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Abstract. Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address

challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic

applications. However, existing studies have relied on private datasets and simplistic degradation models. To address

this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and

high-resolution license plate images captured under real-world conditions. We establish a benchmark using multiple

sequential LR and high-resolution (HR) images per vehicle – five of each – and two state-of-the-art models for

super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predictions

from a leading Optical Character Recognition (OCR) model for multiple super-resolved license plates enhances

overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with

further improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware

and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP)

strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with

super-resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings

underscore the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world,

adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at:

https://valfride.github.io/nascimento2025toward/.
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1 Introduction

License Plate Recognition (LPR) systems have become in-

creasingly popular across various practical applications, such

as traffic monitoring and toll collection [Laroca et al., 2021;

Ke et al., 2023; Liu et al., 2024b]. These systems are designed

to accurately recognize characters on a License Plate (LP)

after it has been detected within an image.

While recent studies on LPR have reported high recognition

rates, the results are primarily based on experiments using

high-resolution (HR) images, where the LP characters are

clearly defined and free from significant noise [Silva and

Jung, 2022; Laroca et al., 2023b; Rao et al., 2024]. However,

accurately recognizing characters in low-resolution (LR) or

degraded images remains a significant challenge.

In surveillance scenarios, images are often captured at low

resolutions or are heavily compressed due to constraints in

storage and bandwidth. Hence, LP characters may become dis-

torted, blend into the background, or overlap with neighboring

characters, making recognition challenging. This underscores

the need for robust methods that can effectively handle these

types of degradation.

Taking this into account, various image enhancement tech-

niques, including super-resolution (SR), have been proposed

to improve image quality [Moussa et al., 2022; Nascimento

et al., 2023, 2024a; Pan et al., 2024]. Although these tech-

niques aim to improve LPR, their performance is frequently

assessed using metrics such as Structural Similarity Index

Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR),

which are known not to correlate well with human assess-

ment of visual quality or recognition accuracy [Johnson et al.,

2016; Zhang et al., 2018; Mehri et al., 2021; Liu et al., 2023].

Furthermore, most studies relied solely on private datasets

[Hamdi et al., 2021; Maier et al., 2022; Luo et al., 2024],

hindering fair comparisons. Many also adopted simplistic

degradation models, where LR images were created by sim-

ply downsampling the original HR images [Nascimento et al.,

2022; Kim et al., 2024; Pan et al., 2024].

In response to these limitations, we introduce a new

publicly available dataset, UFPR-SR-Plates1. It comprises

100,000 LP images captured by a rolling shutter camera in-

stalled on a Brazilian road. UFPR-SR-Plates includes 10,000

1The UFPR-SR-Plates dataset is publicly available at https://
valfride.github.io/nascimento2025toward/
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LP tracks, each consisting of ten consecutive images – five

LR images captured when the vehicle was farthest from the

camera, and five HR images captured at its closest point.

These tracks, recorded under varying environmental and light-

ing conditions, feature two distinct LP layouts: Brazilian and

Mercosur. Unlike synthetically generated datasets, UFPR-SR-

Plates offers a more accurate representation of surveillance

scenarios and makes it a valuable resource for advancing LP

super-resolution research.

In summary, the main contributions of this work are:

• A publicly available dataset containing 100,000 images,

divided into 10,000 tracks, with each track containing

five LR images and five HR images of the same LP. To

enhance variability, 5,000 tracks were collected at a res-

olution of 1280 × 960 pixels, while the remaining 5,000
tracks were captured at 1920 × 1080 pixels. The dataset

is evenly distributed between Mercosur and Brazilian

LPs, making it the largest dataset in terms of the number

of LPs for both layouts;

• We conducted benchmark experiments on the proposed

dataset using five state-of-the-art super-resolution mod-

els: (i) general-purpose approaches (SR3 [Saharia et al.,

2023], Real-ESRGAN [Wang et al., 2021]), and (ii)

LP-specialized networks (LPSRGAN [Pan et al., 2024],

PLNET [Nascimento et al., 2024a], and LCDNet [Nasci-

mento et al., 2024b]). For each track, we generated five

super-resolved images from the LR images and com-

pared the recognition results obtained by the leading Op-

tical Character Recognition (OCR) model, GP_LPR [Liu

et al., 2024b]. The super-resolution process significantly

boosted recognition accuracy, increasing from 2.2% to

29.9% for a single super-resolved image. To further en-

hance LPR performance, we explored three fusion strate-

gies for combining the outputs from the OCR model

based on multiple super-resolved images. Notably, ap-

plying the Majority Vote by Character Position (MVCP)

strategy with five super-resolved images improved the

recognition rate from 29.9% to 42.3%. The proposed

dataset enables the exploration of temporal relationships

among low-resolution LPs, as it includes multiple se-

quential LR images for each LP.

The remainder of this paper is structured as follows. Sec-

tion 2 provides a brief review of related works. In Section 3,

we introduce the UFPR-SR-Plates dataset. The experiments

are detailed in Section 4. Finally, Section 5 concludes the

paper by summarizing our findings and their significance.

2 Related Work

This section provides an overview of relevant works in LPR

and LP super-resolution.More specifically, Section 2.1 covers

recent advancements and techniques in LPR, highlighting key

innovations and their impact on recognition accuracy. Sec-

tion 2.2 discusses the integration of super-resolution methods

with LPR, focusing on their role in improving the recognition

of low-quality or degraded LP images.

2.1 License Plate Recognition (LPR)

The primary goal of LPR is to accurately identify characters

from a given LP image. To tackle this challenge, Silva and

Jung [2020] proposed treating the LPR stage as an object

detection task, where each character class is identified as a

distinct object. They introduced CR-NET, a model based on

YOLO [Redmon et al., 2016], which has shown significant

effectiveness for LPR in subsequent studies [Laroca et al.,

2021; Oliveira et al., 2021; Silva and Jung, 2022].

Recently, advancements in the field have moved toward

holistic treatment of the entire LP image for text recognition,

departing from traditional segmentation methods that isolate

individual characters. This shift has improved recognition

accuracy while also enhancing computational efficiency. For

instance, Ke et al. [2023] introduced a lightweight, multi-

scale LPR network that integrates global channel attention

layers to effectively fuse low- and high-level features.

To address real-world challenges, such as substantially

tilted LPs caused by suboptimal camera positioning, recent

research has focused on incorporating attention mechanisms

into deep learning models. Rao et al. [2024] integrated at-

tention mechanisms into a CRNN model, while Liu et al.

[2024a] introduced deformable spatial attention modules to

enhance feature extraction and capture the LP’s global lay-

out. Building on this, Liu et al. [2024b] presented a robust

OCR model called Global Perception License Plate Recogni-

tion (GP_LPR) for recognizing irregular LPs through the use

of deformable spatial attention and global perception mod-

ules (this model is further detailed in Section 4.1). These ad-

vancements collectively address challenges such as attention

deviation and character misidentification, leading to state-of-

the-art performance on popular datasets such as CCPD [Xu

et al., 2018] and RodoSol-ALPR [Laroca et al., 2022].

