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Abstract Smart Contracts are autonomous, self-executable programs that facilitate agreement execution without
the need for intermediaries. These contracts are also susceptible to software defects, leading to vulnerabilities that
can be exploited by attackers. The use of models for predicting software defects is a well-studied research area.
However, applying these models with Smart Contract metrics is an area that remains underexplored. The aim of
this study is to evaluate whether deep learning models used in the prediction of traditional software defects produce
equivalent results with specific Smart Contract metrics. Machine learning models were applied to four data sets, and
performances were evaluated using Precision, Recall, F-score, Area under the curve (AUC), Precision-recall curve
(PRC), and Matthews Correlation Coefficient (MCC). This approach complements traditional formal verification
methods, which, although accurate, are often slower and less adaptable to emerging vulnerabilities. By employing
deep learning, the model enables faster andmore cost-effective analysis of large volumes of Smart Contracts. Unlike
conventional techniques that rely on expert-defined rules and require substantial computational resources, this model
offers scalable and continuous monitoring. Consequently, the research provides a complementary solution that can
significantly enhance the security of the smart contract ecosystem, allowing for the detection of potential defects
before exploitation occurs.
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1 Introduction

Softwares are embedded in many areas of human activity,
causing a significant impact on our way of living. A soft-
ware is an intangible product built by people through a pro-
cess aiming to function as designed without defects. A soft-
ware defect is an error, vulnerability, or deviation in a soft-
ware product or in the software development process [Oza-
kinci and Tarhan, 2016]. Defects can lead to excessive con-
sumption of project resources, including time, cost, and ef-
fort [Saifan and Abu-wardih, 2020]. In this scenario, vari-
ous studies have sought to prevent or identify these defects in
the earliest stages of software development, including plan-
ning, coding, and preliminary testing, to minimize the impact
on project time, cost, and effort. Software defect prediction
techniques emerge as a response to this challenge, aiming to
classify defective parts of a software system before its release
[Chang et al., 2011]. Software metrics serve as an indirect in-
dicator of the likelihood of software defects, thus affecting its
quality [Wang et al., 2012]. Object-oriented (OO) software
metrics, for example, are based on elements such as Depth
of Inheritance Tree (DIT) and Lines of Code (LOC) [Fenton
and Bieman, 2014].
Smart contracts are computer programs that implement

and execute transactions and manage business logic in soft-
ware developed for blockchain, which consists of a decentral-
ized and distributed data structure, characterized by its secu-
rity and transparency due to the chained blocks that record
transactions immutably on multiple computers [Bhargavan

et al., 2016; Beck et al., 2017; Treiblmaier, 2020]. One of the
main platforms for deploying these smart contracts is the pub-
lic Ethereum Blockchain [Osterland and Rose, 2020]. These
contracts are commonly programmed using the Solidity lan-
guage [Pierro and Rocha, 2019]. This language has specific
metrics to quantify various aspects of smart contract code,
which can be used by developers to improve the quality of
the produced code [Pierro and Tonelli, 2020]. They intro-
duce a new dimension for the application of these metrics.
In addition to object-oriented software metrics, specific met-
rics for smart contracts and blockchain can be employed to
identify potentially defective software. As pointed out by
Liu et al. [2023], existing contract security analyses heavily
depend on rigid rules defined in advance by experts, a labori-
ous and non-scalable process. Software testing and Machine
Learning (ML) are two major research areas whose intersec-
tion has attracted researchers’ attention [Durelli et al., 2019].
Software testing is an essential activity aimed at identify-

ing and addressing vulnerabilities and other types of errors in
software. This process helps ensure that the software func-
tions correctly and securely, minimizing the risk of execution
deviations from specifications or security breaches. ML, a
subarea of Artificial Intelligence, consists of models that en-
able iterative learning from data, taking into account a speci-
fied architecture and reward functions. The learning of these
models can be broadly categorized into three main types: su-
pervised, unsupervised, and reinforcement learning [Ghaffar-
ian and Shahriari, 2017; Durelli et al., 2019; Mirjalili et al.,
2020; Jiang et al., 2023]. ML models have been increasingly
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used in software defect prediction. Considering that software
testing costs are substantial, even small improvements in the
ability to identify and correct defects can result in significant
savings [Bowes et al., 2018].
Attention to smart contracts has increased as blockchain

technology advances, raising concerns related to their secu-
rity [Jiang et al., 2023]. The Solidity language, widely used
for executing smart contracts on the Ethereum Blockchain,
presents specific challenges in detecting vulnerabilities,
which are particular types of defects. These vulnerabilities
can bemaliciously exploited and are critical to the security of
contracts [Bhargavan et al., 2016; Pierro and Tonelli, 2020;
Liu et al., 2023]. Existing tools depend on rigid logical rules
defined in advance by experts, and the time to perform detec-
tion significantly increases with the complexity of the smart
contract [Zhang et al., 2022]. Despite recent advances in au-
tomated analysis, testing, and debugging of Ethereum smart
contracts, according to Durieux et al. [2020], the complexity
of implementation and the difficulty of accessing data and
qualified professionals to label defects found in smart con-
tracts represent obstacles to the comparison and reproduction
of these researches. To the best of our knowledge, there is no
Solidity dataset with metrics and labelled vulnerabilities, nor
any other work using Solidity software metrics in predicting
defects in smart contracts.
This work aims to investigate the effectiveness of machine

learning models, specifically applied with traditional object-
oriented software metrics (OO) and specific metrics of the
Solidity language, in predicting defects in smart contracts.
To evaluate the application of smart contract metrics in defect
prediction, we implemented a Deep Learning-based model
that we named Deep Neural Network — Ethereum Solidity
Metrics (DNN-ESM). To build our labelled Solidity software
metrics dataset with defects, we combined smart contract
datasets from the work of Pierro and Tonelli [2020], contain-
ing metrics, with defect labels produced by Yashavant et al.
[2022]. Thus, we created a new dataset to evaluate smart
contracts.
The primary contribution of this research is the proposal of

