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Abstract Increasing food production is a continuous need. In this context, agriculture is a fundamental part of meet-
ing the ever-increasing demand for food. Plant diseases are one of the factors that compromise food production goals,
and the characteristics and climate of each production region influence them. Tomatoes are one of the world’s most
consumed vegetables and are widely affected by various diseases. However, tomato cultivation in greenhouses al-
lows its continuous production. In this context, this research work focuses on the problem of identifying diseases in
scenarios of tomato cultivation in greenhouses, where we have specific occurrences of diseases that are affected by
regional climatic conditions. Brazil is a major producer of tomatoes, producing more than 3 million tons annually,
with 8% of this production being made in the state of Paraná. This study was developed through data collection
in collaboration with greenhouse tomato producers from an important region in North Paraná. For this study, we
created new datasets with two image sizes: the Tomato Leaf Image Dataset (TLID) with image sizes of 256×256
pixels and 15,256 images, and the Patch Tomato Leaf Image Dataset (PTLID) with patch sizes of 32×32 pixels
and 227,218 images. Both datasets comprise seven classes, including four types of diseases, two combinations of
diseases on the same leaf, and the healthy leaf. Machine Learning techniques have been widely used to identify
plant diseases. This work presents two machine learning methods tested with both datasets. In the proposed mod-
els, we combine three convolutional neural networks, a customized CNN, VGG19, and Resnet50, and two voting
classification methods using hard and soft decisions. The evaluation performed on the datasets showed that when
the patches are used, the results improve significantly, reaching an accuracy of 90.48%. It is also possible to identify
the stage of the disease.
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1 Introduction

The demand for food increases concomitantly with the
growth of the world population, which should reach almost
ten billion people by 2050 [Food and of the United Nations,
2017]. In this context, agriculture is fundamental for the
food supply, representing, in the economic aspect, 4% of the
global gross domestic product (GDP), reaching more than
25% in developing countries [Bank, 2022]. To ensure contin-
uous supply, two aspects directly related to productivity and
fruit quality stand out: i) climatic interference by biotic and
abiotic agents acting on the plant continuously, altering its
metabolism [Lopes and Ávila, 2005], and ii) plant diseases,
since in warmer regions, the occurrence of diseases is more
pronounced than in colder regions.
Diseases in crops are typically identified by farmers or spe-

cialized technicians, who may recommend laboratory tests
for more accurate diagnosis, especially when symptoms are
similar. Pesticides are commonly used to combat these dis-
eases, but improper application can harm human health and
contaminate soil, water, and air. It can also reduce soil fer-

tility and pollute groundwater and water bodies. Tomatoes,
widely consumed and rich in nutrients like lycopene, vita-
mins, and minerals, are particularly vulnerable to diseases.
According to the FAO, global tomato production reached 70
million tons in 2014, while Brazil’s production was around
4 million tons in 2021 [IBGE, 2022; Leite and Fialho, 2018].
Tomato production can occur in open fields, aimed at the
sauce and extract industry, or in greenhouses, intended for
fresh consumption, which requires high-quality fruits for
sale. Greenhouse cultivation, usually carried out by small
farmers with family labor, allows for year-round production
but requires constant monitoring to prevent diseases that may
compromise quality and market value. Over 200 diseases
and physiological disorders affect tomato cultivation world-
wide [Lopes and Ávila, 2005], with symptoms appearing pri-
marily on leaves but also affecting leaflets, stems, roots, and
fruits, caused by fungi, bacteria, nematodes, and viruses.
Detecting plant diseases is a critical issue studied over

the years to produce healthy food and reduce production
costs. In this context, precision agriculture can be the so-
lution to mitigate the effects of these diseases [Balasundram
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et al., 2020]. In most current studies, with machine learning
and deep learning, image processing techniques are used to
identify and classify plant leaf diseases [Kini et al., 2023].
Through remote sensing devices, these technologies can de-
tect diseases at the beginning, allowing measures to be taken
before they spread and compromise the production and qual-
ity of food [Khanal et al., 2020; Bharadwaj et al., 2024].
Although several machine learning-based disease identifi-

cation methods are proposed in the literature, there is a re-
curring problem: the limited amount of existing data in the
agricultural area. The available databases do not include all
diseases that can affect tomato [Hughes and Salathe, 2016;
Turkoglu et al., 2022] crops because there is a wide variety
of diseases [Lopes and Ávila, 2005], and gathering images
of these diseases depends on knowledge, for example, of the
timing of their occurrence in the crop and timely photogra-
phy registration. Another very important factor to consider
is the occurrence of two diseases on the same leaf, which
allows understanding how the algorithm will behave when
identifying both diseases. Diseases also vary from region to
region and from one crop type to another [Ghini et al., 2008;
Lopes and Ávila, 2005]. Greenhouse tomato leaves are cru-
cial because they are never washed by rainwater or irrigation
methods, causing the accumulation of particles, dust, and fer-
tilizer residues on their surface [Campagnol R, 2015]. Fig-
ure 1 shows images of a healthy tomato leaf and others with
different diseases and their combinations.
Considering that the greenhouse environment favors the

development of specific diseases, different from those that
occur in the open field [Vida et al., 2004; Vox et al., 2010]
and also that vary from one region to another due to climatic
factors [Ghini R, 2011; Angelotti F, 2017], here we propose
a specific method for the recognition of diseases in the cul-
tivation of tomatoes in environments of greenhouses with a
regional focus. There is a lack of specific databases with
images of diseases associated with cultivating tomatoes in
greenhouses. This cultivation scenario has peculiarities re-
garding the types and characteristics of diseases that may be
present in tomatoes.
Through this study, we intend to answer the following re-

search questions:

• Q1: Do the diseases present in greenhouse tomato cul-
tivation have regional specificities?

• Q2: How do identification algorithms behave using un-
processed images collected by smartphones?

• Q3: Is it possible to increase accuracy in disease identi-
fication by combining machine learning algorithms?

• Q4: Is it possible to identify the presence of multiple
diseases on tomato leaves and their degree of contami-
nation using machine learning-based strategies?

Therefore, in this work, we created a new database for
studies and research in the specific task addressed here. We
carried out the collection of images in loco using a smart-
phone in a large producing region for the assembly of the
new database. In addition to healthy leaves, we identified six
types of diseases and a combination of diseases on the same
leaf. From this database, we developed a specific strategy
for classifying diseases in tomatoes using three deep-learning

(a) Healthy leaf. (b) Leaf Miner.

(c) Bacterial Spot. (d) Powdery Mildew.

