
metadata extraction (Metadata Extraction / MDE) [Strassel,
2004].
Among the supporters of the EARS program, it is worth

highlighting the Linguistic Data Consortium [LDC, 2024].
Founded in 1992, the LDC brings partnering universities,
corporations, and research laboratories together in order to
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collect and distribute linguistic resources while offering a va-
riety of transcribed and annotated databases annotated to a
series of phenomena. Most of the studies included in this
systematic review used some dataset distributed by the LDC,
with Switchboard being the most reported one.

Table 2 provides details of the databases used in the in-
cluded articles, such as citation number, distribution, lan-
guage, composition, transcription availability, and disflu-
ency annotation. The databases were categorized according
to availability, being classified as “Public” (when the data
used was publicly available), “Private” (when the data used
was not publicly available) and “Commercial private” (when
the data used was available publicly but under conditions of
some license payment). The acronym “NI” was used when
the data was not informed while “NA” when not applied. As
shown, 43% of the databases have public distribution, 27%
did not inform, 23% are of the private-commercial type and
7% are private. Studies using more than one database were
counted for all databases used.

Considering that the main databases already made the au-
dio recordings transcripts available, most studies (67 arti-
cles) did not use a transcription tool to test proposed mod-
els. Among the studies that used transcription technolo-
gies and mentioned the name of the tool, 20% opted for the
Hidden Markov Model Toolkit. Other studies used Kaldi
(10%), Iflyrec (10%), Audimus.Media (10%), BBN Byblos
(10%), LIUM (10%) andMicrosoft Research S2S (10%). An
overview of the transcription tools used is presented in Table
3. The acronym “NI” was used when the data was not in-
formed.

7 Evaluation Measures

All included studies carried out some type of evaluation of
the proposed method, using measures like F-score, preci-
sion, and recall (as highlighted in Figure 10). Studies were
counted for each evaluation method used.

Disregarding traditional measures and taking into account
specificmeasures on the present study scenario, it is pertinent
to highlight the Edit Error Rate and IP Error Rate. This is
established as the average number of missed detections and
false alarms for edits and interruption points, respectively.
Such measures were defined by the NIST (National Institute
of Standards and Technology) in RT-04F (Rich Transcription
Fall 2004 Evaluation). For this reason, they are also referred
to in the literature as the NIST Error Rate [Wang et al., 2010;
Liu et al., 2006].

Another very important measure in speech recognition is
the Word Error Rate (WER), consisting of the sum of in-
sertions, deletions, and substitutions divided by the original
number of words. For this rate, the smaller the value, the
better the tool performs.

8 Limitations, challenges and oppor-
tunities

8.1 Limitations and challenges

As most studies relied on transcripts developed by humans,
this implies the availability of a transcribed and annotated
database for disfluencies. Nevertheless, the main cited
databases that have transcription and annotation for disflu-
encies are commercial (Section 6). This fact is probably due
to the cost involved in building such bases, which requires
the action of many people in order to obtain reliable results.
Making public databases available with annotations so that
various research groups can benefit is still a research chal-
lenge.
We noted that transcription tools have the default behavior

of removing disfluencies or trying to correct for sentences
that are grammatically correct, or close to it.
To enhance the reader’s understanding of the comparative

effectiveness of various disfluency detection methods, we
conducted a performance analysis across eight studies (Ta-
ble 4), focusing on the reported F-score measure of these
methods. In order to accomplish this objective, we selected
the most similar studies, i.e., those that utilized the same lan-
guage (English) and the same dataset (Switchboard). Even
so, the fact that some of these studies involved multiple lan-
guages and databases introduces variability that may affect
the comparability of results. Moreover, different definitions
of disfluencies, along with variations in dataset size, quality,
and preprocessing methods, can introduce biases. Despite
these challenges, analyzing the data reveals that newer tech-
niques, such as BERT and BLSTM, tend to outperform older
methods, suggesting that advancements in technology and
research have led to improved performance. BLSTM, in par-
ticular, achieves the highest F-score of 91.80, as reported in
Bach and Huang [2019].