a defect prediction model for smart contracts based on spe-
cific metrics of the Solidity language. This approach com-
plements traditional formal verification methods which, al-
though precise, tend to be slower and less adaptable to new
vulnerabilities. The proposed model utilizes deep learning
to efficiently predict defects, enabling faster and more cost-
effective analysis of a substantial number of smart contracts
deployed on the blockchain. Unlike conventional techniques
that rely on expert-defined rules and require significant com-
putational effort, this Solidity metrics-based approach en-
ables continuous and expansive monitoring that can be ap-
plied on a large scale. Consequently, this research offers a
complementary solution that can significantly enhance the
security of the smart contract ecosystem, allowing for early
detection of potential defects before they are exploited.
The remainder of this article is organized as follows. Sec-

tion 2 presents fundamental concepts about smart contracts
and ML models applied in software defect prediction. Sec-
tion 3 describes the experiment planning. Section 4 presents
the execution of the experiment, and Section 5 discusses the
results. Section 6 summarizes threats to validity. Section 7

summarizes related work on software defect prediction and
vulnerability detection in smart contracts. Finally, Section
8 consolidates the conclusions and outlines future research
directions.

2 Background
This section briefly introduces the concepts of blockchain-
oriented software and MLmodels. The discussion is divided
into two parts: the first provides the essential foundations of
blockchain technology and smart contracts; and the second
demonstrates the application of ML models in software de-
fect prediction.
ML models have been gaining ground in software defect

prediction. Since software testing costs are very high, even
small improvements in our ability to find and fix defects can
make a significant difference in overall costs [Bowes et al.,
2018]. A software defect prediction model typically relies
on ML techniques, and supervised learning consists of two
essential phases: Training Phase and Validation Phase.
In the Training Phase, the model is constructed from a

combination of training instances. These instances come
from historical software datasets, labelled by a flag represent-
ing their classification, such as clean or defective, where the
independent variables predict dependent variables, given the
values of input attributes. Feature values can be numerical,
nominal or categorical, or ordinal [Qiao et al., 2020]. In this
context, software metrics represent the characteristics or at-
tributes of the generated instances.
In theValidation Phase, after themodel has been built, new

unknown instances are provided to validate the produced
model [Saifan and Abu-wardih, 2020]. Various ML models
have been experimented with in software defect prediction
using supervised learning, and in diverse strategies, where
binary classification is one of the most used [Chicco and Ju-
rman, 2023]. Solidity is the most used language for smart
contracts executed on the Ethereum Blockchain [Bhargavan
et al., 2016; Pierro and Tonelli, 2020; Liu et al., 2023]. Ex-
isting smart contract vulnerability detection tools depend on
rigid logical rules defined in advance by experts, and the time
to execute detection significantly increases as the complexity
of the smart contract increases [Zhang et al., 2022].

2.1 Smart contracts
Smart contracts are computer programs that implement
and execute transactions and manage business logic on a
blockchain. These contracts can be written in various pro-
gramming languages and for different blockchains. How-
ever, currently, the most used language for smart contracts
is Solidity, and the most used platform is the Ethereum
Blockchain [Bhargavan et al., 2016; Pierro and Tonelli, 2020;
Liu et al., 2023].
The Ethereum Blockchain is a public ledger that keeps

records of all transactions and executes software code im-
plementing smart contracts [Badruddoja et al., 2021]. In
Ethereum, smart contracts are developed and operationalized
on the Ethereum Virtual Machine (EVM), a robust environ-
ment that not only facilitates the creation and execution of
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these contracts and DApps (decentralized applications) but
also allows for the writing and autonomous execution of com-
plex code instructions. Users deploy smart contracts by pub-
lishing the bytecode of the smart contract on the blockchain
[Zhang et al., 2020].
To enhance the development and implementation of smart

contracts, development (Dev) and testing (Testnet) environ-
ments are crucial. They provide a separate space from the
main network (Mainnet) for developers to write, test, and re-
fine their contracts before deploying them on the main net-
work. This is important to mitigate risks, given that any er-
ror in a smart contract becomes immutable after its imple-
mentation on the blockchain. While read operations are free,
it is important to note that write tasks in smart contracts on
Ethereum consume gas, a fee charged to execute operations
on the network.
Effective smart contract modelling, however, faces signifi-

cant obstacles. The complexity of the Solidity language, the
scarcity of supporting tools, infrastructural limitations, and
the lack of clear information on interface patterns and im-
plementation specifications are barriers that developers en-
counter.
The immutability of the blockchain presents an additional

challenge, as correcting errors in already implemented code
becomes a daunting task. Unlike traditional software devel-
opment, which allows for iterations in various phases, smart
contract development requires all iterations and testing to be
completed before the implementation phase due to the im-
mutable nature of these contracts.
Programming in the context of smart contracts introduces

its own constraints, such as size limitations and complexities
in interaction between different contracts. These characteris-
tics demand a meticulous approach to ensure that contracts
meet the requirements and policies established by stakehold-
ers. In the EVM environment, error detection can be chal-
lenging, and even when available, compliance with stan-
dards, although crucial, does not guarantee that specifica-
tions are fully met, leaving room for vulnerabilities in con-
tract interactions [Velasco et al., 2023].
Given the complexity of software development in the

blockchain context, a new development paradigm called
Blockchain-Oriented Software (BOS) has been created [Ortu
et al., 2019]. BOS is any software that operates with the im-
plementation of a blockchain. Software developers can apply
specific BOS software engineering practices considering the
characteristics of a blockchain. Such practices constitute the
basis of Blockchain-Oriented Software Engineering (BOSE).
This software architecture with its specific design notations,
macro architecture patterns, or metamodels can be defined
for the development of BOS. Due to the distributed nature of
the blockchain, specific metrics are needed to measure the
complexity, communication capability, resource consump-
tion, and overall performance of BOS systems. Thus, BOSE
can benefit from the introduction of specific metrics.
To enhance system security and reliability in the context

of critical security systems, such as BOS, it is crucial to ap-
ply adequate testing techniques tailored to the nature of the
application. Specifically, test suites need to be implemented
for BOS. Furthermore, facilitating the development of smart
contracts is an ongoing challenge. The authors highlight the

need for software engineers to develop specialized tools and
techniques for blockchain-oriented software architecture, de-
velopment, and testing [Porru et al., 2017].
Solidity is the primary programming language for Smart