Although these models have reported impressive accuracy

and inference speed, most evaluations were conducted on

datasets where all LP characters are clearly legible, even on

challenging scenarios involving tilted LPs. This setup, how-

ever, does not accurately reflect real-world surveillance en-

vironments, where cost-effective cameras are typically used

and bandwidth limitations often degrade image quality. Con-

sequently, LR images with blurry characters that blend into

adjacent ones and the LP background are prevalent, posing

a substantial challenge for robust LPR [Moussa et al., 2022;

Ke et al., 2023; Schirrmacher et al., 2023].

2.2 Super-Resolution for LPR

The quality of an image is affected by various factors, in-

cluding lighting, weather, camera distance, motion blur, and

storage techniques, each introducing unique noise patterns.

These factors, combined with the structural variability in low-

resolution LPs, make it challenging for LPR systems to ac-

curately identify characters in such images. Although recent

advancements in SR methods have shown potential in im-

proving character visibility in low-quality images [Liu et al.,

2023], the specific challenges related to LPR under degraded

conditions remain largely unaddressed [Maier et al., 2022;

Hijji et al., 2023; Angelika Mulia et al., 2024].
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To address these challenges, Lin et al. [2021] proposed

an ESRGAN-based [Wang et al., 2019] approach for LP im-

age enhancement called PatchGAN. This method leverages a

residual dense network with progressive upsampling to pre-

serve high-frequency details effectively. While PatchGAN

achieved impressive PSNR and SSIM values, its performance

gains over other Generative Adversarial Network (GAN)-

based methods (e.g., SRGAN [Ledig et al., 2017]) were rel-

atively modest, and the model’s complexity may limit its

applicability in real-time scenarios.

Expanding on this, Hamdi et al. [2021] proposed an ap-

proach called Double Generative Adversarial Networks for

Image Enhancement and Super-Resolution, which employs

two sequential networks: the first to deblur the image and

the second to apply super-resolution, yielding the final out-

put. While their approach demonstrated effectiveness, it was

only tested on synthetically generated low-resolution images

created from high-resolution LPs.

Recognizing the gap in integrating character recognition

into the SR process, Lee et al. [2020] introduced a perceptual

loss based on features extracted from scene text recognition

models. Specifically, they leveraged intermediate representa-

tions from ASTER [Shi et al., 2019] to train a model based on

GANs. Their experiments showed that adding this perceptual

loss improved results compared to models trained without it.

However, a lack of detailed information on datasets and degra-

dation methods hinders the reproducibility and generalization

of their approach.

Building on these developments, Pan et al. [2023] intro-

duced a complete pipeline for the SR of LPs followed by

recognition, utilizing ESRGAN [Wang et al., 2019] for single-

character enhancement. Their method demonstrated effective-

ness with moderately low-quality LPs, nevertheless, it strug-

gled with severely degraded images, particularly when char-

acter boundaries were unclear. To overcome these challenges,

Pan et al. [2024] developed LPSRGAN, which processes the

entire LP image and incorporates a degradation model that

generates more realistic low-resolution LPs. Despite these

improvements, LPSRGAN still struggled to reconstruct char-

acters under severely degraded conditions.

Kim et al. [2024] introduced AFA-Net, an architecture

that integrates deblurring sub-networks at both the pixel and

feature levels. Their method was evaluated on a dataset con-

taining low-resolution and blurred LP images captured from

unconstrained dash cams. While the results were promising,

the LR images were artificially generated through simple in-

terpolation, and the testing protocol focused solely on super-

resolving digits, excluding letter recognition. This limits the

generalizability of their approach to real-world LP images.

Luo et al. [2024] designed a domain-specific degradation

model to simulate real-world LP degradations, incorporat-

ing common factors such as motion blur, lighting issues, and

noise. By retraining ESRGAN on a dataset of high-resolution

LPs with these simulated degradations, they achieved ro-

bust recognition performance. This success highlights the

model’s effectiveness in controlled settings where degrada-

tion types are aligned with the training data. However, when

confronted with unconstrained real-world scenarios, with se-

vere occlusion, extreme lighting variations, or unforeseen blur,

the method struggled to preserve accurate character structure,

indicating that further refinement is necessary for application

in complex, real-world settings.

AlHalawani et al. [2024] recently introduced DiffPlate, a

diffusion model for LP super-resolution that outperformed

ESRGAN and SwinIR [Liang et al., 2021] in terms of PSNR

and SSIM. However, its high computational cost restricts its

real-time applicability in surveillance systems. Furthermore,

the model was trained and tested using synthetically generated

images, where high-resolution LPs were downsampled by a

factor of four to produce low-resolution counterparts.

Nascimento et al. [2023, 2024a] introduced the Pixel-Level

Network (PLNET), a super-resolution model that employs

specialized attention modules to enhance the quality of LP

images. While PLNET showed potential in improving char-

acter clarity in LR scenarios, the experiments were limited to

synthetically generated LP images. In subsequent research,

the same authors [Nascimento et al., 2024b] developed the

Layout-Aware and Character-Driven Network (LCDNet),

which further improved character structure and positioning in

LP layouts through deformable convolutions, shared-weight

attention modules, and a GAN-based approach with an OCR

discriminator and a layout-aware perceptual loss. Although

this latter study included preliminary experiments with real-

world images, the dataset was not made publicly available,

which limits reproducibility. Both PLNET and LCDNet are

described in more detail in Section 4.1, as they are utilized in

our experiments.

Sendjasni and Larabi [2024] proposed RDASRNet, a frame-

work designed for extreme license plate SR (with a ×16 scal-

ing factor). The architecture integrates a hierarchical channel

attention mechanism that iteratively refines features extracted

from LR inputs. To enhance training, a dual-loss strategy

was employed – combining mean squared error with a con-

trastive loss guided by a Siamese network. This approach

enforces perceptual and structural consistency between the

super-resolved outputs and HR ground-truth images within

a latent space. While RDASRNet achieves state-of-the-art

performance on synthetic benchmarks, its high computational

cost poses challenges for real-time deployment in surveillance

systems. Furthermore, its reliance on synthetic training data

– where LR images are generated via idealized downsam-

pling – raises concerns about its generalizability to real-world

degradations, a limitation shared with other studies [Pan et al.,

2023; AlHalawani et al., 2024].

In summary, while substantial progress has been made in

super-resolution techniques for LPR, a major barrier to fur-

ther advancement is the limited availability of public datasets

containing paired low- and high-resolution LPs. Most existing

research relies on either proprietary datasets [Lee et al., 2020;

Hamdi et al., 2021; Maier et al., 2022; Pan et al., 2024] or syn-

thetically generated LR images [Pan et al., 2023; AlHalawani

et al., 2024; Kim et al., 2024; Luo et al., 2024; Sendjasni and

Larabi, 2024].
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Figure 1. Examples of scenarios from which the LP images in the UFPR-SR-Plates dataset were extracted. These images showcase a variety of vehicle types

and their corresponding LPs, captured under different environmental conditions. The first row shows images taken with a resolution of 1280 × 960 pixels,

while the second row displays images captured at 1920 × 1080 pixels. For better visualization, all images in this figure were slightly resized.

