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Abstract This study presents an extensive comparative analysis of Large Language Models (LLMs) for sentiment
analysis in Brazilian Portuguese texts. We evaluated 23 LLMs—comprising 13 state-of-the-art multilingual models
and 10 models specifically fine-tuned for Portuguese—across 12 public annotated datasets from diverse domains,
employing the in-context learning paradigm. Our findings demonstrate that large-scale models such as Claude-3.5-
Sonnet, GPT-40, DeepSeek-V 3, and Sabia-3 delivered superior results with accuracies exceeding 92%, while smaller
models (7-13B parameters) also showed compelling performance with top performers achieving accuracies above
90%. Notably, linguistic specialization through fine-tuning demonstrated mixed results—significantly reducing
hallucination rates for some models but not consistently yielding performance improvements across all model types.
We also observed that newer model generations frequently outperformed their predecessors, and in the one dataset
where traditional machine learning methods were employed by the original authors for sentiment classification, all
evaluated LLMs substantially surpassed these traditional approaches. Moreover, smaller-scale models exhibited
a tendency toward overgeneration despite explicit instructions. These findings contribute valuable insights to the
discourse on language-specific model optimization and establish empirical benchmarks for both multilingual and

Portuguese-specialized LLMs in sentiment analysis tasks.
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1 Introduction

Large Language Models (LLMs) are advanced artificial in-
telligence systems capable of processing and generating co-
herent text through extensive pre-training on massive textual
corpora [Naveed et al., 2024]. These models, with parameters
ranging from millions to billions, comprehend and process
natural language through semantic and contextual modeling,
as well as the probability estimation of associated with words
within a given context [Yao ef al., 2024].

The rapid and recent development of LLMs such as
GPT-4.0 [OpenAl et al., 2024b], Gemini [Gemini Team et al.,
2023], and LLaMA-3 [Grattafiori et al., 2024] has revolution-
ized Natural Language Processing (NLP) [Zhao et al., 2023;
Yang et al., 2024b]. These state-of-the-art (SOTA) models
demonstrate remarkable multilingual capabilities [Touvron
etal.,2023b; Gemini Team et al., 2023; OpenAl et al., 2024b],
offering potential benefits for less common languages or those
with limited corpora, such as Brazilian Portuguese [Souza
et al.,2020].

Despite their versatility, these models exhibit limitations
when applied to underrepresented languages in their pre-
training corpus [Larcher et al., 2023]. In an effort to ad-
dress these shortcomings, numerous researchers [Souza et al.,

2020; Larcher et al., 2023; Pires et al., 2023; Garcia et al.,
2024] have explored techniques to enhance the performance
of LLMs initially trained predominantly on English data for
use in other languages. These efforts aim to specialize LLMs
in Portuguese through fine-tuning on monolingual datasets
[Souza et al., 2020; Pires et al., 2023; Garcia et al., 2024] or
adapting tokenization mechanisms [Larcher et al., 2023].

The results have been promising, as the achieved perfor-
mance is comparable to that of SOTA LLMs when evaluated
on tasks in Brazilian Portuguese, while offering the addi-
tional advantage of smaller model sizes and the integration
of domain-specific knowledge relevant to Brazilian culture
[Pires et al., 2023].

Despite the numerous advantages, efforts toward the de-
velopment of LLMs specialized in Brazilian Portuguese can
still be considered nascent when compared to the extensive
research conducted in other languages, such as Chinese [Zeng
etal.,2023; Cui et al., 2024; Cui and Yao, 2024; Du et al.,
2024; Yang et al., 2024a]. Furthermore, there is a noticeable
lack of studies aimed at evaluating the performance of LLMs
in Brazilian Portuguese across a range of specific tasks.

In an effort to help mitigate the identified gaps, this study
aims to compare the predictive capabilities of various SOTA
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LLMs with models fine-tuned for Portuguese, focusing the
classic NLP task of sentiment classification. Sentiment anal-
ysis, or opinion mining, identifies and quantifies subjective
information in textual data [Zhao ef al., 2016]. A fundamen-
tal subtask of sentiment analysis is sentiment classification,
which determines the overall sentiment polarity of a text. This
classification can be binary (e.g., positive and negative) or
multi-class (e.g., positive, negative, and neutral) [Zhang et al.,
2023].

To achieve this objective, we conducted an extensive eval-
uation of 23 LLMs: 13 SOTA generalist models and 10
Portuguese-specialized models. The study also incorporated
12 public datasets in Brazilian Portuguese, annotated for sen-
timent polarity, providing a rich corpus for analysis.

The LLMs were rigorously evaluated on their sentiment
analysis capacity for Brazilian Portuguese texts using the in-
context learning (ICL) paradigm. This empirical comparative
approach aimed to elucidate the potential advantages and lim-
itations of language-specific model fine-tuning in sentiment
analysis tasks.

2 Background

2.1 Brief History of LLMs

It is notorious that the capacity and performance of LLMs
have been evolving rapidly in recent years, with each new
release improving upon the state-of-the-art results obtained in
various comparative tests [Brown et al., 2020; Gemini Team
etal.,2023; OpenAl et al., 2024b; Reid et al., 2024]. Since the
disclosure of the Transformers architecture [Vaswani et al.,
2017], a consensus has emerged in the literature regarding
structural terms for LLMs [Devlin et al., 2018; Radford et al.,
2019; Rae et al., 2022; Touvron et al., 2023b; Gemini Team
et al., 2023], with this architecture becoming a fundamental
paradigm in the field [Zhao et al., 2023].

The evolution of Language Models (LM) encompasses dis-
tinct developmental phases. Initially, LMs were grounded
in statistical models with supervised learning, which criti-
cally depended on domain expertise for feature engineering
and the provision of appropriate inductive bias. These early
models were often constrained by limited datasets, yet found
widespread application in information retrieval and NLP tasks
[Liu et al., 2021; Zhao et al., 2023].

The second phase [Zhao ef al., 2023] marked a significant
advancement through the introduction of neural networks
(Multilayer Perceptron and Recurrent Networks). These net-
works revolutionized the field by learning representations,
embeddings, and sequential modeling autonomously, shifting
the learning paradigm from feature engineering to architecture
engineering [Liu et al., 2021].

The third phase introduced Pre-trained Language Mod-
els (PLM), predominantly implementing the Transformers
architecture and trained on extensive data with generalist ob-
jectives, such as next-word prediction or masked word identi-
fication [Qiu ef al., 2020]. These models learn universal and
contextualized linguistic representations through pre-training
on massive textual corpora, incorporating broad knowledge
into their embeddings [Liu ef al., 2021].
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While PLMs demonstrated advanced capabilities in NLP,
they initially lacked the specialized knowledge required
for domain-specific tasks [Qiu et al., 2020; Zhao et al.,
2023]. This limitation led to the emergence of the fine-tuning
paradigm, where PLMs are adapted for specialized tasks
through the introduction and adjustment of parameters using
task-specific objective functions [Liu et al., 2021]. The effec-
tiveness of fine-tuning became particularly evident following
the release of BERT [Devlin ef al., 2018] and GPT-2.0 [Rad-
ford et al., 2019], establishing itself as a consensus approach
in machine learning [Qiu ef al., 2020; Han et al., 2021].

The fourth generation, characterized as Large Scale Lan-
guage Models, represents a quantum leap in model scale, both
in terms of parameters (billions/trillions) and pre-training data
volume [Zhao et al., 2023]. This unprecedented scaling re-
vealed remarkable emergent capabilities, defined by [Wei
et al., 2022] as abilities that are absent in smaller models but
manifest collectively in larger ones.

A striking example of these emergent capabilities is found
in the work of [Brown et al., 2020], which documented the
emergence of ICL in GPT-3.0 (175 billion parameters), a
capability notably absent in its predecessor GPT-2.0 (1.5
billion parameters) [Radford et al., 2019].

Thus, in the fourth generation, the learning paradigm no
longer requires model adaptation via fine-tuning, making
it possible to reformulate the underlying task through the
structuring and modulation of a textual prompt (prompt en-
gineering) to manipulate the LLM’s behavior, enabling it to
make predictions and return the desired output [Liu ef al.,
2021].

3 Related Work

3.1 Benchmark of LLMs on sentiment analysis
tasks

As one of the principal tasks within NLP [Zhang et al., 2023;
Priban et al., 2024], sentiment classification has emerged as a
significant focus in LLM research [Simmering and Huoviala,
2023; Krugmann and Hartmann, 2024; Piiban et al., 2024;
Buscemi and Proverbio, 2024], driven by the innovative ca-
pabilities these models bring to the field.

Initial comparative studies between LLMs and specialized
PLMs revealed promising insights. Zhong et al. [2023] eval-
uated ChatGPT against various BERT-derived [Devlin et al.,
2018] task-specific PLMs using the GLUEbenchmark|[Wang
et al., 2019], which includes sentiment classification on the
SST2 dataset [Socher ef al., 2013]. Their findings demon-
strated superior performance when combining ChatGPT with
prompt engineering refinement. In a more extensive study,
Wang et al. [2023] assessed ChatGPT (gpz-3.5-turbo-0301) as
a potential universal sentiment analyzer for 7 sentiment anal-
ysis tasks and 17 different datasets, including SST2. While
showing promising results, their research indicated that LLMs
still marginally trail behind refined PLMs in sentiment classi-
fication tasks.

Further advancing this line of inquiry, Krugmann and Hart-
mann [2024] conducted a comprehensive evaluation of SOTA
LLMs (GPT-3.5 and 4.0) against high performance transfer



Evaluating Large Language Models for Brazilian Portuguese Sentiment Analysis:

A Comparative Study of Multilingual State-of-the-Art vs. Brazilian Portuguese Fine-Tuned LLMs

learning-based models such as BERT, RoBERTa [Liu ef al.,
2019] and SiEBERT [Hartmann et al., 2023]. Their findings
revealed important correlations between classification per-
formance and factors such as the number of classes and data
characteristics (source, text length, among others), ultimately
positioning LLMs as powerful tools for sentiment analysis.

While these initial studies [Krugmann and Hartmann, 2024;
Zhong et al., 2023; Wang et al., 2023] demonstrated promis-
ing results for non-specialized LLMs compared to specialized
PLMs, they primarily focused on English-language texts. Ad-
dressing this limitation, recent research has expanded into
multilingual contexts. Pfiban et al. [2024] conducted a com-
parative analysis of various classification methods, including
CNN, LSTM, multilingual Transformers, and LLMs (Chat-
GPT and LLaMA-2), evaluating their performance on En-
glish, Czech, and French texts using datasets such as SST2
[Socher et al., 2013] and IMDB [Maas ef al., 2011]. Their
results demonstrated LLMs’ capability to effectively process
multilingual data, often matching or surpassing specialized
multilingual PLMs.

Similarly, Buscemi and Proverbio [2024] evaluated SOTA
LLMs in a complex multilingual scenario, analyzing 20 texts
with challenging sentiment nuances across 10 languages, in-
cluding Brazilian Portuguese. Their comparison of ChatGPT
(versions 3.5 and 4.0), Gemini-1.0-Pro [Gemini Team et al.,
2023], and LLaMA-2-7B [Touvron et al., 2023b] revealed
that while ChatGPT (4.0) and Gemini-1.0-Pro excelled in
ambiguous scenarios, they struggled with more sophisticated
patterns like irony.

Research specifically focusing on Brazilian Portuguese
remains limited but significant. Several studies have con-
tributed to the development of specialized models and the
evaluation of their performance against SOTA models using
Portuguese NLP benchmarks [Souza et al., 2020; Pires et al.,
2023; Larcher et al., 2023; Garcia et al., 2024; Sales Almeida
et al., 2024]. These works, introducing models such as Sabia
[Pires et al., 2023], Cabrita [Larcher et al., 2023], and Bode
[Garcia et al., 2024], emphasize the importance of language-
specific solutions in increasing the performance and compre-
hension of Brazilian Portuguese compared to predominantly
English-trained SOTA models.

Based on these developments, Souza and Filho [2022] con-
ducted a domain-specific comparative analysis of sentiment
classification for Portuguese user reviews, utilizing embed-
dings from various BERT-based models, including BERTim-
bau [Souza et al., 2020], a Brazilian Portuguese-specialized
BERT variant. Their results established BERTimbau as the
superior BERT variant for Portuguese text classification tasks.
More recently, de Araujo et al. [2024] evaluated GPT-3.5-
Turbo’s capabilities in Portuguese opinion mining tasks, in-
cluding sentiment classification, concluding that the model
demonstrates robust predictive performance without signifi-
cant limitations.

4 Methodology

This study constitutes an empirical comparative research
based on the analysis of 23 language models, comprising
13 SOTA models with multilingual capabilities and 10 with
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fine-tuning for the Portuguese language. The characterization
of these models is presented in Section 4.1.

From a wide mapping of public Portuguese datasets for
sentiment classification, 12 datasets were selected, described
in Section 4.2. The in-context learning methodology and
prompt engineering strategy are presented in Section 4.3 and
Section 4.4, respectively. The criteria and processes for com-
parative evaluation of the models’ predictive performance are
detailed in Section 4.5.

4.1 Selected Models

The Table 1 summarizes the metadata of the models selected
for this comparative study. These models are categorized
along two main dimensions. The first concerns the parameter
count: large-scale models contain over 70 billion parameters,
while smaller-scale models range between 7 and 13 billion pa-
rameters. The second dimension relates to linguistic special-
ization, distinguishing between non-specialized (also known
as generalist or multilingual) models and those fine-tuned in
Brazilian Portuguese.

4.1.1 Generalist LLMs

Claude In early 2023, Anthropic released its closed-source
LLM family, Claude, which has evolved to its current ver-
sions: Claude-3 and 3.5 [Anthropic, 2024b, 2023, 2024c].
The models are accessible through APIs and a chat interface'
[Anthropic, 2023], with most technical specifications remain-
ing proprietary.

These models were trained on a diverse dataset combin-
ing public internet information, third-party private data, and
internally generated data, using word prediction techniques
and human feedback reinforcement [ Anthropic, 2024a]. The
training approach focused on ensuring alignment with the
company’s guidelines while maintaining versatility across
different domains.