(e) Powdery mildew
and Leaf Miner.

(f) Bacterial Spot and
Leaf Miner.

(g) Whitefly.

Figure 1. Example of a healthy leaf and diseased leaves.

algorithms: customized CNN, VGG19, and Resnet50. The
proposed strategy also applies combination and voting meth-
ods to identify each class accurately.

The contribution of this work is threefold, as follows:

(i) Dataset of tomato leaf comprising 7 classes and 15,256
images of diseases and pests, encompassing both
healthy and diseased leaves, as well as the combination
of two diseases on the same leaf, collected from a spe-
cific producing region that employs greenhouse culti-
vation. The dataset will be made publicly available to
facilitate future research.

(ii) Proposal of deep learning-basedmethods for tomato dis-
ease identification, using a combination of classifiers.

(iii) Experimental results to introduce the new dataset,
which can be considered as a baseline performance for
further research.

The remainder of this paper is structured as follows: Sec-
tion 2 presents related works on disease detection from plant
leaves using machine learning and deep learning methods,
predominantly considering specific works for tomatoes. In
Section 3, we contextualize the study and formulate the re-
search problem. Section 4 provides details on the new dataset
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construction. In Section 5, we present the proposed tomato
leaf disease classification methods. Section 6 describes the
results and analyses of the proposed method. Section 7
presents the conclusion and future work.

2 Related Work
Plant diseases cause production losses and alter fruit quality.
Therefore, one of the significant challenges is the early detec-
tion of diseases, which will make it possible to reduce these
losses. In this context, several methods usingmachine learn-
ing and deep learning models have been proposed and have
been widely used in different cultures, achieving significant
results. The primary studies identified in the literature are
presented below.
Despite the promising results presented by standard ma-

chine learning classifiers, deep learning algorithms have
shown to bemore efficient in identifying plant diseases. Con-
volutional neural networks are excellent when it comes to
feature extraction. Several studies have used these networks
to classify diseases in tomato plants.
In the study by [Brahimi et al., 2017], the authors com-

pared the performance of the deep models AlexNet and
GoogleNet with that of the shallow models Random For-
est and SVM. This comparison was important as it demon-
strated the effectiveness of deep models for image classifi-
cation. For this purpose, the PlantVillage dataset was used
with all available images of tomato leaves.
The authors [Sardogan et al., 2018] used a combination

of CNN with the Learning Vector Quantization (LVQ) algo-
rithm. The study partially utilized the PlantVillage dataset,
considering only four diseases. It was concluded that the
combination of these two methods was effective in recogniz-
ing the analyzed diseases.
The authors [Tm et al., 2018] used the PlantVillage dataset

with all available tomato leaf images and a simple convolu-
tional neural network architecture, with a minimal number of
layers, to classify tomato leaf diseases into different classes.
The study demonstrated that even a simple classifier can ef-
ficiently classify images of tomato diseases.
In [Meeradevi et al., 2020], the authors used the VGG16

architecture along with the PlantVillage dataset in a balanced
manner, but considered only a few disease classes. The
model, when used alone, exhibited overfitting. However,
by applying L2 regularization, the overfitting issue was ad-
dressed, resulting in good model performance.
The authors [Sharma et al., 2020] utilized four machine

learning techniques: logistic regression, KNN, SVM, and
CNN. Image processing and segmentation techniques were
applied to enhance the performance of the classifiers in
identifying diseases. The dataset was obtained from online
sources such as Kaggle and GitHub. Among the presented
techniques, the CNN achieved the best results, highlighting
the superiority of these networks in image classification.
In [Hong et al., 2020], the authors compared five

deep network architectures DenseNet-Xception, Xception,
ResNet50, MobileNet, and ShuffleNet to determine which
one would yield the best results in identifying diseases in
tomatoes. For this purpose, images of tomato leaves from

the PlantVillage dataset were used. The study revealed that
networks employing different types of convolutions, such as
the dense and separable connections of DenseNet-Xception,
achieved superior recognition accuracy compared to ResNet,
which uses residual connections, and the lightweight net-
works MobileNet and ShuffleNet.
A comparison of architectures was conducted by [Gehlot

and Saini, 2020], using the PlantVillage dataset to identify
diseases in tomato plants. The pretrained networks ana-
lyzed were AlexNet, VGG-16, GoogleNet, DenseNet-121,
and ResNet-101. DenseNet-121 achieved the highest accu-
racy and had the smallest size, while ResNet-101 and VGG-
16 showed similar performance, but ResNet-101 is larger,
making it unsuitable for smaller devices.
In the work presented by [Pushpa et al., 2021], the au-

thors compared VGG16, LeNet-5, and AlexNet and ap-
plied image processing techniques. The dataset was sourced
fromPlantVillage, containing images of healthy and diseased
leaves. When comparing the three models, AlexNet and
VGG16 demonstrated the best performance, achieving the
highest accuracy, thereby proving that models with deeper
architectures can achieve better performance.
The PlantVillage dataset was used by [Tan et al., 2021],

who applied color and texture feature extraction techniques.
Various traditional classifiers were considered, such as
SVM (Support Vector Machine), KNN, and Random For-
est, along with deep learning architectures AlexNet, VGG16,
ResNet34, EfficientNet-b0, and MobileNetV2 for compar-
ison. The results indicated that the deep learning model
ResNet34 achieved the highest accuracy in classification.
A new CNN architecture was proposed in [Sakkarvarthi

et al., 2022]. The PlantVillage dataset for tomatoes was used
partially. The new architecture was compared with other pre-
trained networks, such as ResNet152, VGG19, and Incep-
tionV3, and the proposed model outperformed the other net-
works.
In [Omar et al., 2022], the authors also created a model

based on CNN. The PlantVillage dataset was used, consider-
ing the nine classes of tomato diseases and one healthy class.
The model achieved good results but did not surpass those of
the pretrained networks obtained for the same dataset.
The study conducted by [Malunao et al., 2022] developed

a machine vision system to recognize leaf diseases in tomato
plants using DNN (Deep Neural Network) and the YOLOv3
(”You Only Look Once”). The combination of these two
approaches ensured high accuracy in classifying tomato dis-
eases.
In [Pradhan and Kumar, 2022], the authors proposed a

deep approach based onCNN to identify tomato leaf diseases.
The experiments were conducted using the PlantVillage
dataset and were used to test the performance of pretrained
models, including DenseNet169, InceptionResNet V2, In-
ceptionV3, VGG16, VGG19, DenseNet201,MobileNet, Mo-
bileNetV2, and Xception. The new method could be an alter-
native option to traditional disease identification methods.
In [Turkoglu et al., 2022], different methods were com-