3 The UFPR-SR-Plates Dataset

The UFPR-SR-Plates dataset comprises 10,000 tracks, each

with five consecutive LR images and five consecutive HR

images of the same LP. With a total of 100,000 images, this

dataset is well-suited for SR and LPR tasks. It offers real-

world images captured under diverse noise and degradation

conditions, while enabling direct LR-HR comparison and

analysis of temporal variations within frame sequences.

The images were taken with a rolling shutter camera near

the Department of Informatics at the Federal University of

Paraná in Curitiba, Brazil, simulating real-world surveillance

conditions. Figure 1 presents sample images collected to build

the UFPR-SR-Plates dataset (i.e., prior to LP detection and ex-

traction), highlighting the diversity of vehicle types, including

cars, buses, and trucks.

Data collection occurred over six months, with images cap-

tured daily during a fixed 10-hour interval, from 7 a.m. to

5 p.m. Nighttime images were excluded due to infrared inter-

ference, which often caused overexposure or underexposure,

making LP recognition challenging even in HR images.

The original images were evenly distributed between two

video resolutions: 1280 × 960 pixels and 1920 × 1080 pixels.

This variation in resolution enables the extraction of LPs with

different pixel densities, allowing for a broader evaluation

of SR methods across varying image quality. Consequently,

UFPR-SR-Plates becomesmore versatile for tasks that require

adaptation to different levels of detail.

The proposed dataset is also balanced between two LP

layouts: Brazilian and Mercosur. Brazilian LPs follows a

format of three letters followed by four digits, while Mercosur

LPs features three letters, one digit, one letter, and two digits.

Although both types of LPs are similar in size and shape, they

differ significantly in color schemes and character fonts.

As shown in Figure 3, vehicle tracks were derived from

video footage capturing vehicles entering and exiting the

road from opposite sides. To detect and track vehicles, we

employed the YOLOv8 model [Ultralytics, 2023], a choice

motivated by the proven effectiveness of the YOLO family in

object detection in unconstrained scenarios [Lima et al., 2024;

Laroca et al., 2021, 2025]. We fine-tuned the model to meet

our specific needs, starting with a pre-trained version and

collecting initial bounding box annotations for detected vehi-

cles. After each detection round, we carefully reviewed and

manually corrected any annotation errors, incorporating these

adjustments into the training set and retraining the model.

This iterative process progressively improved detection accu-

racy, culminating in a refined dataset of 2,954 labeled images

tailored to our application.

We cropped each vehicle’s region of interest using the an-

notations from the process described above. Subsequently, we

applied IWPOD-NET [Silva and Jung, 2022] to locate the LP

corners. Although IWPOD-NET is a well-regarded method

for this task [Jia and Xie, 2023; Wei et al., 2024], its original

training on high-quality images limited its effectiveness in

our dataset, particularly for vehicles at greater distances. To

overcome this limitation, we retrained IWPOD-NET from

scratch with optimized hyperparameters, significantly improv-

ing its robustness in detecting LPs from distant vehicles. More

specifically, we started with an initial set of 300 annotated

LPs to train the IWPOD-NET model. Through an iterative

process, we tested the model on new images, corrected any

errors, and progressively expanded the training set with these

refined annotations. After several iterations, we conducted

a final training phase with 839 images, ensuring precise LP

corner detection considering our scenario. We then applied

the model to extract LPs using a minimum bounding box

method, adding 20% padding to both vertical and horizontal

dimensions to capture contextual surroundings.

From the resulting sequences, we selected the five LR

images that were farthest from the camera. To annotate the

LP characters, we employed the multi-task OCR developed

by Gonçalves et al. [2018] on each of the five HR samples

in the track, utilizing a sequence-level majority vote strategy.

Figure 2 shows all LP images from five tracks in the dataset.

Each image within a track is also accompanied by a JSON

file containing the coordinates (x, y) of its four corners, the
layout of the LP (Brazilian or Mercosur), and its textual con-

tent (e.g., ABC-1234). Table 1 presents a summary of key

statistical characteristics for each layout across both resolu-

tions in the UFPR-SR-Plates dataset, including the median,

maximum, and minimum dimensions, as well as the total

number of unique LPs.
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LR Images HR Images

Figure 2. Examples of tracks from the UFPR-SR-Plates dataset. Each track comprises five consecutive LR images and five consecutive HR images of the

same LP, captured under varying conditions. Each row shows a single track, with the LR images displayed on the left and the corresponding HR images on the

right. We remark that even what we consider ‘HR’ in the context of this work is of lower quality than the datasets typically used in LPR research.

GOH2435

GDW2435

GDW2435

GDW2435

GOW2435

Label: 
GDW2435

Multi-Task OCR
(Majority Vote)

HR region

LR region

HR region

LR region

Vehicle Detection 
(YOLOv8)

LP Detection
(IWPOD-NET) Cropped LPs

Figure 3. Illustration of the process of vehicle identification and tracking using YOLOv8 [Ultralytics, 2023], followed by LP corner detection with IWPOD-

NET [Silva and Jung, 2022]. LP images were extracted from the original frames based on the detected corners. A multi-task OCR model, proposed by

Gonçalves et al. [2018], was applied to recognize the text on the extracted LP images. Majority voting was applied to determine the final label. The blue lines

in the original images demarcate the regions for detecting low-resolution LPs (above the higher line) and high-resolution LPs (below the lower line).

Table 1. Summary of statistics (in pixels) for Brazilian andMercosur

LPs across resolutions in the UFPR-SR-Plates dataset.

UFPR-SR-Plates

1280 × 960 1920 × 1080
Brazilian Mercosur Brazilian Mercosur

LR HR LR HR LR HR LR HR

Median Height 19 34 18 32 21 50 21 38
Median Width 35 69 35 67 49 100 49 100
Max Height 28 60 25 49 28 52 26 52
Min Height 15 22 13 23 14 26 16 26
Max Width 56 103 59 88 35 122 61 122
Min Width 26 51 24 50 34 71 34 71
Unique LPs 1,663 2,500 1,627 2,496

Although the dataset acquisition process was automated,

all annotations were manually reviewed to ensure the relia-

bility of the UFPR-SR-Plates dataset for research purposes.

Despite the popularity of the chosen OCR model in the lit-

erature [Gonçalves et al., 2019; Nascimento et al., 2024b],

we found that it produced errors in approximately 5% of the

tracks. These errors were rectified during the aforementioned

analysis process.