Contracts, initially released in May 2015. Since then, its con-
stant evolution, characterized by various version updates and
bug fixes, has responded to emerging needs and specific prac-
tices of blockchain-oriented programming, which in turn can
impact software metrics. These smart contracts, applied in
various industries with high economic impact, reinforce the
need for code analysis tools to verify compliance with So-
lidity coding rules [Pierro and Rocha, 2019]. Additionally,
detecting vulnerabilities in smart contracts is a key element
for blockchain security [Liu et al., 2023].
The vulnerabilities addressed in this work include

ARTHM — Arithmetic Errors (Overflow and Underflow),
LE — Stuck Ether, RENT — Reentrancy, and TimeO —
Transaction Order Dependency. These vulnerabilities are
discussed in several studies, including [Chen et al., 2020],
[Huang et al., 2022], [Sui et al., 2023], [Yashavant et al.,
2022], and [Zhang and Liu, 2022]. Before detailing each
vulnerability, it is important to understand the role of Ether,
a fundamental digital asset within the Ethereum Blockchain.
Ether is used to pay transaction fees, execute smart contracts,
participate in network consensus, and purchase goods and
services on the Ethereum network. This digital asset is cru-
cial in the processes that may be affected by the following
vulnerabilities:
ARTHM Related to integer arithmetic errors, which can oc-
cur when a smart contract attempts to perform an arithmetic
operation and a value is assigned to a variable that is greater
or lesser than the representable numerical limit.
LE Refers to the situation where a smart contract has a cor-
rect deposit function, but its withdrawal function is defective
or absent, resulting in funds being trapped in the contract.
This retention may be the result of programming errors or
malicious coding.
RENT Allows a function to be called again before the com-
pletion of the first invocation. This action can be executed
repeatedly and may continue until all funds from the contract
are drained.
TimeO Occurs when the contract logic depends on the order
in which transactions are executed, introducing vulnerabili-
ties associated with transaction mining and ordering.

2.2 ML for software defect prediction
Machine Learning is a sub-branch of Artificial Intelligence
(AI) that focuses on the aspect of computer learning. It in-
cludes methods that enable a program to learn from experi-
ence. ML algorithms and techniques are often used in the
data mining process for preprocessing, pattern recognition,
and generating prediction models [Ghaffarian and Shahriari,
2017]. These methods are successfully employed in predict-
ing software defects.
Software defect prediction tasks can be divided into

within-project defect prediction (WPDP) and cross-project
defect prediction (CPDP). In WPDP, modules from the old
version of a program are used to build the defect prediction
model, which is then used to predict defective modules in the
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new version of the same software project. However, CPDP
relies on data from different projects. In CPDP, the predic-
tion model is built based on data from one or more projects
and used to predict defects in a different project. This ap-
proach can be useful when there is not enough historical data
available within the project itself to train a model [Liang
et al., 2019].
It is important to differentiate between software vulnera-

bility detection and prediction. Vulnerability detection typ-
ically requires access to the source code or byte codes of
the software, performed using static or dynamic code anal-
ysis techniques. On the other hand, software vulnerability
prediction is a more proactive approach aimed at anticipat-
ing and forecasting potential vulnerabilities in software, al-
lowing preventive measures to be taken to mitigate them be-
fore they occur. Vulnerability prediction models are built
based on historical data of past vulnerabilities, information
about software characteristics, libraries used, and program-
ming practices, among other factors. This involves using
data analysis and ML techniques to identify patterns, trends,
and risk factors that may lead to the emergence of vulnera-
bilities.
The IEEE Standard Classification for Software Anomalies

provides the main set of attributes for classifying faults and
defects in software. In this document, error, failure, defect,
issue, and bug are uniformly described as anomalies. This
standard aims to define a common vocabulary with which
different people and organizations can effectively communi-
cate about software anomalies and establish a common set
of attributes that support industry techniques for analyzing
software defect and failure data. This standard applies to
any software and any phase of the software lifecycle [ISDW,
2010]. It is important to note that this standard has not been
revised for over 10 years and currently holds the status ’In-
active — Reserved,’, indicating that while it is still available
for use, it is not actively maintained or updated.
One of the most promising technologies used in software

defect detection projects is neural networks. A neural net-
work is a type of machine-learning system inspired by the
human brain, where a collection of interconnected nodes
can perform complex tasks by learning from data. These
nodes are simple computational units that can process infor-
mation. The nodes are interconnected, and the connections
are weighted. The weight of a connection determines the
strength of the connection between two nodes [O’Shea and
Nash, 2015].
Deep Learning is a sub-branch of ML, which consists of

a family of algorithms, including, among others, Recurrent
Neural Networks (RNN), Deep Neural Networks (DNN),
Convolutional Neural Networks (CNN), and Long Short-
Term Memory (LSTM). This field acts as a subcategory of
Machine Learning, using neural networks to model and deci-
pher complex data.
DNN is an improved version of the traditional artificial

