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Abstract The Routed Discrete Event System Specification (RDEVS) is a modular and hierarchical Modeling and
Simulation (M&S) formalism based on the Discrete Event System Specification (DEVS) formalism that provides
a set of design models for dealing with routing problems over DEVS. At the formal level, RDEVS models (as
DEVS models themselves) are defined mathematically. However, software implementations of both formalisms are
based on an object-oriented paradigm. Furthermore, at the implementation design level, the RDEVS formalism is
represented by a conceptual model that uses DEVS simulators as execution engines. Even when RDEVS models
can be executed with DEVS simulators, the resulting data (obtained as execution outputs) remains DEVS-based,
restricting the study of event flows between models influenced by routing policies. This paper shows how the
RDEVS formalism design was enhanced to include event tracking in the models without altering their expected
behavior during simulation. Such an improvement is based on adding new features to existing RDEVS components.
These features are defined as trackers, which are responsible for getting structured data from events exchanged
during RDEVS executions. The proposed solution employs the Decorator pattern as a software engineering option
to achieve the required goal. It was deployed as a Java package attached to the RDEVS library, devoted to collecting
structured event flow data using JavaScript Object Notation (JSON). The results highlight the modeling benefits
of adding event tracking to the original capabilities of the RDEVS formalism. For the M&S community, the novel
contribution is an advance in understanding how best modeling practices of software engineering can be used to
enhance their software tools in general and the RDEVS formalism in particular.

Keywords: Routed Discrete Event System Specification, Conceptual modeling, Software design pattern, Event flow,
Modeling and simulation formalism.

1 Introduction

The Discrete-Event System Specification (DEVS) is a popu-
lar formalism for modeling complex dynamic systems using
a discrete-event abstraction [Zeigler et al., 2018]. A DEVS
extension frequently suggests a direction in which Model-
ing and Simulation (M&S), considered a general field, and
DEVS formalism (as a particular specification) can be en-
hanced. This is the case with Routed DEVS (RDEVS), an
extension that promotes the M&S of routing processes over
DEVS models through a new modeling level: routing behav-
ior [Blas et al., 2022]. An illustrative example is given be-
low.
Let’s assume that a routing process is defined in a sce-

nario based on three distinct machines: SELECTION, RE-
PAIR, and PACKAGING (Figure 1). These machines are
connected as shown by the arrows. If the process of SELEC-
TION succeeds, the selected container goes to PACKAGING.
Otherwise, the container goes to REPAIR. After repair, the
container goes directly to PACKAGING. All the machines
can process all types of containers (A, B, or C), but in this par-
ticular setup, the REPAIR machine is configured to fix only
containers of type C. Both formalisms can be used to solve
the scenario depicted in Figure 1 on a discrete-event basis.
However, when using DEVS models, a much more complex
modeling structure arises to deal with the setup than when

Figure 1. An illustrative scenario that can be solved with DEVS or RDEVS.

using RDEVS models.
The processing of REPAIR is independent of the given

setup. To handle this in DEVS, you should include an ad-
ditional model to filter the processing of containers A and
B by REPAIR. To define the same setup in RDEVS, you
should modify the routing policy to reject the acceptance of
container types A and B without adding any other model to
the simulation. Hence, since well-defined M&S structures
have a positive impact on the building of simulation models
(because they can be applied systematically), the RDEVS for-
malism is conceptually defined as a subclass of DEVS. Such
a subclass manages identified events within a model network
where each node combines a behavioral description with a
routing policy to adopt a routing behavior. The modeling
strategy used when defining RDEVSmodels mathematically
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enhances the regular behavior of DEVS with new sets and
functions used to handle the routing of events. Still, this mod-
eling strategy does not affect the simulator execution (since
it is defined as part of the model).
From the simulator’s point of view, due to the shared

discrete-event basis, DEVS and RDEVS models can be com-
bined to define multi-formalism models executed with any
DEVS abstract simulator. This is because RDEVS models
are formalized as subclasses of DEVSmodels with particular
modeling goals. However, since the execution is controlled
following DEVS principles (i.e., a DEVS abstract simulator),
the data collected from such a type of execution is DEVS-
based. That means it is useful to study basic DEVS behav-
iors. As RDEVS is based on DEVS, DEVS-based data is
a sound start to understanding simulation results. However,
another feature to be studied when monitoring RDEVS sim-
ulation models is to analyze how the event flow works due to
routing policies. For example, knowing how many contain-
ers were not accepted in the REPAIR machine because they
were not of type C.
RDEVS models have DEVS traditional capabilities to

send (receive) output (input) events. However, during such
an exchange, RDEVS routing models have two extra respon-
sibilities: i) they should add routing information (following
their routing policy) to all outputs produced by the output
function (to encapsulate the output values with routing data
before producing output events), and ii) they should decide
whether to accept or reject each input event received using
the event routing data, the current state of the model, and
the routing policy attached to the node. In this way, unlike
regular DEVS events, RDEVS models use events embed-
ded with routing data. Such data is essential for understand-
ing several features of RDEVS dynamics, e.g., the number
of accepted/rejected events in a routing node, the types of
events accepted/rejected by specific nodes under certain state
conditions, and the frequency of produced output events ac-
cepted/rejected by destination models. Hence, to monitor the
main features of RDEVS models at execution time without
losing the capability of running multi-formalism models, a
distinct approach is required. Indeed, one of the following
approaches can be used i) improving the design of RDEVS
formalism through a reengineering process allowing the col-
lection of RDEVS-based data directly from models without
changing the formalism specification, or ii) redefining the
DEVS abstract simulator to manage two new types of sim-
ulator components (i.e., RDEVS simulator and RDEVS co-
ordinator) that allow for the collection of both DEVS-based
and RDEVS-based data. This paper is an extension of [Blas
et al., 2023b] and presents a solution to i). The latter is dis-
cussed in Section 2.2.
In this paper, we aim to create a flexible alternative to sub-

classing the original formalism, designing new functionality
without altering what the formalism already does. Our work
is devoted to developing a tracking feature for RDEVS exe-
cutions based on the events exchanged at simulation time due
to routing policy decisions. Both DEVS and RDEVS are de-
fined mathematically, but the simulator used to execute the
simulation of such models is defined as an algorithm imple-
mented in a software module. Since DEVS is more likely
to be computationally represented with an Object-Oriented