For the experimental protocol, we divided each resolution

set (1920 × 1080 and 1280 × 960 pixels) into approximately

40%, 20%, and 40% for training, validation, and testing, re-

spectively. This resulted in 3,965 tracks for training, 2,030
for validation, and 4,005 for testing. Note that the number

of tracks in the training, validation, and test sets does not

conform to the exact ratios of 4,000/2,000/4,000 images, as

we carefully avoided any overlap of LPs across the training,

validation, and test sets, even when the same vehicle/LP was

depicted in images of different resolutions. For instance, if the

LP “ABC-1234” is included in the training set, it is strictly ex-

cluded from both the test and validation sets. As demonstrated

by Laroca et al. [2023a], the presence of near-duplicate LP

images across different subsets can artificially inflate model

performance. By preventing such overlaps, UFPR-SR-Plates

creates a fair and reliable resource for training, validating,

and testing deep learning-based models.

Regarding privacy concerns, LPs of vehicles registered in

Brazil are not associated with the personal information of the

vehicle owner, thus mitigating the risk of privacy breaches.

Each LP uniquely identifies the vehicle itself [Presidência da

República, 2014; Oliveira et al., 2021].
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4 Experimental Results

This section delves into the experimental details of this work.

Section 4.1 introduces the models employed, providing an

overview of the framework and key hyperparameters. Sec-

tion 4.2 outlines the fusion strategies implemented to com-

bine the predictions generated by the OCR model for multiple

super-resolved images, aiming to enhance LPR performance.

Finally, Section 4.3 presents and discusses the results.

All experiments were conducted on a computer equipped

with an AMD Ryzen 5950X 3.4 GHz CPU, 128 GB of RAM,

an SSD with read speeds of 535 MB/s and write speeds of

445 MB/s, and an NVIDIA Quadro RTX 8000 GPU (48 GB).

4.1 Models

We applied the GP_LPR model [Liu et al., 2024b] to LPR

on super-resolved images generated from the LR images in

the UFPR-SR-Plates dataset. The SR process was conducted

using five state-of-the-art networks: (i) two general-purpose

models: Real-ESRGAN [Wang et al., 2021] and SR3 [Sa-

haria et al., 2023], and (ii) three LP-specialized models LP-

SRGAN [Pan et al., 2024], PLNET [Nascimento et al., 2023,

2024a], and LCDNet [Nascimento et al., 2024b].

The chosen models achieved state-of-the-art performance

in both general SR tasks [Saharia et al., 2023; Luo et al.,

2024] and LP-specific SR tasks [Nascimento et al., 2023; Pan

et al., 2024]. Due to the absence of an official implementation,

we reimplemented LPSRGAN based on the methodology

described by Pan et al. [2024]. The code for all models is

publicly available2,3,4,5,6.

The GP_LPR model focuses on LPR of irregular LPs, em-

ploying attentionmechanisms to handle perspective distortion.

Central to its architecture is the global perception module,

which enhances character feature completeness by incorpo-

rating global visual information. This facilitates global inter-

action among features, distinguishing characters with similar

structures and minimizing misidentifications. Additionally,

the model employs the Deformable Spatial Attention Mod-

ule, featuring deformable convolution layers that adjust to

variations in character positions and shapes, improving the

network’s ability to capture the overall layout of LPs.

Real-ESRGAN [Wang et al., 2021] extends ESR-

GAN [Wang et al., 2018] by introducing a high-order degrada-

tionmodel tailored for real-world scenarios. Unlike traditional

approaches, it trains exclusively on synthetically degraded

data generated through a rigorous pipeline that applies mul-

tiple degradation steps – including blurring, noise injection,

resizing, and compression. A key innovation lies in its artifact

suppression mechanism, which employs filtering to mitigate

distortions introduced during degradation simulation. The

framework adopts a U-Net discriminator with spectral nor-

malization to stabilize adversarial training. Training proceeds

in two stages: first, a PSNR-oriented optimization ensures

2GP_LPR: https://github.com/mmm2024/gp_lpr/
3PLNET: https://github.com/valfride/lpr-rsr-ext/
4LCDNet: https://github.com/valfride/lpsr-lacd/
5Real-ESRGAN: https://github.com/xinntao/Real-ESRGAN/
6LPSRGAN: https://github.com/valfride/lpsrgan/

structural fidelity, followed by a perceptual refinement stage

to enhance visual quality. This methodology has demonstrated

state-of-the-art performance in general image restoration, val-

idating the effectiveness of synthetic degradation modeling

for practical super-resolution tasks.

SR3 [Saharia et al., 2023] takes a distinct approach by fram-

ing super-resolution as a diffusion process. Unlike common

GAN-based methods, Super-Resolution via Iterative Refine-

ment (SR3) iteratively refines a noisy input image into a

high-resolution output through a Markov chain. This stochas-

tic refinement enables the model to explore multiple plausible

reconstructions, particularly advantageous for recovering fine-

grained details in severely degraded LP images. The iterative

process is guided by a noise prediction network trained to re-

verse a predefined degradation schedule, making SR3 robust

to diverse noise types and compression artifacts.

LPSRGAN [Pan et al., 2024] enhances LPR accuracy in

unconstrained scenarios through a three-pronged approach.

It introduces an n-stage random combination degradation (n-

RCD) model to simulate real-world degradations like blur,

noise, and compression via multi-stage randomized com-

binations, addressing limitations of simplistic degradation

pipelines. The framework adopts a modified RRDBNet+

generator, building on Residual-in-Residual Dense Blocks

(RRDB) [Wang et al., 2019] with dropout layers to improve

feature representation and generalization across LP layouts.

To prioritize character clarity for recognition systems, LPSR-

GAN employs a perceptual loss optimized for LPR, align-

ing super-resolved images with a Connectionist Temporal

Classification loss to optimize character clarity by aligning

super-resolved images with OCR output predictions. This

integration of realistic degradation modeling, architectural

enhancements, and task-specific optimization enables robust

restoration of degraded LPs, particularly under severe real-

world distortions.

The PLNET model builds upon the foundation laid

by Mehri et al. [2021], introducing refinements specifically

tailored for LP super-resolution. It incorporates a shallow fea-

ture extractor module, using an autoencoder equipped with

PixelShuffle and PixelUnshuffle layers [Shi et al., 2016] to

efficiently extract shallow features while preserving essential

information through skip connections. PLNET also integrates

a mechanism to capture inter-channel and spatial relation-

ships, thus improving the model’s ability to rearrange and

scale input data more effectively than conventional methods.

LCDNet employs deformable convolutions and shared-

weight attention modules within a GAN framework. An OCR

model acts as the discriminator, steering the super-resolution

process toward prioritizing LPR accuracy. During training,

LCDNet optimizes a loss function designed to preserve char-

acter structure and the overall integrity of the LP layout (e.g.,

penalizing any confusion between letters and digits). This

ensures both visually clear and accurate LP recognition.

Here we detail the key hyperparameters used for train-

ing the models, all implemented using the PyTorch frame-

work. The hyperparameters were selected based on the prior

works [Saharia et al., 2023; Pan et al., 2024;Wang et al., 2021;

Nascimento et al., 2024a,b; Liu et al., 2024b] and preliminary

https://github.com/mmm2024/gp_lpr/
https://github.com/valfride/lpr-rsr-ext/
https://github.com/valfride/lpsr-lacd/
https://github.com/xinntao/Real-ESRGAN/
https://github.com/valfride/lpsrgan/
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experiments conducted on the validation set of the proposed

dataset. For all models, we employed the Adam optimizer.

