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Abstract. Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address
challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic
applications. However, existing studies have relied on private datasets and simplistic degradation models. To address
this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and
high-resolution license plate images captured under real-world conditions. We establish a benchmark using multiple
sequential LR and high-resolution (HR) images per vehicle — five of each — and two state-of-the-art models for
super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predictions
from a leading Optical Character Recognition (OCR) model for multiple super-resolved license plates enhances
overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with
further improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware
and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP)
strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with
super-resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings
underscore the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world,
adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at:

https://valfride.github.io/nascimento2025toward/.
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1 Introduction

License Plate Recognition (LPR) systems have become in-
creasingly popular across various practical applications, such
as traffic monitoring and toll collection [Laroca ef al., 2021;
Keetal.,2023; Liu et al., 2024b]. These systems are designed
to accurately recognize characters on a License Plate (LP)
after it has been detected within an image.

While recent studies on LPR have reported high recognition
rates, the results are primarily based on experiments using
high-resolution (HR) images, where the LP characters are
clearly defined and free from significant noise [Silva and
Jung, 2022; Laroca et al., 2023b; Rao et al., 2024]. However,
accurately recognizing characters in low-resolution (LR) or
degraded images remains a significant challenge.

In surveillance scenarios, images are often captured at low
resolutions or are heavily compressed due to constraints in
storage and bandwidth. Hence, LP characters may become dis-
torted, blend into the background, or overlap with neighboring
characters, making recognition challenging. This underscores
the need for robust methods that can effectively handle these
types of degradation.

Taking this into account, various image enhancement tech-
niques, including super-resolution (SR), have been proposed
to improve image quality [Moussa ef al., 2022; Nascimento
et al., 2023, 2024a; Pan et al., 2024]. Although these tech-
niques aim to improve LPR, their performance is frequently
assessed using metrics such as Structural Similarity Index
Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR),
which are known not to correlate well with human assess-
ment of visual quality or recognition accuracy [Johnson et al.,
2016; Zhang et al., 2018; Mehri et al., 2021; Liu et al., 2023].
Furthermore, most studies relied solely on private datasets
[Hamdi et al., 2021; Maier et al., 2022; Luo et al., 2024],
hindering fair comparisons. Many also adopted simplistic
degradation models, where LR images were created by sim-
ply downsampling the original HR images [Nascimento ef al.,
2022; Kim et al., 2024; Pan et al., 2024].

In response to these limitations, we introduce a new
publicly available dataset, UFPR-SR-Plates'. It comprises
100,000 LP images captured by a rolling shutter camera in-
stalled on a Brazilian road. UFPR-SR-Plates includes 10,000

IThe UFPR-SR-Plates dataset is publicly available at https://
valfride.github.io/nascimento2025toward/
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LP tracks, each consisting of ten consecutive images — five
LR images captured when the vehicle was farthest from the
camera, and five HR images captured at its closest point.
These tracks, recorded under varying environmental and light-
ing conditions, feature two distinct LP layouts: Brazilian and
Mercosur. Unlike synthetically generated datasets, UFPR-SR-
Plates offers a more accurate representation of surveillance
scenarios and makes it a valuable resource for advancing LP
super-resolution research.

In summary, the main contributions of this work are:

* A publicly available dataset containing 100,000 images,
divided into 10,000 tracks, with each track containing
five LR images and five HR images of the same LP. To
enhance variability, 5,000 tracks were collected at a res-
olution of 1280 x 960 pixels, while the remaining 5,000
tracks were captured at 1920 x 1080 pixels. The dataset
is evenly distributed between Mercosur and Brazilian
LPs, making it the largest dataset in terms of the number
of LPs for both layouts;

* We conducted benchmark experiments on the proposed
dataset using five state-of-the-art super-resolution mod-
els: (i) general-purpose approaches (SR3 [Saharia et al.,
2023], Real-ESRGAN [Wang et al., 2021]), and (ii)
LP-specialized networks (LPSRGAN [Pan ef al., 2024],
PLNET [Nascimento et al., 2024a], and LCDNet [Nasci-
mento et al., 2024b]). For each track, we generated five
super-resolved images from the LR images and com-
pared the recognition results obtained by the leading Op-
tical Character Recognition (OCR) model, GP_LPR [Liu
et al., 2024b]. The super-resolution process significantly
boosted recognition accuracy, increasing from 2.2% to
29.9% for a single super-resolved image. To further en-
hance LPR performance, we explored three fusion strate-
gies for combining the outputs from the OCR model
based on multiple super-resolved images. Notably, ap-
plying the Majority Vote by Character Position (MVCP)
strategy with five super-resolved images improved the
recognition rate from 29.9% to 42.3%. The proposed
dataset enables the exploration of temporal relationships
among low-resolution LPs, as it includes multiple se-
quential LR images for each LP.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a brief review of related works. In Section 3,
we introduce the UFPR-SR-Plates dataset. The experiments
are detailed in Section 4. Finally, Section 5 concludes the
paper by summarizing our findings and their significance.

2 Related Work

This section provides an overview of relevant works in LPR
and LP super-resolution. More specifically, Section 2.1 covers
recent advancements and techniques in LPR, highlighting key
innovations and their impact on recognition accuracy. Sec-
tion 2.2 discusses the integration of super-resolution methods
with LPR, focusing on their role in improving the recognition
of low-quality or degraded LP images.
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2.1 License Plate Recognition (LPR)

The primary goal of LPR is to accurately identify characters
from a given LP image. To tackle this challenge, Silva and
Jung [2020] proposed treating the LPR stage as an object
detection task, where each character class is identified as a
distinct object. They introduced CR-NET, a model based on
YOLO [Redmon et al., 2016], which has shown significant
effectiveness for LPR in subsequent studies [Laroca et al.,
2021; Oliveira et al., 2021; Silva and Jung, 2022].

Recently, advancements in the field have moved toward
holistic treatment of the entire LP image for text recognition,
departing from traditional segmentation methods that isolate
individual characters. This shift has improved recognition
accuracy while also enhancing computational efficiency. For
instance, Ke et al. [2023] introduced a lightweight, multi-
scale LPR network that integrates global channel attention
layers to effectively fuse low- and high-level features.

To address real-world challenges, such as substantially
tilted LPs caused by suboptimal camera positioning, recent
research has focused on incorporating attention mechanisms
into deep learning models. Rao et al. [2024] integrated at-
tention mechanisms into a CRNN model, while Liu et al.
[2024a] introduced deformable spatial attention modules to
enhance feature extraction and capture the LP’s global lay-
out. Building on this, Liu ef al. [2024b] presented a robust
OCR model called Global Perception License Plate Recogni-
tion (GP_LPR) for recognizing irregular LPs through the use
of deformable spatial attention and global perception mod-
ules (this model is further detailed in Section 4.1). These ad-
vancements collectively address challenges such as attention
deviation and character misidentification, leading to state-of-
the-art performance on popular datasets such as CCPD [Xu
et al., 2018] and RodoSol-ALPR [Laroca et al., 2022].