8.2 Opportunities

Some questions to be explored in the future were raised. The
first is to understand the applicability of techniques devel-
oped in languages other than the one for which the technique
was designed. The idea is to evaluate the performance of
the techniques, verifying if there is any loss of performance
when changing a language or not. As presented in Table 5
of the appendix, approximately 70% of the included articles
were developed for the English language. While this fact is
a limitation of the current state of the art, it is also a valuable
opportunity for research. It is also a research opportunity for
configurable tools that enable the choice of whether to detect
disfluencies or not, as well as the type of disfluencies to be
detected.
It is worth further exploring automatic speech recognizer

outputs, assessing the impacts of their use and generating
input for the development of transcription tools. Addition-
ally, the potential for improving disfluency detection was no-
ticeable in the detection of structural events such as spelling
punctuation (Section 3). As such, it is interesting to study the
contribution of other conversation elements such as visual
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Table 2. Summary of databases
Database Citations Distribution Language Composition Transcript Annotates disfluency?
Switchboard 46 (49%) Godfrey and

Holliman
[1993b,a];
Graff et al.
[1998, 1999,
2001a,b,c,
2002, 2004];
Calhoun et al.
[2009]

English Phone Conversations and Wall
Street Journal Collections

Yes Yes

Mandarin Conversational Dia-
logue Corpus (MCDC)

5 (5%) S.-C. [2004] Mandarin 27 hours of dialogue Yes Yes

Fisher 4 (4%) Cieri et al.
[2004]

English 984 hours of recorded phone conver-
sations

Yes No

CallHome 3 (3%) Canavan
et al. [1997];
Kingsbury
et al. [1997]

English 120 30-minute phone conversations Yes No

Spoken Dutch Corpus 3 (3%) Oostdijk
[2002]

Dutch Speech samples from different re-
gions of Holland and Flanders (Bel-
gium)

Yes Yes

SCOTUS 3 (3%) Oyez [2022] English US Supreme Court Cases, record-
ings with about 1h

Yes No

RT-04 MDE 3 (3%) Walker et al.
[2005]; Lee
and Strassel
[2005]

English Approximately 60 hours of phone
conversations

Yes Yes

Corpus of Spontaneous
Japanese (CSJ)

3 (3%) Maekawa
[2003]

Japanese Dialogues containing about 7 mil-
lion words

Yes Yes

Financial Crisis Inquiry Com-
mission (FCIC)

2 (2%) Zayats et al.
[2014]

English Recorded Audiences Yes Yes

Spontaneous Speech Recon-
struction (SSR)

2 (2%) Fitzgerald and
Jelinek [2008]

English Fisher extension, 6400-phrase set Yes Yes

French Broadcast News 1 (1%) Dufour et al.
[2009]

French 11:37 minutes collected from five
radio programs

Yes No

DARPA-TransTac 1 (1%) Stallard et al.
[2011]

English Dialogues in different contexts Yes No

Lectra 1 (1%) Trancoso
et al. [2008]

European Portuguese 1 semester of classes between 60-90
minutes

Yes Yes

Mandarin Chinese CallHome
(MCC)

1 (1%) Honal and
Schultz
[2004]

Mandarin 100 recorded dialogs Yes Yes

English Verbmobil 1 (1%) Honal and
Schultz
[2004]

English 127 recorded dialogs Yes Yes

TOEFL Practice Online Test 1 (1%) Chen and
Yoon [2011]

English 1,066 responses collected from a
proficiency test

Yes Yes

Rapport 1 (1%) Gratch et al.
[2007]

English Interaction with a virtual agent No Yes

AMI Meeting 1 (1%) Carletta et al.
[2005]

English 100 hours of recorded meetings Yes No

GroupMeeting 1 (1%) Zechner
[2002]

English Carnegie Project Group Meetings-
Mellon University

NI NI

Voxfactory 1 (1%) Clavel et al.
[2013]