(OO) paradigm [Zeigler et al., 2018], we decided to fol-
low the insights of DEVS and use the conceptual model of
RDEVS as the representation to be redesigned with an add-
on functionality. Then, our challenge is to adapt the concep-
tualization of RDEVS from a practical point of view that can
be translated into existing software tools. This means we
need to enhance the conceptual model of RDEVS with track-
ing functionalities without changing the expected behavior
at simulation time.
There are many options in Software Engineering for in-

cluding new functionalities in an existing software design.
However, not all of them support the addition of new func-
tionalities to existing elements at runtime without changing
their core structure (in our case, the core structure is used to
execute the simulation). In particular, we use a Software En-
gineering design pattern that promotes the dynamic composi-
tion of behaviors, enabling the creation of modular, reusable
components that can be easily combined to enhance function-
ality. This paper shows how the Decorator pattern [Gamma
et al., 1995] was applied over the RDEVS design to include
event tracking in the models without changing the expected
behavior during simulation. We preserve the routing func-
tionality as part of the models and the suitability of DEVS
simulators as execution engines, allowing models to collect
event flow data dynamically. Given that when collecting
data, it is better to do it using a structured format [Sagiroglu
and Sinanc, 2013], we introduce a solution for collecting
structured data from RDEVS models at execution time, as a
new type of functional (not behavioral) responsibility. Such
a solution is implemented as a Java package attached to the
RDEVS Library.
The main contributions are

1. from the M&S theory, the conceptualization of add-
on functionalities as part of DEVS-based formalisms
through a design pattern; specifically, an add-on feature
for RDEVSmodels to store the data collected during the
simulation in a structured OO form, and

2. from the M&S practical field, implementation of this
conceptualization as a Java package attached to the
RDEVS Library that records data in JavaScript Object
Notation (JSON).

As a remark, our proposal is not focused on tracking sim-
ulation experiments as a distinct activity. Tracking is not
about gathering information on how state variables evolve
during the simulation in a structuredmodel but rather focuses
on how to capture the events managed by RDEVS models
during the simulation execution. While the former is usually
computationally expensive and data-intensive, the latter does
not require any additional computation or time-consuming
steps beyond the simulation itself.
The rest of this paper is organized as follows. Section 2

introduces the foundations of our work to provide a back-
ground for understanding how DEVS simulations are per-
formed in software tools, why RDEVS models behave dif-
ferently than DEVS models, and the importance of having
event-tracking data as an outcome of simulation engines. It
also introduces the Decorator design pattern, the existing
RDEVS design and implementation, and the software tool
used to execute the models. To overcome the main issues
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described when executing RDEVSmodels with DEVS simu-
lators, Section 3 presents the tracking proposal as an add-on
functionality to the RDEVS conceptualization by applying
the Decorator pattern to the conceptual model design. Fur-
thermore, it details how such a conceptual proposal was de-
ployed as part of the RDEVS Library implemented in Java.
Thus, this section shows how RDEVS simulation models in-
corporate tracking as part of their definition without chang-
ing the DEVS simulator. The results are presented in Sec-
tion 4, while Section 5 includes a discussion regarding the
main benefits of using RDEVS models with tracking add-on
functionality instead of just using RDEVS simulation mod-
els. Finally, Section 6 is devoted to conclusions and future
work.

2 Background: M&S of Routing Pro-
cesses over DEVS

A formalism provides a set of conventions for specifying a
class of objects in a precise, unambiguous, and paradigm-
free manner. In particular, the DEVS formalism [Zeigler
et al., 2018] provides a set of conventions for specifying
discrete-event simulation models based on a well-defined
M&S framework [Zeigler and Nutaro, 2016]. Such a frame-
work is composed of four entities (Figure 2):

• Source system: Environment to be modeled.
• Model: Set of instructions for generating data compara-
ble to the data observable in the system.

• Simulator: Computational system that executes the in-
structions detailed in the model.

• Experimental frame: Conditions under which the
source system is exercised.

Furthermore, these entities interact by two relationships:

• Modeling: Determines when a model is a valid repre-
sentation of the source system within an experimental
frame.

• Simulation: Specifies what constitutes a correct simula-
tion of a model by a simulator.

For DEVS, the framework emphasizes the idea of model
and simulator as two independent entities linked when a
model is executed in a computational environment (simula-
tor). In this approach, a simulator can be used to run several
types ofmodels. DEVS defines two types of models: atomic
and coupled. The mathematical form of such models can be
found in [Zeigler et al., 2018]. An atomic model describes
the behavior of a basic functional unit that cannot be further
divided into sub-units. The DEVS atomic model specifica-
tion requires defining three sets (input, outputs, and sequen-
tial states), two transition functions, and an output function.
On the other hand, a coupled model describes the structure
of a unit as a set of models. Such models can be either DEVS
atomic or coupled. They should be defined in the DEVS
coupled model specification. The specification also requires
defining two sets (inputs and outputs) alongwith external and
internal couplings among models. Hence, the atomic model

Figure 2. M&S framework (adapted from [Zeigler et al., 2018]).