Although these models have reported impressive accuracy
and inference speed, most evaluations were conducted on
datasets where all LP characters are clearly legible, even on
challenging scenarios involving tilted LPs. This setup, how-
ever, does not accurately reflect real-world surveillance en-
vironments, where cost-effective cameras are typically used
and bandwidth limitations often degrade image quality. Con-
sequently, LR images with blurry characters that blend into
adjacent ones and the LP background are prevalent, posing
a substantial challenge for robust LPR [Moussa et al., 2022;
Ke et al., 2023; Schirrmacher et al., 2023].

2.2 Super-Resolution for LPR

The quality of an image is affected by various factors, in-
cluding lighting, weather, camera distance, motion blur, and
storage techniques, each introducing unique noise patterns.
These factors, combined with the structural variability in low-
resolution LPs, make it challenging for LPR systems to ac-
curately identify characters in such images. Although recent
advancements in SR methods have shown potential in im-
proving character visibility in low-quality images [Liu et al.,
2023], the specific challenges related to LPR under degraded
conditions remain largely unaddressed [Maier et al., 2022;
Hijji et al., 2023; Angelika Mulia et al., 2024].
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To address these challenges, Lin ef al. [2021] proposed
an ESRGAN-based [Wang et al., 2019] approach for LP im-
age enhancement called PatchGAN. This method leverages a
residual dense network with progressive upsampling to pre-
serve high-frequency details effectively. While PatchGAN
achieved impressive PSNR and SSIM values, its performance
gains over other Generative Adversarial Network (GAN)-
based methods (e.g., SRGAN [Ledig et al., 2017]) were rel-
atively modest, and the model’s complexity may limit its
applicability in real-time scenarios.

Expanding on this, Hamdi et al. [2021] proposed an ap-
proach called Double Generative Adversarial Networks for
Image Enhancement and Super-Resolution, which employs
two sequential networks: the first to deblur the image and
the second to apply super-resolution, yielding the final out-
put. While their approach demonstrated effectiveness, it was
only tested on synthetically generated low-resolution images
created from high-resolution LPs.

Recognizing the gap in integrating character recognition
into the SR process, Lee et al. [2020] introduced a perceptual
loss based on features extracted from scene text recognition
models. Specifically, they leveraged intermediate representa-
tions from ASTER [Shi et al., 2019] to train a model based on
GANS. Their experiments showed that adding this perceptual
loss improved results compared to models trained without it.
However, a lack of detailed information on datasets and degra-
dation methods hinders the reproducibility and generalization
of their approach.

Building on these developments, Pan ef al. [2023] intro-
duced a complete pipeline for the SR of LPs followed by
recognition, utilizing ESRGAN [Wang et al., 2019] for single-
character enhancement. Their method demonstrated effective-
ness with moderately low-quality LPs, nevertheless, it strug-
gled with severely degraded images, particularly when char-
acter boundaries were unclear. To overcome these challenges,
Pan et al. [2024] developed LPSRGAN, which processes the
entire LP image and incorporates a degradation model that
generates more realistic low-resolution LPs. Despite these
improvements, LPSRGAN still struggled to reconstruct char-
acters under severely degraded conditions.

Kim et al. [2024] introduced AFA-Net, an architecture
that integrates deblurring sub-networks at both the pixel and
feature levels. Their method was evaluated on a dataset con-
taining low-resolution and blurred LP images captured from
unconstrained dash cams. While the results were promising,
the LR images were artificially generated through simple in-
terpolation, and the testing protocol focused solely on super-
resolving digits, excluding letter recognition. This limits the
generalizability of their approach to real-world LP images.

Luo et al. [2024] designed a domain-specific degradation
model to simulate real-world LP degradations, incorporat-
ing common factors such as motion blur, lighting issues, and
noise. By retraining ESRGAN on a dataset of high-resolution
LPs with these simulated degradations, they achieved ro-
bust recognition performance. This success highlights the
model’s effectiveness in controlled settings where degrada-
tion types are aligned with the training data. However, when
confronted with unconstrained real-world scenarios, with se-
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vere occlusion, extreme lighting variations, or unforeseen blur,
the method struggled to preserve accurate character structure,
indicating that further refinement is necessary for application
in complex, real-world settings.

AlHalawani et al. [2024] recently introduced DiffPlate, a
diffusion model for LP super-resolution that outperformed
ESRGAN and SwinlR [Liang ef al., 2021] in terms of PSNR
and SSIM. However, its high computational cost restricts its
real-time applicability in surveillance systems. Furthermore,
the model was trained and tested using synthetically generated
images, where high-resolution LPs were downsampled by a
factor of four to produce low-resolution counterparts.

Nascimento et al. [2023, 2024a] introduced the Pixel-Level
Network (PLNET), a super-resolution model that employs
specialized attention modules to enhance the quality of LP
images. While PLNET showed potential in improving char-
acter clarity in LR scenarios, the experiments were limited to
synthetically generated LP images. In subsequent research,
the same authors [Nascimento et al., 2024b] developed the
Layout-Aware and Character-Driven Network (LCDNet),
which further improved character structure and positioning in
LP layouts through deformable convolutions, shared-weight
attention modules, and a GAN-based approach with an OCR
discriminator and a layout-aware perceptual loss. Although
this latter study included preliminary experiments with real-
world images, the dataset was not made publicly available,
which limits reproducibility. Both PLNET and LCDNet are
described in more detail in Section 4.1, as they are utilized in
our experiments.

Sendjasni and Larabi [2024] proposed RDASRNet, a frame-
work designed for extreme license plate SR (with a x 16 scal-
ing factor). The architecture integrates a hierarchical channel
attention mechanism that iteratively refines features extracted
from LR inputs. To enhance training, a dual-loss strategy
was employed — combining mean squared error with a con-
trastive loss guided by a Siamese network. This approach
enforces perceptual and structural consistency between the
super-resolved outputs and HR ground-truth images within
a latent space. While RDASRNet achieves state-of-the-art
performance on synthetic benchmarks, its high computational
cost poses challenges for real-time deployment in surveillance
systems. Furthermore, its reliance on synthetic training data
— where LR images are generated via idealized downsam-
pling — raises concerns about its generalizability to real-world
degradations, a limitation shared with other studies [Pan et al.,
2023; AlHalawani et al., 2024].