neural network with multiple dense layers. DNN models are
recently becoming very popular due to their excellent per-
formance in learning, not only the non-linear mapping from
input to output, but also the underlying structure of input
data vectors [Alghanim et al., 2022]. However, according
to Jiang et al. [2023], comprehensive reviews on the applica-

tion of ML in smart contract security detection are relatively
rare.
According to Zeng et al. [2020], a significant challenge

in vulnerability detection with Deep Learning is the lack of
datasets. Many available datasets cannot be directly applied
in training Deep Learning models due to the need for data
preprocessing. Especially for Deep Learning-basedmethods,
a lot of training data is required to achieve excellent perfor-
mance. Furthermore, there is no publicly available labelled
dataset with samples of various vulnerabilities, and the data
collection process often requires experts to laboriously label
the code. And this manual process of collecting software vul-
nerabilities can be expensive.
The learning of the ML models can be broadly catego-

rized into three main types: supervised, unsupervised, and
reinforcement [Ghaffarian and Shahriari, 2017; Durelli et al.,
2019; Mirjalili et al., 2020; Jiang et al., 2023]. In the fol-
lowing paragraphs, these three types of learning are briefly
presented.

• Supervised Learning is used when, for each set of in-
put variables, there is a corresponding output variable.
In this scenario, an algorithm is used to learn the input-
output mapping function, aiming to predict outputs for
future inputs or better understand the relationship be-
tween input and output. Supervised algorithms learn by
generalizing from known examples. These algorithms
find ways to produce the desired output based on the
input-output pairs provided by the user [Durelli et al.,
2019]. There is a supervisor to provide the learning al-
gorithm with insights into how good or bad an action or
decision is. In supervised learning methods, the dataset
is fully populated, and the learning method can check if
a particular action is correct or incorrect [Mirjalili et al.,
2020].

• Unsupervised Learning is used in situations where la-
belled training data is not available (input-output map-
ping). The goal of the learning system is to identify pat-
terns and structures in the provided dataset [Ghaffarian
and Shahriari, 2017]. The algorithm itself is responsible
for finding the labels and defining them. These learn-
ing algorithms need to learn the structure of the dataset
and the relationship between the features [Mirjalili et al.,
2020]. Unsupervised learning is typically associated
with clustering problems, where the objective is to de-
termine if inputs fall into distinct groups [James et al.,
2013]. When only a subset of input data has associated
output data, the problem becomes a blend of supervised
and unsupervised learning, often referred to as a semi-
supervised problem [Durelli et al., 2019]. In this set-
ting, algorithms must incorporate into the analysis the
input data for which associated output data is available,
as well as the input data for which there are no corre-
sponding output data [James et al., 2013]. According
to Durelli et al. [2019], the vast majority of software
testing problems have been formulated and addressed
as supervised learning problems. Semi-supervised al-
gorithms are more frequently used than unsupervised
algorithms.

• Reinforcement Learning is trained to achieve a specific
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goal. If the action taken is correct, the algorithm re-
ceives a reward; if it is incorrect, it receives a penalty.
This type of learning mimics the learning process of liv-
ing beings, based on a system of rewards and punish-
ments [Ghaffarian and Shahriari, 2017; Mirjalili et al.,
2020].

This work focuses on supervised learning methods. In the
next section, we will present the experiment planning with a
DNN applied to defect prediction in smart contracts.

3 Design of Experiment
We followed themethodology proposed by Tong et al. [2018]
to predict defects in smart contracts. In general, we first pre-
pared the data; then we chose the machine learning models,
and finally, we measured the performance. We focused on
the following research questions (RQs):
RQ1: Are machine learning models applied with traditional
OO software metrics also effective for defect prediction in
smart contracts using only Solidity metrics?
RQ2: Does the defect predictionmethod DNN-ESM applied
with Solidity metrics perform similarly to current methods
for detecting defects in smart contracts?
Next, we detail the elements associated with the method-

ology proposed in this experiment planning.

3.1 Data preparation

The data preparation stage can be divided into two subtasks:
data collection and preprocessing, which are detailed below.
A good dataset is essential to ensure effectiveness in pre-

dicting software defects. As highlighted by Pachouly et al.
[2022], the quality of the dataset significantly impacts the
performance of defect prediction models, with well-curated
and validated datasets leading to more reliable and accurate
predictions. In this study, we used datasets containing only
traditional OO metrics and datasets exclusively with Solid-
ity metrics. The dataset with traditional OO metrics was
obtained from the PROMISE package, while the Solidity
datasets were constructed based on the works of Pierro and
Tonelli [2020] and Yashavant et al. [2022]. To evaluate the
performance of our DNN-ESM model, we initially relied on
the PROMISE KC3 dataset and later on specific datasets
from the Ethereum Blockchain: ARTHM, LE, RENT, and
TimeO. These latter datasets were composed of Solidity
smart contract metrics with and without known defects (see
Table 1).
The data underwent a preprocessing phase, including

checking for missing data, duplicate instances, and convert-
ing categorical data into numerical. The data were then nor-
malized using the Standard Scaler from Scikit-learn, while
the Label Encoder was used for binary labels. The Standard
Scaler was applied to standardize the numerical features, en-
suring a mean of 0 and a standard deviation of 1 for each,
while the Label Encoder transformed categories into numer-
ical values, allowing ML algorithms to efficiently interpret
both numerical and categorical attributes.

Table 1. Solidity Metrics.

Name Description

Payable Number of Payable Functions.
Mappings Number of Mapping Types.
Modifiers Number of Function Modifiers.
Addresses Number of Addresses.
Events Number of Events.
Contracts Number of Contracts.
ABI Size of the ABI (Application Binary Interface).
Bytecode Size of the Bytecode.