Claude-3.5-Sonnet, the most advanced version, has demon-
strated superior performance across reasoning, reading com-
prehension, mathematics, science, and coding benchmarks
compared to its predecessors [ Anthropic, 2024a]. Notably, in
multilingual capabilities, the model achieved significant im-
provements in the Multilingual MMLU benchmark, making
it particularly relevant for comparative studies in linguistic
diversity [Anthropic, 2024a].

GPT The Generative Pre-trained Transformer (GPT) family
comprises decoder-based LLMs developed by OpenAl [Mi-
naee et al., 2024]. While the initial models GPT-1 [Radford
et al., 2018] and GPT-2 [Radford ef al., 2019] were open-
source, subsequent versions GPT-3 [Brown et al., 2020] and
GPT-4 [OpenAl et al., 2024b] are closed-source, accessible
through APIs and the ChatGPT web application’ [Minaee
etal., 2024].

GPT-4, the latest and most capable model in the family,
is a multimodal LLM based on the Transformer architecture.
It was pre-trained on next-token prediction tasks and refined
using reinforcement learning with human feedback [OpenAl

Ihttps://claude.ai/
Zhttps://chat.openai.com/
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Table 1. Metadata of selected Language Models (LLMs) for the comparative benchmark study. The table organizes models by family,
providing information about each model’s characteristics, where PT-BR indicates Brazilian Portuguese fine-tuning. Both proprietary
large-scale LLMs and open-source alternatives with varying parameters and specializations are included for comparison.

Family Modl Version Vew'  Modl  Fineuming Parameters Souree Reference
Claude 3 Claude-3.5 Sonnet claude-3-5-sonnet-20240620 2024 - - - X [Anthropic, 2024b]
GPT4 ¢ GPT-40  gpt4o2024-05-13 2024 - - X [OpenAl et al., 2024a]
“Gemini ¢ Gemini 1.5Pro  gemini-l.5pro-001 204 - - - x [Reid eral, 2024]
”””””””” LLaMA 3-8B Instruct ~ llama-3-8b-it 2024 - IS
LLaMA 3 ) [Meta, 2024]
LLaMA 3.1-8B Instruct llama-3.1-8b-it 2024 - - 8B v
204 - - - 7B /  [Gemma Team et al., 2024a]
204 - - - 9B v/ [Gemma Team et al., 2024b]
2024 - - 7B v [Yang et al,2024a]
2024 - - B o [Caietal,2024]
DeepSeck-V3 deepseek-v3 2025  DecepSeck V3 Base - - 671B /  [DeepSeek-Al et al., 2025b]
DeepSeek DeepSeek-R1 * deepseek-rl 2025 DeepSeek V3 Base - 671B v
DeepSeek-R1-Distill-Qwen-7B  deepseek-r1-distill-qwen-7B 2025 Qwen2.5 Math 7B - 7B v [DeepSeek-Al et al., 2025a]
DeepSeek-R1-Distill-Llama-8B  deepseek-r1-distill-llama-8B 2025 Llama 3.1 8B - 8B v
”””””””” Sabia-7B sabia7b 2023 LLaMA ~ PTBR 7B/ [Pireseral,2023]
Sabia Sabia-2 Medium sabia-2-medium 2024 - PT-BR - X [Sales Almeida et al., 2024]
Sabia-3 sabia-3 2024 - PT-BR - X [Abonizio et al., 2024]
”””””””” Bode-7B.  bode-7b-alpaca-PT-BR 2023 ~pT-BR 7B v
Bode-13B bode-13b-alpaca-PT-BR 2023 LLaMA 2 PT-BR 13B v X
. [Garcia et al., 2024]
Bode Bode-3.1-8B-Instruct-lora bode-3.1-8b-instruct-lora 2024 LLaMA 3 PT-BR 8B v
InternLM-ChatBode-7B internlm-chatbode-7b 2024 InternLM 2 PT-BR 7B v
GemBode-7B-Instruct gembode-7b-it 2024 Gemma PT-BR 7B 4 [Garcia et al., 2025]
”””””””” CabraLLaMA 3-8 cabrallama-3-8b 2024  LLaMA3  PT-BR 8B  « -
Cabra CabraMistral-v3-7b-32k cabramistral-v3-7b-32k 2024 Mistral PT-BR 7B v -

 To ensure benchmark parity, the DeepSeek-R1 model, being the only one among those evaluated with enhanced reasoning capabilities and with large
parameters size, was selected as a strong reference classifier to contrast with the weak reference classifier (which always predicts the majority class from

the training set), see Subsection 4.5.

et al., 2024b]. While its exact parameter count remains undis-
closed, estimates suggest approximately 1.7 trillion parame-
ters [Ding ef al., 2023; Yao et al., 2024], significantly larger
than its predecessor GPT-3’s 175 billion parameters [Brown
et al., 2020].

The model has demonstrated human-comparable perfor-
mance across various academic and professional tests, sur-
passing state-of-the-art results in traditional LLM bench-
marks [OpenAl et al., 2024b]. Its multilingual capabili-
ties, evaluated through translated versions of the MMLU
test [Hendrycks et al., 2020], showed superior performance
compared to competitors like Chinchilla [Hoffmann et al.,
2022] and PaLM [Chowdhery ef al., 2022]. These capabilities
and multilingual proficiency make GPT-4 a crucial candidate
for this comparative study.

Gemini The Gemini family, developed by Google, consists
of Transformer decoder-based LLMs trained on multimodal
data, including text, images, audio, and video [Gemini Team
et al., 2023]. While the first generation (Gemini-1.0) was
available in three variants—Ultra, Pro, and Nano—only the
Nano versions’ parameters were officially disclosed, with
Nano-1 containing 1.8 billion and Nano-2 containing 3.25
billion parameters [Gemini Team et al., 2023].
Gemini-1.5-Pro, the latest iteration, introduced significant
innovations, including a sparse mixture of expert Transformer
models and an expanded context window of millions of to-
kens—substantially surpassing competitors like Claude-2.1
(200K tokens) and GPT-4 (128K tokens) [Reid ef al., 2024].
This version demonstrated a 22.3% improvement in multilin-

gual capabilities over its 1.0 counterpart and performed 6.7%
better than the 1.0 Ultra model [Reid ef al., 2024].

The selection of Gemini-1.5-Pro for this study is based on
its advanced technical features, effective handling of complex
contexts, and robust multilingual capabilities. Its performance
in comparative tests, particularly in multilingual tasks, has
shown significant improvements over its predecessor, achiev-
ing state-of-the-art results in benchmarks such as MMLU,
where it demonstrated human expert-level performance.

Gemma Google also released Gemma, an open-source
LLM family inspired by Gemini [Gemma Team ef al., 2024a].
The first generation included models with 2 and 7 billion pa-
rameters, along with their instruction-tuned variants. These
Transformer decoder-based models were pre-trained primar-
ily on English-language tokens from web documents, code,
and mathematical content [Gemma Team et al., 2024a]. In
benchmark tests, the 7 billion parameter version outperformed
comparable models like LLaMA-2-7B [Touvron et al., 2023b]
and Mistral-7B [Jiang et al., 2023], as well as the slightly
larger LLaMA-2-13B [Touvron et al., 2023b].

The second generation, Gemma-2, features models with
2,9, and 27 billion parameters, each with instruction-tuned
variants [Gemma Team et al., 2024b]. These models incor-
porate architectural improvements, including deeper neural
networks, Grouped-Query Attention[Ainslie et al., 2023], and
alternating global-local attention layers [Beltagy ef al., 2020].
The Gemma-2-9B model demonstrated approximately 12%
better average performance compared to its first-generation
counterpart [Gemma Team ef al., 2024b].
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While neither generation was specifically designed for
multilingual tasks, both inherit Gemini’s vocabulary archi-
tecture, featuring an extensive embedding parameter space
capable of handling multiple languages [Gemma Team ef al.,
2024b]. Given their promising performance and the oppor-
tunity to evaluate them in non-English scenarios, this study
includes representatives from both generations: Gemma-7B
and Gemma-2-9B.

LLaMA LLaMA [Touvron et al., 2023a], Meta’s open-
source multilingual LLM family, has evolved to its third
generation with versions 3 and 3.1, featuring Transformer
decoder-based models ranging from 8 to 405 billion param-
eters [Grattafiori et al., 2024]. Unlike Claude, GPT-4, and
Gemini, LLaMA’s open-source nature and non-commercial
licensing [Minaee ef al., 2024] has facilitated its widespread
adoption in research communities as a foundation for special-
ized LLMs.

While LLaMA-3 includes approximately 5% non-English
training data across 30 languages [Meta, 2024], version 3.1
significantly enhanced its multilingual capabilities to sup-
port eight languages, including Portuguese [Grattafiori et al.,
2024]. This improvement was achieved through a specialized
multilingual model that extracted high-quality annotations
from non-English data sources, including human annotations,
NLP tasks, and translated quantitative reasoning data for su-
pervised fine-tuning [Grattafiori et al., 2024]. The models
were pre-trained on over 15 trillion high-quality tokens, pri-
marily from public online sources [Meta, 2024].

Both LLaMA-3 and 3.1 8B models have achieved state-of-
the-art results compared to similarly-sized LLMs [Grattafiori
et al., 2024]. Notably, the pre-trained LLaMA-3.1-8B out-
performed competitors in five out of six evaluated categories,
while its fine-tuned version excelled in multilingual tests,
surpassing models like Mistral-7B [Jiang ef al., 2023] and
Gemma-2-9B [Gemma Team et al., 2024b]. Based on these
achievements, their open-source nature, and the opportunity
to compare similar-sized models with different multilingual
capabilities, both LLaMA-3-8B Instruct and LLaMA-3.1-8B
Instruct were selected for this comparative study.

Qwen The Qwen model family, developed by Alibaba, was
initially released in 2023 with various Transformer-based
versions, including open-source pre-trained models ranging
from 1.8 to 14 billion parameters, along with specialized vari-
ants for instruction-following, coding, and mathematics [Bai
et al., 2023]. The 1.0 generation was pre-trained on trillions
of tokens from diverse sources, including web documents,
books, encyclopedias, and programming code, with content
primarily in English and Chinese [Bai et al., 2023].

In 2024, Qwen-2 was released with pre-trained and
instruction-tuned models ranging from 0.5 to 72 billion param-
eters [Yang et al., 2024a]. A key innovation of this generation
was the expansion of training data to include 27 languages,
including European Portuguese, significantly enhancing its
multilingual capabilities.

The Qwen-2-7B Instruct model demonstrated improved
performance across most benchmarks compared to both
Qwen-1.5 and other state-of-the-art open-source LLMs, in-
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cluding LLaMA-3-70B and LLaMA-3-8B [Yang et al.,
2024a]. Given its significant performance in comparative
tests and multilingual capabilities, the Qwen-2-7B Instruct
version was selected for this study’s evaluation.

InternLM The Intern series of foundation models was de-
veloped through collaboration between SenseTime corpo-
ration, the Shanghai Artificial Intelligence Laboratory, the
Chinese University of Hong Kong, Fudan University, and
Shanghai Jiaotong University [InternLM Team, 2023].

Following the initial InternLM release in 2023 [InternLM
Team, 2023], the second generation InternL.M-2 was made
available in sizes ranging from 1.8 to 20 billion parameters
[Cai ef al., 2024]. These models use a decoder-only trans-
former architecture and were pre-trained on over 2 trillion
tokens predominantly from English and Chinese sources, fol-
lowed by Supervised Fine-Tuning and Conditional Online
Reinforcement Learning from Human Feedback, having the
ability to handle large contexts (up to 200k tokens) [Cai et al.,
2024].

InternL.M-2 models have demonstrated promising results
across various benchmarks when compared with other open-
source LLMs of up to 7 billion parameters [Cai ef al., 2024],
such as LLaMA-2-7B [Touvron et al., 2023b] and Qwen-7B
[Bai et al., 2023]. They performed particularly well in the
FLORES 101 comparative examination [Goyal et al., 2022],
which tests translation capabilities across 101 languages in-
cluding Brazilian Portuguese, establishing InternLM-2 as
competitive for applications requiring robust language com-
prehension [Cai et al., 2024].

The inclusion of InternLM-2 LLMs, represented by the
InternLM-2-7B Chat version in the set of evaluated mod-
els, was based on their open-source nature and intermediate
size (7 billion parameters), combined with this proven abil-
ity to understand and generate texts in multiple languages.
InternL M-2-Chat fills an important gap, representing the cat-
egory of smaller-scale multilingual open-source models, thus
offering a valuable counterpoint between large proprietary
models and models fine-tuned in Brazilian Portuguese.

DeepSeek The DeepSeek LLM project represents an ini-
tiative by the Chinese company DeepSeek aimed at the dis-
semination and development of open-source language models
[DeepSeek-Al et al., 2024a]. The first generation of these
models, released in early 2024, comprises versions of 7 and
67 billion parameters, optimized or not for conversational in-
teractions, pre-trained on approximately 2 trillion tokens, pre-
dominantly in English and Chinese languages, showing strong
inspiration from the LLaMA model architecture [DeepSeek-
Al et al., 2024a].

DeepSeek-V3, the most recent version of the family, pre-
served characteristics introduced in the second generation
[DeepSeek-Al et al., 2024b], such as the Mixture-of-Experts
architecture (DeepSeekMoE) and the Multi-head Latent At-
tention mechanism. This new generation presents signifi-
cant scalability regarding the total number of parameters,
reaching 671B with 37B active per token, and also in terms
of pre-training token volume, totaling 14.8 trillion with en-
hanced multilingual coverage compared to previous genera-
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tions, which primarily focused on English and Chinese lan-
guage data [DeepSeek-Al et al., 2024b, 2025b].

Although it achieved superior performance among the eval-
uated open-source models and comparable performance to
proprietary LLMs [DeepSeek-Al et al., 2025b], DeepSeek-
V3 gained notoriety in academic and professional circles
mainly due to its derivative model, DeepSeek-R1 [DeepSeek-
Al et al., 2025a]. This represents the first generation of mod-
els with reasoning capabilities developed by DeepSeek, being
built from DeepSeek-V3 and achieving performance compa-
rable to the state-of-the-art in reasoning models, OpenAl-o1l
(OpenAl-01-1217 3). Initially, the versions DeepSeek-R1-
Zero, DeepSeek-R1, and dense models between 1.5 and 70B
parameters were made available, distilled from DeepSeek-
R1 and based on the LLMs LLaMA-3.1-8B and Qwen-2.5-
Math-7B [DeepSeek-Al et al., 2025a].