In summary, while substantial progress has been made in
super-resolution techniques for LPR, a major barrier to fur-
ther advancement is the limited availability of public datasets
containing paired low- and high-resolution LPs. Most existing
research relies on either proprietary datasets [Lee ef al., 2020;
Hamdi et al., 2021; Maier et al., 2022; Pan et al., 2024] or syn-
thetically generated LR images [Pan ef al., 2023; AlHalawani
et al., 2024; Kim et al., 2024; Luo et al., 2024; Sendjasni and
Larabi, 2024].
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Figure 1. Examples of scenarios from which the LP images in the UFPR-SR-Plates dataset were extracted. These images showcase a variety of vehicle types
and their corresponding LPs, captured under different environmental conditions. The first row shows images taken with a resolution of 1280 x 960 pixels,
while the second row displays images captured at 1920 x 1080 pixels. For better visualization, all images in this figure were slightly resized.

3 The UFPR-SR-Plates Dataset

The UFPR-SR-Plates dataset comprises 10,000 tracks, each
with five consecutive LR images and five consecutive HR
images of the same LP. With a total of 100,000 images, this
dataset is well-suited for SR and LPR tasks. It offers real-
world images captured under diverse noise and degradation
conditions, while enabling direct LR-HR comparison and
analysis of temporal variations within frame sequences.

The images were taken with a rolling shutter camera near
the Department of Informatics at the Federal University of
Parana in Curitiba, Brazil, simulating real-world surveillance
conditions. Figure 1 presents sample images collected to build
the UFPR-SR-Plates dataset (i.e., prior to LP detection and ex-
traction), highlighting the diversity of vehicle types, including
cars, buses, and trucks.

Data collection occurred over six months, with images cap-
tured daily during a fixed 10-hour interval, from 7 a.m. to
5 p.m. Nighttime images were excluded due to infrared inter-
ference, which often caused overexposure or underexposure,
making LP recognition challenging even in HR images.

The original images were evenly distributed between two
video resolutions: 1280 x 960 pixels and 1920 x 1080 pixels.
This variation in resolution enables the extraction of LPs with
different pixel densities, allowing for a broader evaluation
of SR methods across varying image quality. Consequently,
UFPR-SR-Plates becomes more versatile for tasks that require
adaptation to different levels of detail.

The proposed dataset is also balanced between two LP
layouts: Brazilian and Mercosur. Brazilian LPs follows a
format of three letters followed by four digits, while Mercosur
LPs features three letters, one digit, one letter, and two digits.
Although both types of LPs are similar in size and shape, they
differ significantly in color schemes and character fonts.

As shown in Figure 3, vehicle tracks were derived from
video footage capturing vehicles entering and exiting the
road from opposite sides. To detect and track vehicles, we
employed the YOLOvV8 model [Ultralytics, 2023], a choice
motivated by the proven effectiveness of the YOLO family in
object detection in unconstrained scenarios [Lima ef al., 2024;
Laroca et al., 2021, 2025]. We fine-tuned the model to meet

our specific needs, starting with a pre-trained version and
collecting initial bounding box annotations for detected vehi-
cles. After each detection round, we carefully reviewed and
manually corrected any annotation errors, incorporating these
adjustments into the training set and retraining the model.
This iterative process progressively improved detection accu-
racy, culminating in a refined dataset of 2,954 labeled images
tailored to our application.

We cropped each vehicle’s region of interest using the an-
notations from the process described above. Subsequently, we
applied IWPOD-NET [Silva and Jung, 2022] to locate the LP
corners. Although IWPOD-NET is a well-regarded method
for this task [Jia and Xie, 2023; Wei et al., 2024], its original
training on high-quality images limited its effectiveness in
our dataset, particularly for vehicles at greater distances. To
overcome this limitation, we retrained IWPOD-NET from
scratch with optimized hyperparameters, significantly improv-
ing its robustness in detecting LPs from distant vehicles. More
specifically, we started with an initial set of 300 annotated
LPs to train the IWPOD-NET model. Through an iterative
process, we tested the model on new images, corrected any
errors, and progressively expanded the training set with these
refined annotations. After several iterations, we conducted
a final training phase with 839 images, ensuring precise LP
corner detection considering our scenario. We then applied
the model to extract LPs using a minimum bounding box
method, adding 20% padding to both vertical and horizontal
dimensions to capture contextual surroundings.

From the resulting sequences, we selected the five LR
images that were farthest from the camera. To annotate the
LP characters, we employed the multi-task OCR developed
by Gongalves ef al. [2018] on each of the five HR samples
in the track, utilizing a sequence-level majority vote strategy.
Figure 2 shows all LP images from five tracks in the dataset.

Each image within a track is also accompanied by a JSON
file containing the coordinates (z, y) of its four corners, the
layout of the LP (Brazilian or Mercosur), and its textual con-
tent (e.g., ABC-1234). Table 1 presents a summary of key
statistical characteristics for each layout across both resolu-
tions in the UFPR-SR-Plates dataset, including the median,
maximum, and minimum dimensions, as well as the total
number of unique LPs.
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Figure 2. Examples of tracks from the UFPR-SR-Plates dataset. Each track comprises five consecutive LR images and five consecutive HR images of the
same LP, captured under varying conditions. Each row shows a single track, with the LR images displayed on the left and the corresponding HR images on the
right. We remark that even what we consider ‘HR” in the context of this work is of lower quality than the datasets typically used in LPR research.
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Figure 3. Illustration of the process of vehicle identification and tracking using YOLOvS [Ultralytics, 2023], followed by LP corner detection with IWPOD-
NET [Silva and Jung, 2022]. LP images were extracted from the original frames based on the detected corners. A multi-task OCR model, proposed by
Gongalves et al. [2018], was applied to recognize the text on the extracted LP images. Majority voting was applied to determine the final label. The blue lines
in the original images demarcate the regions for detecting low-resolution LPs (above the higher line) and high-resolution LPs (below the lower line).

Table 1. Summary of statistics (in pixels) for Brazilian and Mercosur
LPs across resolutions in the UFPR-SR-Plates dataset.

1280 x 960 1920 x 1080

UFPR-SR-Plates Brazilian Mercosur Brazilian Mercosur

LR HR LR HR LR HR LR HR
Median Height 19 34 18 32 21 50 21 38
Median Width 35 69 35 67 49 100 49 100
Max Height 28 60 25 49 28 52 26 52
Min Height 15 22 13 23 14 26 16 26
Max Width 56 103 59 88 35 122 61 122
Min Width 26 51 24 50 34 71 34 71
Unique LPs 1,663 2,500 1,627 2,496

Although the dataset acquisition process was automated,
all annotations were manually reviewed to ensure the relia-
bility of the UFPR-SR-Plates dataset for research purposes.
Despite the popularity of the chosen OCR model in the lit-
erature [Gongalves ef al., 2019; Nascimento ef al., 2024b],
we found that it produced errors in approximately 5% of the
tracks. These errors were rectified during the aforementioned
analysis process.