3.2 Model selection criteria
Figure 1 shows a scheme of the DNN-ESM model architec-
ture. The input layer receives the metrics extracted from
the smart contracts. This layer accepts a feature vector of
a size equal to the number of attributes in the training set.
Next, the network passes through multiple dense hidden lay-
ers. The first dense layer contains 128 neurons with L2 reg-
ularization, which penalizes excessively large weights (reg-
ularization coefficient of 0.01), followed by a LeakyReLU
activation (alpha = 0.2) and a dropout of 50% to enhance the
model’s robustness. Subsequently, the second dense layer,
with 256 neurons and L2 regularization (coefficient of 0.01),
is applied along with the LeakyReLU activation and batch
normalization to stabilize the training. A second dropout of
50% is used to prevent overfitting. The model also includes
an autoencoder block, starting with a layer of 128 neurons
with ReLU activation to reduce dimensionality and extract
relevant features, followed by an encoding layer with 64 neu-
rons, also with ReLU activation. After the encoder, the re-
construction of the inputs is performed by a dense layer of
128 neurons with ReLU activation, followed by a layer that
restores the original input dimension. The output layer uses
a softmax activation function, with the number of neurons
corresponding to the two categories of the output variable
(clean and defective). The model’s structure was optimized
through a grid search for selecting the best hyperparameters
[Ng, 2004; Ioffe and Szegedy, 2015; Xu et al., 2020; Gao
et al., 2020].
Our DNN-ESM was compared with popular methods, Lo-

gistic Regression, Naive Bayes, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Decision Tree, Ran-
dom Forest, and XGBoost, using the KC3 dataset. Sub-
sequently, the DNN-ESM was trained using the Solidity
smart contracts datasets. We utilized the Python program-
ming language with libraries such as scikeras, numpy, pan-
das, sklearn, and matplotlib.
The model training was performed using the Adam opti-

mizer with an initial learning rate of 0.001 and a categorical
cross-entropy loss function [Kingma and Ba, 2017; Rezaei-
Dastjerdehei et al., 2020]. To prevent overfitting, we im-
plemented the Early Stopping technique, which monitors
the validation loss and stops the training when no improve-
ment is observed for 10 consecutive epochs. Notably, Early
Stopping was frequently triggered, terminating the training
around the 50th epoch in most cases. Additionally, we em-
ployed the ReduceLROnPlateau method to dynamically ad-
just the learning rate. This method reduces the learning rate
by a factor of 0.2 when no improvement in validation loss
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Figure 1. The DNN-ESM model utilizes a deep neural network with Solidity metrics to predict defects in smart contracts. First, the Solidity metrics
are extracted from the smart contracts to build the neural network input. These inputs are processed by the network’s initial dense layers applying initial
transformations. Subsequently, multiple hidden layers of nodes (circles) and connections (lines) perform non-linear transformations using the ReLU activation
function and employ Dropout regularization techniques to prevent overfitting. At the center, an autoencoder block is represented by the nodes connected in a
“funnel” shape to perform unsupervised learning and dimensionality reduction. Finally, the last layer, represented by the nodes on the right, uses the Softmax
activation function to perform binary classification and predicts the presence or absence of defects in the smart contracts.

is seen after 5 epochs, with a lower limit of 0.0001. The
training process was configured with a batch size of 32 and a
maximum limit of 200 epochs, although this limit was rarely
reached due to the effectiveness of Early Stopping [T R et al.,
2024]. The dataset was initially divided into two parts: 80%
of the data was allocated for model construction, and 20%
was reserved for final testing. Within the portion designated
for model construction, we performed a further subdivision:
80% of the data was used for training, and 20% for validation.
This subdivision allowed for the recurrent use of training and
validation data to fine-tune the model until it achieved satis-
factory performance. Only after this stage were the 20% of
data reserved for final testing used, providing an objective
evaluation of the model’s performance. When fine-tuning
the DNN-ESM model for each dataset, we adjusted differ-
ent functions and configuration parameters, such as the opti-
mizer, the number of epochs, and the loss rate. Parameters
were selected based on the model’s accuracy.
During the execution of the experiment, we monitored the

loss and accuracy metrics in both the training and valida-
tion sets throughout the epochs, and the results obtained are
shown in Figure 2.

3.3 Evaluation metrics
Selecting appropriate evaluation metrics is a critical element
in the development and validation of machine learning mod-
els. Despite its importance, there is no consensus in the litera-
ture on a single ideal evaluationmetric in all contexts [Chicco
and Jurman, 2020]. In the literature, there are multiple eval-
uation metrics, with the main metrics being Precision, Re-
call, F-score, and Area Under the Curve (AUC) [Bahaa et al.,
2021]. These metrics provide a comprehensive view of the
model’s performance, allowing for detailed comparisons and
the identification of areas that require optimization.
The Accuracy metric assesses the proportion of correct

predictions relative to the total predictions. Precision esti-

mates the percentage of correct predictions among all classi-
fied as positives. Recall, or Sensitivity, indicates the propor-
tion of true positives correctly identified relative to the total
true positive cases. A model with high Recall can recognize
most positive cases in the data, although it may misclassify
some negatives as positives. The F1-Score, derived from Pre-
cision and Recall, allows identifying areas where the model
did not perform well, guiding potential adjustments.
The AUC and PRC metrics provide information about

the model’s performance concerning the Receiver Operating
Characteristics (ROC) curve and the Precision-Recall curve,
respectively, being essential for evaluating models in scenar-
ios with imbalanced datasets. The MCC is often applied to
assess the quality of binary classification models, especially
when there is data imbalance [Matthews, 1975]. An MCC
close to +1 indicates superior model performance. Analyz-
ing various metrics allows for discerning nuances in the mod-
els’ performance.
To evaluate the performance of our defect prediction

model, in addition to the aforementioned metrics, we also in-
corporated Accuracy and the Precision-Recall Curve (PRC),
metrics widely employed in similar studies [Davis and Goad-
rich, 2006; Muschelli, 2019; Bowers and Zhou, 2019; Al-
ghanim et al., 2022; Hicks et al., 2022; Chicco and Jur-
man, 2023; Zain et al., 2023]. Additionally, we included the
Matthews Correlation Coefficient (MCC), recognized as one
of the most effective metrics for evaluating binary classifica-
tion models, according to Chicco and Jurman [2020].