For the conduct of this study, 4 models from the DeepSeek
family were selected: the DeepSeek-V3-671B model, repre-
senting large-scale multilingual models (>70B); the smaller-
scale distilled versions DeepSeek-R1-Distill-LLaMA 3.1-8B
and Qwen-7B, as representatives of smaller-dimension mul-
tilingual models (<13B); and DeepSeek-R1-671B, used as a
strong reference classifier.

4.1.2 Brazilian Portugues Fine-tunned LLMs

Bode The Bode model family [Garcia et al., 2024] com-
prises various subsets of Brazilian Portuguese fine-tuned mod-
els derived from LLMs such as LLaMA-2 [Touvron et al.,
2023b], Gemma [Gemma Team et al., 2024a], and InternLM
[Cai et al., 2024]. These models, available on Hugging-
Face,* aim to enhance the capabilities of existing LLMs in
Portuguese language processing.

The family is organized into distinct subsets based on their
foundation models: the Bode subset derived from LLaMA
models, GemBode [Garcia et al., 2025] from Google’s
Gemma, PhiBode [Garcia et al., 2025] from Microsoft’s
Phi [Gunasekar et al., 2023], and InternLM-ChatBode from
InternLM-2. The fine-tuning process utilized translated ver-
sions of Alpaca and UltraAlpaca datasets, employing efficient
methods such as Low-Rank Adaptation (LoRA) [Hu et al.,
2021] and QLoRA [Dettmers et al., 2023] to incorporate
Brazilian Portuguese linguistic and cultural nuances.

In binary sentiment analysis tasks, Bode-13B demon-
strated superior performance, achieving 10% higher accuracy
than LLaMA-2-7B> and 64% better than LLaMA-2-13B°.
Based on these results and evaluations from the Open Por-
tuguese LLM Leaderboard [Garcia, 2024], four models were
selected for this comparative study: Bode-7B, Bode-13B,
GemBode-7B-it, and InternLM-ChatBode-7B.

Cabra The Cabra family consists of open-source LLMs
fine-tuned on proprietary Brazilian Portuguese datasets called
“CabraSets”, developed by BotBot [BotBot Al, 2024a]. These
models aim to enhance linguistic understanding of Brazil-
ian language and culture [BotBot Al, 2024b]. Available

3https://platform.openai.com/docs/models#ol
“https://huggingface.co/recogna-nlp
Shttps://huggingface.co/meta-1lama/Llama-2-7b
Shttps://huggingface.co/meta-1lama/Llama-2-13b
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on HuggingFace’, the family includes CabraLLaMA3 mod-
els [BotBot Al, 2024c] with 8 and 70 billion parameters,
CabraMistral-v3-7B-32k derived from Mistral-7B [Mistral
Al Team, 2023], and Cabra-72B based on Qwen-1.5-72B
[Qwen Team, 2024].

All models were fine-tuned using the “Cabra” datasets,
with CabraMistral-v3-7B-32k utilizing “Cabral2k” and the
others employing “Cabra30k™. In the Open Portuguese
LLM Leaderboard [Garcia, 2024], particularly in senti-
ment analysis tasks using TweetSentBR [Brum and das
Gragas Volpe Nunes, 2018], the models achieved notable
scores: CabraMistral-v3-7B-32k (65.71), CabraLLaMA3-8B
(68.08), CabraLLaMA3-70B (73.85), and Cabra-72B
(71.64).

For this study, CabraMistral-v3-7B-32k and
CabralLLaMA3-8B were selected based on their favor-
able performance-to-size ratio, with CabraLLaMA3-8B
showing competitive performance compared to larger
variants. This selection also aligns with the parameter scale
of other models considered in this study.

Sabia Sabia LLMs, developed by Maritaca Al, include both
open-source models like Sabia-7B [Pires ef al., 2023] and
closed-source versions such as Sabia-65B, Sabid-2 (Small
and Medium variants), and the latest Sabia-3 [Pires et al.,
2023; Sales Almeida et al., 2024; Abonizio et al., 2024].
The first-generation models, Sabid-7B and Sabia-65B, were
derived from LLaMA-7B and 65B respectively, fine-tuned on
a quality-filtered Portuguese subset of the ClueWeb dataset
[Overwijk et al., 2022a,b].

The models’ performance was evaluated across 14 Por-
tuguese datasets, collectively known as Portuguese Evalua-
tion Tasks (Poeta) [Pires et al., 2023]. In sentiment analysis
tasks, both models showed substantial improvements over
their base LLaMA versions for native Portuguese content,
though Sabid-65B performed slightly below LLaMA-65B on
translated datasets [Pires et al., 2023].

Sabia-2-Medium demonstrated the effectiveness of
language-specific specialization by matching or surpassing
GPT-4’s performance [Sales Almeida et al., 2024]. In
professional certification, university admission, and high
school exams, it was only outperformed by GPT-4-Turbo®
and Claude-3-Opus®, while being 10 to 22 times more
cost-effective [Sales Almeida et al., 2024]. Given these
capabilities, three models were selected for this study: the
open-source Sabid-7B, Sabid-2-Medium, and the latest
Sabia-3.

4.2 Datasets

This study utilized 12 public datasets containing annotated
Brazilian Portuguese texts for sentiment classification. The
characteristics of these selected datasets are summarized in
Table 2.

All datasets were standardized for binary sentiment clas-
sification, retaining only instances labeled as Positive and

"https://huggingface.co/botbot-ai
8version gpt-4-0125-preview
9version claude-3-opus-20240229
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Table 2. Mapped datasets. The selected datasets for comparative tests contain texts from different domains in Brazilian Portuguese, are
labeled for sentiment polarity, and are published and available online.

Translated/ Test

Training set

Dataset Native Content Size  Label Distribution Reference
IMDB_PT Translated ~ Movie Reviews 5.000 v 50% X 50% [Maas et al., 2011; Pires et al., 2023]
SST2 PT Translated ~ Movie Reviews 872 v 56% X 44% [Socher et al., 2013; Pires et al., 2023]
TweetSentBr Native Social Media Posts ~ 1.495 v 50% X 50% [Brum and das Gragas Volpe Nunes, 2018]
ReLI Native Book Reviews 627 v 83% X 17% [Freitas et al., 2014]
Computer-BR Native Social Media Posts 128 v 30% X 70% [Moraes et al., 2016]
MTMSLA Native Social Media Posts 102 v 58% X 42% [Araujo et al., 2016]
CSP-Eletronicos Native Product Reviews 38 v 70% X 30% [Belisario et al., 2019]
CSP-Livros Native Book Reviews 35 v 50% X 50% [Belisario et al., 2019]
4P Corpus Native Product Reviews 278 v 82% X 18% [Silva and Pardo, 2019]
RePro Native Product Reviews 1.516 v 54% X 46% [dos Santos Silva et al., 2024; Real et al., 2019]
OPCovidBR Native Social Media Posts 123 v 50% X 50% [Vargas et al., 2020]
TA-Restaurantes Native Restaurant Reviews 113 v 90% X 10% [Oliveira and de Melo, 2020]

Negative, with other labels such as Neutral being removed.
The labels were encoded as integers: 1 for Positive and —1
for Negative. Unless originally partitioned by their authors,
the datasets were split into training (80%) and test (20%)
subsets while preserving the balance of the original labels.

IMDB_PT Is the Portuguese translation of the IMDB
dataset [Maas et al., 2011], containing movie reviews labeled
as Positive or Negative. This study utilized the version
provided by Maritaca Al, which includes predefined training
and test splits and is part of the Poeta benchmark [Pires ef al.,
2023].

SST2_PT Another Poeta benchmark dataset [Pires et al.,
2023], is the machine-translated Portuguese version of
SST2 [Socher et al., 2013]. It comprises approximately
67,000 training and 872 validation instances, each labeled as
Positive or Negative.

TweetSentBr Contains Brazilian Portuguese tweets anno-
tated based on user reactions to the posts’ main topics [Brum
and das Gragas Volpe Nunes, 2018]. Part of the Poeta evalu-
ation [Pires et al., 2023], this study used a subset comprising
75 training and 2, 000 test instances.

ReLI The ReLl corpus [Freitas et al., 2014] consists of
1, 600 manually annotated book reviews in Portuguese, cov-
ering 14 different books with 12,470 sentences. The cor-
pus contains 2, 883 Positive, 596 Negative, and 212 dual-
labeled sentences.

Computer-BR Contains 2,317 manually annotated Por-
tuguese tweets about computers [Moraes et al., 2016]. Fol-
lowing the authors’ approach, tweets originally labeled as
Irony were converted to Negative.

MTMSLA A subset of [Araujo et al., 2016], contains 774
Portuguese tweets with 297 Positive, 213 Negative, and
264 Neutral labels.

CSP-Eletronicos Comprises 234 manually annotated elec-
tronic product reviews, containing 131 Positive, 59
Negative, and 43 Neutral reviews [Belisario ef al., 2019].

CSP-Livros Contains 350 book reviews extracted from the
ReLI corpus [Freitas et al., 2014], social media, and an online
shopping platform, with 88 Positive, 87 Negative, and
175 Neutral labels [Belisario et al., 2019].

4P Corpus The 4P Corpus [Silva and Pardo, 2019] contains
642 Portuguese sentences from 542 Buscapé reviews covering
four products (two digital cameras and two mobile phones),
manually classified as Positive or Negative.

RePro Derived from B2W-Reviews01 [Real ef al., 2019],
RePro [dos Santos Silva et al., 2024] contains 10, 000 man-
ually annotated reviews of e-Commerce products. For
this study, only instances with single polarity labels
(['POSITIVE'] or ['NEGATIVE']) were retained.

OPCovidBR Comprises 2,000 Portuguese tweets about
COVID-19 collected during the pandemic, annotated at
both opinion and document polarity levels as Positive or
Negative [Vargas et al., 2020].

TA-Restaurantes Contains Brazilian Portuguese reviews
of restaurants from TripAdvisor!® [Oliveira and de Melo,
2020] . The dataset includes 561 subjective sentences labeled
as Positive or Negative, extracted from an original set of
1, 049 sentences.

4.3 In-context Learning

Large Language Models applied to Natural Language Pro-
cessing stand out mainly through two paradigms: fine-tuning
and In-Context Learning (ICL) [Han et al., 2021; Dong et al.,
2023]. Fine-tuning consists of using pre-trained weights from

Onttps://www.tripadvisor.com.br
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PLM/LLMs as a foundation for specialization in a specific
task, utilizing a reduced dataset [Qiu et al., 2020].

In this approach, the model parameters are refined for a
specific objective, preserving the linguistic knowledge in-
corporated during pre-training [Han et al., 2021]. Studies
demonstrate that this methodology achieves SOTA results
in various NLP tasks when compared to the direct use of
pre-trained models [Brown et al., 2020; Qiu et al., 2020; Han
etal.,2021; Zhao et al., 2023]. However, its implementation
faces challenges such as the need for task-specific datasets
[Brown et al., 2020], significant computational costs, and
commercial restrictions associated with restrictive licenses
of advanced models like GPT 4.0 and Gemini [Brown et al.,
2020; Touvron et al., 2023b].

In contrast, the ICL paradigm emerges as a promising alter-
native, leveraging the emergent capabilities [Wei ef al., 2022]
of modern LLMs, which derive from their scale in terms
of parameters and training corpus extension. According to
Dong et al. [2023], ICL can be understood as learning by
analogies through contextual examples, distinguishing itself
from traditional learning by not requiring parameter updates
via gradient backpropagation. In this approach, predictions
are made directly by the pre-trained model, as illustrated in
Figure 1.

[ Dataset | — Prompt J—
Text Label
{ Faga a classificacio do sentimento
Que dia Positivo da frase abaixo considerando os rétulos: Task
Maravilhoso! B "Positivo" e "Negativo". oo
{ : Description
Que dia
Q | Negativo N B
| horrivel Comentario: Que dia Maravilhoso!
" Sentimento: Positivo
h B Comentario: Que dia horrivel!
Sentimento: Negativo
Demonstrations
Comentdrio: Hoje o dia estd lindo.
| Semtimento: o Query
—‘ Template }—\ T
~—__ Template | Input

Comentirio: [Text] P
Sentimento: [Label] ‘

Large Language Model

(LLM)

T
Output

Positivo Prediction

Figure 1. In-Context Learning Strategy. The process illustrates the transfor-
mation of tabular data into a structured template for LLM processing. The
prompt is constructed by incorporating selected examples and task-specific
instructions in natural language. The LLM processes this contextualized
input and generates as output the label corresponding to the query. Adapted
from [Dong et al., 2023]

The ICL technique gained prominence following the publi-
cation by Brown et al. [2020], where the authors demonstrated
a direct correlation between the number of language model pa-
rameters and their in-context learning capability. Using GPT
3.0, with 175 billion parameters, the research showed that
model performance is enhanced by adding natural language
instructions and target task demonstrations.

Dong et al. [2023] highlight the main advantages of ICL: an
interpretable interface for communication with LLM through
natural language, ease of incorporating human knowledge
via adjustments in prompt and examples, decision-making
process analogous to human reasoning, and computational ef-
ficiency as it doesn’t require model adaptation. However, the
approach presents limitations, including inferior performance
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compared to fine-tuning [Brown et al., 2020; Mosbach et al.,
2023], restrictions on the number of examples due to LLMs’
maximum input size, opaque operational mechanisms, and
performance instability influenced by task and demonstration
structuring [Lu et al., 2022; Dong et al., 2023; Mosbach et al.,
2023].

Considering ICL’s adaptability [Krugmann and Hartmann,
20241, this method was selected to conduct comparative tests
between LLMs. Based on the findings of Simmering and
Huoviala [2023], which identified superior performance in
sentiment classification using 6 demonstrations, the same
number of examples was adopted. Detailed specifications
regarding prompt structuring and demonstration selection will
be presented subsequently.

4.4 Prompt Engineering

Prompt Engineering is a discipline focused on guiding LLM
responses through systematic design and optimization of input
instructions [Chen et al., 2023]. It can be conceptualized
as natural language programming, where human knowledge
is adapted to address the specific requirements of language
model interactions [Reynolds and McDonell, 2021].