For the experimental protocol, we divided each resolution
set (1920 x 1080 and 1280 x 960 pixels) into approximately
40%, 20%, and 40% for training, validation, and testing, re-

spectively. This resulted in 3,965 tracks for training, 2,030
for validation, and 4,005 for testing. Note that the number
of tracks in the training, validation, and test sets does not
conform to the exact ratios of 4,000/2,000/4,000 images, as
we carefully avoided any overlap of LPs across the training,
validation, and test sets, even when the same vehicle/LP was
depicted in images of different resolutions. For instance, if the
LP “ABC-1234” is included in the training set, it is strictly ex-
cluded from both the test and validation sets. As demonstrated
by Laroca et al. [2023a], the presence of near-duplicate LP
images across different subsets can artificially inflate model
performance. By preventing such overlaps, UFPR-SR-Plates
creates a fair and reliable resource for training, validating,
and testing deep learning-based models.

Regarding privacy concerns, LPs of vehicles registered in
Brazil are not associated with the personal information of the
vehicle owner, thus mitigating the risk of privacy breaches.
Each LP uniquely identifies the vehicle itself [Presidéncia da
Republica, 2014; Oliveira et al., 2021].
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4 Experimental Results

This section delves into the experimental details of this work.
Section 4.1 introduces the models employed, providing an
overview of the framework and key hyperparameters. Sec-
tion 4.2 outlines the fusion strategies implemented to com-
bine the predictions generated by the OCR model for multiple
super-resolved images, aiming to enhance LPR performance.
Finally, Section 4.3 presents and discusses the results.

All experiments were conducted on a computer equipped
with an AMD Ryzen 5950X 3.4 GHz CPU, 128 GB of RAM,
an SSD with read speeds of 535 MB/s and write speeds of
445 MB/s, and an NVIDIA Quadro RTX 8000 GPU (48 GB).

4.1 Models

We applied the GP_LPR model [Liu et al., 2024b] to LPR
on super-resolved images generated from the LR images in
the UFPR-SR-Plates dataset. The SR process was conducted
using five state-of-the-art networks: (i) two general-purpose
models: Real-ESRGAN [Wang et al., 2021] and SR3 [Sa-
haria et al., 2023], and (ii) three LP-specialized models LP-
SRGAN [Pan et al., 2024], PLNET [Nascimento ef al., 2023,
2024a], and LCDNet [Nascimento ef al., 2024b].

The chosen models achieved state-of-the-art performance
in both general SR tasks [Saharia et al., 2023; Luo et al.,
2024] and LP-specific SR tasks [Nascimento et al., 2023; Pan
et al.,2024]. Due to the absence of an official implementation,
we reimplemented LPSRGAN based on the methodology
described by Pan et al. [2024]. The code for all models is
publicly available?3:4:3:6,

The GP_LPR model focuses on LPR of irregular LPs, em-
ploying attention mechanisms to handle perspective distortion.
Central to its architecture is the global perception module,
which enhances character feature completeness by incorpo-
rating global visual information. This facilitates global inter-
action among features, distinguishing characters with similar
structures and minimizing misidentifications. Additionally,
the model employs the Deformable Spatial Attention Mod-
ule, featuring deformable convolution layers that adjust to
variations in character positions and shapes, improving the
network’s ability to capture the overall layout of LPs.

Real-ESRGAN [Wang er al., 2021] extends ESR-
GAN [Wang et al., 2018] by introducing a high-order degrada-
tion model tailored for real-world scenarios. Unlike traditional
approaches, it trains exclusively on synthetically degraded
data generated through a rigorous pipeline that applies mul-
tiple degradation steps — including blurring, noise injection,
resizing, and compression. A key innovation lies in its artifact
suppression mechanism, which employs filtering to mitigate
distortions introduced during degradation simulation. The
framework adopts a U-Net discriminator with spectral nor-
malization to stabilize adversarial training. Training proceeds
in two stages: first, a PSNR-oriented optimization ensures

2GP_LPR: https://github.com/mmm2024/gp_lpr/

3PLNET: https://github.com/valfride/lpr-rsr-ext/
4LCDNet: https://github.com/valfride/lpsr-lacd/
SReal-ESRGAN: https://github.com/xinntao/Real-ESRGAN/
SLPSRGAN: https://github.com/valfride/lpsrgan/
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structural fidelity, followed by a perceptual refinement stage
to enhance visual quality. This methodology has demonstrated
state-of-the-art performance in general image restoration, val-
idating the effectiveness of synthetic degradation modeling
for practical super-resolution tasks.

SR3 [Saharia et al., 2023] takes a distinct approach by fram-
ing super-resolution as a diffusion process. Unlike common
GAN-based methods, Super-Resolution via Iterative Refine-
ment (SR3) iteratively refines a noisy input image into a
high-resolution output through a Markov chain. This stochas-
tic refinement enables the model to explore multiple plausible
reconstructions, particularly advantageous for recovering fine-
grained details in severely degraded LP images. The iterative
process is guided by a noise prediction network trained to re-
verse a predefined degradation schedule, making SR3 robust
to diverse noise types and compression artifacts.

LPSRGAN [Pan et al., 2024] enhances LPR accuracy in
unconstrained scenarios through a three-pronged approach.
It introduces an n-stage random combination degradation (n-
RCD) model to simulate real-world degradations like blur,
noise, and compression via multi-stage randomized com-
binations, addressing limitations of simplistic degradation
pipelines. The framework adopts a modified RRDBNet+
generator, building on Residual-in-Residual Dense Blocks
(RRDB) [Wang et al., 2019] with dropout layers to improve
feature representation and generalization across LP layouts.
To prioritize character clarity for recognition systems, LPSR-
GAN employs a perceptual loss optimized for LPR, align-
ing super-resolved images with a Connectionist Temporal
Classification loss to optimize character clarity by aligning
super-resolved images with OCR output predictions. This
integration of realistic degradation modeling, architectural
enhancements, and task-specific optimization enables robust
restoration of degraded LPs, particularly under severe real-
world distortions.

The PLNET model builds upon the foundation laid
by Mehri et al. [2021], introducing refinements specifically
tailored for LP super-resolution. It incorporates a shallow fea-
ture extractor module, using an autoencoder equipped with
PixelShuffle and PixelUnshuffle layers [Shi et al., 2016] to
efficiently extract shallow features while preserving essential
information through skip connections. PLNET also integrates
a mechanism to capture inter-channel and spatial relation-
ships, thus improving the model’s ability to rearrange and
scale input data more effectively than conventional methods.