Figure 3. DEVS-based solution for the scenario depicted in Figure 1.
Stereotypes are used to denote the type of DEVS model.

represents the behavioral modeling level, while the coupled
model represents the structural modeling level.
Often, discrete-event simulation scenarios require selec-

tively sending or receiving events between model compo-
nents (as in the example described in the previous section).
A routing process is “the part of a modeling scenario where
the components should interact by distinguishing the event
sources and destinations to ensure their diffusion into the cor-
rect model” [Blas et al., 2022]. In our example, the routing
process is attached to the interaction between SELECTION
and REPAIR due to the defined setup. When building a sim-
ulation model to explain a routing process, the modeler is
dealing with a routing problem.
In DEVS, routing processes are commonly solved as pre-

wired connections (detailed as part of the coupling specifica-
tion) or through the modeling of handlers. For example, the
DEVSmodels used to solve the scenario depicted inFigure 1
can be defined as shown in Figure 3, following the premises
detailed in [Blas et al., 2022]. This solution includes four
atomic models (one per machine type, plus one filter to han-
dle the setup within REPAIR) and two coupled models (RE-
PAIR WITH FILTER and SCENARIO).
However, taking advantage of the modular and hierarchi-

cal nature of DEVS, a deeper analysis of DEVS design pat-
terns has been conducted to improve the modeling of rout-
ing processes [Blas et al., 2022]. Based on the analysis of
explicit and implicit DEVS-based solutions to routing prob-
lems, we identified emerging structures, and as a result, the
RDEVS formalism was proposed. In this way, RDEVS is a
modular and hierarchical M&S formalism based on DEVS
that provides a set of design models for addressing routing
problems within DEVS models.

2.1 The Context: The Routed DEVS Formal-
ism

As stated before, the RDEVS formalism is designed to sim-
plify the modeling of routing problems. RDEVS is closed
under coupling [Blas et al., 2022]. Zeigler [Zeigler, 2018]
considers that two questions arise regarding the closure un-
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der coupling of DEVS-based formalisms:

Q1) are they subsets of DEVS, behaviorally equivalent to
DEVS but more expressive or convenient, or do they
bring new functionality to DEVS?, and

Q2) have simulators been provided for them to enable veri-
fication and implementation?.

The answers to these questions for the RDEVS formalism
are the following:

A1) The embedding of the essential model in the routing
model definition and the use of routing policies over
the well-defined structure of the network model are the
main features of RDEVS that enhance the DEVS for-
malism. By isolating the routing behavior from the
domain-specific behavior, routing processes are built
with a strict separation of concerns. All these features
are related to the “model” perspective (from the M&S
framework) explained in Section 2.1.1.

A2) While some DEVS-based extensions have required new
simulators to improve the execution of the proposed
models, for RDEVS models, any simulator implement-
ing the DEVS abstract simulator can be used (this is due
to the equivalence shown by closure under coupling).
This feature is related to the “simulator” perspective
(from the M&S framework) explained in Section 2.1.2.

2.1.1 The “Model” Perspective

The RDEVS formalism reduces the modeling effort when
routing processes are defined over DEVS models by intro-
ducing a new modeling level: the routing behavior [Blas
et al., 2022]. In an RDEVS-based solution, the modeler em-
ploys three distinct models: i) the essential model defines
the discrete-event behavior of a component used in a routing
node, ii) the routing model defines a routing node by relating
an essential model description with a routing policy through
a precise behavioral definition of how event routing should
be performed, and iii) the network model defines the routing
process scenario by coupling a set of routing models using
all-to-all connections (leaving the routing task to node poli-
cies). Hence, an RDEVS-based solution for the scenario de-
picted in Figure 1 is presented in Figure 4. Such a solution
is composed of three routing models with their routing poli-
cies (defined as mathematical functions of the models) and
an additional network model. The essential models embed-
ded in the routing models are equivalent to selection, pack-
aging, and repair behavior (i.e., the atomic models) used in
Figure 3. However, fewer models are defined in the RDEVS
solution since the filter is introduced into the models as part
of the routing policy. It is easy to see that RDEVS acts as
a “layer” above DEVS, providing routing functionality with-
out requiring the user to “dip down” to DEVS itself for any
functions [Zeigler, 2018].
By using the models described above, RDEVS divides the

behavioral modeling level of DEVS into two types: domain
behavior and routing behavior (see Table 1). Hence, the flat
behavior used in DEVS is replaced with a two-level struc-
ture, where the routing behavior is abstracted in the routing

Figure 4. RDEVS-based solution for the scenario depicted in Figure 1.
Stereotypes are used to denote the type of RDEVS model. The routing pol-
icy of REPAIR is introduced with a mathematical function included in the
model. Such a function is represented in the figure by the gray box.

model specification using a routing policy as part of the ac-
ceptance/rejection process. Thus, the design applied over
DEVS to build RDEVS allows: i) reuse of DEVS atomic
models as the behavioral specification in RDEVS essential
models, and ii) coupled RDEVS network models to DEVS
models (either atomic or coupled) by taking advantage of
routing processes only when required (this is because routing
processes are performed inside network models and routing
policies cannot be shared by several networks).

2.1.2 The “Simulator” Perspective

In DEVS, models are executed using a modular and hierar-
chical definition of simulators. Three types of simulators are
defined:

• Simulator: Simulator used to execute DEVS atomic
models.

• Coordinator: Simulator used to execute DEVS coupled
models.

• Root-Coordinator: Simulator used to initialize the sim-
ulation and manage the time advance at execution.

These simulators share information using a well-defined
message exchange protocol based on an event list. An ini-
tialization message (i,t) is sent (at the initialization stage) by
each parent to all its subordinates. The next scheduled inter-
nal event is carried out through the state transition message
(*,t) (sent by the coordinator to its imminent child). In this
case, an output message (y,t) is sent by the child to the coor-
dinator. Meanwhile, the coordinator sends input messages to
its subordinates to produce external events. Figure 5 shows
how the hierarchical DEVS model presented in Figure 3 is
related to the hierarchical structure of simulators (i.e., a con-
crete realization of the “simulation” relationship illustrated
in Figure 2 for the model depicted in Figure 3). Since the
SCENARIO model (Figure 3) is defined as a set of two cou-
pled models (SCENARIO and REPAIRWITH FILTER) and
four atomic models (selection, packaging, repair setup, and
repair behavior), the set of simulators required to support its
execution is composed of one root coordinator, two coordina-
tors (one per each coupled model), and four simulators (one
per each atomic model). These simulators interact at runtime
to execute the instructions detailed in the models.
As stated before, the simulator structure proposed in the

DEVS abstract simulator can be used to execute RDEVS sim-
ulation models. Since routing models manage the routing
policy as part of their behavior, the simulator does not need
to handle additional information regarding the simulation al-
gorithm. In this way, a DEVS simulator can be attached to
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Table 1. Modeling levels proposed in DEVS and RDEVS for-
malisms.