French 1000 hour recordings set from a call
center

Yes Yes

CrossFire 1 (1%) Zechner
[2002]

English Excerpts from the CrossFire televi-
sion show from CNN (1998)

NI NI

GALE Ontonotes Chinese 1 (1%) Wang et al.
[2010]

Chinese 3,230 sentences Yes Yes

Phonologie du Français Contem-
porain

1 (1%) Avanzi [2014] French Text readings and interviews that
add up more than 11 hours long

Yes Yes

NewsHour 1 (1%) Zechner
[2002]

English Excerpts from the TV show PBS
NewsHour (1998)

NI NI

IWSLT 1 (1%) Lin and Wang
[2020]

NI NI NI NI

Pushshift Reddit 1 (1%) Baumgartner
et al. [2020]

English Comments from a community on
the Reddit platform

NA No

CallFriend 1 (1%) Canavan and
Zipperlen
[1996]

English Phone conversations Yes No

MAT Speech Database 1 (1%) Yeh and Wu
[2006]

Mandarin NI NI NI

IARPA Babel project 1 (1%) Tsvetkov
et al. [2013]

Cantonese and Turk-
ish

71 hours of speaking in Cantonese
and 40 hours in Turkish

Yes Yes

PhoATIS 1 (1%) Dao et al.
[2022]

Vietnamese 5871 fluent utterances Yes Yes

and gestural movements. In the same way that some stud-
ies used acoustic and prosodic resources for detecting dis-
fluencies (Section 5), it is pertinent to understand that other
resources can be extracted for improved detection, and may
even provide inputs for the diagnosis of emotions such as

anxiety, fear, doubt and others.

As mentioned, annotated databases are still challenging in
the area. A promising approach to address this issue is using
shared tasks, as defined in SIGEDU [2024]. Shared tasks
can involve collaborative research and competition, where
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Table 3. Summary of main transcription tools used
# Tool Description Availability Cited in
1 Hidden Markov Model Toolkit (HTK) Software designed to cover gen-

eral speech processing activities
Public Yeh and Wu [2006];Yeh et al. [2007]

2 Kaldi A toolkit developed in C++ Public Yoshikawa et al. [2016]
3 Iflyrec Supported transcription plat-

form for 9 languages that
promises up to 97.5% accuracy

Private Wang et al. [2017]

4 Audimus.Media Speech recognizer for European
Portuguese. Developed in
Meinedo et al. [2003]

NI Medeiros et al. [2013]

5 Byblos Speech recognizer designed to
handle large vocabularies Chow
et al. [1987]

NI Gupta et al. [2014]

6 LIUM Speech recognizer based on the
Sphinx system

NI Dufour et al. [2009]

7 Microsoft Research S2S Speech Recognition and Ma-
chine Translation system

NI Hassan et al. [2014]

Figure 10. Main measures used and objectives.

Table 4. Performance comparison across studies considering the F-scoremeasure and studies that consider English as idiom and Switchboard
dataset.

Reference Technique F-score
Bach and Huang [2019] BLSTM 91.80
Rocholl et al. [2021] BERT 90.90
Qian and Liu [2013] M3N 84.10
Zwarts and Johnson [2011] NCM 83.80
Zayats et al. [2014] CRFs 82.80
Rasooli and Tetreault [2014] Arc-Eager 82.60
Johnson and Charniak [2004] TAG 79.70
Miller and Schuler [2008] HHMM 77.15

researchers and practitioners work together to solve shared
problems using common data and evaluation measures.

Some recent examples of this practice share databases,
code, and experiences. In Tack et al. [2023] is presented a
contest aimed to evaluate the ability of generative language
models to act as AI teachers, replying to a student in a teacher-
student dialogue. Eight teams participated, employing var-
ious state-of-the-art models. All participants worked with
training and test samples derived from the Teacher-Student
Chatroom Corpus [Caines et al., 2020, 2022], which pro-
vided dialogue contexts and reference teacher responses for
training. While the results were promising, the study em-
phasized the need for more suitable evaluation metrics for

educational contexts.