The field gained prominence, as noted by Zhou et al. [2022],
due to the frequent misalignment between natural language
prompts and expected outputs, necessitating extensive ex-
perimentation to achieve desired behaviors given the limited
understanding of instruction-model compatibility. This has
led to research efforts aimed at understanding prompt dynam-
ics, cataloging available knowledge [Dong ef al., 2023; Giray,
2023; White et al., 2023], and developing efficient prompt
generation methodologies, both manual [Reynolds and Mc-
Donell, 2021] and automated [Reynolds and McDonell, 2021;
Zhou et al., 2022; Wang et al., 2022]. These studies have
also explored optimal demonstration selection for ICL [Liu
et al., 2022; Rubin et al., 2022; Ye et al., 2023] and their
sequencing [Lu et al., 2022].

For this study, a manual prompt was developed, as shown
in Figure 2, incorporating guidelines to enhance model re-
sponses. These guidelines include clear and objective in-
struction specification, structured output format definition,
and strategic use of demonstrations [Reynolds and McDonell,
2021; Giray, 2023; Simmering and Huoviala, 2023].

The demonstration selection process involved randomly
sampling 3 examples from each class (Positive and
Negative) from the respective training subsets across all
12 datasets utilized in this study. The 6 demonstrations were
organized in an interleaved fashion within the prompt, main-
taining consistent structure up to the Query section (Figure 2)
across all inferences performed on the corresponding test
set. This procedure ensured that the same 6 demonstrations
were systematically employed for all predictions within each
dataset, providing methodological consistency and enabling
direct comparability between the evaluated models while min-
imizing potential confounding variables related to example
selection.

Despite acknowledging the implications of random demon-
stration selection and manual prompt engineering, these
methodologies were adopted for the present study. The
demonstrations selection method for ICL significantly influ-
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Prompt

Vocé devera realizar a tarefa de Classificagdo de Sentimento Binaria em
relagdo a polaridade de textos escritos no idioma portugués brasileiro
considerando dois possiveis rotulos de saida: 1 para o sentimentos positivos ou
-1 para negativos.

A saida produzida devera ser em formato JSON, seguindo o esquema definido
entre os marcadores ',

R

{"type": "object", "description": "Objeto de saida fornecido pelo classificador
apés a classificacdo de sentimento do texto de entrada.", "properties":
{"polaridade": {"type": "integer", "description": "Polaridade em relagdo ao
sentimento expressado no texto de entrada. Pode assumir 2 valores: [-1,

Task
Instruction
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1]","enum": [-1,1]} },"required": ["polaridade"]}

Exemplo 1:
"entrada": <EXAMPLE I TEXT>
"saida": {"polaridade": <EXAMPLE | POLARITY>}

Exemplo 2:
"entrada": <EXAMPLE 2 TEXT>
"saida": {"polaridade": <EXAMPLE 2 POLARITY>}}

Exemplo 6:
"entrada": <EXAMPLE 6 TEXT>
"saida": {"polaridade": <EXAMPLE 6 POLARITY>}

Classificagao de Sentimento:
"entrada": <TEXT TO BE LABELED>
"saida":{"polaridade":}

Considere os seguintes exemplos para realizar a predi¢ao:

JSON Format
Specification

Demonstrations

( {"polaridade": <PREDICTION>}

Figure 2. Prompt structure implemented for sentiment classification of Brazilian Portuguese texts. The prompt is organized into four main components,
laterally identified as: (1) Task Instruction: specifies the binary classification task with polarity values of 1 (positive) and —1 (negative); (2) JSON Format
Specification: defines the structured output schema in JSON format, specifying data types and allowed values; (3) Demonstrations: presents a series of
numbered examples (1, 2, ..., 6) containing input-output pairs to guide the classification; and (4) Query: contains the text to be classified. The figure concludes
with the Expected LLM Output, which illustrates the expected prediction format from the model.

ence model outputs, with research indicating that randomly
chosen demonstration subsets tend to produce performance
instabilities in LLMs [Lu et al., 2022; Li and Qiu, 2023].

Asnoted by Lu et al. [2022], there is no evidence of prompt
performance transferability or label ordering effectiveness
across different LLMs. To maximize predictive performance,
prompt engineering, example selection, and demonstration
ordering should be conducted using automated and systematic
methods [Zhou et al., 2022; Liu et al., 2022; Lu et al., 2022]
for each specific model.

However, given that the primary research objective is to
compare LLMs’ predictive capabilities in sentiment classifi-
cation for Brazilian Portuguese texts, we opted to accept the
risk of sub-optimal performance for feasibility and compara-
bility reasons. This methodological choice is acknowledged
as one of the study’s limitations.

4.5 Evaluation

To evaluate LLMs’ performance in binary sentiment classifi-
cation of Brazilian Portuguese texts, this study employed the

ICL strategy with 6 demonstrations. Each instance from the
test subset was passed to the models as prompts, as shown
in Figure 2. The LLM consumption method, along with the
configurations and main parameters used by each model, are
presented in Table 3.

All experiments were performed using the Google Colab'!
service with different hardware (GPUs), since the availability
of specific hardware is not always guaranteed by the provider.
The notebooks containing the experiment codes, as well as the
test and demonstration datasets are available in this article’s
repository!?.

To maximize prediction accuracy and reduce the effect of
inherent non-determinism of LLMs, generation randomness-
related parameters were configured to their most conservative
values, ensuring that model outputs frequently correspond to
those tokens with the highest associated probabilities. The
specific configuration of these parameters varied according
to each model’s consumption method and available settings.

https://colab.google/
nttps://github.com/AndreSchuck/EvaluatinglargeLangua
geModelsforBrazilianPortugueseSentimentAnalysis
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Table 3. Comparative analysis of hardware configurations, con-
sumption methods and operational parameters for the selected lan-
guage models.

Model Consuption g ework  Hardware Generation Parameters
Method

Claude-3.5-Sonnet AP Proprictary API  CPU | max_tokens= 20, temperature=0.0
GPT-40 API* Proprictary API  CPU max_tokens=20, n=1, seed=4, temperature=0
Gemini-1.5-Pro API Proprictary API  CPU max_output_tokens=20,temperature=0,
LLaMA-3-8B-Instruct Local HFTP * L4 GPU! max_new_tokens=150, do_sample=False
LLaMA-3.1-8B-Instruct Local HFTP L4 GPU max_new_tokens=150, do_sample=False
Gemma-7B-Instruct ¥ Local HFTS L4 GPU max_new_tokens=20, do_sample=False
Gemma-2-9B-Instruct § Local HFT L4 GPU max_new_tokens=20, do_sample=False
Qwen-2-7B-Instruct Local HFT L4 GPU max_new_tokens=20, do_sample=False
InternLM-2-7B-Chat Local HFTP A100GPU " max_new_tokens=20, do_sample=False
DeepSeck-V3 API OpenRouter API  CPU temperature=0, top_k=1, max_tokens=20
DeepSeck-R1 API OpenRouter API  CPU temperature=0, top_k=1
DeepSeck-R1-Distill-Qwen-7B Local HFTP A100 GPU max_new_tokens=20, do_sample=False
DeepSeck-R1-Distill-LLaMA-8B Local HFTP A100 GPU max_new_tokens=20, do_sample=False
Sabid-7B Local HFTP L4 GPU max_new_tokens=20, do_sample=Falsc
Sabid-2-Medium API Proprictary APl CPU temperature=0, max_tokens=20, do_sample=Falsc
Sabid-3 API Proprictary APl CPU temperature=0, max_tokens=20, do_sample=Falsc
Bode-7B Local HFTP L4 GPU max_new_tokens=20, do_sample=Falsc
Bode-13B% Local HFTP L4 GPU max_new_tokens=20, do_sample=Falsc
Bode-3.1-8B-Instruct-lora Local HFTP A100 GPU max_new_tokens=20, do_sample=False
InternLM-ChatBode-7B Local HFTP L4 GPU max_new_tokens=20, do_sample=False
GemBode-7B-Instruct Local HFT A100 GPU max_new_tokens=20, do_sample=False
CabraLLaMA-3-8B Local HFTP A100 GPU max_new_tokens=20, do_sample=False
CabraMistral-v3-7B-32k Local HFTP A100 GPU max_new_tokens=20, do_sample=False

* Batch APL.

§ 4 bits quantization.

§§ 8 bits quantization.

* HuggingFace Transformers Pipeline.

$ HuggingFace Transformers.

T CPU = Google Colab CPU with 12 GB of CPU RAM.

¥ L4 GPU = Google Colab L4 GPU with 22.5 GB of GPU RAM.

T A100 GPU = Google Colab A100 GPU with 40 GB of GPU RAM.

Table 3 presents the complete set of inference parameters
utilized for each evaluated model. For LLaMA-3-8B and
LLaMA-3.1-8B models, a higher Maximum number of new
tokens was required, as these models produced highly lit-
eral responses regarding the JSON structure specified in the
prompt instruction, as demonstrated in Figure 3.

Ex 1: {"polaridade":1} Ex 2 : {'polaridade": 1}

Ex 3: {
"polaridade": 1

1
S

Ex 4: 'polaridade’: 1

(a) Other LLMs Outputs.

Ex: {'type" 'object’, 'description": 'Objeto de saida fornecido
pelo classificador apos a classificagdo de sentimento do texto
de entrada., 'properties: {'polaridade: {'type': 'integer',
'description':  'Polaridade em relagdo ao sentimento
expressado no texto de entrada. Pode assumir 2 valores: [-1,
17 'enum".  [-1,1]}}, 'required: ['polaridade']}, ‘'saida':
{'polaridade”: 1}}

(b) LLaMA-3-8B and LLaMA-3.1-8B Outputs.

Figure 3. Comparison of output patterns produced by different LLMs
for sentiment analysis tasks. (a) Typical response structures from most
evaluated LLMs. (b) Distinctive output patterns from LLaMA-3-8B and
LLaMA-3.1-8B models, highlighting their “literal” approach to structure
the requested JSON output.

During the experiment, it was necessary to refine the re-
sponse generation process for the Claude-3.5-Sonnet model.
Initially, the model produced the correct JSON object struc-
ture but preceded it with a brief explanatory text about the
task, followed by the word “JSON” before the actual JSON
object containing the desired response. To optimize the output
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and reduce inference costs, a content restriction strategy was
implemented '*. In the communication turns between the user
(who provided the prompt with instructions, demonstrations,
and text to be classified) and the assistant (who generated
the model’s response), the word “JSON” was included in the
assistant’s function. This approach effectively limited the
response content, eliminating the unwanted introductory text.

A distinctive behavioral pattern was observed in the
Gemini-1.5-Pro model, where certain input instances trig-
gered internal safety filters, resulting in content flagged as
violating usage policies. In these cases, the API response re-
turned empty values in the primary classification field, while
populating additional fields with safety policy information.
These instances, lacking the expected JSON structure for
sentiment predictions, were systematically categorized as hal-
lucinations (value 2) during the response parsing phase for
evaluation purposes.

The generated responses were processed by an algorithm
using a single regular expression pattern to verify the expected
output format. This pattern was designed to identify a JSON-
like structure containing a key named “polaridade” (which
can be delimited by either single or double quotes) followed
by a colon and a value that must be either 1 or —1, allowing
for possible whitespace variations.

If the pattern is recognized in the model’s response, the
integer value (—1 or 1) associated with the “polaridade” key
is extracted from the text. If the pattern is not identified,
the value 2 is returned, indicating that the model produced
a response outside the expected format, with this behavior
being interpreted as a hallucination.

The evaluation phase involved comparing the models’ out-
puts against the original test set labels. Accuracy (Acc)
was chosen as the primary evaluation metric, following es-
tablished practices in binary sentiment classification tasks
[Larcher et al., 2023; Pires et al., 2023; Garcia et al., 2024].

To address class imbalance effects on Accuracy, we also
report the F; Score. The F; Score calculation employs the
unweighted average approach, known as Macro Average,
where individual scores are computed for each class and then
averaged arithmetically.

In scenarios involving hallucinated responses, the Macro
F1 Score inherently penalizes performance due to the ab-
sence of True Positive instances in the hallucination category,
resulting in a local score of zero for this class. While not
contributing to the metric’s numerator, this zero score in-
creases the denominator count, effectively lowering the final
Macro Fy Score to reflect the presence of hallucinations in
the evaluated responses.

The predictive performance of the models was evaluated
through comparative analysis against two benchmark refer-
ences established for each dataset. The first reference consists
of a weak baseline classifier that consistently predicts the ma-
jority class identified in the training subset, representing the
minimum acceptable performance threshold. The second
reference establishes a strong baseline, represented by predic-
tions generated from DeepSeek-R1-671B when subjected to
identical prompts used across all evaluated LLMs.

The selection of DeepSeek-R1 as the strong baseline clas-

Bhttps://docs.anthropic.com/en/api/messages
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sifier was strategically determined based on its distinctive
characteristics among the evaluated models. As documented
in Table 1, DeepSeek-R1 stands as the only model in the study
combining extensive parameter scale (671 billion parameters)
with advanced reasoning capabilities, making it an optimal
reference point for assessing the relative performance of other
models under equivalent experimental conditions.

To ensure a robust methodology for comparing the results
obtained from both evaluation metrics, the statistical signifi-
cance of performance is assessed using the Wilcoxon signed-
rank test for paired samples at a 5% significance level. This
test compares LLMs results pairwise to evaluate 3 alternative
hypotheses (H) against a common null hypothesis (Hy):

* Test 1 - two-tailed:
Hy: The distribution of differences is symmetric around
ZEero.
H;y: The distribution underlying the differences is not
symmetric about zero.

e Test 2 - right-tailed:
Hy: The distribution of differences is symmetric around
Zero.
H,: The distribution underlying the differences is
stochastically less than a distribution symmetric about
Zero.

* Test 3 - left-tailed:
Hy: The distribution of differences is symmetric around
Zero.
Hy: The distribution underlying the differences is
stochastically greater than a distribution symmetric
about zero.

Test 1 is performed for all possible model pair combina-
tions, excluding pairs of identical models. If sufficient ev-
idence exists to reject Hy in Test 1, Tests 2 and 3 are then
applied. Specifically, Test 1’s Hy indicates no significant
difference between paired samples, while its H; examines
any directional differences between groups. Test 2’s H; eval-
uates whether group 1 has significantly higher values than
group 2, whereas Test 3’s H; assesses if group 1’s values are
significantly lower than group 2’s.