LCDNet employs deformable convolutions and shared-
weight attention modules within a GAN framework. An OCR
model acts as the discriminator, steering the super-resolution
process toward prioritizing LPR accuracy. During training,
LCDNet optimizes a loss function designed to preserve char-
acter structure and the overall integrity of the LP layout (e.g.,
penalizing any confusion between letters and digits). This
ensures both visually clear and accurate LP recognition.

Here we detail the key hyperparameters used for train-
ing the models, all implemented using the PyTorch frame-
work. The hyperparameters were selected based on the prior
works [Saharia et al., 2023; Pan et al., 2024; Wang et al., 2021;
Nascimento et al., 2024a,b; Liu et al., 2024b] and preliminary
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experiments conducted on the validation set of the proposed
dataset. For all models, we employed the Adam optimizer.
In LPSRGAN [Pan et al., 2024], we replaced the original
HyperLPR3 OCR with Gongalves ef al. [2019]’s multi-task
model trained on UFPR-SR-Plates (ensuring fair comparison
as HyperLPR3 was trained on Chinese plates with unavailable
source code), using generator/discriminator learning rates of
10~4/107° respectively. Real-ESRGAN [Wang et al., 2021]
followed its standard two-stage protocol: PSNR-oriented pre-
training for 109 iterations (Ir = 2x10~*) followed by GAN
fine-tuning for 4x 107 iterations (Ir = 1x10~%), with EMA
stabilization and U-Net discriminator. SR3 [Saharia et al.,
2023] employed 100 denoising steps across 10° training itera-
tions (Ir = 1x10~%), incorporating Gaussian blur augmenta-
tion on low-resolution inputs. For both LCDNet and PLNET,
the initial learning rate was set to 104, decaying by a factor of
0.8 when no improvement in the loss function was observed.
For the GP_LPR model, the maximum decoding length was
set to K = 7 to match the 7-character format of the LPs in
the UFPR-SR-Plates dataset. To mitigate training oscillations
in GP_LPR, following Liu et al. [2024b], we applied a step
learning rate scheduler starting with an initial learning rate of
103 and decaying by a factor of 0.8 every 50 epochs.

Additionally, we added padding with gray pixels to both
the LR and HR images to preserve their aspect ratio before
resizing them to dimensions of 16 x 48 and 32 x 96 pixels,
respectively, corresponding to an upscale factor of 2.

4.2 Fusion Methods

Inspired by the work of Laroca ef al. [2023b], we examine
three fusion methods to combine predictions from multiple
super-resolved images generated by the SR networks. For
each track in the test set, we process IV consecutive LR images
of the same LP, captured at varying distances from the camera.
Each LR image is independently super-resolved and fed to the
OCR model. The predictions are then fused using one of the
following strategies. In our experiments, N € {1,3, 5}, with
images selected sequentially from nearest to farthest. This
process is illustrated in Figure 4.

The first fusion method, Highest Confidence (HC), straight-
forwardly selects the single prediction with the highest asso-
ciated confidence score as the final output:

J =y, where k = P;
Y W M8 ey

where P; is the confidence score for the i-th OCR predic-
tion y;. This strategy aligns with classical confidence-based

fusion rules (e.g., [Kittler ef al., 1998] ), which prioritize
predictions with the highest certainty.

The second method, Majority Vote (MV), is an ensemble
learning technique [Zhou, 2025] that selects the most frequent
prediction among all N outputs:

g =mode ({y1,y2,...,Yn}),

for mode defined as:

mode(S) = arg max countg(z),
zeS
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where countg(z) is the number of times = appears in the
multiset S. MV has been widely adopted in applications such
as handwriting recognition [Zhao and Liu, 2020].

The third method, Majority Vote by Character Posi-
tion (MVCP), aggregates predictions per character position:

g; = mode ({y(1.5): ¥2.j)>- - - YN ) »

where y; ;) denotes the j-th character (for j € [1,7], j € N)
of the i-th OCR prediction. The final output 7 is formed by
concatenating all §j;. This hierarchical approach draws inspi-
ration from structured prediction frameworks [Ghamrawi and
McCallum, 2005], resolving ambiguities at each character po-
sition.

A key challenge in majority-vote strategies is resolving ties
between competing predictions. To address this, our approach
prioritizes the prediction with the highest average character-
level confidence score within tied groups. Consider five OCR
predictions for a Brazilian LP with associated confidence
scores: two instances of “ABC-1234” (0.95 and 0.91), two
instances of “ABD-1234" (0.89 and 0.88), and “HBG-1284"
(0.71). Here, the MV method resolves the tie between the top
two candidates (“ABC-1234” and “ABD-1234") by compar-
ing their confidence scores — 0.93 for “ABC-1234" and 0.88
for “ABD-1234” — selecting the former. For character-level
ambiguities (e.g., a conflict between two “C”’s and two “D’’s
in the third position), the MVCP strategy defaults to the char-
acter in the prediction with the highest confidence (in this
case selecting “C” from “ABC-1234” with 0.95 confidence).
This dual-layered approach ensures systematic tie-breaking
while emphasizing statistically robust reconstructions through
confidence metrics and character prevalence.

These fusion strategies are adaptations of well-established
methods in Pattern Recognition. For instance, MV-based fu-
sion has demonstrated effectiveness in enhancing OCR per-
formance for degraded documents [Reul ef al., 2018], while
HC is a widely adopted approach in speech recognition sys-
tems [Prabhavalkar ef al., 2023].

4.3 Results

In this section, we present the results achieved by the OCR
model in recognizing a single super-resolved LP image from
each of the five SR baseline models. Following this, we ana-
lyze the employed fusion approaches and examine the impact
of different resolutions on the results. Finally, we provide
visual results for qualitative analysis.

In LPR research, model performance is traditionally evalu-
ated using the recognition rate, defined as the ratio of correctly
recognized LPs (where all characters are correctly classified)
to the total number of LPs in the test set [Wang et al., 2022;
Chen et al., 2023; Wei et al., 2024]. In addition to this met-
ric, we incorporate partial matches (cases where at least 5
or 6 characters are recognized correctly). This approach is
particularly valuable when not all LP characters can be accu-
rately reconstructed or recognized, as it helps to narrow the
search space.