4 Experiment Execution
We selected the PROMISE KC3 dataset, which contains
object-oriented (OO) software metrics, to serve as a per-
formance benchmark for the implemented prediction mod-
els. These models were evaluated based on their accuracy in
comparison with previous research. Subsequently, we com-
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Figure 2. DNN-ESM— Curves of training and validation: (a) ARTHM; (b) LE; (c) RENT e (d) TimeO.

bined datasets containing metrics and defect labels of So-
lidity smart contracts, resulting in four datasets, each cor-
responding to a type of defect—ARTHM, LE, RENT, and
TimeO, as described in Section 1. The composition of these
datasets used in the experiment is presented in Table 2.
We initiated the implementation with the Accuracy, Preci-

sion, and Recall metrics.
To assist in selecting the best model, we also used the

AUC, PRC, and MCC metrics. The AUC assesses the
model’s ability to distinguish between positive and negative
classes, regardless of the classification cut-off point [Less-
mann et al., 2008].

5 Results and Discussion
In this section, we present the results of applying different
MLmodels for defect prediction in Ethereum smart contracts.
To address research questions RQ1 and RQ2, as presented in
Section 3, experiments were conducted using both traditional
software metrics and specific Solidity smart contract metrics.

5.1 Results concerning RQ1
Eight Machine Learning models were applied for compara-
tive analysis: Logistic Regression, Naive Bayes, SVM, K
Nearest Neighbors (KNN), Decision Tree, Random Forest,
XGBoost, and our implementation of Deep Neural Network
(DNN-ESM).
Table 3 presents the results of the models for the per-

formance metric Accuracy, which indicates the overall pre-
cision of defect prediction. It is observed that the DNN-
ESM and Random Forest models applied to the KC3 object-

oriented software dataset achieved the highest accuracy rates,
with values of 92% and 90%, respectively.
An important aspect when evaluating the performance of

classification models, especially in scenarios involving de-
fect detection, is data imbalance. In imbalanced datasets,
where one class is significantly more represented than the
other, there is a risk that the model achieves high accu-
racy simply by learning to classify the majority class while
failing to identify the minority class (defective contracts).
To mitigate this effect, we use metrics such as the MCC
(Matthews Correlation Coefficient) and analyze ROC-AUC
and Precision-Recall curves, which are recommended in the
literature for assessing model performance in imbalanced
scenarios [Bahaa et al., 2021; Bowes et al., 2018]. Thesemet-
rics provide amore balanced evaluation, considering both the
sensitivity and specificity of the model.
Analyzing the results to address research question RQ1,

we observed that the Random Forest and DNN-ESMmodels
stood out due to their high accuracy. These results indicate
that these models may be effective in defect prediction in
a dataset using traditional software metrics. Observing the
performance of the DNN-ESM applied to the KC3 dataset,
formed by OO software metrics, we have an indication that
the DNN-ESM model is adjusted, allowing us to move on to
the next research question.

5.2 Results concerning RQ2
In this step, we applied the DNN-ESM model to the datasets
with Solidity metrics. The results are presented in Table 4,
where each row represents a specific performance metric,
and each column represents its result. As explained in Sec-
tion 2, each calculated metric provides additional informa-
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Table 2. Datasets with OO and Solidity software metrics.

Type Dataset Instances Metrics No Defect Defective Defects (%)

O.O KC3 194 39 158 36 19

Solidity

ARTHM 1292 14 432 860 67
LE 1292 14 896 396 31
RENT 1292 14 1145 147 11
TimeO 1292 14 1017 275 21

Table 3. Model performance by dataset.

Models Accuracy
kC3 ARTHM LE RENT TimeO

Log.Regression 0,87 0,70 0,76 0,92 0,80
Naive Bayes 0,82 0,65 0,68 0,83 0,69
SVM 0,64 0,69 0,75 0,92 0,79
KNN 0,77 0,71 0,82 0,91 0,76
Decision Tree 0,87 0,73 0,88 0,89 0,84
Random Forest 0,90 0,80 0,90 0,93 0,89
XGBoost 0,85 0,77 0,87 0,90 0,84
DNN-ESM 0,92 0,68 0,70 0,80 0,81

tion about themodels’ performance in different classification
aspects.

Table 4. Performance of DNN-ESM by Solidity dataset.

Metric ARTHM LE RENT TimeO

Accuracy 0,68 0,70 0,80 0,81
Precision 0,74 1,00 0,23 1,00
Recall 0,82 0,04 0,55 0,06
F-score 0,80 0,05 0,23 0,09
AUC 0,65 0,64 0,72 0,59
PRC 0,77 0,49 0,40 0,33
MCC 0,30 0,49 0,40 0,33

When applying the DNN-ESM model to Solidity metrics
seeking to predict ARTHM, LE, RENT and TimeO vulner-
abilities, the results demonstrated competitive accuracies in
some cases. However, significant limitations were also re-
vealed, such as low Recall, indicating a high rate of false
negatives, and varying Precision depending on the smart con-
tract dataset, suggesting the need for optimization, such as ad-
justing model parameters, modifying the neural network ar-
chitecture, using data balancing techniques to better handle
imbalanced datasets, or applying feature selection methods
to improve the relevance of Solidity software metrics used
for training.

Table 5. Comparison of accuracy betweenDNN-ESM and the work
of Durieux et al. [2020].