Two methodological considerations warrant particular at-
tention in this research context. The first concerns the in-
trinsic non-deterministic behavior of LLMs, which affects
reproducibility not only in the present study but any research
investigating LLM-generated outputs, particularly those em-
ploying single-run evaluations on benchmarks [Song et al.,
2024]. LLMs are fundamentally non-deterministic models,
offering no guarantee that identical outputs will be generated
across multiple executions, even when using the same input
and instructions [Atil et al., 2025].

This output instability directly impacts result reproducibil-
ity, a cornerstone of scientific research. While generation
parameters such as temperature were configured to mini-
mize randomness, other factors such as minimal variations
in floating-point rounding, distributed computing utilization,
and even the architectural essence of Transformer models
themselves can influence their non-deterministic behavior
[Yu, 2023; Atil et al., 2025; Klishevich et al., 2025].
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Recognizing this challenge, several methodological ap-
proaches can mitigate the effects of non-determinism and
increase consistency in LLMs. Recent research demonstrates
that binary classification and sentiment analysis tasks can
achieve near-perfect reproducibility [Wang and Wang, 2025].
Additionally, employing parsers for LLM responses amplifies
consistency [Atil et al., 2025], while Greedy Decoding, a tech-
nique employed whenever possible in this work (“do_sam-
ple=False”), demonstrates superior consistency compared to
sampling approaches and LLMs tend to exhibit consistent per-
formance on tasks with constrained output spaces [Song et al.,
2024]. These findings collectively provide methodological
support for the approach adopted in this study.

The second consideration concerns the absence of data
contamination assessment. Since LLMs are pre-trained on
massive amounts of data, primarily sourced from the web,
there is a risk that the LLMs examined in this study may have
already been exposed to the evaluation datasets at some point
during their training process. This potential exposure com-
promises the distinction between the models’ generalization
and memorization capabilities and could potentially overesti-
mate the obtained results. This is therefore recognized as a
methodological limitation of the present work.

S5 Experimental Results and Discus-
sions

5.1 Inference Costs, Duration Time and Car-
bon Emissions

Before discussing the experimental results, we present a com-
prehensive analysis of the computational costs associated with
our experiments in terms of financial expenditure (in USD),
inference duration, and estimated carbon emissions. These
data are synthesized in Table 4, with carbon emissions esti-
mated using the Machine Learning CO, Impact Calculator'*
Lacoste ef al. [2019]. It is worth noting that, according to
information provided by the Machine Learning CO2 Impact
Calculator, 100% of emissions generated by locally executed
models were offset by the cloud provider.

Due to the proprietary nature of several LLMs (Claude-3.5-
Sonnet, GPT-40, Gemini-1.5-Pro, Sabia-2-Medium, and
Sabia-3) and the computational requirements of others ne-
cessitating API consumption (DeepSeek-V3 and DeepSeck-
R1), comprehensive inference time measurements and carbon
emission estimations were not feasible for all models. This
limitation stems from providers not supplying detailed opera-
tional metrics, particularly environmental impact data. The
lack of carbon emissions data from API providers is further
discussed in Section 6.

Another limitation relates to the cloud service provider
selected for conducting the experiments. The Google Colab
platform does not currently allow the selection of specific
regions for server allocation, thereby precluding the choice of
regions with enhanced energy efficiency for computational
workloads.

Uhttps://mlco2.github.io/impact
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Table 4. Comparative analysis of inference time, cost and carbon
footprint. The top group represents the models consumed via API,
and the bottom group, the models deployed locally. Both groups
are divided by a dashed line, which separates the generalist models
from the fine-tuned models in PT-BR.

Model Cloud Provider  Inferece Cost Carbon Emitted
Region Hours (USD)* (kg COzeq)

Claude-3.5-Sonnet - 4.60 $47.15
GPT-40 - 9.63 $34.50
Gemini-1.5-Pro - - $39.39
DeepSeek-V3 - 4.76 $25.15
DeepSeek-R1 - 73.37 $59.98

" Sabia-2-Medium- ’ - e $15.18
Sabia-3 - - $22.46 -
LLaMA-3-8B-Instruct us-west4’ 30.48 $6.08 0.53 - 0.66
LLaMA-3.1-8B-Instruct us-west4 30.40 $6.06 0.53-0.66
Gemma-7B-Instruct asia-southeast1 10.31 $2.06 0.31
Gemma-2-9B-Instruct asia-southeast1 10.63 $2.12 0.32
Qwen-2-7B-Instruct us-west4 3.00 $0.60 0.05-0.07
InternLM-2-7B-Chat us-centrall 7.16 $4.69 1.02
DeepSeek-R 1-Distill-Qwen-7B us-centrall 4.68 $3.06 0.67
DeepSeek-R1-Distill-LLaMA-8B  asia-southeast] 5.11 $3.35 0.54

" Sabia-7B ’ ’ us-westd 500 $1.00 0.09-0.11
Bode-7B asia-southeast1 7.76 $1.55 02371
Bode-13B asia-southeast1 7.04 $1.40 0.21
Bode-3.1-8B-Instruct-lora asia-southeast 5.14 $3.36 0.54
InternLM-ChatBode-7B us-west4 6.19 $1.23 0.11-0.14
GemBode-7B-Instruct us-centrall 6.41 $4.20 0.91
CabraLLaMA-3-8B us-centrall 4.78 $3.13 0.68
CabraMistral-v3-7B-32k us-centrall 5.76 $3.77 0.82

Total 24222 $291.46 7.56 - 7.89

* 1USD = 6.08 BRL

§ us-west4 region for GCP was not availabe at ML CO2 Impact Calculator,
se we report the min and max values between regions us-westl, 2 and 3.

 Estimated using linear projection of Bode-13B and Gemma-7B-Instruct
emissions values.

Regarding inference duration, we observed relatively bal-
anced performance between API-consumed and locally de-
ployed models. Notable exceptions include DeepSeek-
R1, GPT-40, LLaMA-3-8B-Instruct, and LLaMA-3.1-8B-
Instruct. The substantially extended inference time for
DeepSeek-R1 is attributable to its reasoning phase that pre-
cedes inference, considerably increasing execution duration.

To optimize financial resources, GPT-40 was accessed
through its batch API, which reduces inference costs in ex-
change for extended response windows of up to 24 hours.
The duration reported in Table 4 represents the total time
from batch submission to complete processing. The extended
inference times for LLaMA models primarily results from
utilizing a configuration with a maximum number of new
tokens set to 150, compared to 20 tokens for other models.

Beyond these configuration-specific factors, model-
specific efficiency variations also significantly impact in-
ference duration. An illustrative case involves the Gemma
and Gemma-2 models, which, despite utilizing 4-bit quan-
tized versions, maintained considerably elevated inference
times (410 hours) compared to other models deployed on
L4 hardware. Conversely, the Qwen-2 model, executed in
full precision (Bfloat16) on identical L4 hardware, completed
all inferences in merely 3 hours, establishing itself as one of
the most computationally optimized models in our analysis.
This comparison underscores the significant impact of model
architecture and optimization on computational efficiency,
independent of quantization strategies.

Concerning financial costs, a substantial disparity emerges
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between API-consumed and locally deployed models. Lo-
cally executed models incurred an average cost of $3.53, rep-
resenting a 9.85-fold reduction compared to API-consumed
models ($34.83). Among API-consumed models, the Sabia
family demonstrates cost-effectiveness, with proprietary mod-
els exhibiting lower costs than open-source alternatives ac-
cessed via API, exemplified by DeepSeek-V3.

Cost variations among locally deployed models are pri-
marily attributable to hardware differences (L4 GPUs with
22.5GB RAM versus A100 with 40GB RAM) and total infer-
ence duration. On average, models running on A100 GPUs
cost $0.65 per hour, approximately 3.25 times higher than
those deployed on L4 GPUs ($0.20 per hour). However, this
cost differential must be weighed against performance gains,
as deploying models on A100 GPUs tends to reduce inference
time to an average of 5.57 hours compared to 7.13 hours for
L4 GPUs (excluding LLaMA-3 and LLaMA-3.1 models).

The environmental dimension of our computational anal-
ysis reveals equally significant patterns. Carbon emissions
for locally deployed models were estimated to range between
7.56 — 7.89 kg CO2 equivalent (kg COzeq). These estimates
were derived using IP addresses from Google Colab servers
allocated during experimental execution to determine geo-
graphic regions and server locations. This geographic infor-
mation was combined with per-model inference times and
hardware specifications, subsequently input into the Machine
Learning CO5 Impact Calculator for emission calculations.

The carbon equivalent emissions of L4 machines were, on
average, at least 2.45 times lower than A100 machines. The
average emissions for A100 machines was 0.74 kg COseq,
while L4 computers ranged between 0.26 to 0.30 kg COzeq.
To contextualize this comparison, we examine the LLaMA-3
models case, where inference time took approximately 30
hours while the average for other models was 6.36 hours. The
estimated emissions range was 0.53 to 0.66 kg COzeq, which
is comparable to 4 to 5 hours of A100 machine emissions,
depending on the cloud provider’s server region.

These findings collectively demonstrate that selecting ap-
propriate hardware for LLM deployment involves a com-
plex trade-off between computational efficiency, financial
cost, and environmental impact. While higher-capacity GPUs
GPUs offer superior computational performance with reduced
inference times, specially for models that do not require inten-
sive computational resources, they incur substantially higher
environmental and financial costs. Although some models
require more robust hardware configurations, deployment
decisions merit careful consideration of these multifaceted
implications.

5.2 Large-Scale Models Performance

The experimental evaluation for large LLMs encompassed Ac-
curacy and F; Score metrics across 12 datasets. Performance
statistics (mean and standard deviation) were aggregated per
LLM, as presented in Table 5. The performance distribution
across models is visualized in Figure 4a for Accuracy and
Figure 4b for F; Score. Detailed dataset-specific results are
available in Appendix A, with Accuracy and F; Score results
presented in Table 8 and Table 9 respectively.
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Figure 4. Performance distribution of larger scale models across sentiment analysis tasks. The boxplots illustrate the statistical distribution of (a) Accuracy
and (b) Macro F; Score, providing insights into performance variability across the evaluated datasets. The X marker represents the mean value for each
evaluation metric, allowing comparison of central tendencies alongside the distribution spread, quartiles, and outliers.

Table 5. Performance comparison between small-scale LLMs (>70B
parameters) in Brazilian Portuguese sentiment analysis tasks. Re-
sults present mean Accuracy and F; Score with standard deviations,
stratified by linguistic specialization (Generalist vs. PT-BR fine-
tuned) and ordered by decreasing Accuracy in each category. Two
baseline classifiers are included as comparative reference.

Linguistic

Fine-tuning Model Ace F; Score
Baseli Weak Classifier (Train Set Majority Class)  0.6382 +0.1458  0.3853 £0.0524
aseline
Strong Classifier (DeepSeek-R1) 0.9401 £0.0488  0.8180 +0.1552
Claude-3.5-Sonnet 0.9481 +0.0482  0.9343 + 0.0607
. DeepSeck-V3 0.9358 £ 0.0600  0.7636 + 0.1439
Generalist
GPT-40 0.9351 +0.0687  0.9218 +0.0739
Gemini-1.5-Pro 0.9245+0.0760  0.8395+0.1727
Sabia-3 0.9457 +£0.0581  0.8267 + 0.1588
PT-BR

Sabia-2-Medium 0.9086 +0.0879  0.7189 +0.1676

Large-scale LLMs frequently achieve high-performance
sentiment analysis in Brazilian Portuguese via in-context
learning Analysis of Table 5 and Figure 4 reveals that all
large-scale LLMs outperformed the Weak Classifier across
both evaluation metrics. Furthermore, considerable parity is
observed between the results obtained by the Strong Refer-
ence Classifier and the other large-scale LLMs, particularly
regarding the primary evaluation metric, Accuracy. All large-
scale models, whether with multilingual capabilities or fine-
tuned for PT-BR, including the Strong Reference Classifier,

produced mean accuracies exceeding 0.9. This finding pro-
vides strong evidence of the capability of large-scale LLMs to
understand and execute the downstream task of binary senti-
ment classification in Brazilian Portuguese via the in-context
learning paradigm.

The combined analysis of the Accuracy metric from Ta-
ble 5 and Figure 4a indicates comparable performance among
large-scale models, regardless of whether they are general-
purpose or specifically optimized for Brazilian Portuguese.
Claude-3.5-Sonnet, DeepSeek-V3, GPT-4, and Sabia-3 ex-
hibited lower variability (4cc standard deviation ranging from
0.0482 to 0.0687) and substantial performance overlap, while
Gemini-1.5-Pro and Sabia-2-Medium (0.076 and 0.0879)
demonstrated marginally higher variability and slightly lower
performance.

Regarding the F; score metric, Claude-3.5-Sonnet and
GPT-4 models achieved consistently high values (average
of 0.9343 and 0.9218, respectively) with minimal variabil-
ity (0.0607 and 0.0739), whereas DeepSeek-V3, Sabia-3,
Gemini-1.5-Pro, and Sabia-2 exhibited lower average val-
ues (0.7189 to 0.8395) with greater performance variability
(standard deviation ranging from 0.1439 to 0.1727). This vari-
ability is primarily attributed to the occurrence of even a single
response categorized as hallucination per dataset, which sig-
nificantly impacts the F; Score calculation, reducing values
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by 33.33% and thereby increasing the overall variability for
this metric compared to Accuracy.

Statistical tests indicate performance equivalence among
large-scale LLMs in the downstream task. Statistical
analysis using the Wilcoxon paired non-parametric test at 5%
significance level confirmed significant differences between
all LLMs and the Weak Classifier, as well as performance
parity among the large-scale models themselves. Results for
Accuracy and F; Score are presented in Table 7 and Table 8,
respectively.

Among the large-scale models, the Wilcoxon signed-rank
test results for Claude-3.5-Sonnet, DeepSeck-V3, GPT-40,
and Sabia-3, when compared pairwise, do not support the idea
that the distribution of differences between these groups is
asymmetric. This suggests that the Accuracy scores obtained
by these models across the 12 datasets are unlikely to be
statistically different from each other.