pared to obtain deep convolutional networks trained for the
classification of plant diseases and pests. State-of-the-art
pretrained deep networks (AlexNet, GoogleNet, ResNet18,
ResNet50, ResNet101, and DenseNet201) were used with
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transfer learning to classify images, as well as feature ex-
tractors combined with an SVM classifier. The database was
constructed from images of various crops observed in Turkey.
The results demonstrated the effectiveness of the proposed
models compared to other state-of-the-art algorithms.
In the research conducted by [Khalid et al., 2023], the

proposed technique evaluated three deep learning models
for classifying diseases in tomato leaf images: ResNet-152,
EfficientNet-B4, and VGG-16. The PlantVillage dataset was
used, considering only three diseases. Although all networks
achieved excellent results, VGG-16 reached the highest accu-
racy. The results demonstrate that CNNs are highly suitable
for the efficient detection of plant diseases.
Based on the review presented in this section, it is ob-

served that several studies explore techniques for identify-
ing diseases in tomato plants using machine learning meth-
ods. It is also noted that deep learning has emerged as the
technique with the best performance for this purpose. Most
studies use the PlantVillage dataset due to its flexibility for
different approaches, the wide variety of crops, and the di-
versity of diseases it contains. However, some important
factors should be considered, such as the way the images
were collected. According to the creator of the dataset, the
leaves were removed from the plants and photographed sep-
arately. This process can eliminate some important charac-
teristics present in the leaves in their natural environment,
such as spots, insects, residues from applied products, dust,
and others. Additionally, many studies rely exclusively on
this dataset, which, although valuable, does not cover all dis-
eases that affect tomato crops and does not account for the
possibility that a single tomato plant may be simultaneously
infected by multiple diseases.
Table 1 summarizes the main characteristics of the related

work described in this section. It is important to remark that
in most of the studies on tomato disease identification, the
same database was used, varying only the number of images
considered. In this sense, we can point out that our study
methodology is more correlated to the studies of [Tarik et al.,
2021] and [Ahmed et al., 2019], as both also collected their
own images of diseased plants and considered thosemost crit-
ical for their geographic region.

3 Contextualization and Problem For-
mulation

Plant diseases vary according to the climate of each region,
which determines or intensifies the appearance of diseases.
In countries of continental dimensions, such as Brazil, the cli-
mate varies throughout the territory, with the southern region
being the coldest and having a predominance of subtropical
climate. This type of climate favors the emergence of some
important diseases that compromise tomato production. Cul-
turing in a greenhouse helps reduce the effects of climate on
plants. Greenhouses protect against weather conditions such
as cold fronts, excessive rainfall, hail, winds, and direct sun-
light, thus maintaining the integrity of the plants. On the
other hand, despite the benefits of the greenhouse, it also fa-
vors the appearance of some diseases because, in this type of
cultivation, the leaves are not washed by rain or dew. Gen-

erally, the irrigation methods are done by dripping, thus pre-
venting the plant from being washed.
There are several studies to identify tomato diseases, in

which the PlantVillage database [Hughes and Salathe, 2016]
is used with several diseases that attack the plant. However,
tomatoes can be attacked by more than 200 different dis-
eases [Lopes and Ávila, 2005]. Because it is a very sensi-
tive and fragile plant, it can also be attacked simultaneously
by more than five diseases. Despite being a robust base,
PlantVillage [Hughes and Salathe, 2016] does not cover all
tomato diseases. The climate of each region influences the
diseases. This means that the diseases in a certain region do
not occur in another with a different climate.
Generally, cultivation in greenhouses is done by small

farmers, the so-called family farming. Family members usu-
ally labor for this type of cultivation to avoid higher pro-
duction costs. When the plantation is affected by a disease,
it spreads quickly, requiring an evaluation by a specialized
technician, which increases the cost of the product. The early
identification of diseases can reduce costs both with a spe-
cialized professional and with pesticides. Through a device
accessible to most people, such as the smartphone, produc-
ers could easily capture images and get help in identifying
diseases through an application.
For data collection, we considered an important green-

house tomato-producing region situated in the south of
Brazil. We built a new database with new diseases and their
combination. We examined the behavior of three machine-
learning methods for disease classification in greenhouse-
grown tomatoes. This study serves as a baseline for research
using the database introduced here.

4 Dataset Construction

This section presents the two databases used in this work,
with images of diseases and healthy tomato leaves. The
Tomato Leaf Image Dataset (TLID) has images of whole
leaves, and the Patch-based Tomato Leaf Image Dataset
(PTLID) has images of diseased and non-diseased parts of
the leaves.

4.1 Tomato Leaf Image Dataset (TLID)

The availability of databases is an indispensable necessity for
developing disease identification techniques using machine
learning algorithms. In the agricultural area, depending on
the type of crop and planting conditions, there is not a suf-
ficient and up-to-date amount of images for studies and re-
search development. Therefore, collecting and assembling a
specific database of images of tomato diseases was a precon-
dition for this work, which focuses on cultivating tomatoes
in a greenhouse. TLIDwas built through several visits to pro-
ducers between December and June on three properties, each
with several greenhouses, which made it possible to find dif-
ferent diseases at different stages of development. As shown
in Figure 2, tomato branches were photographed. All the
leaf images were cut and scaled, one by one, using an im-
age processing software, totaling 15,256 specific images in



Enhancing Disease and Pest Detection in Greenhouse Tomato Cultivation Using Advanced Machine Learning on New Dataset of ImagesZimmermann et al. 2025

Ref. Year Cultivation Model Dataset Images Classes Acc%
Brahimi et al. [2017] 2017 Tomato AlexNet/GoogleNet

Random Forest/SVM
PlantVillage 14,828 9 99.18%

Sardogan et al. [2018] 2018 Tomato CNN/LVQ PlantVillage 500 5 86.00%
Tm et al. [2018] 2018 Tomato LeNet PlantVillage 18,160 10 95.00%
Meeradevi et al. [2020] 2020 Tomato VGG16 PlantVillage 2,317 6 95.00%
Sharma et al. [2020] 2020 Tomato CNN/Logistic regression

KNN/SVM/CNN
PlantVillage 20,000 19 98.00%

Hong et al. [2020] 2020 Tomato DenseNetXception
Resnet50/MobileNet
SuffleNet

PlantVillage 13,112 19 97.10%

Gehlot and
Saini [2020]