Table 2 summarizes the performance of the GP_LPR
model [Liu et al., 2024b] on both low- and high-resolution LP
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Figure 4. Illustration of the fusion process to enhance LPR performance by combining multiple super-resolved LP images. Sequential LR images (original
size 16 x 48 pixels) from each track are independently upsampled to 32 x 96 pixels via a single-image SR model, then processed by the GP_LPR model [Liu
et al., 2024b]. The OCR outputs are aggregated using three fusion strategies: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character
Position (MVCP), leveraging temporal consistency across frames to resolve structural ambiguities in character reconstruction (e.g., distinguishing “R”, “K”
and “H”). This approach is particularly valuable for forensic and surveillance scenarios that demand high reliability.

images, alongside images super-resolved by general-purpose
methods SR3 [Saharia et al., 2023] and Real-ESRGAN [Wang
et al., 2021], as well as LP-specialized networks LPSR-
GAN [Pan et al., 2024], PLNET [Nascimento et al., 2023,
2024a], and LCDNet [Nascimento et al., 2024b]. In LR sam-
ples, most characters are barely distinguishable, resulting in
recognition rates as low as 2.2%.

Table 2. Recognition rates obtained by GP_LPR on different test
images. The first LR and HR images from each track were used for
the experiments on the original images. Super-resolved images were
generated from the first LR image of each track.

Test Images # Correct Characters

All >6 >5
HR 85.2% 98.5% 99.8%
LR (no SR) 2.2%  82% 20.1%
LR + SR (SR3) 18.4% 45.8% 68.3%
LR + SR (LPSRGAN) 19.6% 46.1% 67.4%
LR + SR (Real-ESRGAN)  20.2% 49.8% 71.8%
LR + SR (PLNET) 29.9% 57.8% 76.9%
LR + SR (LCDNet) 29.9% 59.2% 77.1%

The sharp decline in recognition rates for LR images un-
derscores the challenges of achieving accurate LPR when
working with low-quality inputs. While the GP_LPR model
achieves 85.2% recognition rate on HR images, its perfor-
mance plunges to just 2.2% on LR images, with only 20.1%
of LPs having at least 5 correct characters. The application
of SR methods, however, brings significant improvements.
Domain-specific models such as LCDNetand PLNET achieve
a 29.9% recognition rate, outperforming general-purpose SR
approaches like SR3 (18.4%) and Real-ESRGAN (20.2%).
For partial recognition (at least five correct characters), LCD-
Net reaches 77.1%, demonstrating that even imperfect recon-
structions can effectively reduce the search space in forensic
scenarios. Interestingly, LPSRGAN — despite being tailored
for LPs —underperforms compared to Real-ESRGAN (19.6%
vs. 20.2%), indicating potential limitations in its degrada-
tion modeling or training methodology. Overall, these find-
ings highlight the promise of SR techniques in improving
LPR robustness under real-world conditions. Nevertheless,

the considerable gap between super-resolved (29.9%) and
HR (85.2%) performance reveals the continued need for ad-
vancements in dealing with noise, compression, and other
practical image degradations.

Table 3 presents the recognition rates achieved by com-
bining the OCR model’s predictions for three and five super-
resolved images using the strategies described in Section 4.2.
For LP-specialized models, PLNET achieves up to 40.9%
recognition rate (all characters correct) with MVCP and 5
images, while LCDNet outperforms slightly at 42.3%, high-
lighting their robustness in reconstructing critical character de-
tails. Both models surpass general-purpose methods like SR3
(28.3%) and Real-ESRGAN (29.5%). The MVCP strategy
consistently delivers the highest gains, improving PLNET’s
accuracy by 5.0% (3 to 5 images) and LCDNet’s by 4.5% over
HC and MV. Aggregating five images instead of three further
boosts performance; for example, LCDNet achieves 86.9%
for cases with at least 5 correct characters (vs. 83.3% with
3 images), nearing practical utility for surveillance systems.
These results underscore the value of temporal fusion and
domain-specific SR in overcoming real-world degradations,
where partial matches (> 5 characters) remain critical for
forensic tasks.

Tables 4 and 5 demonstrate the critical impact of image
resolution on LP super-resolution and subsequent LPR per-
formance. For lower-resolution sources (1280 x 960 pix-
els), PLNET and LCDNet achieve modest recognition rates
of 22.7% and 23.5% (all characters correct, 5 images +
MVCP), respectively. In contrast, for high-resolution sources
(1920 x 1080 pixels), these models reach 59.3% (PLNET)
and 61.4% (LCDNet) under the same conditions — a 2.6 x
improvement — underscoring the importance of pixel density
in preserving structural details like character edges and serifs.

The MVCP fusion strategy consistently outperforms HC
and MV across resolutions. For 1280 x 960 images, MVCP
boosts LCDNet’s accuracy by +5.0% (18.5% — 23.5%)
with 5 images, while for 1920 x 1080 images, it improves
results by +7.7% (53.1% — 61.4%). Increasing the number
of fused images from 3 to 5 further enhances performance:
partial matches (> 5 characters) rise from 78.2% to 95.8% for
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Table 3. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images
generated by PLNET and LCDNet. As outlined in Section 4.2, three fusion strategies were evaluated: Highest Confidence (HC), Majority

Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images # Images HC MV MVCP
(Both Resolutions) Majority Vote All >6 >5 All >6 >5 All >6 >5
SR3 (LR + SR) 3 19.9% 49.5% 70.8% 21.4% 50.9% 71.2% 24.1% 56.3% 76.4%
5 20.2% 50.6% 71.9% 25.1% 55.1% 73.8% 28.3% 61.8% 81.5%
3 24.0% 51.5% 70.7% 24.5% 51.7% 70.9% 25.3% 53.5% 72.9%
+
LPSRGAN (LR + SR) 5 25.4% 53.1% 71.9% 27.4% 54.3% 73.0% 28.8% 56.3% 76.9%
3 23.5% 54.6% 76.0% 24.1% 55.8% 76.2% 25.6% 57.4% 78.3%
Real-ESRGAN (LR + SR) 5 24.9%  56.6%  77.6% 27.7%  59.4%  78.5% 295%  61.7%  81.6%
3 34.5% 63.8% 80.7% 36.1% 64.4% 80.9% 36.6% 66.1% 82.0%
+
PLNET (LR + SR) 5 35.9% 65.3% 82.9% 39.5% 67.4% 83.6% 40.9% 70.4% 85.8%
3 34.8% 63.6% 81.9% 36.7% 64.5% 82.0% 37.8% 67.0% 83.3%
+
LCDNet (LR + SR) 5 35.7% 64.8% 83.1% 40.7% 68.1% 84.2% 42.3% 72.0% 86.9%

Table 4. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images
generated by PLNET and LCDNet (considering only LPs extracted from images with 1280 x 960 pixels). As outlined in Section 4.2, three
fusion strategies were evaluated: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images # Images HC MV MVCP

(1280 x 960) Majority Vote All >6 >5 All >6 >5 All >6 >5

SR3 (LR +SR) 3 95%  32.2%  56.8% 98%  33.3% 57.2% 11.8%  38.9%  63.9%
5 9.9%  34.0%  58.4% 121%  371%  60.3% 15.3%  46.4%  T1.6%
3 8.7%  30.3%  52.2% 8.9%  30.3%  52.4% 87% 3L1%  55.9%

.