Modeling
Level

Model Description

D
EV

S

Behavior Atomic
Model

An atomic model describes
the autonomous behavior
of a discrete-event system
as a sequence of determin-
istic transitions between se-
quential states by specify-
ing how the system reacts
to external input events and
generates output events.

Structure Coupled
Model

A coupled model describes
a system as a structure of
coupled components that
can be either atomic or cou-
pled models. Connections
are defined as couplings de-
noting how components in-
fluence each other.

R
D
EV

S

Domain
Behav-
ior

Essential
Model

An essential model de-
scribes the behavior of a
component in the same
way as the DEVS atomic
model.

Routing
Behav-
ior

Routing
Model

A routing model describes
the external behavior of a
discrete-event model that
takes action inside a rout-
ing process. The internal
behavior of such a model
is defined by the essential
model embedded in it.

Routing
Struc-
ture

Network
Model

A network model describes
a routing process as a struc-
ture of routing models (i.e.,
components) designed to
solve event routing across
components.

each routing model while, for the network model, DEVS co-
ordinators can be employed. Because essential models are
embedded inside routing models, explicit simulator compo-
nents are not required. Then, the message exchange protocol
is a convenient tool to run both DEVS and RDEVS simula-
tion models combined in the same execution.

How are Events Routed in RDEVS Models? Let N be
a RDEVS network model representing a system over which
a routing process should be solved. When a value x (with
x ∈ X) arrives at N, the input translation function Tin is ex-
ecuted to get an identified event x’. With the extra routing
information added (i.e., destination models), the event x’ is
sent to all Rd routing models composing N. Each Rd model
determines how to handle x’ following its routing policy.
When a routing modelM (that embeds an essential model

E) receives an input event x’, it executes the external transi-
tion function δext,M. Such a function has two distinct behav-
iors as follows. If the event should be accepted due to the

routing policy, the model evolves to the next state by execut-
ing δext,E. Otherwise, the model remains in the current state
(i.e., the event x’ is ignored). If no external event occurs dur-
ing a state s, an internal transition will take place when the
time (in s) expires. Such a transition is defined by δint,M
and produces a state change in the model. Before changing
the state, the output function λM is executed to produce the
identified output event y’. To get y’, the model combines the
result of λE with its routing policy. Once the output event is
released, the state changes following the internal transition
function based on δint,E (to perform the domain behavior).
If at any time, an event y’ has no internal destination in

N, y’ should be sent outside N. Then, the network model ex-
ecutes the output translation function Tout to get an event y
(with y ∈ Y) from the identified event y’. Such a function
removes the routing information attached to y’ propagating
outside the related value as y.

2.2 The Problem: Getting Event-based Data
from RDEVS Simulations

Even though RDEVS models can be run with DEVS simu-
lators, the data obtained from such a process will be DEVS-
based. This data is acceptable to analyze simulation results
related to DEVS basic behaviors. However, when monitor-
ing RDEVSmodels, it is essential to be able to track the flow
of events between different models, always considering their
routing policies. This data cannot be obtained from a DEVS
simulator.
RDEVS models are allowed to send (receive) output (in-

put) events selectively. Depending on the case, these mod-
els must: i) add routing information to all events produced
(i.e., output events) by combining the routing policy and out-
put function, and ii) decide whether to accept/reject each
event received (i.e., input event) using the event routing
data, the current state of the model, and the routing pol-
icy attached to the node. Hence, when studying the dy-
namics of RDEVS models, the following questions arise:
How many events were accepted/rejected in a routing node?
How many events were sent? What types of events were
accepted/rejected by a particular node? Under which state
conditions? How many times have models produced output
events accepted/rejected by all the destination models? Get-
ting data to answer these questions becomes an issue to be
solved as part of the RDEVS formalism.
There are two high-level solutions to this problem: i) im-

prove the design of RDEVS formalism through a redesign
process that allows collecting RDEVS-based data directly
frommodels, and ii) redefine the DEVS abstract simulator to
manage new types of components for collecting both DEVS-
based and RDEVS-based data. As evident, each solution
is closely related to Q1) and Q2), respectively. The former
presents an alternative solution with a separation of concerns
that allows maintaining the advantages of using DEVS sim-
ulators as defined in the RDEVS conception. In this solu-
tion, the DEVS-based data collected by the simulator can be
complemented with RDEVS-based data in a way that allows
studying the dynamic behavior of routing policies and how
simulation models interact during the simulation. On the
other hand, the latter maintains the simulator as the engine
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Figure 5. DEVS hierarchical simulator related to a hierarchical model depicted in Figure 3. Messages are not included. Background colors refer to the
components presented in Figure 2.

that collects all the dynamic data attached to the model. The
main problem with this approach is that the required feature
depends on behavior modeling levels (domain and routing),
mainly controlled by routing policies used in the nodes. In
this case, the solution will require the simulator to know de-
tailed information regarding the decisionsmade by themodel
at the behavioral level. To do this, we should: i) modify the
message exchange protocol of simulators by introducing new
messages to capture such behaviors, and ii) introduce a new
type of simulator that can be combined with the DEVS sim-
ulator hierarchy.
To maintain the suitability of DEVS simulators as support

of RDEVS models (i.e., to maintain a multi-formalism sim-
ulation approach), in Section 3, we introduce a suitable con-
ceptual modeling-based solution for obtaining (structured)
data from RDEVS simulations using event trackers (i.e., the
solution i)). Such a modeling-based solution is centered on
the Decorator pattern (Section 2.3) as a means to add respon-
sibilities to the well-defined conceptualization of RDEVS
simulation models defined in [Blas et al., 2022] without al-
tering their behavior.