2020 Tomato ResNet101/AlexNet
DenseNet121/VGG16
GoogleNet

PlantVillage 14,529 10 99.69%

Pushpa et al. [2021] 2021 Tomato AlexNet/VGG-16
Lenet-5

PlantVillage 7,070 10 96.64%

Tan et al. [2021] 2021 Tomato AlexNet/ResNet34
VGG16/EfficientNet-b0
MobileNetV2

PlantVillage 18,160 10 99.70%

Sakkarvarthi
et al. [2022]

2022 Tomato CNN/InceptionV3
ResNet152/VGG19

PlantVillage 3,000 10 88.17%

Omar et al. [2022] 2022 Tomato CNN PlantVillage 13,467 9 92.00%
Malunao et al. [2022] 2022 Tomato YOLOv3 PlantVillage 300 3 98.28%
Pradhan and
Kumar [2022]

2022 Tomato DenseNet169/VGG-19
InceptionResNetV2
InceptionV3/VGG-16
DenseNet201/MobileNet
MobileNetV2/Xception

PlantVillage 14,532 10 96.00%

Turkoglu et al. [2022] 2022 Others AlexNet/GoogleNet
ResNet18/ResNet50
ResNet101 DenseNet201

Others 4,447 15 96.83%

Khalid et al. [2023] 2023 Tomato EficientNet-B4
ResNet152/VGG16

PlantVillage 5,524 3 98.00%

Table 1. Summary of the Related Works.

a size of 256×256 pixels. These images are smaller than the
original size, allowing better use by classification methods.

(a) Plant branch Miner.

(b) Branch of plant Bacterial Spot.

Figure 2. Examples of images of tomato branches photographed for study.

Plant diseases can be caused by various agents such as
fungi, bacteria, mycoplasmas, viruses, viroids, and nema-
todes. Specifically, our data collection found diseases caused
by fungi, viruses, and bacteria. These diseases are different
from each other, but in some phases, some similarities can
make their correct identification difficult. In our collection,
we identified healthy leaves, four types of diseases called
leaf Miner, Bacterial Spot, Powdery Mildew, and White-
fly, as well as the combination of Powdery Mildew and leaf
Miner and Bacterial Spot and leaf Miner. In Table 2, we
show the types of diseases and the number of collected im-
ages. Both healthy leaves, those with diseases, and their
combinations have characteristics that define them as a cer-
tain disease. These special characteristics are called labels
or classes. We can consider that we found seven classes of
images: Healthy, Leaf Miner, Powdery Mildew, Bacterial
Spot, Whitefly, Powdery Mildew and Leaf Miner, and Bac-
terial Spot and Leaf Miner. These classes were validated
by an agronomic engineer who could confirm the respective
diseases by visually inspecting the images. Figure 3 shows
healthy leaves, with the incidence of shade from the green-
house itself.
Figure 4 shows the types of attacks of the Miner Fly,

which are mines on the surface of the leaf and feeding punc-
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Table 2. Number of Images per Class.
Class ID Class Images

1 Healthy 2,688
2 Miner fly 2,255
3 Bacterial Spot 2,395
4 Powdery Mildew 2,181
5 Powdery Mildew and Leaf Miner 2,362
6 Bacterial Spot and Leaf Miner 2,503
7 Whitefly 872

Total 15,256

tures made by the female. Figure 5 shows the evolution of
Bacterial Spot caused by bacteria, from its beginning to the
most advanced stage of the disease, which compromises al-
most the entire leaf, making its photosynthesis process im-
possible. Figure 6 shows the most important disease in pro-
tected cultivation, Powdery Mildew, caused by fungi, which
can compromise almost 40% of production. In Figure 7,
there is more than one disease on the same leaf, Miner and
PowderyMildew, as well asFigure 8, which shows Bacterial
Spot andMiner. TheWhitefly is shown inFigure 9, an insect
that can cause direct damage to the plant through sap suction
or indirect damage through the transmission of viruses.
It is important to note that because the cultivation is in

a closed environment, it is impossible for the leaves to be
washed by rain or irrigation system (performed by drip sys-
tem), accumulating residues such as debris, fertilizer rem-
nants, dust, etc. The photographed branches were not sub-
tracted from the plants, so no original leaf characteristics
were altered.

Figure 3. Healthy leaf with shade incidence.

Figure 4. Different types of Leaf Miner attacks.

Figure 5. Disease evolution Bacterial Spot.

4.2 Patch-based Tomato Leaf Image Dataset
(PTLID)

In the construction of PTLID we decided to consider only
the part infected with the disease. For this, we subdivided

Figure 6. Evolution of Powdery Mildew disease.

Figure 7. Combination of two diseases Powdery mildew and Leaf Miner.

Figure 8. Combination of two diseases, Bacterial Spot and Leaf Miner.

Figure 9. Whitefly.

the leaves of Dataset TLID into 64 images 32×32 pixels
sized. After the division, the patches containing the diseases
were separated, disregarding the other parts. Figure 10(a)
shows a leaf with size 256×256, and Figure 10(b) the dis-
eased patches.

(a) Leaf 256×256. (b) Patches 32×32.

Figure 10. Different image sizes used in the proposed method.

Table 3 shows the number of images per class resulting
from dividing the images into patches. In addition to the
classes in TLID, images of Background were considered in
this PTLID. A total of 227,218 images were counted and dis-
tributed among eight classes.

5 Proposed Method
The architecture proposed in this study includes three main
steps: Dataset Construction, System Flow, and Ensemble
Voting. The detailed block diagram of the proposed method
is shown in Figure 11. In the Dataset Construction step,
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Table 3. Number of Patches per Class.
Class ID Class Images

1 Healthy 48,676
2 Miner fly 11,099
3 Bacterial Spot 55,213
4 Powdery Mildew 60,628
5 Powdery Mildew plus Miner fly 10,653
6 Bacterial Spot plus Miner fly 15,435
7 White fly 1,060
8 Background 24,454

Total 227,218

we used images from the databases described in Section 4.
We have two databases with different image sizes, one with
256×256 pixels and another with patches of 32×32 pixels.
The 256×256 images were resized at the network input to
224×224 pixels, while the 32×32 images were not altered.
The image colors for both datasets are coded in RGB, and
the format is JPG.