LPSRGAN (LR +SR) 5 90.6% 31.1%  54.0% 10.2%  32.3%  55.6% 11.0%  346%  60.9%

3 12.3%  37.8%  63.7% 12.6%  39.0%  64.0% 13.7%  39.8%  65.8%
- +

Real-ESRGAN (LR +SR) 5 14.0%  40.4%  65.6% 15.7%  42.5%  66.8% 17.4%  455%  71.1%
3 17.0%  45.5%  69.0% 17.7%  45.7%  69.3% 18.3%  47.3%  70.7%

PLNET (LR + SR) 5 18.3%  47.0%  72.5% 207%  49.1%  73.7% 227%  53.4%  76.9%
3 17.4%  44.3%  70.2% 18.5%  45.4%  70.5% 19.3%  484%  72.2%

+
LCDNet (LR + SR) 5 18.5%  46.2%  72.4% 21.7%  49.7%  73.9% 235%  55.3%  78.2%

Table 5. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images

generated by PLNET and LCDNet (considering only LPs extracted from

images with 1920 x 1080 pixels). As outlined in Section 4.2, three

fusion strategies were evaluated: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images # Images HC MV MVCP

(1920 x 1080) Majority Vote All >6 >5 All >6 >5 All >6 >5

SR3 (LR + SR) 3 30.3%  66.8%  84.8% 33.0% 68.5%  85.3% 36.4%  73.8%  88.9%
5 30.6%  67.3%  85.4% 38.2%  73.1%  87.4% 4.4%  T72%  91.3%
3 394%  72.7%  89.3% 402%  731%  89.4% 41.9%  76.0%  90.0%

LPSRGAN (LR + SR) 5 413%  75.1%  89.9% 4.7%  76.4%  90.5% 46.7%  781%  92.7%
3 34.8% T1.5%  88.4% 35.7%  T2.7%  88.5% 37.5%  75.1%  90.8%

- +

Real-ESRGAN (LR + SR) 5 35.8%  72.8%  89.6% 39.8%  76.3%  90.3% 41.6%  78.0%  92.1%

3 52.2%  82.4%  92.5% 54.6%  83.3%  92.5% 55.1%  85.2%  93.5%
+

PLNET (LR + SR) 5 53.7%  83.7%  93.2% 58.4%  85.9%  93.7% 59.3%  8T.7%  94.9%
3 52.3%  83.0%  93.6% 551%  83.8%  93.7% 56.4%  85.5% = 94.5%

LCDNet (LR + SR) 5 53.1%  83.6%  93.8% 50.8%  86.7%  94.5% 61.4%  89.0%  95.8%

LCDNet in HR settings, demonstrating near-practical utility
for surveillance systems.

Notably, even LR scenarios benefit significantly from fu-
sion. For 1280 x 960 images, MVCP with 5 images achieves
71.6% (SR3) to 78.2% (LCDNet) for > 5 correct characters,
narrowing search spaces in forensic applications. This is criti-
cal for real-world deployments, where cost-effective cameras
(e.g., 1280 x 960 sensors) dominate, and partial matches re-
main acceptable due to resolution constraints. The proposed
dataset bridges this gap, enabling robust evaluation of SR
methods across diverse operational scenarios.

While recent LP-specific SR methods (e.g., LPSR-
GAN [Pan et al., 2024] and PLNET [Nascimento et al.,
2023, 2024a]) and general-purpose approaches (e.g., Real-
ESRGAN [Wang et al., 2021] and SR3 [Saharia ef al., 2023])
have advanced super-resolution research, our experiments re-
veal their limitations in real-world scenarios. LPSRGAN, de-
spite its domain-specific design, achieves only 19.6% recog-
nition accuracy on UFPR-SR-Plates (Table 2), a drastic drop
from the 93.9% it attains on synthetic benchmarks like Li-
censePlateDataset1 0K [Pan ef al., 2024]. Similarly, PLNET,
SR3, and LCDNet — which achieve 49.8%, 43.1%, and 39.0%
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on synthetic RodoSol-ALPR [Nascimento et al., 2024b] — ex-
hibit significantly lower accuracy on real-world UFPR-SR-
Plates (29.9%, 18.4%, and 29.9%, respectively; Table 2).
This disparity underscores the limitations of synthetic degra-
dation pipelines, which fail to replicate real-world noise pat-
terns (e.g., motion blur, sensor noise, weather effects). LCD-
Net’s layout-aware architecture and OCR-guided training
partially mitigate these challenges, achieving 61.4% accuracy
with MVCP fusion (Table 3), but the gap between synthetic
and real-world performance persists. These results emphasize
the necessity of domain-specific architectures and real-world
benchmarks like UFPR-SR-Plates to advance robust LPR
systems.

Figures 5 and 6 present comparisons between low-
resolution LP images and their super-resolved counterparts
produced by the super-resolution networks. As expected,
the GP_LPR model performs worse on low-resolution LPs
(i.e., before super-resolution) extracted from 1280 x 960 im-
ages (Figure 5) compared to 1920 x 1080 images (Figure 6).
This performance gap stems primarily from the reduced pixel
density in the smaller images, which causes characters to
blend into the LP background. This effect is evident in the
super-resolved LPs shown in Figure 5, where a “W” is mis-
takenly reconstructed as a “K” in the Brazilian LP (left),
and a “B” is reconstructed as “R” or “H” in the Mercosur
LP (right). Similar errors are observed in Figure 6, though
less frequently due to the higher pixel density. For example,
a “Q” was reconstructed as an “0O,” and an “M” was recon-
structed as a “H,” with PLNET-generated images exhibiting
a more pronounced tendency towards these misclassifications
than LCDNet-generated images.

4.3.1 Runtime Analysis

This section evaluates the inference efficiency and suitability
of super-resolution models for both real-time and forensic
applications. Table 6 presents a quantitative comparison of
inference times and computational performance across the
models. To ensure consistency and reliability, each model
was independently tested over five separate runs.

Table 6. Inference Time and FPS Comparison.