2.3 The Solution: The Decorator (Design) Pat-
tern

In software engineering, restructuring is defined as the trans-
formation from one representation form to another at the
same relative abstraction level, while preserving the sub-
ject system’s external behavior (functionality and seman-
tics)[Chikofsky and Cross, 1990]. On the other hand, refac-
toring is the process of changing a software system in such
a way that it does not alter the external behavior of the code,
yet improves its internal structure [Fowler, 2018]. Restruc-
turing creates new versions that may propose changes to the

subject system, but it does not involve modifications driven
by new requirements. When combined with refactoring, it
leads to reengineering, which is the examination and alter-
ation of a subject system to reconstitute it in a new form fol-
lowed by the implementation of that new form [Mens and
Tourwé, 2004].
With the aim of changing the appearance of RDEVS mod-

els by introducing trackers as part of their practical defini-
tion, we employ the notion of restructuring implemented by
refactoring the RDEVS library through the use of a design
pattern. A design pattern is the reusable form of a solution
to a design problem [Alexander, 2018]. Design patterns are
general, reusable solutions defined from the study of com-
monly occurring problems within a given context, and they
help ensure the success of the modeling task (e.g., OO design
patterns capture the intent behind a design by identifying ob-
jects, their collaborations, and the distribution of responsibil-
ities [Gamma et al., 1995]).
The Decorator design pattern is one of the twenty-three

well-known design patterns proposed by [Gamma et al.,
1995]. Such a structural pattern defines a flexible approach
to enclosing a component in another object that adds a “bor-
der” with the intent of attaching an additional responsibility
dynamically. The enclosed object is called a “decorator” that,
following the interface of the component, decorates such a
component so that its presence is transparent to the compo-
nent’s client (see Figure 6).
According to [Gamma et al., 1995], the applicability of the

pattern is mainly devoted to i) adding responsibilities to indi-
vidual objects without affecting other objects, ii) responsibil-
ities that can be withdrawn, or iii) situations when extension
by subclassing is impractical.
As stated before, since DEVS is more likely to be com-

putationally represented with an OO paradigm, we use the
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Figure 6. Structure of the Decorator design pattern (adapted from [Gamma
et al., 1995]).

conceptual model of RDEVS as the object model to be refac-
tored with the decorator design pattern. Even though there
are other alternatives, the use of the decorator pattern pro-
vides the following benefits to our proposal:

• It allows the addition of trackers (as decorators) to
RDEVS models without modifying the simulator def-
inition, avoiding subclassing (i.e., the need to create
multiple subclasses to extend the behavior of an object)
whichwould require adjusting the simulator to deal with
trackers.

• It provides proper separation of concerns, since the dec-
orator is responsible for a specific functionality while
the model responsibilities remain unchanged, allowing
the decorators to be included on demand at runtime.

• It improves maintainability, since the decorator is re-
sponsible for a specific functionality that can be added,
removed, or modified without affecting the rest of the
model structure.

Given that for the RDEVS formalism: i) we want to add
a new responsibility (tracking) without affecting how mod-
els work, ii) we want (in the future) to selectively choose the
models to track, and iii) defining new subclasses is not fea-
sible, as it implies creating new types of simulation models;
we decided to use the Decorator pattern for the redesign.

3 RDEVS with the Tracker Add-On
Functionality

At this point, two remarks are critical for understanding our
proposal. First, we do not intend to introduce new function-
ality to the RDEVS formalism. By restructuring the foun-
dational design, we want to show that it is possible to “dec-
orate” the formal model design without altering its external
behavior. The conceptual model (Section 3.1) is used to re-
build the existing RDEVS Java library (Section 3.2). Sec-
ond, we do not want to track the simulation itself. We aim
to capture the event flow data produced during the simula-
tion in response to the accept/reject actions taken by the rout-
ing behavior of nodes (i.e., routing models). As previously
detailed, instead of handling regular DEVS events, RDEVS
models use events surrounded by routing data. Then, at simu-
lation time, a model can receive an event that will not be pro-
cessed by its domain behavior because it has been rejected
by its routing behavior (placed at a higher decision level as
explained in Section 2.1.2). Indeed, we want to track events
processed by the domain behavior of both sides (source and
destination) as a result of routing policies.

3.1 Redesign at the Conceptual Modeling
Level

Since DEVS is typically represented computationally using
an OO paradigm, we use the conceptual model of RDEVS
(Figure 7) proposed in [Blas and Gonnet, 2021] as the UML
representation of the formalism to be redesigned. Such a
diagram is presented as a computational representation in a
metamodel of the RDEVS specification. From such a class
diagram, Figure 8 shows how the pattern was applied to sup-
port event trackers. Due to space limitations, the formal def-
inition of the conceptualization in the mathematical form of
RDEVS models is omitted.
Figure 8 shows the structure of RDEVS models, how

these models are related to DEVS Simulator Components,
and how Tracker Decorators were added to the conceptual-
ization. When the DEVS abstract simulator is used to ex-
ecute RDEVS models i) routing models are executed by a
DEVS Simulator, and ii) network models are performed by a
DEVS Coordinator. That is defined through the execute op-
eration placed at each type of DEVS Simulator Component.
The RDEVS Component is introduced to abstract RDEVS
models and the Tracker Decorator concept. The expected-
Behavior operation is used to define how models should
work. Then, the Tracker Decorator defines its expectedBe-
havior as the one described in the RDEVS model attached
(i.e., the RDEVS Component aggregated). Each specific type
of tracker includes its own tracking operation (see Section
3.2).
Once the trackers have been added as “decorators” of