Similarly, the results point in the same direction when
comparing Claude-3.5-Sonnet and GPT-40 for the F; Score
metric.However, when these two models are compared pair-
wise with the other large-scale LLMs, the results do not
support the symmetry of distribution differences, indicat-
ing that their Macro F; Scores are likely superior. Both
Claude-3.5-Sonnet and GPT-40 performed significantly bet-
ter than Gemini-1.5-Pro and Sabid-2-Medium, while the re-
maining LLMs (DeepSeek-V3, Sabia-3, Gemini-1.5-Pro, and
Sabia-2-Medium) demonstrated statistically equivalent per-
formance levels among themselves for this metric.

The comparison between general-purpose models and those
fine-tuned for Brazilian Portuguese further supports conclu-
sions favoring performance equivalence between these cate-
gories. Although statistical test results indicated significant
differences between most general-purpose LLMs when com-
pared to Sabia-2-Medium, it is important to note that the latter
essentially belongs to a previous generation. In contrast, the
most recent LLM from the Sabia family demonstrates sta-
tistical equivalence in comparison with all general-purpose
large-scale LLMs.

Proprietary large-scale generalist models demonstrate
superior reliability in prompt adherence with minimal
hallucinations. Based on the results of the experiments re-
ported in Table 11, Claude-3.5-Sonnet and GPT-40 were the
only large-scale LLMs that followed the prompt specifica-
tions with complete consistency, generating responses that
precisely matched the expected output format. However, it
is important to note that, across all models, the percentage
of responses categorized as hallucinations relative to the to-
tal number of responses produced (10, 372) was remarkably
low, with an average of merely 0.25% for large-scale LLMs
(including the strong reference model DeepSeek-R1).
Qualitative analysis of responses classified as hallucina-
tions revealed distinct error patterns specific to each model ar-
chitecture. The DeepSeek-R1 model, employed as the Strong
Reference Classifier, exhibited consistent JSON syntax errors
in all its hallucination cases, including omission of colons or
quotation marks, and misspellings of the key term “polari-
dade”. Similarly, the DeepSeek-V3 model produced some
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syntactically incorrect JSON structures, but its hallucinations
were predominantly characterized by responses lacking the
expected JSON format entirely, instead generating explana-
tory text describing its sentiment classification approach. This
behavior likely stems from the knowledge distillation pro-
cess from DeepSeek-R1, which enhances reasoning capabil-
ities while significantly expanding average response length
[DeepSeek-Al et al., 2025b].

The hallucination patterns observed in other models re-
vealed different underlying mechanisms. The Gemini-1.5-
Pro model’s hallucinations (100% of cases) were exclusively
caused by its internal safety filters, which identified certain
input texts as potentially violating usage policies, resulting
in empty responses rather than sentiment classifications. In
contrast, the Sabia family of large-scale LLMs produced hal-
lucinations primarily by assigning labels outside the specified
binary range, particularly by generating correctly structured
JSON objects containing a value of 0 (typically associated
with neutral sentiment, which was not part of the task specifi-
cation). Additionally, the Sabia-2-Medium model frequently
generated responses erroneously claiming defects or errors in
the input text itself.

5.3 Small-Scale Models Performance

Similar to the approach taken with larger-scale models, de-
scriptive statistics were also reported for smaller-scale LLMs
(Table 6), along with evaluation metric variations summa-
rized in boxplot graphs: Figure 5a for Accuracy and Figure 5b
for F; Score.

Table 6. Performance comparison between small-scale LLMs (<13B
parameters) in Brazilian Portuguese sentiment analysis tasks. Re-
sults present mean Accuracy and F; Score with standard deviations,
stratified by linguistic specialization (Generalist vs. PT-BR fine-
tuned) and ordered by decreasing Accuracy in each category. Two
baseline classifiers are included as comparative reference.

FI;;Z%:: :l“cg Model Acc F; Score

Baseline Weak Classifier (Train Set Majority Class) ~ 0.6382 +0.1458  0.3853 +0.0524
Strong Classifier (DeepSeek-R1) 0.9401 =0.0488  0.7905 = 0.1507
Gemma-2-9B-Instruct 0.9337 £0.0507  0.7851 +0.1481
Qwen-2-7B-Instruct 0.9232+0.0604  0.7001 =0.1937
LLaMA-3-8B-Instruct 0.9189 +0.0550  0.6472 +0.1943

Generalist InternLM-2-7B-Chat 0.8990 + 0.0657  0.8361 +0.1354
DeepSeek-R1-Distill-LLaMA-8B 0.8939 +0.0640  0.8427 +0.1219
DeepSeek-R1-Distill-Qwen-7B 0.8613+0.0709  0.7215=0.1446
Gemma-7B-Instruct 0.8276 +£0.0796  0.4915+0.1212
LLaMA-3.1-8B-Instruct 0.7587 +0.1250  0.4896 + 0.0773

© Bode3.-8B-Instructlora 0.9054+0.0613  0.6778=0.1722

InternLM-ChatBode-7B 0.9010+0.0622  0.8438 + 0.1040
CabraLLaMA-3-8B 0.8873+0.0711  0.7252+0.1854

PT.BR CabraMistral-v3-7B-32k 0.8814+£0.1046  0.7988 +0.1610

GemBode-7B-Instruct 0.8670 = 0.1056  0.6079 + 0.2080

Bode-7B 0.8593 £0.1095 0.7035 +0.1820
Bode-13B 0.8445+0.0911  0.5336+0.0814
Sabia-7B 0.6630+0.1558  0.4670 +0.1362

Small-scale LLMs prove to be efficient and viable alterna-
tives for the underlying task. The evaluation of Table 6
and Figure 5 reveals that, similar to larger-scale models, small-
scale LLMs achieved results consistently superior to the Weak
Classifier in the vast majority of cases. Considering the results
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Figure 5. Performance distribution of smaller scale models across sentiment analysis tasks. The boxplots illustrate the statistical distribution of (a) Accuracy
and (b) Macro F; Score, providing insights into performance variability across the evaluated datasets. The X marker represents the mean value for each
evaluation metric, allowing comparison of central tendencies alongside the distribution spread, quartiles, and outliers.

obtained by the top 10 small-scale models (including both
general-purpose and those fine-tuned for the target language),
the average mean Accuracy was 0.8975, approximately 41%
higher than the average of the weak reference classifier and
only 4.5% lower than the strong reference classifier, despite
the latter having, on average, 6.63 - 101! more parameters.

Regarding Accuracy, Table 6 and Figure S5a demon-
strate that Gemma-2-9B-Instruct, Qwen-2-7B-Instruct,
LLaMa-3-8B-Instruct, Internl.M-2-7B-Chat and DeepSeck-
R1-Distill-LLaMA-8B LLMs achieved results competitive
with the strong classifier, as did the Brazilian Portuguese
specialized models Bode-3.1-8B-Instruct-lora and InternLM
ChatBode-7B, with their mean accuracies ranging between
0.8939 and 0.9337. Slightly behind are the PT-BR fine-tuned
models CabraLLaMA-3-8B, CabraMistral-v3-7B-32k,
GemBode-7B-Instruct, Bode-7B, and Bode-13B, with
accuracies fluctuating between 0.8445 and 0.8882.

The models LLaMA-3.1-8B-Instruct and the Sabia-7B
LLM, based on first-generation LLaMA, demonstrated the
lowest average performance in terms of the main metric, with
the latter approaching the performance observed in the Weak
classifier.

Lower values along with greater variability were also
observed for the F; Score metric which, similar to larger-

scale models, can be primarily explained through the lens
of responses categorized as hallucinations. Most models
achieved results close to the strong reference classifier, ex-
cept for the general-purpose LLMs Gemma-7B-Instruct and
LLaMA-3.1-8B-Instruct together with the Brazilian Por-
tuguese fine-tuned models Bode-13B and Sabia-7B, which
exhibited the worst average performance for this metric, re-
maining relatively close to the weak reference classifier.

Overall, small-scale models generated a considerably
low percentage of responses categorized as hallucina-
tions, but they struggled with overgeneration. Exclud-
ing the general-purpose models Gemma-7B-Instruct and
LLaMA-3.1-8B-Instruct and the PT-BR fine-tuned models
Sabia-7B and Bode-13B, which were most affected by halluci-
nations (average of 8.62%), the remaining small-scale LLMs
produced a low percentage of responses outside the specified
pattern. The average for the remaining general-purpose mod-
els was 0.20% and for those specialized in the target language
was 0.26%, both relatively close to the value obtained by the
strong reference model.

Despite being minimally affected by hallucinations, quali-
tative analysis of responses generated by small-scale models,
both general-purpose and specialized, revealed a high rate of
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overgeneration. This means that small-scale models appeared
to have greater difficulty recognizing when the requested task
had been completed, generating numerous additional unnec-
essary/unwanted tokens beyond those used to compose the
requested JSON object, typically continuing until reaching the
maximum token limit established as a generation parameter.

This overgeneration behavior is clearly demonstrated in the
raw outputs produced by smaller-scale models, with detailed
examples available in Appendix C.2. Both generalist mod-
els (such as InternLM-2-7B-Chat and Gemma-7B-Instruct)
and Portuguese fine-tuned variants (including InternLM-
ChatBode-7B and CabraMistral-v3-7B-32k) exhibit similar
patterns. Their outputs characteristically contain the correct
JSON structure with sentiment classification, but are system-
atically contaminated by extraneous artifacts, mostly derived
from prompt elements. For instance, typical responses in-
clude fragments such as “{ polaridade’: 1}\nExemplo:\n’en-
trada’: 'O que é” or “{ ’polaridade’: 1}\nClassificacdo de
Sentimento:\n’entr”, illustrating this pervasive issue.

While this verbose behavior affects most small-scale mod-
els, a notable exception includes Qwen-2-7B-Instruct, which
demonstrates markedly superior output consistency that more
closely approximates the concise response patterns observed
in large-scale models (Appendix C.1). A comprehensive qual-
itative analysis of output patterns across all evaluated models
is provided in Appendix C.

To quantify the influence of overgeneration in small-scale
models, the number of output tokens produced by each LLM
was calculated using a common tokenizer (OpenAl Tiktoken
0200k _base'¥). From this calculation, Figure 6 was produced,
illustrating the distribution of tokens by model size, and Ta-
ble 7, available in Appendix A, which consolidates the main
descriptive statistics regarding the output tokens produced.

Analysis of Figure 6 reveals a higher concentration of out-
put tokens in two distinct intervals: first, a peak near 7 tokens
is identifiable, followed by a more dispersed distribution be-
tween 13 and 20 tokens for smaller-scale LLMs (< 13B),
while larger-scale models also exhibit this concentration near
7 tokens with another peak around 11 tokens. Quantitatively
(Table 7), a higher average number of tokens is observed
for smaller-scale models (14.86), excluding LLaMA-3-8B-
Instruct and LLaMA-3.1-8B-Instruct from the comparison,
when compared to LLMs with more than 70B parameters
(9.61). These two LLaMA models were excluded from this
specific analysis because they demonstrated notably literal
adherence to the JSON object structure as discussed in Subsec-
tion 4.5, necessitating a higher maximum output token limit
(150) compared to the 20-token limit used for other models.

The overgeneration phenomenon observed predominantly
in smaller-scale models presents significant implications for
practical applications. While it did not substantially impede
the workflow of this study—as regex pattern matching ef-
fectively extracted the required JSON objects from verbose
outputs—it nevertheless constitutes an important consider-
ation for real-world implementations. This behavior may
implies on additional post-processing steps when integrating
these models into production systems, creating overhead that
could impact efficiency and resource utilization.

https://github.com/openai/tiktoken
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Figure 6. Distribution of output token counts across models by parameter
size and scale. The analysis illustrates token generation patterns for both large
and small-scale models, with comparative plots highlighting outputs token
count distribution and variability. This visualization excludes data from
LLaMA-3-8B-Instruct, LLaMA-3.1-8B-Instruct, and the Strong Reference
Classifier (DeepSeek-R1) to maintain focus on models with comparable
generation behaviors.

During analysis, we hypothesized that prompt complexity
may have been a primary contributing factor to overgener-
ation, specifically the structural complexity of our prompt
which contained, besides the task instructions and the text to
be classified, a JSON schema definition and few-shot exam-
ples. Notably, we found very limited research addressing this
specific phenomenon in the literature, suggesting that over-
generation might be a prompt-specific issue unique to this
study’s experimental design rather than a universal limitation
of these models.

On the other hand, the fact that models generated su-
perfluous tokens despite explicit instructions to produce
only a JSON object highlights a potential limitation in their
instruction-following capabilities when presented with our
particular prompt structure. We leave this hypothesis open
for future research, which might also explore whether ar-
chitectural modifications, prompt engineering techniques, or
specialized fine-tuning could mitigate this overgeneration ten-
dency without compromising the models’ performance on the
primary sentiment analysis task.

Linguistic specialization of models in the target language,
in some cases, tends to reduce hallucinations. In several
cases, it was possible to directly compare the effect of lin-
guistic specialization by examining LLMs alongside their
base models, such as InternLM-2-7B-Chat versus InternLM-
ChatBode-7B, Gemma-7B-Instruct versus GemBode-7B-
Instruct, LLaMA-3-8B versus CabralLLaMA-3-8B and
LLaMA-3.1-8B-Instruct versus Bode-3.1-8B-Instruct-lora.
This comparative analysis revealed that linguistic fine-
tuning seems to reduce the number of hallucinations pro-
duced by the models by an average of 92% for Bode’s Family
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against their base versions. Specifically, there was a reduction
of 942 hallucinations (—96.2%) from Gemma-7B-Instruct to
GemBode-7B-Instruct, 827 (—96.5%) from LLaMA-3.1-8B-
Instruct to Bode-3.1-8B-Instruct-lora, and 5 (—83.3%) from
InternL.M-2-7B-Chat to InternLM-ChatBode-7B.

On the other hand, the Cabra family model
CabraLLaMA-3-8B showed an increase of 39 (+125%)
hallucinations compared to the results obtained from its base
model. Despite the increase in the number of responses
categorized as hallucinations, there was less dispersion
regarding the hallucinations and the datasets in which they
occurred, with a reduction of 50% (4 datasets) compared to
LLaMA-3-8B (8 datasets).