5.1 System Flow
In the system flow stage, we used data augmentation to in-
crease the data set and, thus, avoid overfitting. However, we
only used it with images that contained the entire leaf. This
method was not applied to the patches as there were already
enough images. The data were normalized, and the dataset
was divided into 80% for training and validation and 20%
for testing. The performance of three CNN models, namely
a custom CNN, VGG19, and Resnet50, was evaluated. Each
model is explained in detail below. The choice of these net-
works was based on preliminary analyses performed via sim-
ulation, where we tested different CNN architectures. We
evaluated the performance of eight networks, whose perfor-
mance on the new dataset is presented in Table 4. A more
detailed discussion of this choice is presented in Section 6.

5.1.1 Customized CNN Model

CNN is a popular method in image classification due to
the flexibility that the architecture can offer in terms of the
number of convolutional layers, types and sizes of filters,
and pooling and dropout procedures, among others, that can
be used. This model’s flexibility makes it possible to im-
prove the network’s performance. In this study, we created
a new CNN architecture and adjusted hyperparameters such
as the number of convolutional layers, fully connected lay-
ers, number of filters, and pooling procedures. The selection
of hyperparameters was manually performed through simu-
lations. This was the model that presented the best results.
The proposed CNN architecture is shown in Figure 12. We
used three convolutional blocks, each consisting of two con-
volutional layers followed by a pooling layer. Two fully
connected layers were added at the end of the model, one
with 512 and the other with seven neurons, representing the
classes to be identified. We used Dropout between the fully
connected layers to avoid overfitting. We tested optimiz-
ers RMSprop, Adadelta, and Adam, but the optimizer that
achieved the best performance was Adam, with a parameter
of 0.001. The architecture of all models remained the same

for the two databases used. Only changing the image size at
the network input according to the respective database.

5.1.2 Pre-Trained VGG19 Model

The VGG19 network [Simonyan and Zisserman, 2015] is a
pre-trained network model composed of 16 convolution lay-
ers and three fully connected layers. These networks use
knowledge obtained on a similar problem already solved.
The VGG19 network was trained on the ImageNet database,
which contains one million images from 1000 categories.
It is a very popular method for image classification due to
the use of multiple 3×3 filters in each convolutional layer.
The architecture of the VGG19 network is shown in Fig-
ure 13. The first 16 layers are used for feature extraction, and
the last three are used for classification. For this work, we
adapted and included two fully connected layers at the end of
the model concatenation, one with 512 neurons and another
with seven representing the number of output classes. The
Dropout is applied between the two fully connected layers
to avoid overfitting. The Adam optimizer was used with the
parameter of 0.0001. The architecture of the VGG19 model
adapted for our work is shown in Figure 14.

5.1.3 Pre-Trained Resnet50 Model

While in the training of conventional neural networks, each
layer learns low-level and high-level features, in Resnet
(Residual Neural Network) [He et al., 2016] instead of learn-
ing with features, the model tries to learn some residue. Deep
residual networks are convolutional neural networks that are
50 layers deep. In addition to Resnet50, other variants exist,
such as ResNet101 and ResNet152. Figure 15 shows our
adjusted Resnet50 model for classifying tomato diseases in
greenhouses. Two fully connected layers were added, one
with 512 and another with seven neurons representing the
output classes. We use dropout between dense layers to
avoid overfitting. The first layer has 64 filters with a ker-
nel size of 7×7, followed by amaxpooling layer of size 3×3.
The first layer group consists of three identical blocks. Like-
wise, groups two, three, and four have four, four, and three
identical blocks, respectively. Among some groups, the lines
marked with blue color represent the identity block that con-
nects two layers of different sizes. After all these blocks, 38
fully connected layers are responsible for the classification
task. We also used droupout between these two connected
layers to prevent overfitting.

5.2 Performance Evaluation Metrics
The output of the models will result in a probability for each
class in the database, which can be a specific disease, a dis-
ease combination, or a healthy leaf. In this phase, themodels’
prediction results are compared with each class’s actual clas-
sification in order to evaluate the performance of the models.
Different metrics evaluated the classification results for

the methods used, Accuracy (A), Precision (P), Recall (R)
and F1 score, defined by the equations (1)-(4), respectively.
The parameter TP (True Positive) represents correctly pre-
dicted positive values, FP (False Positive) represents incor-
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rectly predicted positive values, TN (True Negative) repre-
sents correctly predicted negative values and FN (False Neg-
ative) represents incorrectly predicted negative values.

Accuracy (%) = TP + TN
TP + FP + TN + FN

× 100 (1)

Precision (%) = TP
TP + FP

× 100 (2)

Recall (%) = TP
TP + FN

× 100 (3)

F1 (%) = 2 · P · R
P + R

× 100 (4)

5.3 Support Vector Machine - SVM
Initially, the SVM algorithm was designed to address binary
classification problems [Vapnik, 1995]. Over time, it was ex-
tended and adapted to handle multi-class classification chal-
lenges as well [Crammer et al., 2002]. Its objective is to
find the optimal hyperplane f(w, x) = w · x + b to separate
two classes in a given dataset, with features x ∈ Rm. SVM
learns the parameters w by solving the optimization problem
defined by Eq. (5),

min 1
p

· w + C ·
p∑

i=1
max

Ä
0, 1 − y

′

i · (wT xi + b)
ä

(5)

where wT w is the Manhattan norm (also known as L1
norm), C is the penalty parameter (may be an arbitrary value
or a selected value using hyperparameter tuning), y

′
is the

actual label, and wT xi + b is the predictor function. Eq. (5)
is known as L1-SVM, with the standard hinge loss. Its differ-
entiable counterpart (L2-SVM) defined by Eq. (6), provides
more stable results,

min 1
p

·∥w∥2
2 +C ·

p∑
i=1

max
Ä
0, 1 − y

′

i · (wT xi + b))2
ä
(6)

where ||w||2 is the Euclidean norm (also known as L2 norm),
with the squared hinge loss. To implement the SVM,we used
the sklearn library in Python. We chose the kernel=’linear’
parameter because we observed that most classes are linearly
separable. Additionally, we used the default value for the C
parameter, which is C = 1.0, as defined in Python.

5.4 Ensemble Voting
Another method employed in our proposal is Ensemble Vot-
ing. The idea of ensemble methods is that the results of mul-
tiple machine learning models can be combined to increase



Enhancing Disease and Pest Detection in Greenhouse Tomato Cultivation Using Advanced Machine Learning on New Dataset of ImagesZimmermann et al. 2025

Max Pool

FC
,4
09
6

3x3 Conv, 64

3x3 Conv, 128

Max Pool

3x3 Conv, 128

3x3 Conv, 256

Max Pool

3x3 Conv, 256

3x3 Conv, 256

3x3 Conv, 256

3x3 Conv, 512

Max Pool

3x3 Conv, 512

3x3 Conv, 512

3x3 Conv, 512

3x3 Conv, 512

Max Pool

3x3 Conv, 512

3x3 Conv, 512

3x3 Conv, 512

FC
,4
09
6

Feature Extraction

FC
,1
00
0

Classification

Image Input
256x256 3x3 Conv, 64

Figure 13. VGG19 network architecture.