RDEVS models, their own conceptualization is needed. Fig-
ure 9 shows the conceptualization used for trackers to record
data related to the attached RDEVS model (i.e., the RDEVS
Component).
In Figure 9, compositions are used to relate ports with

trackers. A Routing Model with Tracker is composed of an
Input Port (identified as entrance) and an Output Port (iden-
tified as exit). A Network Model with Tracker is composed
of an External Input Port and an External Output Port. Cou-
plings between ports are also defined as Internal Coupling,
External Coupling, External Input Coupling, and External
Output Coupling to describe the model structure. Events are
represented in the Event concept. Each Event is defined by
a type and a high-level type. The type refers to how it is
distinguished in the network model. An event is set as Ex-
ternal when it is received/sent by the network. Instead, an
event is set as Internal when it is exchanged between routing
models composing the network model. On the other hand,
the high-level type refers to the content of the event. Such
content is defined by the modeler in the RDEVS simulation
model that produces the Event. Each port registers the events
that have been sent/received. In this way, for each event, the
conceptual model describes which is the routing model that
sends/receives an event through its output/input port. For ex-
ample: i) an Event can be sent by an Output Port (source)
to an Input Port (destination), ii) an Event can be sent by
an External Input Port (defined as source) to an Input Port
(destination), or iii) an Event can be sent by an Output Port
(source) to an External Output Port (destination). Then, i)
represents an Event with type = Internal, while ii) and iii) re-
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fer to an Event with type = External (an external input event
in ii) and an external output event in iii)). TheConcrete Event
is used to denote that an Event has been accepted in a model
due to the routing policy.

3.2 Implementation in the RDEVS Java Li-
brary

As stated before, the RDEVS formalism is a subclass of
DEVS that builds “new types of models” over DEVS. Hence,
existing DEVS implementations can be used to support
RDEVS implementations. We have used DEVSJAVA [Sar-
joughian and Zeigler, 1998] as the underlying M&S layer
for the RDEVS library. The Java classes implemented as
RDEVS concepts were linked to the classes proposed in the
M&S layer for simulation compatibility. All the models de-
fined in the RDEVS formalism were implemented as Java
classes that depend on DEVSJAVA classes. In this way,
the library supports the implementation of routing structures
over discrete-event system models based on the RDEVS for-
malism. Furthermore, since DEVS Suite [Kim et al., 2009]
is a software tool defined based on DEVSJAVA, the imple-
mentation of RDEVS models can be tracked by DEVS Suite
to get DEVS-based data.
To update the existing implementation of RDEVS models

with event trackers, we perform a refactoring of the RDEVS
Java Library [Espertino et al., 2024] following the conceptu-
alizations previously described. These models were imple-
mented as a new Java project related to the existing imple-
mentation.

3.2.1 How Does the Tracking Work?

To explain how the conceptual models presented in the pre-
vious section can record dynamic information regarding the
event flow, Figure 10 presents a UML sequence diagram.
This diagram shows the interactions among trackers, mod-
els, and simulators at execution time. We use the notions of
“Tracker Decorator” and “RDEVS Component” as the ones
depicted in Figure 9, and “Simulator” as a generic DEVS
Simulator that can be either a Simulator or Coordinator.
At the beginning of each simulation, the trackers associ-

ated with the models are automatically created through the
initialization process (steps 1 to 7). During these steps, the
data related to the model structure (i.e., static data) is col-
lected by each tracker (e.g., for the routing model tracker:
identifier, name, input port names, output port names, and
so on). This data depends on the type of RDEVS model.
Once the models are running in a simulation (from step 8

onwards), the dynamic data is collected. This data is pro-
duced by the identified events exchanged among routing
models. When the simulator detects that a model has an im-
minent internal transition to be executed, it allows the model
to fire such a transition after sending the corresponding out-
put event (steps 9 to 15). When executing the output function,
for each event sent, the tracker collects the following data in
an Event (defined in Figure 9): highLevelType, type (Inter-
nal or External), source (output port from which it has been
sent), and destination (input ports to which it is intended).
Following these steps for each output event, a list ofEvents is

dynamically built in the trackers representing each port from
which identified events depart (Output Port for anEventwith
type = Internal or External Input Port for an Event with type
= External).
A similar strategy is used on the trackers representing ports

on which events are attempted to be sent due to an external
transition (steps 16 to 19). Moreover, RDEVS models use
the routing function to decide whether to accept or reject the
input event when executing the external transition function.
For rejection, no data is particularly recorded in the tracker
(step 22). However, when a routing model accepts an event
(i.e., the routing policy allows the model to execute its do-
main behavior), a Concrete Event is created (steps 23 to 26).
This Concrete Event is attached to the original Event pro-
duced by the sender through the accepted association. More-
over, it is attached to the Routing Model tracker related to the
model that accepted it through the executed association. In
this way, an Event collects all instances accepted by destina-
tions at the accepted association (as a list of Concrete Event
elements) and all intended targets at the destination associa-
tion (as the list of ports that contain the Event).
Once the simulation ends (from step 27 onwards), all the

dynamic data related to event exchange is available as part of
the tracker model’s structure. To store such data, a JSON file
is created. JSON is a lightweight data-interchange format de-
fined as plain text written in JavaScript object notation. To
structure the JSON file, we use the tag “@Expose” for prede-
fined navigation among the Java classes implemented. This
navigation is designed to store the minimum set of data re-
quired to rebuild the model.

4 Results: Tracking Routing Pro-
cesses implemented over RDEVS
Simulation Models

To show how trackers are attached to models and how the
data collection process works, we expand the three-node ex-
ample presented in Figure 1. As previously stated, this sce-
nario involves three machines: SELECTION, REPAIR, and
PACKAGING connected to process distinct types of contain-
ers (A, B, or C). New setups are defined as follows: i) SE-
LECTION can accept all types of containers, ii)REPAIR can
only fix containers of type C, and iii) PACKAGING can only
process containers of types B and C. Hence, this scenario
can be modeled through a routing process composed of three
nodes (one per machine) using the model depicted in Figure
4, but updating the routing policies attached to each node
(i.e., redefining their routing functions). Then, considering
how the RDEVS formalism deals with events at execution
time, some events will not be processed in the nodes due to
their routing policies. It is important to note that, in the case
of adopting DEVS-based modeling, the number of models
involved in the solution will increase since each node should
be modeled as the REPAIR WITH FILTER node depicted in
Figure 3.
Following the model presented in Figure 4, Figure 11

shows the structure of the RDEVS models in terms of the
simulator hierarchy and its relationship with the trackers in-
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Figure 7. UML class diagram of the RDEVS metamodel proposed in [Blas and Gonnet, 2021].