Another example can be found in Volodina et al. [2023],
where researchers were tasked with developing systems to
detect grammatical errors in five languages: Czech, English,
German, Italian, and Swedish. The participants were pro-
vided with training, development, and test datasets for each
language, and were allowed to incorporate additional pub-
licly available resources, such as monolingual data, artificial
data, pre-trained models, and syntactic parsers. This effort
aimed to address the lack of representation of certain lan-
guages in grammatical error detection research. By focusing
on multilingual datasets, the task encouraged the creation of
models that are both more robust and adaptable across differ-
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ent languages.
Competitions have played a significant role in promoting

dataset sharing. As highlighted by Ribeiro and Nunes [2022],
events like SATA [2024], Kaggle [2024], and ACDC [2024]
have significantly influenced the development of left ventri-
cle segmentation methods, allowing comparisons among dif-
ferent approaches trained and tested with common datasets.
Similarly, shared tasks could contribute to the analysis and
classification of disfluencies by providing common datasets.
Although shared tasks have proven beneficial in both

academia and industry, some challenges remain, including
issues with transparency, secretive practices, conflicts of in-
terest, and unequal access to resources. To address these chal-
lenges, it is necessary to encourage participants to disclose
their systems, resources, successes, and failures, as stated by
Nissim et al. [2017].

9 Conclusion
Building human-computer conversational interfaces is a chal-
lenging task due to the wide diversity of expressions and
events in spontaneous speech. With the understanding that
disfluencies directly impact readability for speech recogniz-
ers, this article presented a systematic review identifying
the main challenges along with research opportunities in the
area.
Researchers have made significant progress in develop-

ing methods to detect disfluencies using various techniques,
with a focus on English. Statistical and machine learning ap-
proaches have been dominant, and evaluation measures like
F-score, precision, and recall are widely used. A compari-
son we conducted among the most similar studies (with the
same idiom and the same dataset) has shown that the more re-
cent approaches, such as BERT and BLSTM, have provided
higher performance. However, limitations and opportunities
remain.
A major challenge is the lack of publicly available, anno-

tated databases for disfluencies. Existing resources are often
commercial, hindering collaboration and comparison of re-
search findings. Additionally, automatic transcription tools
often remove disfluencies, further complicating analysis.
Future research should explore the applicability of dis-

fluency detection techniques across languages. Developing
configurable tools that allow users to choose the type and
level of disfluency detection would also be valuable. An-
other promising direction lies in integrating visual and ges-
tural cues with audio data to enhance detection capabilities.
Much like the current utilization of acoustic and prosodic fea-
tures, these supplementary elements could greatly enhance
disfluency recognition and potentially provide valuable in-
sights into emotional states.
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Table 5. Summary of approved articles
# Reference Goal Dataset Language Transcribes Disfluencies Technique Evaluation
1 Shahih and Purwarianti

[2016]
Translation Sani, A. U. F. (2013) Indonesian No Filler; Discourse Marker; Repetition; Re-

pair; Stuttering
CRFs PREC, RECALL, F-SCORE

2 Wang et al. [2010] Removal GALE Ontonotes Mandarin No Filler; Edition; Interruption Point HMM-Heuristic Rules; CRFs; Heuristic
Rules

TER score; NIST Error Rate

3 Jamshid Lou et al. [2019] Detection Switchboard English No Edition Multilayer Perceptrons PREC, RECALL, F-SCORE
4 Honnibal and Johnson

[2014]
Detection Switchboard English No Repair Transition-based Dependency Parsing PREC, RECALL, F-SCORE, Unlabelled

Attachment Score (UAS), Labelled Attach-
ment Score (LAS)

5 Yildirim and Narayanan
[2009]

Detection Internal Data English No Repetition; Repair; False Start; Filler Internal Method ACC, PREC, RECALL, F-SCORE