For Bode-3.1-8B-Instruct-lora, a substantial improvement
in average performance compared to its base model was ob-
served across both evaluation metrics (19% in Accuracy and
38% in F1 Score), with this improvement also reflected in the
statistical tests (Figure 7 and Figure 8).

Improvements were also observed in the other two PT-
BR fine-tuned models relative to their general-purpose ver-
sions, though these were less pronounced: a gain of 5%
in mean Accuracy and 24% in mean F; Score between
Gemma-7B-Instruct and GemBode-7B-Instruct, and a gain
of 0.22% in mean Accuracy and 0.92% in mean F; Score
from InternL.M-2-7B-Chat to InternLM-ChatBode-7B. These
smaller improvements did not constitute sufficient evidence
to accept the alternative hypothesis of statistical superior-
ity, except in the case of the F; Score metric between the
Gemma-7B-Instruct and GemBode-7B-Instruct models.

Meanwhile, the CabralL.LaMA-3-8B model showed an
improvement of 8.57% in mean F; Score compared to the
LLaMA-3-8B model, largely due to the reduction in the dis-
persion of the total number of datasets with at least one halluci-
nation, while the mean Accuracy exhibited a slight reduction
of 3.44% relative to its base model.

5.4 Cross-Scale Models Comparison

Comparative analysis with previous reported results high-
lights the potential of in-context learning with LLMs over
conventional supervised learning approaches for this par-
ticular sentiment analysis task in Brazilian Portuguese.
Evidence from this investigation substantiates that both large-
scale and small-scale LLMs achieved promising performance
in binary sentiment classification of Brazilian Portuguese
texts using the ICL paradigm. This conclusion is supported
not only by the magnitude of the obtained results but also
through comparative evaluations with findings reported in
prior research.

A pattern emerged regarding performance variations across
datasets. For both large and small-scale models, the majority
of the lowest accuracy values (19 out of 23 models) were
observed on the same dataset: OPCovidBR [Vargas et al.,
2020]. This dataset accounts for 5 of the 9 outliers visible in
Figure 4a for large-scale models, and for all 5 outliers (ex-
cluding the previously counted strong reference classifier) in
Figure 5a for small-scale LLMs. Quantitatively, large-scale
models (including the strong reference classifier) achieved a
mean accuracy of 0.7782 on this dataset, while small-scale
models averaged 0.7104, indicating greater difficulty in cor-
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rectly interpreting and classifying texts from this particular
corpus.

Despite these challenges, the Accuracy achieved by most
of the LLMs significantly exceeded the results reported by
Vargas et al. [2020], in which traditional classifiers includ-
ing Naive Bayes, Decision Trees, and SVM—specifically
trained on this dataset—achieved accuracy scores ranging be-
tween 0.48 and 0.63 (accuracy results were obtained from the
supplementary materials available in the paper’s repository).

Some recent-generation smaller-scale LLMs (between 7
and 13 billion parameters) demonstrate statistically equiv-
alent performance to SOTA large-scale models (over 70
billion parameters) for Portuguese sentiment analysis.
Considering the primary evaluation metric, Accuracy, the
analysis showed statistical equivalence (Figure 7) between
large-scale SOTA models such as DeepSeek-V3 (mean Accu-
racy: 0.9358) and GPT-40 (mean Accuracy: 0.9351) when
compared with smaller-scale LLMs such as Gemma-2-9B-
Instruct (mean Accuracy: 0.9337) and Qwen-2-7B-Instruct
(mean Accuracy: 0.9232). This pattern of statistical equiva-
lence was also observed in the comparison between GPT-40
and the smaller-scale Brazilian Portuguese specialized model
InternLM-ChatBode-7B (mean Accuracy: 0.9010).

These findings represent a significant contribution to the
debate on the relationship between scale and performance
in NLP tasks for languages beyond English. Although mod-
els with a larger number of parameters, such as Claude-3.5-
Sonnet and Sabia-3, achieved the best absolute Accuracy
averages (0.9481 and 0.9457, respectively), the ability of
smaller and more recent models to achieve statistically com-
parable performance challenges the premise that larger scale
necessarily results in better performance for specific tasks in
languages not dominant in training datasets.

The demonstration that smaller-scale models can effec-
tively compete with large LLMs has significant practical
implications. These smaller models represent viable alter-
natives both from a performance perspective and computa-
tional efficiency, enabling their execution on more modest
and economically accessible hardware infrastructures. This
characteristic amplifies their potential application in contexts
with computational resource constraints, particularly relevant
for researchers and developers working with Brazilian Por-
tuguese.

The experimental results reveal a consistent pattern of
cross-generational improvements within language model
families when evaluated on Brazilian Portuguese senti-
ment analysis. This evolution manifests in multiple perfor-
mance dimensions including mean Accuracy, mean Macro
F1 Score, and hallucination rates. The comparative analy-
sis demonstrates how newer generations of the same model
family tend to exhibit enhanced capabilities in processing
Portuguese text.

The results indicate a significant improvement in Brazil-
ian Portuguese performance of Gemma-2-9B-Instruct com-
pared to its previous version, Gemma-7B-Instruct. While
Gemma-7B-Instruct achieved an average Accuracy of 0.8276
and an average F; Score of 0.4915 (Table 6), ranking lower
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among smaller-scale models, the Gemma-2-9B-Instruct ver-
sion recorded an average Accuracy of 0.9337 and an F; Score
0f 0.7851, along with a 98.67% reduction in hallucinations,
positioning it as the top general small-scale model. It is worth
noting that the developers emphasize that neither the first nor
the second generation of Gemma models have multilingual
aspirations [Gemma Team et al., 2024a,b].

The statistically significant difference in Accuracy (Fig-
ure 7) and Macro F; Score (Figure 8) between LLaMA-3-8B
and earlier LLaMA-based models such as Bode-7B,
Bode-13B, and Sabia-7B demonstrates the evolution of
LLaMA’s capabilities for Brazilian Portuguese across gen-
erations. This is evidenced by results reported by Pires et al.
[2023] and Garcia et al. [2024], which indicate the superior-
ity of Sabia-7B models compared to their base LLaMA-7B
model, and of Bode7B and 13B compared to LLaMA-2-7B
and LLaMA-2-13B.

The LLaMA family has been expanding its multilin-
gual capabilities with each new version [Meta, 2024],
with LLaMA-3.1-8B being explicitly designed to offer
enhanced support for multiple languages including Por-
tuguese. However, despite this targeted multilingual ex-
pansion, LLaMA-3.1-8B showed significantly lower perfor-
mance than LLaMA-3-8B (which does not claim specific
multilingual capabilities) [Grattafiori et al., 2024] in both
evaluation metrics. Furthermore, version 3.1 produced 27
times more responses categorized as hallucinations than ver-
sion 3.

Qualitative analysis of the responses generated by
LLaMA-3.1-8B revealed a pattern of task misinterpretation
that warrants further examination. In responses classified
as hallucinations, rather than producing the required JSON
output object, the model frequently generated code snippets
related to machine learning algorithms for sentiment classifi-
cation. This behavior suggests potential limitations in prompt
understanding or instruction following. One plausible ex-
planation is, again, the relative complexity of the provided
prompt structure, which may have exceeded the model’s abil-
ity to accurately parse and respond to multi-part instructions
in Portuguese.

This hypothesis is particularly noteworthy given that,
according to the developers [Grattafiori et al., 2024],
LLaMA-3.1-8B was specifically designed with enhanced mul-
tilingual support including Portuguese, which theoretically
should have resulted in superior performance compared to
LLaMA-3-8B. These contradictory findings highlight the im-
portance of prompt engineering and testing when deploying
multilingual language models, as expanded language capabil-
ities may not necessarily translate to improved task perfor-
mance across all instruction contexts.

The evolution of large-scale models fine-tuned for Brazil-
ian Portuguese was also evident in the experimental results.
The comparative analysis between specialized PT-BR models,
Sabia-3 and Sabia-2-Medium (as illustrated in Figure 7 and
Figure 8), indicated a rejection of the null hypothesis (H) for
both evaluated metrics. These findings suggest that Sabia-3
significantly outperforms Sabid-2-Medium in terms of both
average Accuracy (0.9457 versus 0.9086) and average Fq
Score (0.8267 versus 0.7189). Additionally, Sabia-3 demon-
strated enhanced response reliability, exhibiting a substan-
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tially lower hallucination rate (0.11% compared to 0.66%),
which represents an approximate 83% reduction in hallucina-
tions.

6 Limitations

This research presents several methodological and scope lim-
itations that warrant consideration. The experimental design
decisions, while methodologically justified, introduce spe-
cific constraints that may influence the interpretation and
generalizability of our findings.

As discussed in Section 4.4, the random selection of 6
demonstrations for In-Context Learning, while methodologi-
cally feasible, may introduce instabilities in language model
performance. Recent studies [Liu et al., 2022; Lu et al., 2022;
Rubin et al., 2022; Ye et al., 2023] demonstrate that system-
atic and automated selection and ordering of demonstrations
can significantly enhance predictive performance.

Similarly, the manual construction of prompts used in the
experiments, although following established guidelines for
optimizing response effectiveness, may not have fully ex-
plored the optimization potential that other methods could
provide, possibly resulting in sub-optimal model performance
[Reynolds and McDonell, 2021; Zhou et al., 2022; Wang et al.,
2022]. This limitation represents a methodological consider-
ation that may have served as a potential confounder in our
comparative analysis, as different models may exhibit varying
degrees of sensitivity to prompt formulation and demonstra-
tion selection strategies.

Furthermore, the complexity and structure of the crafted
prompt may differentially affect models performance, with
smaller-scale language models potentially exhibiting greater
sensitivity to prompt complexity compared to their larger
counterparts. Future research should investigate how prompt
complexity influences model performance across different
architectural scales and explore diverse prompt engineering
techniques to identify approaches that are both adequate and
effective for the majority of evaluated models, thereby reduc-
ing the methodological bias introduced by manual prompt
construction.

A fundamental methodological consideration that perme-
ates this entire study concerns the inherent non-deterministic
behavior of LLMs, which directly impacts the reproducibility
of our findings. This output variability stems from multiple
sources including algorithmic factors (sampling strategies
and model architecture), implementation aspects (floating-
point precision variations, distributed computing and opti-
mizations), and system-level considerations [Yu, 2023; Song
et al., 2024; Atil et al., 2025; Klishevich et al., 2025].

Although we implemented conservative generation parame-
ters and employed structured response parsing to enhance con-
sistency, the single-run evaluation approach adopted, while
methodologically justified by computational and financial
constraints, limits the statistical robustness of our compara-
tive conclusions. Future research should consider multi-run
evaluations with appropriate statistical analysis to better char-
acterize the variance inherent in LLM performance assess-
ments.

Compounding these reproducibility challenges, our experi-
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mental setup utilized different hardware configurations (L4
GPUs and A100 GPUs) across models, which may introduce
subtle variations in computational outcomes. Additionally,
the consumption of proprietary APIs for several key models
presents ongoing challenges, as these systems undergo contin-
uous updates without public notification, potentially altering
their behavior between evaluation periods and compromising
long-term reproducibility.

Another methodological limitation concerns the absence of
comprehensive evaluation regarding potential model contam-
ination with respect to the datasets used in this study. Large
language models are trained on vast corpora of text, which
may include portions of public datasets similar or identical to
those used in our evaluation.

This contamination could introduce biases in our analysis,
potentially inflating performance metrics for certain models
while providing an inaccurate representation of their actual
generalization capabilities [Sainz et al., 2023; Dong et al.,
2024]. Future work should implement rigorous contamination
detection methods to ensure that performance evaluations
reflect genuine model capabilities rather than memorization
of previously encountered data [Elangovan et al., 2021].

Furthermore, a relevant methodological and ethical limita-
tion is the absence of a systematic investigation into biases,
such as social and demographics. This limitation is primarily
linked to an inherent challenge in the NLP field: the construc-
tion of datasets that are simultaneously comprehensive, high-
quality, and annotated to permit the analysis of diverse biases.
Creating datasets with these characteristics is a highly com-
plex task, involving substantial costs in time and resources.
As a result, it is common for developers of such resources to
prioritize certain features over others.

Thus, conducting a bias analysis on existing datasets be-
comes an initiative as complex and costly as creating a new re-
source annotated specifically for this purpose. Consequently,
our analysis could not determine whether the models exhibit
differential performance across the diverse linguistic varia-
tions of Brazilian Portuguese or among different demographic
groups. This gap is particularly relevant given that the training
data of LLMs themselves may also not equitably represent all
segments of speakers, specially in low resources languages, in-
troducing another latent biases that our evaluation was unable
to detect. Therefore, we encourage future work to consider
methodologies that enable the analysis of these biases.

Beyond methodological constraints, the study’s scope
presents important limitations regarding the breadth of eval-
uation. The analysis focused on a restricted set of models
(23) and exclusively evaluated binary sentiment classification
tasks. This delimitation may restrict the generalization of
results to other natural language processing tasks, limiting the
applicability of findings in broader contexts where different
linguistic phenomena, task complexities, or domain-specific
requirements might reveal alternative performance patterns.

Finally, environmental and transparency considerations
represent an emerging limitation that extends beyond this
study to the broader field of LLM research. As discussed
in Subsection 5.1, the absence of carbon footprint data from
proprietary models and/or those consumed via API, or at
minimum, information that would enable estimation of these
values, represents a limitation not only of the present study
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but of all research utilizing these LLMs.

This lack of transparency, often concealed behind com-
mercial justifications but also resulting from the absence of
standardized guidelines for climate reporting [Hershcovich
et al., 2022], may obscure the real effects of the complex
interaction between utility benefits and environmental costs
[Strubell et al., 2020; Bender et al., 2021]. While open-source
models allow for more precise environmental and compu-
tational cost assessments, the proprietary nature of leading
commercial LLMs prevents comprehensive environmental
impact evaluation across all evaluated models.

7 Conclusion

This study conducted an extensive comparative analysis of
Large Language Models’ capabilities in binary sentiment
classification for Brazilian Portuguese texts. We evaluated 23
LLMs comprising 13 state-of-the-art multilingual models and
10 models fine-tuned specifically for the Portuguese language,
testing their performance across 12 annotated datasets using
the in-context learning paradigm.