Figure 8. UML class diagram of the RDEVS metamodel (Figure 7) updated with the event trackers. New classes are the ones highlighted in gray.

Figure 9. UML class diagram of the conceptual model used to structure the trackers definition.
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Figure 10. UML sequence diagram representing how the tracking process
works.

troduced as decorators in the model definition. At the center,
each node is modeled as an RDEVS routing model compos-
ing the RDEVS network model named SCENARIO. On the
right, the DEVS simulator hierarchy used to execute RDEVS
models is presented. Such a hierarchy is based on the defini-
tions introduced in Section 2.1.2. As in Figure 5, each type
of model is attached to a simulator type. In particular, DEVS
simulators are used to execute DEVS routing models and a
single DEVS coordinator is used to execute the RDEVS net-
work model. For example, the repairmachine is modeled by
the RDEVS routing model named repair, and such a model
is attached to the DEVS simulator named repair. Finally, at
the left, the trackers automatically created as decorators of
the models are shown. These new elements are presented as
distinct components attached to the models since, as detailed
in Figure 9, they follow their own structure (similar to the
simulator hierarchy). Hence, a Routing Model Tracker is de-
fined for each RDEVS routingmodel to collect the event data
attached to each node (e.g., the packaging Routing Model
Tracker is attached to the packaging RoutingModel). For the
networkmodel (i.e., SCENARIO), a NetworkModel Tracker
(named SCENARIO) is used.

The structure presented in Figure 11 shows how an
RDEVS simulation is performed by combining the DEVS
simulator hierarchy with our tracker proposal over RDEVS
models. Such a structure is created each time a simulation
is executed. As a result of execution, the trackers allocate
data related to the event flow executed by the DEVS sim-

ulator hierarchy and accepted/rejected by the RDEVS mod-
els. Figure 12 shows part of the JSON file obtained as out-
put data of the routing model attached to the REPAIR node
when performing a simulation. As expected, it shows a set of
events related to the entrance in line 207 (i.e., the Input Port
attached to the Routing Model Tracker with id = 2 and name
= “REPAIR”). Since the REPAIR node only receives con-
tainers after the SELECTION node has processed them, all
events received in the routing model are Internal (lines 210,
215, 220, 225, 230, and 235). Distinct types of containers are
received (highLevelType). However, only the ones accepted
by the routing policy (i.e., the ones with highLevelType =
“C”) are marked as concreteAccepted = true (lines 217 and
232). That means these events are the only ones processed
by the domain behavior of the routing model. The output
events produced by the routing model during the simulation
are captured at the exit property (i.e., theOutputPort attached
to the model). As the highlighted box shows, all these events
are set as highLevelType = “C” (lines 427 and 432) and con-
creteAccepted = true (lines 428 and 433). The former is due
to the REPAIR acceptance policy. Only containers of type
C are processed before passing to the PACKAGING node.
The latter is due to the PACKAGING node being enabled to
accept containers of type C.

Having data formatted in JSON allows us to use other soft-
ware tools to study RDEVS models. For example, we can
now design specific visualizations to improve the understand-
ing of the routing process described in the RDEVS simula-
tion. The authors of [Vernon-Bido et al., 2015] identify four
types of visualization for M&S: 1) concept and diagram vi-
sualization, 2) quantitative visualization, 3) seek and find vi-
sualization, and 4) pattern and flow visualization. We are in-
terested in quantitative visualization (i.e., the static and semi-
static graphs and time-series plots associated with M&S re-
sults and statistics). Hence, as an example of quantitative
visualization of the collected data, a Sankey diagram (i.e., a
flow diagram that depicts nodes linked by flows) is presented
in Figure 13.

In a Sankey diagram, the quantity of each flow is repre-
sented by its width. This diagram is particularly useful to
show multiple paths through a set of stages, helping to lo-
cate dominant contributions to an overall flow. For our pur-
poses, we decided to represent RDEVS routing models as
nodes, and the number of events exchanged, following rout-
ing policies as the width of the flows. In this way, this type
of diagram can help to understand how RDEVSmodels have
accepted or rejected events.

It is important to note that the Sankey diagram depicted
in Figure 13 is just an example of how the data collected by
the trackers can be used to analyze the RDEVS simulations.
Other forms of graphical representations can be used starting
from the JSON file obtained as the output of execution. The
Sankey diagram shown here was built using the data recov-
ered from the simulation as input in a graphical application
of our research laboratory. This application generates the di-
agram using the JSON file and produces an HTML file that
contains the Sankey diagram. The diagram is directly visual-
ized in the browser, allowing for a more accurate visualiza-
tion.
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Figure 11. Block diagram of the Tracker-Model-Simulator used to execute the scenario presented in Figure 1. Routing policies are not included. Background
colors refer to the components presented in Figure 2 (except for trackers).

5 Discussion
Nowadays, collecting data is a key step in the data process-
ing of any model. If such data is structured, the processing to
collect information is less complex. Structured data inserts
a data warehouse already tagged and easily sorted, while un-
structured data is random and difficult to analyze [Sagiroglu
and Sinanc, 2013]. Hence, when collecting data, it is better
to use a clearly structured format. Moreover, data collection
is the pivotal step in the processing of a model.
For discrete-event based models, the data is primarily re-

lated to events. Over the years, several researchers have
proposed trackers attached to DEVS models. A great exam-
ple is DEVS Suite [Kim et al., 2009]. It was presented in
2009 as “a new generation of the DEVS Tracking Environ-
ment”. In DEVS Tracking Environment [Sarjoughian and
Singh, 2004], a basic tracking environment was proposed al-
lowing the execution of simulation experiments. From such
experiments, data can be dynamically selected and observed
(in tabular data output) for any number of DEVS models. In
DEVS Suite, the data generated by the simulation models is
collected dynamically and displayed as time-based trajecto-
ries using the same approach.
From a different perspective, more recently, the authors of