6 Lin and Lee [2009] Detection MCDC Mandarin No Edition Decision Tree-MAXENT IP error rate, Edit error rate
7 Deng et al. [2020] Evaluate

fluency
CSJ Japanese No Filler; Fragments SVM RECALL, F-SCORE

8 Tsvetkov et al. [2013] Detection IARPA Babel project Cantonese No Fragments SVM PREC, WER, Character Error Rate (CER)
9 Honal and Schultz [2005] Removal Verbmobil, MCC English,

Mandarin
NI Discourse Marker; Repetition; False Start Noisy Channel Model RECALL, PREC, F-SCORE

10 Yeh and Wu [2006] Removal MCDC, MAT Mandarin HTK Edition Logarithmic linear model PREC, RECALL, Edit error rate
11 Tanaka et al. [2019] Detection CSJ Japanese No Filler; Fragments BLSTM-CRFs PREC, RECALL, F-SCORE
12 Wu and Yan [2005] Modeling Internal Data English NI Repetition; Filler HMM Fragment Correct Rate (FCR); Speech Act

Correct Rate (SACR); False Acceptance
Rate (FAR); False Rejection Rate (FRR)

13 Chen et al. [2020] Detection Internal Data Chinese No Reparandum; Filler CT-Transformer PREC, RECALL, F-SCORE
14 Stolcke and Shriberg [1996] Prediction Switchboard English No Filler; Repetition; False Start N-gram WER
15 Liu et al. [2006] Detection RT-04 MDE English No Edition; Interruption Point; Filler; Dis-

course Marker
HMM; MAXENT; CRFs WER; NIST Error Rate

16 Lease et al. [2006] Detection Switchboard, Fisher English NI Repair; Filler; Interruption Point TAG Edit error rate
17 Gupta and Bangalore [2003] Removal Internal Data English No Filler; Discourse Marker; Edition Boosting PREC, RECALL, F-SCORE
18 Stouten and Martens [2003] Detection Spoken Dutch Corpus Dutch No Filler Internal Method PREC, RECALL, ROC curve
19 Dufour et al. [2009] Spontaneous

speech
French Broadcast News French LIUM ASR Filled pause; Repetition Max. likelihood PREC, RECALL, WER, NCE

20 Zechner [2002] Detection +
Removal

Switchboard, CallHome,
CallFriend, NewsHour,
CrossFire, GroupMeeting

English No Filled Pause; Repair; False Start POS; Decision Tree; Internal Method PREC, RECALL, F-SCORE

21 Johnson and Charniak
[2004]

Detection +
Removal

Switchboard English No Repair TAG PREC, RECALL, F-SCORE

22 Zechner [2001] Detection +
Removal

Switchboard English No Filler; Repair; False Start POS; Decision Tree; Internal Method F-SCORE, PREC, RECALL

23 Georgila et al. [2010] Detection Rapport corpus, Switch-
board

English No Repetition; Repair CRFs; CRFs-ILP PREC, RECALL, F-SCORE, NIST Error
Rate

24 Lendvai [2003] Detection Spoken Dutch Corpus Dutch No Fragments TiMBL 4.3, RIPPER (Cohen, 1995) ACC, PREC, RECALL, F-SCORE
25 Chen and Yoon [2011] Detection TOEFL Practice Online Test English No Interruption Point MAXENT; CRFs ACC, PREC, RECALL, F-SCORE
26 Gupta and Bangalore [2002] Detection Switchboard English No Repair N-gram; Boosting RECALL, PREC
27 Georgila [2009] Detection Switchboard English No Repetition; Repair HELM; MAXENT; CRFs; HELM-ILP;