In LPSRGAN [Pan et al., 2024], we replaced the original

HyperLPR3 OCR with Gonçalves et al. [2019]’s multi-task

model trained on UFPR-SR-Plates (ensuring fair comparison

as HyperLPR3 was trained on Chinese plates with unavailable

source code), using generator/discriminator learning rates of

10−4/10−5 respectively. Real-ESRGAN [Wang et al., 2021]

followed its standard two-stage protocol: PSNR-oriented pre-

training for 106 iterations (lr = 2×10−4) followed by GAN
fine-tuning for 4×105 iterations (lr = 1×10−4), with EMA

stabilization and U-Net discriminator. SR3 [Saharia et al.,

2023] employed 100 denoising steps across 106 training itera-

tions (lr = 1×10−4), incorporating Gaussian blur augmenta-

tion on low-resolution inputs. For both LCDNet and PLNET,

the initial learning rate was set to 10-4, decaying by a factor of
0.8 when no improvement in the loss function was observed.

For the GP_LPR model, the maximum decoding length was

set to K = 7 to match the 7-character format of the LPs in

the UFPR-SR-Plates dataset. To mitigate training oscillations

in GP_LPR, following Liu et al. [2024b], we applied a step

learning rate scheduler starting with an initial learning rate of

10-3 and decaying by a factor of 0.8 every 50 epochs.

Additionally, we added padding with gray pixels to both

the LR and HR images to preserve their aspect ratio before

resizing them to dimensions of 16 × 48 and 32 × 96 pixels,

respectively, corresponding to an upscale factor of 2.

4.2 Fusion Methods

Inspired by the work of Laroca et al. [2023b], we examine

three fusion methods to combine predictions from multiple

super-resolved images generated by the SR networks. For

each track in the test set, we processN consecutive LR images

of the same LP, captured at varying distances from the camera.

Each LR image is independently super-resolved and fed to the

OCR model. The predictions are then fused using one of the

following strategies. In our experiments, N ∈ {1, 3, 5}, with
images selected sequentially from nearest to farthest. This

process is illustrated in Figure 4.

The first fusion method, Highest Confidence (HC), straight-

forwardly selects the single prediction with the highest asso-

ciated confidence score as the final output:

ŷ = yk, where k = arg max
i∈{1,...,N}

Pi,

where Pi is the confidence score for the i-th OCR predic-

tion yi. This strategy aligns with classical confidence-based

fusion rules (e.g., [Kittler et al., 1998] ), which prioritize

predictions with the highest certainty.

The second method, Majority Vote (MV), is an ensemble

learning technique [Zhou, 2025] that selects the most frequent

prediction among all N outputs:

ŷ = mode ({y1, y2, . . . , yN }) ,

for mode defined as:

mode(S) = arg max
x∈S

countS(x),

where countS(x) is the number of times x appears in the

multiset S. MV has been widely adopted in applications such

as handwriting recognition [Zhao and Liu, 2020].

The third method, Majority Vote by Character Posi-

tion (MVCP), aggregates predictions per character position:

ŷj = mode
(
{y(1,j), y(2,j), . . . , y(N,j)}

)
,

where y(i,j) denotes the j-th character (for j ∈ [1, 7], j ∈ N)
of the i-th OCR prediction. The final output ŷ is formed by

concatenating all ŷj . This hierarchical approach draws inspi-

ration from structured prediction frameworks [Ghamrawi and

McCallum, 2005], resolving ambiguities at each character po-

sition.

A key challenge in majority-vote strategies is resolving ties

between competing predictions. To address this, our approach

prioritizes the prediction with the highest average character-

level confidence score within tied groups. Consider five OCR

predictions for a Brazilian LP with associated confidence

scores: two instances of “ABC-1234” (0.95 and 0.91), two
instances of “ABD-1234” (0.89 and 0.88), and “HBG-1284”
(0.71). Here, the MV method resolves the tie between the top

two candidates (“ABC-1234” and “ABD-1234”) by compar-

ing their confidence scores – 0.93 for “ABC-1234” and 0.88
for “ABD-1234” – selecting the former. For character-level

ambiguities (e.g., a conflict between two “C”s and two “D”s

in the third position), the MVCP strategy defaults to the char-

acter in the prediction with the highest confidence (in this

case selecting “C” from “ABC-1234” with 0.95 confidence).

This dual-layered approach ensures systematic tie-breaking

while emphasizing statistically robust reconstructions through

confidence metrics and character prevalence.

These fusion strategies are adaptations of well-established

methods in Pattern Recognition. For instance, MV-based fu-

sion has demonstrated effectiveness in enhancing OCR per-

formance for degraded documents [Reul et al., 2018], while

HC is a widely adopted approach in speech recognition sys-

tems [Prabhavalkar et al., 2023].

4.3 Results

In this section, we present the results achieved by the OCR

model in recognizing a single super-resolved LP image from

each of the five SR baseline models. Following this, we ana-

lyze the employed fusion approaches and examine the impact

of different resolutions on the results. Finally, we provide

visual results for qualitative analysis.

In LPR research, model performance is traditionally evalu-

ated using the recognition rate, defined as the ratio of correctly

recognized LPs (where all characters are correctly classified)

to the total number of LPs in the test set [Wang et al., 2022;

Chen et al., 2023; Wei et al., 2024]. In addition to this met-

ric, we incorporate partial matches (cases where at least 5
or 6 characters are recognized correctly). This approach is

particularly valuable when not all LP characters can be accu-

rately reconstructed or recognized, as it helps to narrow the

search space.

Table 2 summarizes the performance of the GP_LPR

model [Liu et al., 2024b] on both low- and high-resolution LP
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Figure 4. Illustration of the fusion process to enhance LPR performance by combining multiple super-resolved LP images. Sequential LR images (original

size 16 × 48 pixels) from each track are independently upsampled to 32 × 96 pixels via a single-image SR model, then processed by the GP_LPR model [Liu

et al., 2024b]. The OCR outputs are aggregated using three fusion strategies: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character

Position (MVCP), leveraging temporal consistency across frames to resolve structural ambiguities in character reconstruction (e.g., distinguishing “R”, “K”

and “H”). This approach is particularly valuable for forensic and surveillance scenarios that demand high reliability.

images, alongside images super-resolved by general-purpose

methods SR3 [Saharia et al., 2023] andReal-ESRGAN [Wang

et al., 2021], as well as LP-specialized networks LPSR-

GAN [Pan et al., 2024], PLNET [Nascimento et al., 2023,

2024a], and LCDNet [Nascimento et al., 2024b]. In LR sam-

ples, most characters are barely distinguishable, resulting in

recognition rates as low as 2.2%.

Table 2. Recognition rates obtained by GP_LPR on different test

images. The first LR and HR images from each track were used for

the experiments on the original images. Super-resolved images were

generated from the first LR image of each track.