Max Pool

FC
,5
12

So
ftm

ax
/S
V
M

Healthy
Miner

Bacterial Spot
Powdery Mildew
PowderyM/Miner

BacterialS/Miner
White Fly

Output

3x3 Conv, 64

3x3 Conv, 128

Max Pool

3x3 Conv, 128

3x3 Conv, 256

Max Pool

3x3 Conv, 256

3x3 Conv, 256

3x3 Conv, 256

3x3 Conv, 512

Max Pool

3x3 Conv, 512

3x3 Conv, 512

3x3 Conv, 512

3x3 Conv, 512

Max Pool

3x3 Conv, 512

3x3 Conv, 512

3x3 Conv, 512

FC
,7

Classification

Feature Extraction

Image Input
256x256 3x3 Conv, 64

Figure 14. Adapted VGG19 network architecture.

7x7 Conv64/2
So
ftm

ax
/S
V
M

Healthy

Miner

Bacterial Spot

Powdery Mildew

PowderyM/Miner

Bacterial/Miner

White Fly

Output
1x1 Conv 512/2
3x3 Conv 512
1x1 Conv 2048

FC FC

1x1 Conv 512
3x3 Conv 512
1x1 Conv 2048

1x1 Conv 512
3x3 Conv 512
1x1 Conv 2048

1x1 Conv 256
3x3 Conv 256
1x1 Conv 1024

1x1 Conv 256/2
3x3 Conv 256
1x1 Conv 1024

1x1 Conv 256
3x3 Conv 256
1x1 Conv 1024

1x1 Conv 256
3x3 Conv 256
1x1 Conv 1024

1x1 Conv 128
3x3 Conv 128
1x1 Conv 512

1x1 Conv 128/2
3x3 Conv 128
1x1 Conv 512

1x1 Conv 128
3x3 Conv 128
1x1 Conv 512

1x1 Conv 128
3x3 Conv 128
1x1 Conv 512

1x1 Conv 64
3x3 Conv 64
1x1 Conv 256

1x1 Conv 64
3x3 Conv 64
1x1 Conv 256

1x1 Conv 64
3x3 Conv 64
1x1 Conv 256

Image Input
256x256

3x3 MaxPool/2

Figure 15. Resnet50 Architecture.

identification accuracy [X. Dong et al., 2020]. There are
several types of ensemble methods: voting, bagging, boost-
ing, and stacking. This study used the voting method [Burka
et al., 2022]. Voting can be performed in two ways in classi-
fication problems: Hard voting, in which each model votes
for a class, choosing the one with the most votes, and Soft
voting, which considers the probabilities of a model not be-
ing entirely sure of a class and considers the class with the
highest probability.
Each classifier, i, takes an input and generates a vector

with the probabilities of the classes, pi = [pi1, pi2, · · · , pik],
where

∑
k pik = 1. Each CNN has its own architecture, and

the probabilities they generate are combined through voting.
Hard voting is based on calculating the predicted category

for each network,

yi = arg max({pi1, pi2, · · · , pik}) (7)
where the final category is determined through the mode of
all of them:

y = mode({y1, y2, · · · , yn}). (8)

Soft voting can be done as aweighted sumof the probabilities
given by each CNN. The probability of belonging to the class
k predicted by the ensemble [Cruz et al., 2021] is calculated
using the following equation,

Pk =
n∑

i=1
wi · pik (9)
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where n is the number of CNNs considered in the ensem-
ble. The wi weights are assigned based on the training per-
formance of the networks, where the highest weights corre-
spond to the smallest errors. The selected category, y, is the
one with the highest probability:

y = arg max({P1, P2, · · · , Pk}) (10)

6 Results and Discussions
In this study, we utilized Convolutional Neural Networks and
Ensemble Methods to assess two potential approaches for
identifying tomato diseases, as depicted in Figure 16. The
first approach, referred to as Method A, utilizes the images
from the TLID dataset, as described in Section 4.1, and eval-
uates the entire leaf on a global scale. The second approach
involves using the PTLID dataset, as outlined in Section 4.2.
This approach, known as Method B, evaluates the image lo-
cally, focusing exclusively on the regions of the image that
display diseases.

Normal Leaf
256x256

Ensamble
Voting

Final leaf
decision

Convolutional
Neural
NetworksPatches 32x32

Figure 16. Methods used to classify tomato diseases

Several network models were tested as shown in Table 4.
Some networks yielded better results than others. However,
we couldn’t choose a network solely based on its perfor-
mance, as our objective was to test the same networks for
both TLID and PTLID datasets. In this context, the PTLID
dataset has a particularity: its image size is 32×32. This
poses a challenge for a very deep network, requiring image
resizing, which becomes unfeasible due to the quantity of
images in this dataset. Thus, among the tested networks,
we opted for three models: the custom CNN, Resnet50, and
VGG19. Other lightweight network models, such as Shuf-
fleNet, GhostNet, and ResNet-18, were also tested, achiev-
ing accuracies between 50% and 75%. However, these mod-
els would need enhancements to improve their performance
on the dataset. The architectures proposed in this paper, al-
though using more complex models, could already be imple-
mented on mobile devices with higher processing capacity
or could be implemented using cloud processing.

6.1 Method A – Full-size Leaf Image Process-
ing

Method A was conducted as a global classification of the
leaf. Figure 17 shows this process. An image with a tomato
leaf taken from the TLID dataset, and resized to 224×224

pixels, is used as input to the network. The network archi-
tectures experimented were CNN, VGG-19, and ResNet-50.
We still use two ensemble hard and soft voting methods to de-
termine the final decision. We consider the individual results
using validation data from the three methods CNN, VGG19,
and Resnet50 with two types of network output Softmax and
SVM, to obtain a joint result that is more accurate than when
used individually. We use the validation set with 3,051 im-
ages for this. We also apply data augmentation in this exper-
iment, as the diversity of the dataset can increase the gener-
alizability and robustness of the model [Pulgar et al., 2017].
The batch size was set to 64, andwe used the Adam optimizer
with a ratio of 0.0001 for the pre-trained models and 0.001
for the customized CNN.