MAXENT-ILP; CRFs-ILP
F-SCORE, NIST Error Rate

28 Zwarts et al. [2010] Detection +
Removal

Switchboard English No Repair Noisy Channel Model Responsiveness Measure

29 Liu [2003] Detection Switchboard English No Fragments CART PREC, RECALL, ACC
30 Miller and Schuler [2008] Syntax Anal-

isys
Switchboard English No Repair HHMM F-SCORE; edit-finding

31 Snover et al. [2004] Detection Switchboard English No Edition; Filler Transformation-Based Learning LER
32 Miller [2009] Syntax Anal-

isys
Switchboard English No Repair HHMM PREC, RECALL, F-SCORE

33 Fitzgerald et al. [2009] Detection SSR English No Filler; Edition CRFs PREC, RECALL, F-SCORE
34 Lease and Johnson [2006] Removal Switchboard English No Filler TAG F-SCORE
35 Womack et al. [2012] Prediction Internal Data English No Filler Decision Tree ACC
36 Wang et al. [2013] Detection RT-04 MDE Mandarin,

English
No Filler; Edition; Interruption Point CRFs NIST Error Rate

37 Yang et al. [2020] Insertion Switchboard English No Insertion; Repetition BERT PREC, RECALL, F-SCORE
38 Wu et al. [2015] Detection Switchboard, Internal Data English, Chi-

nese
No Repair R2L parsing PREC, RECALL, F-SCORE, Unlabelled

Attachment Score (UAS), Labelled Attach-
ment Score (LAS)

39 Rasooli and Tetreault [2013] Detection Switchboard English No Reparandum; Discourse Marker; Filler Arc-Eager PREC, RECALL, F-SCORE
40 Jamshid Lou et al. [2018] Detection Switchboard English No Repair ACNN; CNN PREC, RECALL, F-SCORE
41 Wang et al. [2017] Detection Switchboard, Internal Data English, Chi-

nese
iflyrec Reparandum LSTM; BLSTM PREC, RECALL, F-SCORE

42 Jamshid Lou and Johnson
[2017]

Detection Switchboard English No Repair LSTM-Noisy Channel Model F-SCORE; error rate

43 Wang et al. [2016] Detection Switchboard, Internal Data English, Chi-
nese

No Repair BLSTM PREC, RECALL, F-SCORE

44 Yoshikawa et al. [2016] Detection Switchboard English Kaldi Repair; Discourse Marker; Filler Joint Dependency Parsing PREC, RECALL, F-SCORE
45 Rohanian and Hough [2020] Detection Switchboard English No Repair; Edition LSTM-CRFs F-SCORE
46 Zwarts and Johnson [2011] Detection Switchboard English No Repair Noisy Channel Model F-SCORE
47 Qian and Liu [2013] Detection Switchboard English No Edition M3N F-SCORE
48 Zayats and Ostendorf [2019] Detection Switchboard English No Reparandum; Repair LSTM-CRFs F-SCORE
49 Wang et al. [2014a] Detection Switchboard English No Edition M3N F-SCORE
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50 Ferguson et al. [2015] Detection Switchboard English No Reparandum; Repair Prosody-Semi-CRFs PREC, RECALL, F-SCORE
51 Wang et al. [2018] Detection Switchboard English No Reparandum; Filler Semi-supervised model PREC, RECALL, F-SCORE
52 Wang et al. [2014b] Prediction Switchboard English No Edition; Filler M3N F-SCORE
53 Jamshid Lou and Johnson

[2020]
Detection Switchboard, Fisher English No Edition Multilayer Perceptrons PREC, RECALL, F-SCORE

54 Rasooli and Tetreault [2014] Detection Switchboard English No Reparandum Arc-Eager PREC, RECALL, F-SCORE
55 Liu et al. [2004] Detection Switchboard English No Interruption Point Prosody model; HMM; Prosody-HMM Classification Error Rate
56 Stouten and Martens [2004] Detection Spoken Dutch Corpus Dutch Demuynck

et al. [2000];
Duchateau
et al. [1998]