Test Images
# Correct Characters

All ≥ 6 ≥ 5
HR 85.2% 98.5% 99.8%
LR (no SR) 2.2% 8.2% 20.1%
LR + SR (SR3) 18.4% 45.8% 68.3%
LR + SR (LPSRGAN) 19.6% 46.1% 67.4%
LR + SR (Real-ESRGAN) 20.2% 49.8% 71.8%
LR + SR (PLNET) 29.9% 57.8% 76.9%
LR + SR (LCDNet) 29.9% 59.2% 77.1%

The sharp decline in recognition rates for LR images un-

derscores the challenges of achieving accurate LPR when

working with low-quality inputs. While the GP_LPR model

achieves 85.2% recognition rate on HR images, its perfor-

mance plunges to just 2.2% on LR images, with only 20.1%
of LPs having at least 5 correct characters. The application

of SR methods, however, brings significant improvements.

Domain-specific models such as LCDNet and PLNET achieve

a 29.9% recognition rate, outperforming general-purpose SR

approaches like SR3 (18.4%) and Real-ESRGAN (20.2%).

For partial recognition (at least five correct characters), LCD-

Net reaches 77.1%, demonstrating that even imperfect recon-

structions can effectively reduce the search space in forensic

scenarios. Interestingly, LPSRGAN – despite being tailored

for LPs – underperforms compared to Real-ESRGAN (19.6%
vs. 20.2%), indicating potential limitations in its degrada-

tion modeling or training methodology. Overall, these find-

ings highlight the promise of SR techniques in improving

LPR robustness under real-world conditions. Nevertheless,

the considerable gap between super-resolved (29.9%) and

HR (85.2%) performance reveals the continued need for ad-

vancements in dealing with noise, compression, and other

practical image degradations.

Table 3 presents the recognition rates achieved by com-

bining the OCR model’s predictions for three and five super-

resolved images using the strategies described in Section 4.2.

For LP-specialized models, PLNET achieves up to 40.9%

recognition rate (all characters correct) with MVCP and 5

images, while LCDNet outperforms slightly at 42.3%, high-

lighting their robustness in reconstructing critical character de-

tails. Both models surpass general-purpose methods like SR3

(28.3%) and Real-ESRGAN (29.5%). The MVCP strategy

consistently delivers the highest gains, improving PLNET’s

accuracy by 5.0% (3 to 5 images) and LCDNet’s by 4.5% over

HC and MV. Aggregating five images instead of three further

boosts performance; for example, LCDNet achieves 86.9%

for cases with at least 5 correct characters (vs. 83.3% with

3 images), nearing practical utility for surveillance systems.

These results underscore the value of temporal fusion and

domain-specific SR in overcoming real-world degradations,

where partial matches (≥ 5 characters) remain critical for

forensic tasks.

Tables 4 and 5 demonstrate the critical impact of image

resolution on LP super-resolution and subsequent LPR per-

formance. For lower-resolution sources (1280 × 960 pix-

els), PLNET and LCDNet achieve modest recognition rates

of 22.7% and 23.5% (all characters correct, 5 images +

MVCP), respectively. In contrast, for high-resolution sources

(1920 × 1080 pixels), these models reach 59.3% (PLNET)

and 61.4% (LCDNet) under the same conditions – a 2.6×
improvement – underscoring the importance of pixel density

in preserving structural details like character edges and serifs.

The MVCP fusion strategy consistently outperforms HC

and MV across resolutions. For 1280 × 960 images, MVCP

boosts LCDNet’s accuracy by +5.0% (18.5% → 23.5%)

with 5 images, while for 1920 × 1080 images, it improves

results by +7.7% (53.1% → 61.4%). Increasing the number

of fused images from 3 to 5 further enhances performance:

partial matches (≥ 5 characters) rise from 78.2% to 95.8% for
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Table 3. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images

generated by PLNET and LCDNet. As outlined in Section 4.2, three fusion strategies were evaluated: Highest Confidence (HC), Majority

Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images

(Both Resolutions)

# Images

Majority Vote

HC MV MVCP

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

SR3 (LR + SR)
3 19.9% 49.5% 70.8% 21.4% 50.9% 71.2% 24.1% 56.3% 76.4%
5 20.2% 50.6% 71.9% 25.1% 55.1% 73.8% 28.3% 61.8% 81.5%

LPSRGAN (LR + SR)
3 24.0% 51.5% 70.7% 24.5% 51.7% 70.9% 25.3% 53.5% 72.9%
5 25.4% 53.1% 71.9% 27.4% 54.3% 73.0% 28.8% 56.3% 76.9%

Real-ESRGAN (LR + SR)
3 23.5% 54.6% 76.0% 24.1% 55.8% 76.2% 25.6% 57.4% 78.3%
5 24.9% 56.6% 77.6% 27.7% 59.4% 78.5% 29.5% 61.7% 81.6%

PLNET (LR + SR)
3 34.5% 63.8% 80.7% 36.1% 64.4% 80.9% 36.6% 66.1% 82.0%
5 35.9% 65.3% 82.9% 39.5% 67.4% 83.6% 40.9% 70.4% 85.8%

LCDNet (LR + SR)
3 34.8% 63.6% 81.9% 36.7% 64.5% 82.0% 37.8% 67.0% 83.3%
5 35.7% 64.8% 83.1% 40.7% 68.1% 84.2% 42.3% 72.0% 86.9%

Table 4. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images

generated by PLNET and LCDNet (considering only LPs extracted from images with 1280 × 960 pixels). As outlined in Section 4.2, three

fusion strategies were evaluated: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images

(1280 × 960)

# Images

Majority Vote

HC MV MVCP

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

SR3 (LR + SR)
3 9.5% 32.2% 56.8% 9.8% 33.3% 57.2% 11.8% 38.9% 63.9%
5 9.9% 34.0% 58.4% 12.1% 37.1% 60.3% 15.3% 46.4% 71.6%

LPSRGAN (LR + SR)
3 8.7% 30.3% 52.2% 8.9% 30.3% 52.4% 8.7% 31.1% 55.9%
5 9.6% 31.1% 54.0% 10.2% 32.3% 55.6% 11.0% 34.6% 60.9%

Real-ESRGAN (LR + SR)
3 12.3% 37.8% 63.7% 12.6% 39.0% 64.0% 13.7% 39.8% 65.8%
5 14.0% 40.4% 65.6% 15.7% 42.5% 66.8% 17.4% 45.5% 71.1%

PLNET (LR + SR)
3 17.0% 45.5% 69.0% 17.7% 45.7% 69.3% 18.3% 47.3% 70.7%
5 18.3% 47.0% 72.5% 20.7% 49.1% 73.7% 22.7% 53.4% 76.9%

LCDNet (LR + SR)
3 17.4% 44.3% 70.2% 18.5% 45.4% 70.5% 19.3% 48.4% 72.2%
5 18.5% 46.2% 72.4% 21.7% 49.7% 73.9% 23.5% 55.3% 78.2%