Hard

Ensamble Voting

Miner

Final leaf decision

Miner
0.98%

Leaf decision

Soft

CNN
VGG19

Resnet 50

Miner
0.96%

Normal Leaf
256x256

Figure 17. Block diagram of global detection and classification method.

Table 5 shows the individual results of the three classifiers
considered in this work. We use accuracy, precision, recall,
and F1 Score as metrics. We can see a balance in the re-
sults of the methods with very little difference between them.
However, the results for softmax were better than the results
for SVM. Additionally, we conducted some tests to evaluate
the impact of using the PCA (Principal Component Analysis)
technique on the classifier that achieved the best result with
network output softmax (VGG19+SVM).We tested different
types of kernels for SVM, including linear, polynomial, and
Gaussian. The Gaussian kernel achieved the best accuracy
in the experiments. The results are also shown in Table 5.
The best accuracy was obtained by the VGG19 architecture,
with 86.56%, followed by the Resnet50 with an accuracy of
82.76%, and finally, the specific CNN with an accuracy of
79.61%. To prove the effectiveness of the testedmethods, we
used the samemodels with the PlantVillage database, and the
accuracy of this dataset was superior to 96%. These differ-
ences in performance between the two databases, using the
same method, highlight the specificities of the new database
presented in this article concerning the cultivation of toma-
toes in greenhouses. Afterward, we found the accuracy of
each network by considering the validation data to obtain the
accuracy for hard and soft voting for both network outputs.
Again, the softmax output stands out over SVM. According
to Table 6, the ensemble Hard method obtained 85.84%, and
the Soft method obtained 82.76%.
As discussed in Section 2, for the creation of the PlantVil-
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Table 4. Accuracy scores of deep networks using TLID dataset (%)
Alexnet 78.43%
CNN 79.61%
EfficientNet 74.80%
InceptionV3 68.14%
MobileNet 82.69%
Resnet50 82.76%
Resnet152V2 83.09%
VGG19 86.56%

lage database, the leaves were harvested and then pho-
tographed. As a result, important characteristics that are
part of the tomato growing environment may have been lost,
such as various types of insects, specks, dust, and fertilizer
residues, among other residues. The fact that most leaves
are free of these important attributes can influence the final
result of the algorithm, making that scenario less realistic.
The performance of the models is evaluated in terms of

classification accuracy. The confusion matrix was generated
to visualize the classification performance of TLID using the
CNN customized, VGG19 and Resnet50 models. Figure 18
shows the customized CNN model, Figure 19 shows the be-
havior of the VGG19 model and Figure 20 the Resnet50
model. The instance that classified the images most accu-
rately was the healthy class for all matrices, as it doesn’t have
too little noise in the leaf. The classes that combined two dis-
eases were confused with those with one. For example, the
‘Bacterial Spot class and Miner’ caused confusion between
both the ‘Bacterial Spot’ class and the ‘Miner’ class. Other
confusions between the classes were due to the similarities
between the diseases in their different phases. These confu-
sions between the classes compromised the accuracy of the
models, causing them to remain below 86%.

6.2 Method B – Leaf Patch Images Processing
Greenhouse tomato leaves may contain other attributes be-
sides existing diseases due to their environment. This can
compromise the overall assessment of the leaf. The objective
of Method B is to make a local assessment of the leaf. For
that, we tested the same classifiers used inMethod A, and we
tried to reduce the noise in the leaves, considering images of
patches with a size of 32×32, in which only the respective
diseases were present. Table 7 shows the results obtained
with the images of the patches when tested with the same
methods as Method A and two Softmax and SVM network
outputs. According to the results, it is possible to see that,
again, the performance was very similar between the models;
however, when using the Softmax network output, the results
are better. VGG19 obtained the best performance among the
models, with 90.19% of accuracy, CNN obtained 86.78%,
and Resnet50 achieved 88.94%. It is possible to verify that
all methods had a considerable change in performance when
compared to Method A. The performance improvement was
achieved because there was less confusion between classes.
However, it is still possible to notice that, according to the
confusion matrices shown in Figure 21, Figure 22, and Fig-
ure 23. As we can see, some confusion between the classes

still remains.
For the voting method, we used validation data with

45,444 images. First, we find the accuracy of each classifier,
and then we use the three classifiers together to find the vot-
ing accuracy of the Hard and Soft methods. Table 8 shows
the results for these twomethods. The Hard method obtained
the best overall result (i.e. 90.48%).
In the example shown Figure 24 the Background and

Healthy classes appear most frequently. The Background
class is not considered in the final result because it is the back-
ground of the image. The patches of the Healthy class ap-
peared in greater number in Figure 24 because in this exam-
ple the disease is clearly in its early stages with only 3 patches
that presented the disease and the rest healthy patches. The
number of times a disease class appears in the vector can in-
dicate the stage of the disease, that is, if, for example, up to
3 patches appear in Figure 24, we could consider that the
disease is in its early stages. If the example were different
and had between 3 to 8 patches, we could consider it in an
intermediate stage, etc. After creating this vector, we use the
Ensemble Hard and Soft methods for each patch, providing
a confidence percentage. In the end, we determine which
disease each patch refers to. The block diagram shown in
Figure 24 illustrates the procedure described above.
Another interesting fact observed when using this method

is that the algorithm can find diseases not previously labeled
for the leaf. For example, Figure 25 (a) shows an image
labeled as White Fly, indicated by the red marks in the im-
age. However, the algorithm also identified the disease Pow-
dery Mildew, marked in white in the image. This disease,
however, had not been labeled when the leaf was evaluated
globally. The way the leaf patches were created allows the
algorithm to identify other characteristics in more detail. In
the local classification of the leaf, it enables a more precise
classification of the type of disease, resulting in less confu-
sion between classes as occurred in Method A. Figure 25 (b)
shows the classification of healthy patches (white marking),
Bacterial Spot (red marking), and Bacterial and Mining Spot
(blue marking), allowing greater precision in the identifica-
tion of diseases.
This local leaf classification allows us to prove visibly

existing diseases and evidence of diseases in early stages,
disease-causing insects. Some early-stage diseases are
barely noticeable. Method B allows for the accurate classifi-
cation of diseases and others that may be in the early stages.
In relation to the research questions, we were able to reach

the following conclusions:
Q1: Do the diseases present in greenhouse tomato cultiva-
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Table 5. Individual Classifier Results for Method A.
Evaluation Metrics

Method Dataset Accuracy Precision Recall F1 Score
CNN+Softmax TLID 79.61% 79.17% 75.76% 76.63%
VGG19+Softmax TLID 86.56% 85.10% 84.88% 84.94%
Resnet50+Softmax TLID 82.76% 80.94% 80.85% 80.80%