Filler; Repetition Adaptive search technique WER

57 Lin and Lee [2005] Detection MCDC Mandarin No Interruption Point Decision Tree; MAXENT; Decision Tree-
MAXENT

ACC

58 Liu et al. [2005] Detection RT-04 MDE English NI Edition; Interruption Point HMM; MAXENT; CRFs NIST Error Rate, WER
59 Maskey et al. [2006] Detection Switchboard English No Repetition; Repair; Filler Fast phrase-based statistical translation PREC, RECALL, F-SCORE
60 Lin and shan Lee [2006] Detection MCDC Mandarin No Interruption Point Latent Prosodic Modeling ACC
61 Yeh et al. [2007] Removal MCDC Mandarin HTK Edition CRFs Loss rate, false alarm rate and error rate
62 Germesin et al. [2008] Detection AMI Meeting Corpus English No Filler; Stuttering; False Start; Tongue slip;

Discourse Marker; Edition; Insertion; Rep-
etition; Repair; Erro; Order; Omission

Internal Method; Decision Tree; N-gram F-SCORE; ACC

63 Ostendorf and Hahn [2013] Detection Switchboard, SCOTUS English No Reparandum; Repetition CRFs F-SCORE
64 Medeiros et al. [2013] Detection LECTRA European

Portuguese
Audimus Interruption Point; Filler; Repair CART PREC, RECALL, F-SCORE, NIST Error

Rate
65 Hassan et al. [2014] Removal Switchboard, Fisher English;

Spanish
Microsoft Re-
search S2S

Filler; Discourse Marker; Repair; Repeti-
tion

CRFs F-SCORE

66 Gupta et al. [2014] Detection DARPA TransTac English BBN Byblos Repetition; Repair Internal Method WER, ROC curve
67 Dutrey et al. [2014] Detection Voxfactory French No Edition CRFs PREC, RECALL, F-SCORE, Slot Error

Rate (SER)
68 Zayats et al. [2014] Detection Switchboard, CallHome,

SCOTUS, FCIC
English No Repair CRFs F-SCORE

69 Christodoulides and Avanzi
[2015]

Detection Phonologie du Français Con-
temporain

French No Filler; Repetition; Interruption Point; Edi-
tion

SVM; CRFs; SVM-CRFs PREC, RECALL, F-SCORE

70 Bertero et al. [2015] Detection SSR English No Filler; Repetition; False Start CRFs; Multilayer Perceptrons PREC, RECALL, F-SCORE
71 Hough and Schlangen

[2015]
Detection Switchboard English No Edition; Repair RNN Precision metrics; Time metrics; Di-

achronic metrics
72 Cho et al. [2015] Detection Internal Data English No Filler; Repetition; Interruption Point CRFs; Multilayer Perceptrons; CRFs-

Multilayer Perceptrons
PREC, RECALL, F-SCORE

73 Zayats et al. [2016] Detection Switchboard English No Edition BLSTM PREC, RECALL, F-SCORE
74 Bach and Huang [2019] Detection Switchboard, CallHome,

SCOTUS, FCIC, interviews
English No Insertion; False Start; Repetition BLSTM PREC, RECALL, F-SCORE

75 Lin and Wang [2020] Prediction Switchboard, English
IWSLT dataset

English No Filler; Edition BERT PREC, RECALL, F-SCORE

76 Rocholl et al. [2021] Detection Switchboard, Fisher,
Pushshift Reddit

English No Reparandum; Filler BERT PREC, RECALL, F-SCORE

77 Lee et al. [2021] Detection Switchboard English No Reparandum Transformer-CRFs; BERT-CRFs;
ELECTRA-CRFs

PREC, RECALL, F-SCORE

78 Dao et al. [2022] Detection PhoATIS Vietnamese No Reparandum; Filler BERT-CRFs F-SCORE
79 Ghosh et al. [2022] Detection Switchboard English No Reparandum BERT-CRFs; ELECTRA-CRFs PREC, RECALL; F-SCORE
80 Horii et al. [2022] Detection CSJ Japanese No Filler Internal Method Character Error Rate (CER); Sentence Er-

ror Rate (SER)
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