Table 5. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images

generated by PLNET and LCDNet (considering only LPs extracted from images with 1920 × 1080 pixels). As outlined in Section 4.2, three

fusion strategies were evaluated: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images

(1920 × 1080)

# Images

Majority Vote

HC MV MVCP

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

SR3 (LR + SR)
3 30.3% 66.8% 84.8% 33.0% 68.5% 85.3% 36.4% 73.8% 88.9%
5 30.6% 67.3% 85.4% 38.2% 73.1% 87.4% 41.4% 77.2% 91.3%

LPSRGAN (LR + SR)
3 39.4% 72.7% 89.3% 40.2% 73.1% 89.4% 41.9% 76.0% 90.0%
5 41.3% 75.1% 89.9% 44.7% 76.4% 90.5% 46.7% 78.1% 92.7%

Real-ESRGAN (LR + SR)
3 34.8% 71.5% 88.4% 35.7% 72.7% 88.5% 37.5% 75.1% 90.8%
5 35.8% 72.8% 89.6% 39.8% 76.3% 90.3% 41.6% 78.0% 92.1%

PLNET (LR + SR)
3 52.2% 82.4% 92.5% 54.6% 83.3% 92.5% 55.1% 85.2% 93.5%
5 53.7% 83.7% 93.2% 58.4% 85.9% 93.7% 59.3% 87.7% 94.9%

LCDNet (LR + SR)
3 52.3% 83.0% 93.6% 55.1% 83.8% 93.7% 56.4% 85.5% 94.5%
5 53.1% 83.6% 93.8% 59.8% 86.7% 94.5% 61.4% 89.0% 95.8%

LCDNet in HR settings, demonstrating near-practical utility

for surveillance systems.

Notably, even LR scenarios benefit significantly from fu-

sion. For 1280 × 960 images, MVCP with 5 images achieves

71.6% (SR3) to 78.2% (LCDNet) for ≥ 5 correct characters,

narrowing search spaces in forensic applications. This is criti-

cal for real-world deployments, where cost-effective cameras

(e.g., 1280 × 960 sensors) dominate, and partial matches re-

main acceptable due to resolution constraints. The proposed

dataset bridges this gap, enabling robust evaluation of SR

methods across diverse operational scenarios.

While recent LP-specific SR methods (e.g., LPSR-

GAN [Pan et al., 2024] and PLNET [Nascimento et al.,

2023, 2024a]) and general-purpose approaches (e.g., Real-

ESRGAN [Wang et al., 2021] and SR3 [Saharia et al., 2023])

have advanced super-resolution research, our experiments re-

veal their limitations in real-world scenarios. LPSRGAN, de-

spite its domain-specific design, achieves only 19.6% recog-

nition accuracy on UFPR-SR-Plates (Table 2), a drastic drop

from the 93.9% it attains on synthetic benchmarks like Li-

censePlateDataset10K [Pan et al., 2024]. Similarly, PLNET,

SR3, and LCDNet – which achieve 49.8%, 43.1%, and 39.0%



Toward Advancing License Plate Super-Resolution in Real-World Scenarios:

A Dataset and Benchmark Nascimento et al. 2025

on synthetic RodoSol-ALPR [Nascimento et al., 2024b] – ex-

hibit significantly lower accuracy on real-world UFPR-SR-

Plates (29.9%, 18.4%, and 29.9%, respectively; Table 2).

This disparity underscores the limitations of synthetic degra-

dation pipelines, which fail to replicate real-world noise pat-

terns (e.g., motion blur, sensor noise, weather effects). LCD-

Net’s layout-aware architecture and OCR-guided training

partially mitigate these challenges, achieving 61.4% accuracy

with MVCP fusion (Table 3), but the gap between synthetic

and real-world performance persists. These results emphasize

the necessity of domain-specific architectures and real-world

benchmarks like UFPR-SR-Plates to advance robust LPR

systems.

Figures 5 and 6 present comparisons between low-

resolution LP images and their super-resolved counterparts

produced by the super-resolution networks. As expected,

the GP_LPR model performs worse on low-resolution LPs

(i.e., before super-resolution) extracted from 1280 × 960 im-

ages (Figure 5) compared to 1920 × 1080 images (Figure 6).

This performance gap stems primarily from the reduced pixel

density in the smaller images, which causes characters to

blend into the LP background. This effect is evident in the

super-resolved LPs shown in Figure 5, where a “W” is mis-

takenly reconstructed as a “K” in the Brazilian LP (left),

and a “B” is reconstructed as “R” or “H” in the Mercosur

LP (right). Similar errors are observed in Figure 6, though

less frequently due to the higher pixel density. For example,

a “Q” was reconstructed as an “O,” and an “M” was recon-

structed as a “H,” with PLNET-generated images exhibiting

a more pronounced tendency towards these misclassifications

than LCDNet-generated images.

4.3.1 Runtime Analysis

This section evaluates the inference efficiency and suitability

of super-resolution models for both real-time and forensic

applications. Table 6 presents a quantitative comparison of

inference times and computational performance across the

models. To ensure consistency and reliability, each model

was independently tested over five separate runs.

Table 6. Inference Time and FPS Comparison.

Model
Time (ms) Time (ms) FPS

Avg ± Std Min - Max Avg

LPSRGAN 4.82 ± 0.45 4.49 - 7.41 207.5

PLNET 24.88 ± 1.21 23.97 - 31.68 40.2

Real-ESRGAN 34.86 ± 2.66 32.53 - 46.46 28.7

LCDNet 61.88 ± 1.77 60.47 - 73.13 16.1

LPSRGAN emerges as the fastest model, processing

207.5 frames per second (FPS) (4.82 ± 0.45 ms), making

it well-suited for real-time applications such as traffic moni-

toring. However, this speed comes at the expense of perfor-

mance: as shown in Table 3, the GP_LPR model achieves

only a 28.8% recognition rate when applied to images super-

resolved by LPSRGAN, considerably lower than the rates

obtained with slower SR models. In contrast, LCDNet leads

to the highest recognition rate (42.3% with MVCP fusion

on 5 images), a 1.4× improvement over LPSRGAN, despite

its slower inference speed (61.88 ms, 16.1 FPS). PLNET

offers a balanced trade-off, combining moderate efficiency

(24.88 ± 1.21 ms, 40.2 FPS) with competitive performance

(40.9% recognition rate using MVCP), while Real-ESRGAN

performs poorly in both inference speed (34.86 ms, 28.7 FPS)

and recognition performance (29.5% recognition rate with

MVCP).

Notably, LCDNet exhibits stable inference times (standard

deviation: 1.77 ms), contrasting with LPSRGAN’s higher

variability (ranging from 4.49 to 7.41 ms). This stability,

coupled with its superior accuracy under the MVCP proto-

col, establishes LCDNet as a strong candidate for forensic

applications, where precision significantly outweighs speed

requirements. These findings highlight a key trade-off: while

latency-sensitive deployments may favor lightweight models

such as LPSRGAN, accuracy-critical scenarios benefit more

from specialized architectures like LCDNet, even at the cost

of increased computational demands.