CNN+SVM TLID 66.08% 58.20% 59.56% 57.82%
VGG19+SVM TLID 82.50% 82.72% 78.98% 79.86%
Resnet50+SVM TLID 82.63% 82.07% 79.49% 79.97%

VGG19+SVM+PCA TLID 84.23% 83.00% 83.00% 83.00%

CNN PlantVillage 96.95% 96.61% 95.97% 96.23%
VGG19 PlantVillage 98.70% 98.43% 98.19% 98.29%
Resnet50 PlantVillage 96.18% 96.78% 95.11% 95.70%

Table 6. Voting Classifier Results for Method A and SVM.
Accuracy

Hard Soft
CNN VGG19 Resnet50 Voting Voting

Ensemble Ensemble
Softmax 79.61% 86.56% 82.76% 85.84% 82.76%
SVM 66.08% 82.50% 82.63% 84.36% 82.62%

tion have regional specificities? Diseases are influenced by
the climate of each region. For example, some diseases only
occur in hot, dry weather, others in hot, humid weather. The
climate favors its emergence or not.
Q2: How do identification algorithms behave using un-

processed images collected by smartphones?. The results
suggest that because they are not processed, the image noise
becomes more evident, making it difficult to extract features
and consequently contributing to the algorithm confusing the
classes, resulting in lower-than-expected performance.
Q3: Is it possible to increase accuracy in disease iden-

tification by combining machine learning algorithms?. We
believe that due to the complexity of the database, the values
when we combined the models together did not obtain such
a significant improvement as when evaluated separately. In
Method A, we can see that the classification accuracy for En-
semble Voting Hard reached 85.84%, lower than the highest
value achieved by ensemble member VGG19. For the En-
semble Voting Soft, the value achieved was 82.76%, a value
lower than the highest value achieved by one of the ensem-
ble members. When evaluating Method B, we noticed that
the values for Ensemble Voting Hard slightly increased com-
pared to the highest value individually obtained by the mod-
els. The Ensemble Voting Soft only obtained a value equal
to one of the ensemble members.
Q4: Is it possible to identify the presence of multiple dis-

eases on tomato leaves and their degree of contamination
using machine learning-based strategies? The complexity
of the database, such as the similar characteristics between
diseases evaluated in their different phases, made it possi-
ble to verify, according to the confusion matrices of the
models evaluated, that there was a lot of confusion between
the classes. Method B reduced confusion between classes.
When tested with the overall size of the leaf (256×256), it
allowed not only to find the expected disease but also to iden-
tify other diseases existing on the leaf. When we analyze the

leaf globally with Method B, it is also possible to analyze the
stage at which the disease is based on the number of disease
patches found on the leaf.

7 Conclusions

This study proposes to identify machine learning models that
are most suitable for recognizing foliar diseases in green-
house tomatoes. Using two datasets, TLID considered the
image size of 256×256 pixels, and PTLID, composed of im-
ages of 32×32 pixels. Both datasets are composed of healthy
leaves and six classes of diseased leaves. The particularity
of this database is that it was collected in a way that did
not exclude specific characteristics of tomato leaves. We
tested both datasets on three deep convolutional neural net-
work models, a custom CNN, and two pre-trained networks,
VGG19 and Resnet50. The results with TLID compared to
PlantVillage were low, which may be due to the characteris-
tics of the new database. To improve performance, we used
PTLID, and the results presented in Section 6 were better
than those of TLID. It was evident that for the TLID images,
the pre-trained networks performed better than the CNN we
customized. In PTLID, CNN and VGG19 performed better.
The patches achieved a slightly better accuracy when tested
with the three models, as shown in Table 7. Among the eval-
uated network architectures, the best performance was ob-
tained by the VGG19 using patches. In this case, the use
of voting methods also contributed to getting a little better
accuracy rates. Future work will focus on image segmen-
tation techniques to reduce noise in images and extend the
idea of disease recognition to other crops, whether in green-
houses or not. Furthermore, we also intend to investigate the
performance of multi-label classifiers in this scenario since
multiple labels can be associated with a single sample. Fi-
nally, eXplainable Artificial Intelligence (XAI) techniques
might be explored, aiming to provide insights into how the
AI models are making decisions.
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Table 7. Results for Method B.
Evaluation Metrics

Method Dataset Accuracy Precision Recall F1 Score
CNN+Softmax PTLID 86.78% 79.43% 76.18% 77.57%
VGG19+Softmax PTLID 90.19% 84.90% 81.02% 82.60%
Resnet50+Softmax PTLID 88.94% 82.18% 78.72% 80.18%

CNN+SVM PTLID 81.30% 66.57% 58.256% 59.93%
VGG19+SVM PTLID 78.33% 67.05% 64.53% 64.61%
Resnet50+SVM PTLID 88.76% 82.51% 77.13% 79.21%

Table 8. Voting Classifier Results for Method B.
Accuracy

Hard Soft
CNN VGG19 Resnet50 Voting Voting

Ensemble Ensemble
Softmax 86.78% 90.19% 88.94% 90.48% 88.94%
SVM 81.30% 78.33% 88.76% 88.81% 88.76%
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Figure 18. Method A - CNN Confusion matrix.
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Figure 19. Method A - VGG19 Confusion matrix.
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Figure 20. Method A - Resnet50 Confusion matrix.
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Figure 21. Method B - CNN Confusion matrix Patchs.
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Figure 22. Method B - VGG19 Confusion matrix Patchs.

0 9017
96%

31
1%

44
0%

490
4%

13
1%

8
0%

18
11%

5
0%

1 22
0%

1475
61%

357
3%

89
1%

142
8%

159
5%

4
2%

0
0%

2 23
0%

352
15%

9919
88%

197
2%

126
7%

435
15%

4
2%

1
0%

3 257
3%

84
3%

194
2%

11568
91%

99
6%

21
1%

13
8%

0
0%

4 9
0%

204
8%

239
2%

282
2%

1271
73%

138
5%

2
1%

0
0%

5 1
0%

244
10%

504
4%

29
0%

90
5%

2171
74%

1
1%

0
0%

6 14
0%

21
1%

6
0%

49
0%

4
0%

1
0%

119
74%

0
0%

7 2
0%

0

0
0%

1

0
0%

2

0
0%

3

0
0%

4

0
0%

5

0
0%

6

4876
100%

7

Tr
ue

la
be
l

Predicted label
Figure 23. Method B - Resnet50 Confusion matrix Patchs.
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