Time (ms) Time (ms) FPS
Model Avg£Std  Min-Max  Avg
LPSRGAN 4.82+045 449- 741 2075
PLNET 24.88+1.21 2397-31.68 40.2
Real-ESRGAN 34.86 +2.66 32.53-4646  28.7
LCDNet 61.88+1.77 60.47-73.13 16.1

LPSRGAN emerges as the fastest model, processing
207.5 frames per second (FPS) (4.82 %+ 0.45 ms), making
it well-suited for real-time applications such as traffic moni-
toring. However, this speed comes at the expense of perfor-
mance: as shown in Table 3, the GP_LPR model achieves
only a 28.8% recognition rate when applied to images super-
resolved by LPSRGAN, considerably lower than the rates
obtained with slower SR models. In contrast, LCDNet leads
to the highest recognition rate (42.3% with MVCP fusion
on 5 images), a 1.4x improvement over LPSRGAN, despite
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its slower inference speed (61.88 ms, 16.1 FPS). PLNET
offers a balanced trade-off, combining moderate efficiency
(24.88 £+ 1.21 ms, 40.2 FPS) with competitive performance
(40.9% recognition rate using MVCP), while Real-ESRGAN
performs poorly in both inference speed (34.86 ms, 28.7 FPS)
and recognition performance (29.5% recognition rate with
MVCP).

Notably, LCDNet exhibits stable inference times (standard
deviation: 1.77 ms), contrasting with LPSRGAN’s higher
variability (ranging from 4.49 to 7.41 ms). This stability,
coupled with its superior accuracy under the MVCP proto-
col, establishes LCDNet as a strong candidate for forensic
applications, where precision significantly outweighs speed
requirements. These findings highlight a key trade-off: while
latency-sensitive deployments may favor lightweight models
such as LPSRGAN, accuracy-critical scenarios benefit more
from specialized architectures like LCDNet, even at the cost
of increased computational demands.

We also evaluated the SR3 model, which showed consid-
erably higher inference times (12.31 + 0.018 s). Although
impractical for real-time use, SR3 may still be viable in foren-
sic contexts where processing time is less restrictive. Due to
its significantly slower performance — operating in seconds
rather than milliseconds — SR3’s results are omitted from
Table 6, as they fall outside the real-time operational scope
targeted by the other models.

5 Conclusions and Future Directions

In this work, we introduced UFPR-SR-Plates, a publicly avail-
able dataset specifically designed for LP super-resolution. The
dataset comprises 100,000 LP images organized into 10,000
tracks, each containing five sequential LR and five sequential
HR images of the same LP. This dataset is highly valuable
for developing and evaluating super-resolution techniques
aimed at improving License Plate Recognition (LPR) under
real-world, low-quality conditions. Although primarily in-
tended for LP super-resolution, UFPR-SR-Plates is also well-
suited for training and evaluating LPR models, as it currently
represents the largest collection of Brazilian and Mercosur
LPs available.

We proposed a benchmark using the UFPR-SR-Plates
dataset. We assessed the recognition rates achieved by the
GP_LPR model [Liu et al., 2024b] in conjunction with
five super-resolution approaches: general-purpose models
(SR3 [Saharia et al., 2023] and Real-ESRGAN [Wang
et al., 2021]) and LP-specialized networks (LPSRGAN,
PLNET [Nascimento et al., 2023], and LCDNet [Nasci-
mento et al., 2024b]). By fusing predictions from multiple
super-resolved images via Majority Vote by Character Po-
sition (MVCP), recognition rates improved from 2.2% (raw
LR images) to 29.9% for single-image outputs and up to
42.3% with five-image fusion using LCDNet. This represents
a 19.2x improvement over raw LR images, with MVCP out-
performing other fusion strategies by 3.88.1%, demonstrating
its robustness in aggregating temporal information. Notably,
LCDNet consistently surpassed both general-purpose and
LP-specialized alternatives, validating the importance of ar-
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Figure 5. Recognition results for LPs cropped from images with a resolution of 1280 x 960 pixels. The top row shows the predictions made by GP_LPR [Liu

et al., 2024b]

on the original LR images, while the two subsequent rows present the predictions obtained from super-resolved images generated by

PLNET [Nascimento ef al., 2023, 2024a] and LCDNet [Nascimento ef al., 2024b]. Below each image, the predicted characters are displayed, with correct
characters highlighted in blue and incorrect characters in red. The ground truth is indicated in green.
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Figure 6. Recognition results for LPs cropped from images with a resolution of 1920 x 1080 pixels. The top row shows the predictions made by GP_LPR [Liu

et al., 2024b]

on the original LR images, while the two subsequent rows present the predictions obtained from super-resolved images generated by

PLNET [Nascimento ef al., 2023, 2024a] and LCDNet [Nascimento ef al., 2024b]. Below each image, the predicted characters are displayed, with correct
characters highlighted in blue and incorrect characters in red. The ground truth is indicated in green.

chitectural designs tailored to character structure and layout  architectures by incorporating multi-image fusion to enable
preservation. temporal learning. Additionally, we plan to expand the UFPR-

Our findings offer valuable insights into the benefits of
super-resolving multiple low-resolution versions of the same
LP and combining their OCR predictions. This method is es-
pecially beneficial for surveillance and forensic applications,
where partial matches can greatly reduce the search space
for potential LPs. We believe this approach could be further
strengthened by incorporating additional vehicle attributes,
such as make, model, and color, as suggested by previous

SR-Plates dataset to address its current limitations: (i) Mo-
torcycle LPs, which were excluded due to their two-row lay-
out and acquisition challenges — such as the relatively low
traffic of motorcycles at our capture site and frequent rep-
etitions of the same LPs; (ii) Systematic OCR errors (e.g.,
confusion between “B” and “8”), which we intend to miti-
gate using multi-model ensembling or confidence calibration
techniques; (iii) Regional and nighttime LPs, as the current

research [Oliveira et al., 2021; Lima ef al., 2024]. dataset is limited to daylight Brazilian/Mercosur LPs — we

For future work, we aim to enhance LP domain-specific

aim to align it with recent multi-region Automatic License



Toward Advancing License Plate Super-Resolution in Real-World Scenarios:

A Dataset and Benchmark

Plate Recognition (ALPR) systems [Laroca et al., 2022]; (iv)
Generalization to extreme conditions (e.g., rain, haze) via
hybrid synthetic-real training.

We remark that these limitations do not undermine UFPR-
SR-Plates’s value as a foundational benchmark for real-world
SR research. On the contrary, these limitations underscore
clear opportunities for advancing robust ALPR systems. By
publicly releasing UFPR-SR-Plates, we aim to drive progress
in super-resolution and recognition of degraded LPs, partic-
ularly in unconstrained scenarios where existing synthetic
benchmarks prove insufficient.
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