We also evaluated the SR3 model, which showed consid-

erably higher inference times (12.31 ± 0.018 s). Although
impractical for real-time use, SR3 may still be viable in foren-

sic contexts where processing time is less restrictive. Due to

its significantly slower performance – operating in seconds

rather than milliseconds – SR3’s results are omitted from

Table 6, as they fall outside the real-time operational scope

targeted by the other models.

5 Conclusions and Future Directions

In this work, we introduced UFPR-SR-Plates, a publicly avail-

able dataset specifically designed for LP super-resolution. The

dataset comprises 100,000 LP images organized into 10,000
tracks, each containing five sequential LR and five sequential

HR images of the same LP. This dataset is highly valuable

for developing and evaluating super-resolution techniques

aimed at improving License Plate Recognition (LPR) under

real-world, low-quality conditions. Although primarily in-

tended for LP super-resolution, UFPR-SR-Plates is also well-

suited for training and evaluating LPR models, as it currently

represents the largest collection of Brazilian and Mercosur

LPs available.

We proposed a benchmark using the UFPR-SR-Plates

dataset. We assessed the recognition rates achieved by the

GP_LPR model [Liu et al., 2024b] in conjunction with

five super-resolution approaches: general-purpose models

(SR3 [Saharia et al., 2023] and Real-ESRGAN [Wang

et al., 2021]) and LP-specialized networks (LPSRGAN,

PLNET [Nascimento et al., 2023], and LCDNet [Nasci-

mento et al., 2024b]). By fusing predictions from multiple

super-resolved images via Majority Vote by Character Po-

sition (MVCP), recognition rates improved from 2.2% (raw

LR images) to 29.9% for single-image outputs and up to

42.3% with five-image fusion using LCDNet. This represents

a 19.2× improvement over raw LR images, with MVCP out-

performing other fusion strategies by 3.88.1%, demonstrating

its robustness in aggregating temporal information. Notably,

LCDNet consistently surpassed both general-purpose and

LP-specialized alternatives, validating the importance of ar-
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LR Inputs

LCI0D33 AJX0D39 A3V0336 AZY0133 ATX0Q71 BAJ0H01 AAT8A91 AQT8991 AAT1A91 AAT4H11

SR3

AZW5635 AZK5576 AZV5625 AZW5829 ATX6035 BBT5B95 BBT5B95 BBT5B95 BBT5B95 BBT5B95

LPSRGAN

AZW6339 AZW6375 AZW5879 AZW5835 AZW6875 BDT5B95 BDT5B95 BDT5B95 BBT5B95 BDT5B55

Real-ESRGAN

AZW6639 AZW5635 AZW6575 AZN5835 AZ26635 BDT3B95 BAT5B95 BDT5B95 BDT5B95 BDT5B35

PLNET

AZK6335 AZK6335 AZK6I35 AZW5835 AZX6635 BAT5B95 BRT5B95 BDT5B95 BBT5B95 BBT5H95

LCDNet

AZW5639 AZW5875 AZK5835 AZW5825 AZW5135 BBT5B95 BAT5A95 BDT5B95 BBT5B95 BBT5B95

HR

AZW5835 BBT5B95

Figure 5. Recognition results for LPs cropped from images with a resolution of 1280 × 960 pixels. The top row shows the predictions made by GP_LPR [Liu

et al., 2024b] on the original LR images, while the two subsequent rows present the predictions obtained from super-resolved images generated by

PLNET [Nascimento et al., 2023, 2024a] and LCDNet [Nascimento et al., 2024b]. Below each image, the predicted characters are displayed, with correct

characters highlighted in blue and incorrect characters in red. The ground truth is indicated in green.

LR Inputs

OPI9C47 C0A4A47 OPI6847 OZI6C47 CBI6947 QIM4C14 EAM4E34 7AM6C84 PVM4E14 OJM2Z54

SR3

OBA6647 DBA6647 D4A6647 DEA8047 QBA6647 GAH6C54 GAH4C54 SAH6C54 GAH6C54 QAH6C54

LPSRGAN

DZA6047 DZA6047 DZA6047 OZA8047 DZA6047 OAM6C54 OAM6C54 OAH6C54 QAM4C54 OAM6C54

Real-ESRGAN

DZA6647 DZA6647 DBA6647 DZA6647 OZA6647 QAH6C54 QAH6C54 QAM4C54 OAH4C54 OAH6C54

PLNET

OZA6047 OZA6047 OZA6047 OZA8047 OZA6047 DAM4C54 GAM4C54 SAM4C54 GIM4C54 QAH4C54

LCDNet

QZA6047 OZA6047 OZA6047 QZA8047 OZA6047 QAM4C54 CAM4C54 QAM4C54 QAH4C54 QAH4C54

HR

DZA6047 QAM4C54

Figure 6. Recognition results for LPs cropped from images with a resolution of 1920 × 1080 pixels. The top row shows the predictions made by GP_LPR [Liu

et al., 2024b] on the original LR images, while the two subsequent rows present the predictions obtained from super-resolved images generated by

PLNET [Nascimento et al., 2023, 2024a] and LCDNet [Nascimento et al., 2024b]. Below each image, the predicted characters are displayed, with correct

characters highlighted in blue and incorrect characters in red. The ground truth is indicated in green.

chitectural designs tailored to character structure and layout

preservation.

Our findings offer valuable insights into the benefits of

super-resolving multiple low-resolution versions of the same

LP and combining their OCR predictions. This method is es-

pecially beneficial for surveillance and forensic applications,

where partial matches can greatly reduce the search space

for potential LPs. We believe this approach could be further

strengthened by incorporating additional vehicle attributes,

such as make, model, and color, as suggested by previous

research [Oliveira et al., 2021; Lima et al., 2024].

For future work, we aim to enhance LP domain-specific

architectures by incorporating multi-image fusion to enable

temporal learning. Additionally, we plan to expand the UFPR-

SR-Plates dataset to address its current limitations: (i) Mo-

torcycle LPs, which were excluded due to their two-row lay-

out and acquisition challenges – such as the relatively low

traffic of motorcycles at our capture site and frequent rep-

etitions of the same LPs; (ii) Systematic OCR errors (e.g.,

confusion between “B” and “8”), which we intend to miti-

gate using multi-model ensembling or confidence calibration

techniques; (iii) Regional and nighttime LPs, as the current

dataset is limited to daylight Brazilian/Mercosur LPs – we

aim to align it with recent multi-region Automatic License
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Plate Recognition (ALPR) systems [Laroca et al., 2022]; (iv)

Generalization to extreme conditions (e.g., rain, haze) via

hybrid synthetic-real training.

We remark that these limitations do not undermine UFPR-

SR-Plates’s value as a foundational benchmark for real-world

SR research. On the contrary, these limitations underscore

clear opportunities for advancing robust ALPR systems. By

publicly releasing UFPR-SR-Plates, we aim to drive progress

in super-resolution and recognition of degraded LPs, partic-

ularly in unconstrained scenarios where existing synthetic

benchmarks prove insufficient.
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