[Dahmani et al., 2020] have proposed a vocabulary of DEVS
defined through an XML schema and an XML abstract simu-
lator. The simulation is executed with XSLT transformations
that generate an XML simulation tree at each event occur-
rence. This allows tracing the simulation through the events.
In this case, XML is used as a meta-language that provides
a standard for information exchange to encourage sharing
models from different DEVS implementations. Given that an
XML schema describes the structure of an XML document,
documents produced using this approach can be considered
structured data.
Our solution improves the understanding of the RDEVS

formalism as an alternative conceptualization of DEVSmod-
els executed over DEVS simulators. As in [Dahmani et al.,
2020], we obtain structured data stored in a well-known for-
mat that facilitates further analysis. Moreover, in all cases,
tracing mechanisms are hidden from the modeler. In our
case, they are also hidden from the simulator (maintaining
the separation of concerns defined in the M&S Framework
proposed with DEVS).We avoidmaking the simulator aware

of the trackers (i.e., we prevent it from knowing detailed in-
formation regarding the decisions made by models at both
routing and behavioral levels). By deploying trackers as
part of the RDEVS library (supported by DEVSJAVA [Sar-
joughian and Zeigler, 1998]), DEVS Suite can be used to
obtain DEVS-based results. Global reporting using both
types of results can be produced without much effort. By us-
ing JSON formatting we enable integration with other soft-
ware tools for in-depth analysis of RDEVS models. Fur-
thermore, specific visualizations can be designed to enhance
comprehension of the intricate routing processes modeled
with RDEVS. Here, as an example of such visualizations,
we employ Sankey diagrams to represent the flow of data
between nodes. As stated, we developed a parser that takes
the JSON data with the RDEVS structure and generates an
HTML file to display the Sankey diagram automatically.
Tracing simulation experiments is usually computation-

ally and data-intensive. As these examples show, our alterna-
tive solution provides an accurate separation of concerns that
allowsmaintaining the advantages of usingDEVS simulators
(DEVSJAVA) for executing RDEVS models (implemented
using the RDEVS library) while collecting structured data
regarding how routing policies (at a higher decision level)
are allowing/blocking domain processing at the lower opera-
tional level. At this point, it is important to note that the solu-
tion presented is described as an add-on responsibility of the
RDEVS models themselves. Performance analyses are not
applicable at this stage.
Given the nature of our proposal, adopting other DEVS

simulators to execute RDEVS models decorated with track-
ers can be seen as a threat to validity. Due to the novelty
of RDEVS, we are employing the only existing implemen-
tation of the RDEVS conceptualization (i.e., the one based
on DEVSJAVA). To overcome this threat, new software re-
lated to RDEVS should be developed. Even so, it is worth
highlighting that our proposal is centered on the conceptual
design of the formalism (so the main features of it should be
maintained across different software tools).

6 Conclusions and Future Work
To address the limitations produced by DEVS simulators, a
conceptualmodeling-based solution using event trackers was
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Figure 12. Part of the structured data available in the JSON file for the rout-
ing model with id = 2 and name = REPAIR (i.e., the routing model attached
to the REPAIR node).

proposed to gather structured data from RDEVS simulations.
We have altered the conceptual design of the RDEVS imple-
mentation by including tracking responsibilities as “decora-
tors” of the set of elements used in discrete-event models.
Through restructuring, we change the appearance of RDEVS
models by introducing the trackers as part of their practical
definition. As shown in Section 4, the addition of trackers
does not affect either the model’s behavior or its structure.
The restructuring was implemented (in practice) by refactor-
ing the RDEVS library. In this way, RDEVS-based data
can be obtained from RDEVS simulations as a complement
to the DEVS-based data obtained from the DEVS simula-
tor. Hence, our solution maintains the key benefits of the
model-simulator separation that underpinned the design of
the RDEVS formalism.

The example presented in Section 4 was used to show
how trackers work starting from the conceptualization de-
fined. Even so, any case study where RDEVS models are
used will be enhanced with the tracker’s additional feature
since it allows the characterization of the event flow without
extra effort. Since our research group is devoted to devel-
oping RDEVS models in different areas, we have used the

Figure 13. A Sankey diagram. Flow color is used to denote different paths.
INPUT and OUTPUT are nodes denoting external input and output flows
from/to the network model to/from routing models.

proposal of this paper for the M&S of network protocols [Al-
shareef et al., 2022], software architectures [Blas et al., 2020]
[Blas and Gonnet, 2022], and electric power systems [Blas
and Alvarez, 2022] [Blas et al., 2023a].
By allowing the collection of RDEVS-based data through

tracking, we expect to improve the extensibility, maintain-
ability, and readability of RDEVSmodels. The DEVS-based
data gathered by the DEVS simulator can be complemented
with the RDEVS-based structured data obtained from our
trackers to allow a complete analysis of the simulation mod-
els. Since our data is structured, the processing to extract in-
formation is less complex. Moreover, such processing can be
developed using a general-purpose programming language
or a specific software tool with JSON processing function-
ality. Hence, defining an output structure in the JSON for-
mat was essential to effectively present information from all
simulation runs, ensuring accessibility and clarity for further
analysis and interpretation. We are now working on the de-
velopment of a web application that will allow practitioners
to upload JSON files and generate charts and tables with the
processed data (i.e., information). This is the final goal of
our research project at this stage. This tool significantly con-
tributes to RDEVS research, helping us to understand the
model’s routing behavior. In future work, we plan to extend
the trackers’ proposals with other features required based on
the past experiences of our research group when analyzing
RDEVS models.
We strongly believe that the solution presented for the

problem of gathering structured data from RDEVS models
might apply to other DEVS extensions. Moreover, the prop-
erties enjoyed by the solution are valuable from a software
engineering point of view and can be used to incorporate
other functionalities to the simulation models as add-on re-
sponsibilities. In the future, we plan to include more add-on
functionalities in our proposal. Other design patterns will be
explored.
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