Vulnerability DNN-ESM Durieux et al. [2020]

ARTHM 0,68 0,68 (Mythril)
LE 0,70 -
RENT 0,80 0,88 (Slither)
TimeO 0,81 0,40 (Slither)

The DNN-ESM achieved competitive results when com-
pared to vulnerability detection methods in smart contracts
reported by Durieux et al. [2020]. As shown in Table 5, it

can be observed that for the ARTHM vulnerability, the DNN-
ESM achieved an accuracy of 68%, equivalent to the 68% ob-
tained by the Mythril tool. The detection tools did not check
the LE vulnerability. Regarding the RENT vulnerability, the
Slither tool showed slightly superior, recording an accuracy
of 88% compared to the 80% achieved by the DNN-ESM.
For the TimeO vulnerability, the DNN-ESM exhibited sig-
nificantly superior performance, with an accuracy of 81%,
compared to the 40% recorded by the Slither tool. These re-
sults reinforce the importance of applyingML techniques for
software security in blockchain.

6 Threats to Validity

In this experiment, we employed classification algorithms
that have been successfully used in software defect predic-
tion and are commonly utilized by other researchers, as de-
scribed in Section 3. However, we encountered some threats
to the validity of our experiments, which can be summarized
in the following three aspects.

• External validity:
The datasets used in this experiment are publicly avail-
able, both the KC3 dataset with object-oriented soft-
ware metrics obtained from the PROMISE repository,
and the combined datasets from Pierro and Tonelli
[2020] and Yashavant et al. [2022] for Solidity smart
contracts. However, the characteristics of the datasets
differ in terms of the number of instances, attributes, etc.
Thus, the results of this experimentmay not replicate for
other blockchain-oriented software defect datasets.

• Internal validity:
Another validity concern is the choice of classification
algorithms and their configuration parameters. We se-
lected Deep Learning algorithms for defect classifica-
tion that have been successfully used in related work.
However, further research could be conducted using dif-
ferent algorithms and techniques.

• Construct validity:
In the case of the Solidity datasets, to compose the train-
ing and test datasets, we chose the metrics compiled
in the work of Pierro and Tonelli [2020] to be used as
features and the dataset from Yashavant et al. [2022]
for identifying labels. However, the proposed metrics
may not be optimal, or even the method used in Yasha-
vant et al. [2022] to identify data with vulnerabilities for
training the Deep Learning model to identify defects.
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7 Related Work
In this work, we address Deep Learning methods applied to
software metrics for defect prediction. To facilitate under-
standing, related works are divided into two categories. The
first presents Deep Learning methods for defect detection
in traditional software using Object-Oriented metrics, and
the second presents methods for identifying vulnerabilities
in blockchain-oriented software, focusing on smart contracts
on the Ethereum platform.

7.1 Software defect prediction
Fault-free software development is a challenging task Since
it is executed by several individuals with different roles. En-
suring that the software performs its intended functions cor-
rectly is essential. Software defect prediction has become
one of the most popular research fields in software engineer-
ing. Several studies have used datasets such as KC1, KC2,
KC3, CM1, and JM1, and numerous models have been pro-
posed for estimating and predicting software reliability [Ya-
dav and Yadav, 2015].
Deng et al. [2020] leveraged a Long Short-Term Memory

(LSTM) network to automatically learn semantic and con-
textual features from source code through Abstract Syntax
Trees (ASTs). Specifically, they first extract them and then
assess which and how much information they can preserve
for various types of nodes. Finally, the LSTM neural net-
work determines whether the verified source code is defec-
tive. The experimental project dataset was collected from
the PROMISE repository. To evaluate the performance of
the proposed model, the authors used only the F-Score mea-
sure. According to the authors, the average result indicates
that the proposed model, called DP-LSTM, outperforms six
out of seven defect prediction projects based on Deep Learn-
ing.
Yadav and Yadav [2015] proposed a software defect pre-

diction model based on fuzzy logic using the relevant key re-
liability metrics of each phase of the Software Development
Life Cycle (SDLC). Software metrics are evaluated in lin-
guistic terms, and a fuzzy inference system was employed
to develop their model. The predictive accuracy of the pro-
posedmodel was validated using twenty real dataset software
projects. To validate the prediction accuracy of the proposed
model, they used evaluation measures of the Mean Magni-
tude of Relative Error and the Mean Balanced Magnitude
of Relative Error. They claim that the predicted defects in
the twenty evaluated software projects were very close to
the actual defects detected during testing. Analyzing the re-
sults, in project 1, the model predicted 155 defects, while
the actual number was 148. In project 3, 205 defects were
predicted against 209 actual ones. In some cases, the pre-
diction is practically identical to the real value, as in project
19, where both were 91 defects. The furthest predictions oc-
cur in projects with a higher number of samples with defects,
such as project 11, where 1740 defects were predicted against
1768 actual ones. Even in these cases, the error is low in per-
centage terms. Observing the percentage differences from
project to project, we see that the absolute majority is below
5%.

7.2 Smart contract vulnerability detection

Some studies focus on statistics and bug classification in
smart contracts. Mostly, they address the evaluation of the
source code or bytecodes of smart contracts. Pinna et al.
[2019] conducted a study on smart contracts deployed on
the Ethereum Blockchain, seeking to understand the soft-
ware features and metrics of these contracts. They collected
a set of over 10,000 source codes of smart contracts and a
metadata dataset about their interaction with the blockchain
through Etherscan. By examining the data characterizing the
usage and purpose of smart contracts, they identified that the
number of transactions and balances follows power law dis-
tributions, and the software code metrics exhibit, on average,
lower values than the corresponding metrics in standard soft-
ware, but with high variations. They also noticed that of
the analyzed smart contracts, 4980 have a unique contract
name being deployed only once on the blockchain and at a
single address. Therefore, there is no ambiguity, but in an-
other 1225, contract names are used more than once (from
2 to 213 times). Thus, there are very popular names regis-
tered with identical names, at different addresses, but with
the same Solidity code several times.
Durieux et al. [2020] used SmartBugs to execute 9 au-

tomated analysis tools on two datasets of smart contracts.
The first one was a dataset containing annotated vulnera-
ble smart contracts, and the second one a total of 47,518
contracts collected on Etherscan. In total, 428,337 analy-
ses were performed, taking approximately 564 days and 3
hours. They highlight that only 42% of the vulnerabilities
contained in their annotated dataset are detected by all the
tools used. A few vulnerabilities (and from only two cate-
gories) were simultaneously detected by four or more tools,
with the Mythril tool having the highest precision (27%).
When considering the larger collected dataset, 97% of smart
contracts were marked as vulnerable, suggesting a consider-
able number of false positives. By observing the 20 smart
contracts with the highest number of transactions, they found
that most of them represent financial smart contracts.
Gogineni et al. [2020] used Deep Learning to classify

smart contracts into Suicidal, Prodigal, Greedy, or Normal
categories using a variant of LSTM called Average Stochas-
tic Gradient DescentWeight-Dropped LSTM (AWD-LSTM).
They trained and validated the AWD-LSTM with input and
output vectors of the same length. For multi-class classifica-
tion, they replaced the “decoder” layer of the AWD-LSTM
with some fully connected layers, known as a “custom head.”
According to the authors, they combined a pre-trained en-
coder with the “custom head” to obtain better classification.
To evaluate the results, they used Accuracy, Precision, Re-
call, F1 score, and the Confusion Matrix, as well as the ROC
curve to display a graph between the true positive rate and
the false positive rate of predictions and the AUC metric to
check the neural networks’ ability to distinguish between var-
ious classes.
Fan et al. [2021] proposed a model for detecting vulnera-

bilities in smart contracts on blockchains, called Dual Atten-
tion Graph Convolutional Network (DA-GCN). This model
was applied to real-world smart contract datasets containing
two reentrancy vulnerabilities. The DA-GCN is based on a
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graph convolutional network and self-attention mechanisms
that focus on the most important nodes and suppress useless
information extracted from smart contract bytecodes. More-
over, a multilayer perceptron model is used to identify if the
smart contract is vulnerable.
Liu et al. [2023] usedGraphNeural Networks (GNNs) and

expert knowledge of smart contract source codes for vulner-
ability detection. A total of 16 methods were investigated,
where the performance was compared in terms of Accuracy,
Recall, Precision, and F1 score. According to the authors,
the results show significant improvements in accuracy for
three types of vulnerabilities: for reentrancy, timestamp de-
pendency, and infinite loop.
Tonelli et al. [2023] studied software metrics of smart con-

tracts extracted from a dataset of over 85,000 contracts de-
ployed on the Ethereum Blockchain. They sought to deter-
mine whether the corresponding software metrics present dif-
ferences in their statistical properties compared to metrics
extracted from traditional software systems and widely stud-
ied in the literature. The assumptions are that resources are
limited on the blockchain, and such limitations may influ-
ence how smart contracts are written. The analysis dealt with
source code metrics as well as the Application Binary Inter-
face (ABI) and bytecode of smart contracts. According to
the authors, the main results show that smart contract metrics
tend to suffer from limited blockchain resource constraints,
and the exposure of smart contracts to blockchain interaction
measured qualitatively in terms of ABI size is quite similar
among them without the presence of outliers. The distribu-
tion is compatible with the Gaussian statistical distribution
(normal), characterized by its bell-shaped form, without the
omnipresent presence of fat-tailed distributions, where there
are values much distant from the mean, as typical in tradi-
tional software. In smart contract software metrics, all val-
ues generally fall within a range of a few standard deviations
from the mean, and large variations from the mean are sub-
stantially unknown. Remarkably, the LOC of smart contracts
is themetric that most closely approximates the statistical dis-
tribution of the corresponding metric observed in traditional
software systems.
Even with some research in the field of smart contracts,

there are still a few labelled datasets with defects. To our
knowledge, there is no dataset with solidity metrics like
Pierro and Tonelli [2020] labelled with vulnerabilities. In
general, the literature on defect prediction in smart con-
tracts, especially the availability of datasets with blockchain-
oriented software metrics, especially on the Solidity pro-
gramming language, is still quite limited [Pierro and Tonelli,
2020; Jiang et al., 2023], which makes it more challenging to
produce works based on defect prediction in smart contracts,
and the main works address vulnerabilities in contracts iden-
tified from the source code or bytecodes of the Ethereum Vir-
tual Machine (EVM) [Lutz et al., 2021; Zhang et al., 2022].

8 Conclusion
Smart contracts introduce new metrics and peculiarities be-
yond those found in traditional software, bringing unique
challenges for defect detection. The results presented in

this work indicate that the evaluated Machine Learning mod-
els can be effective in predicting defects in smart contracts.
Furthermore, DNN-ESM applied to specific Solidity metrics
showed competitive performance compared to the methods
evaluated in the work of Durieux et al. [2020], although it
presents limitations that require future optimizations. For
instance, the model exhibited a low Recall rate in some
datasets, indicating a high false negative rate. Additionally,
the model’s Precision varied depending on the dataset, sug-
gesting the need for adjustments in model parameters, neu-
ral network architecture, and the use of data balancing tech-
niques to better handle imbalanced datasets.
In future work, we plan to construct a labelled dataset

with compiled metrics based on the studies and add improve-
ments to our DNN-ESM model focusing on moderate com-
putational resource usage. We will also attempt to explore
feature selection techniques in a dataset for defect prediction.
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