Our findings demonstrate that both large-scale and small-
scale LLMs exhibit significant effectiveness in sentiment
analysis of Brazilian Portuguese texts. Large models such
as Claude-3.5-Sonnet, DeepSeek-V3, GPT-40, and Sabia-3
achieved outstanding results, with average accuracies exceed-
ing 93% and minimal hallucination rates. Notably, the special-
ized model Sabia-3 performed comparably to leading multi-
lingual models, indicating that high-quality language-specific
optimization can match the capabilities of general-purpose
large-scale LLMs.

Smaller models (7-13B parameters) also demon-
strated competitive performance, with top performers
like Gemma-2-9B-Instruct, Qwen-2-7B-Instruct, and
LLaMA-3-8B-Instruct achieving accuracies above 91%.
Among Portuguese-specialized smaller models, Bode-3.1-8B-
Instruct-lora and InternLM-ChatBode-7B showed the most
promising results. These findings suggest that smaller, more
efficient models can serve as viable alternatives for practical
applications in resource-constrained environments.

Our comparative analysis revealed several noteworthy pat-
terns. First, newer generations within model families con-
sistently outperformed their predecessors in Brazilian Por-
tuguese sentiment analysis, highlighting the rapid advance-
ment in LLM capabilities. Second, linguistic specialization
through fine-tuning demonstrated mixed results—while sub-
stantially reducing hallucination rates for some models (par-
ticularly in the Bode family), it did not consistently yield
significant performance improvements across all metrics and
model types.

The study also uncovered interesting behavioral patterns
among different model categories. Small-scale models ex-
hibited a tendency toward overgeneration despite explicit
instructions, producing additional unnecessary text beyond
the requested format. This finding suggests that further re-
search into prompting techniques and model adaptation may
be beneficial for optimizing these models for structured output
tasks.

In the broader context of sentiment analysis for Brazil-
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ian Portuguese, our experimental results significantly outper-
formed previously reported benchmarks that used traditional
machine learning approaches specifically trained for this task.
This demonstrates the considerable potential of in-context
learning with LLMs as an efficient alternative to traditional
supervised learning approaches for Portuguese NLP tasks.

Future research directions could address several limitations
of the current study. First, developing systematic method-
ologies for demonstration selection and prompt optimization
could further enhance models performance. Second, expand-
ing the evaluation to include more complex NLP tasks be-
yond binary sentiment classification would provide a more
comprehensive assessment of these models’ capabilities in
Portuguese. Finally, a deeper qualitative analysis of selected
datasets and LLMs could yield important findings about bi-
ased performance across different demographic groups or
linguistic variations within Brazilian Portuguese.

In conclusion, this study contributes to the growing body
of research on multilingual and language-specialized LLMs
by providing empirical evidence of their effectiveness in Por-
tuguese natural language processing. The results demonstrate
that both approaches—general-purpose multilingual models
and Portuguese-specialized models—offer viable paths for-
ward, with their relative advantages depending on specific
use cases and deployment constraints.
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A Consolidated Experimental Results

This appendix section presents a view of the experimental
results obtained in the comparative analysis of generalist and
Portuguese fine-tuned Language Models. The detailed tables
showcase various aspects of model performance and behavior
during the sentiment analysis task.

Table 7. Descriptive statistics of output token generation across
models, quantified using the OpenAl Tiktoken 0200k base tok-
enizer.

Linguistic

: ] Model Mean  Standard Deviation Median Min  Max
Fine-tuning

Scale

Baselines Strong Classifier (DeepSeck-R1) ~ 13.12 4.84 14 4 231
Claude-3.5-Sonnet ~ 11.01 0.18 11 117

) DeepSeek-V3 1133 1.09 11 10 21

Generalist

Large-scale GPT-40  10.00 0.02 10 011
(>70B) Gemini-1.5-Pro ~ 6.95 0.56 7 0 7
Sabia-3  11.01 0.22 11 11 19

Sabia-2-Medium  7.34 1.30 7
Gemma-2-9B-Instruct  14.18 2.29 15
Qwen-2-7B-Instruct ~ 7.15 0.86 7
LLaMA-3-8B-Instruct ~ 54.15 45.40 96

InternLM-2-7B-Chat  16.87 0.81 17 15

DeepSeck-R1-Distill-LLaMA-8B  17.15 0.78 17 16 19
DeepSeek-R1-Distill-Qwen-7B  18.47 1.08 19
Gemma-7B-Instruct  13.94 0.63 14
Small-Scale LLaMA-3.1-8B-Instruct  102.78 2027 96
(<13B) Bode-3.1-8B-Instruct-lora  16.01 4.63 18
InternLM-ChatBode-7B  15.61 1.39 15
CabraLLaMA-3-8B  15.16 532 19
CabraMistral-v3-7B-32k 1492 0.44 15
GemBode-7B-Instruct  18.56 238 19
Bode-7B 10.27 2.96 13

Bode-13B 7.59 178 7

Sabia-7B  8.04 0.54 8
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Table 7 presents descriptive statistics of output token gen-
eration across all evaluated models. For each LLM, the table
quantifies mean, standard deviation, median, minimum, and
maximum of output tokens produced during sentiment anal-
ysis. All token counts were calculated using the OpenAl
Tiktoken 0200k _base tokenizer for standardization purposes.
It is worth noting that the reported counts may be slightly
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Table 8. Accuracy obtained per model and dataset, stratified by scale and linguistic specialization.

Datasets

Scale F:;‘l:_g_ll_:s"t:zg Model IMDB_PT SST2_PT TweetSentBR ReLI Computer-BR MTMSLA CSP-Eletronicos CSP-Livros 4P Corpus RePro OPCovidBR TA-Restaurantes
S Weak Classifier (Train set majority class)  0.5000 05092 06071 08262 06953 05784 0.6842 04857 08201 05489 05041 09027
Strong Classifier (DeepSeek R1) 0.9544 0.9323 09177 0.9378 0.9609 0.9902 0.9211 0.9714 0.9784 0.9921 0.8130 09115
Claude-3 5-Sonnet 09548 09507 09217 09713 09609 09608 09211 1.0000 09892 09960 08211 09292
onaiy | DESPSEEV 09508 09117 09183 0936 09453 09804 09474 09714 09856 09908 07642 09292
Large Sacle GPT-40 0.9484 0.9312 0.9250 0.9442 0.9609 0.9902 0.8421 1.0000 0.9856 0.9914 0.7642 0.9381
(70B) Gemini-15-Pro 09344 09037 09284 09208 09531 09804 0.8947 09714 09856 09941 07073 09115
PT-BR Sabia-3 0.9518 0.9300 0.9210 0.9474 0.9453 0.9804 0.9737 1.0000 0.9856 0.9947 0.7805 0.9381
Sabid-2-Medium 09478 09128 06847 09208 09063 09608 0.8947 1.0000 09640 09855 07967 09204
Gemma-2-9B-Instruct 0.9404 0.9278 0.9016 0.9378 0.9063 0.9412 0.9474 1.0000 0.9784 0.9901 0.8049 0.9292
Qwen-2-7B-Instruct 0.9422 0.8807 0.8768 0.9378 0.8828 0.9510 0.9474 1.0000 0.9748 0.9842 0.7805 0.9204
LLaMA-3-8B-Instruct 09376 08796 08742 0936 08750 09412 09474 09714 09712 09763 07886 09292
. . InternLM-2-7B-Chat 0.9334 0.8670 0.8226 0.9362 0.8672 0.8824 0.9737 0.8857 0.9568 0.9782 0.7561 0.9292
Generalist 1 pSeck-R1-Distill-LLaMA-SB 09096 0.8658 08380 09187 08672 0.9314 09211 0.9714 08813 09802 0.7398 0.9027
DeepSeek-R1-Distill-Qwen-7B 08780 08108 07965 08868 08281 09118 0.7895 09143 09281 09657 07236 09027
‘Gemma-7B-Instruct 0.7452 0.8498 0.7557 0.8963 0.7422 0.7255 0.8421 0.8857 0.9137 0.9505 0.7480 0.8761
Small Scale LLaMA-3.1-8B-Instruct 09018 07041 08159 08931 08516 0.7255 0.5000 08571 06043 08536 07154 0.6814
(13B) Bode-3.1-8B-Instruct-lora 0.9138 0.8865 0.8327 0.9378 0.8906 0.9510 0.8947 09714 0.9424 0.9855 0.7642 0.8938
InternL M-ChatBode-7B 09396 08429 08112 09458 08594 0.8824 09737 0.9429 09532 09710 07967 0.8938
CabralLaMA-3-8B 09214 08681 07731 09330 08281 08529 09211 0.9429 09496 09723 07561 09292
CabraMistral-v3-7B-32k 0.8896 0.8670 0.8246 0.9266 0.8359 0.8824 1.0000 0.9143 0.9460 0.9769 0.5935 0.9204
PR GemBode-7BInstruct 09228 08280 07764 09171 07969 0.7451 09737 09714 09640 09551 0.6504 09027
Bode-7B 0.9208 0.8268 0.7222 0.9123 0.7266 0.8529 0.9211 09714 0.9604 0.9420 0.6341 0.9204
Bode-13B 09092 08073 07577 08708 08047 08333 0.8947 09143 09137 09156 0.6098 09027
Sabid-7B 05970 05493 06198 08628 03906 06275 0.7895 0.6000 08345 06788 05041 09027

higher than the expected limits described in the methodology
section (see Table 3) due to the use of a different tokenizer
than those employed by the models during inference. This
table provides insights into the verbosity characteristics and
response consistency of each model when performing senti-
ment analysis tasks in Brazilian Portuguese.

Table 8 presents the raw experimental results for each
model across all evaluated datasets, organized by Accuracy.
Models are arranged according to their scale (LLMs with
more than 70 billion parameters and LLMs with less than 13
billion parameters) and linguistic specialization (generalist
versus Portuguese fine-tuned), then listed in descending order
based on their mean Accuracy performance. The table in-
cludes two baseline references: a weak classifier representing
the majority class in each training set, and a strong classifier
implemented with DeepSeek-R1. This organization enables
detailed analysis of how each model performs across differ-
ent domains represented by the twelve Brazilian Portuguese
sentiment analysis datasets.

Table 9 complements the accuracy analysis by presenting
the Macro F; Score for each model-dataset combination. This
metric is particularly valuable as it provides a more balanced
assessment when dealing with class imbalance, which is com-
mon in several of the evaluated datasets. Unlike accuracy,
which can be artificially inflated in imbalanced scenarios, the
Macro F; Score gives equal weight to each class by calculat-
ing the harmonic mean of precision and recall independently
for each class before averaging.

This approach reveals important nuances that might be ob-
scured when relying solely on accuracy metrics. For instance,
models with comparable accuracy values may exhibit sub-
stantial differences in their F; Scores, indicating variations in
their ability to correctly identify both positive and negative
sentiments with equal proficiency.

Understanding the relationship between model hallucina-
tions and performance metrics is crucial for an extensive
evaluation of LLMs. As discussed in Subsection 4.5, hal-
lucinations significantly impact the calculation of Macro F;
Score, as these instances receive a local score of zero for the
hallucination class, which reduces the overall metric value

despite not affecting the accuracy in the same way. This rela-
tionship explains some of the discrepancies observed between
the Accuracy and F; Score results in the previous tables.

Table 11 provides a consolidated view of hallucination
statistics across all evaluated language models, maintaining
the same stratification by scale and linguistic specialization.
The table quantifies the absolute count of hallucinations, the
number of distinct datasets where hallucinations occurred, the
percentage of total hallucinations attributed to each model,
and the mean hallucination count per dataset.

Table 10 displays the raw results for hallucination occur-
rences across all experiments. This detailed breakdown al-
lows for the identification of specific model-dataset combina-
tions that are particularly prone to hallucinations, revealing
patterns that may not be apparent in the consolidated statistics.
For instance, some models demonstrate consistent halluci-
nation behavior across multiple datasets, while others show
pronounced vulnerability only with specific data types or
domains. This granular view provides researchers and practi-
tioners with insights into the reliability constraints of different
LLMs when processing Brazilian Portuguese content for sen-
timent analysis tasks.

B Hypotesis Testing

This section presents the details of the hypothesis tests con-
ducted to evaluate the statistical significance of performance
differences between the language models. The Wilcoxon
signed-rank test [Wilcoxon, 1945] was chosen due to several
advantageous characteristics compatible with the experiments:
it is robust for small sample sizes, makes no assumptions
about the data distribution, and is a non-parametric alterna-
tive to the paired t-test [Scheff, 2016; Holmes, 2020].

The paired nature of this test is well-suited for the experi-
mental design, where 23 different language models were com-
pared against each other across the same set of 12 datasets.
This approach is methodologically appropriate since all mod-
els processed identical test instances with the same prompts,
creating naturally matched pairs of observations. The paired
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Table 9. Macro F; Score obtained per model and dataset, stratified by scale and linguistic specialization.

Datasets
Scale F:““‘z‘gT“l'f"'::g Model IMDB_PT SST2_PT TweetSentBR ReLI ~Computer-BR MTMSLA CSP-Eletronicos CSP-Livros 4P Corpus RePro OPCovidBR TA-Restaurantes
asclines Weak Classifier (Train set majority class) 03333 03374 03778 04524 04101 0.3665 0.4063 03269 04506 03527 0.3351 0.4744
Strong Classifier (DeepSeek R1) 06365 06222 06096 09023 0.9529 0.9900 0.9138 0.9714 0.6461 09920 08126 0.7669
Claude-3.5-Sonnet 09548 09507 09156 09518 0.9529 0.9595 0.9138 1.0000 09821 0990 08210 08135
Goneralier | DeCPSeek-V3 09508 0.6091 06114 08960 06303 0.6609 0.9415 0.9714 06540 06613 07632 08135
Large Sacle GPT-40 09484 09312 09208 09118 0.9529 0.9900 0.8348 1.0000 09763 09914 07611 0.8426
(>708) Gemini-1.5-Pro 0.6257  0.6066 09250 08901 0.9447 0.9799 0.8869 0.9714 09763 09940 0.4903 0.7827
Sabid-3 06349 09300 06110 06110 09350 0.9799 0.9702 1.0000 09756 06636  0.7790 0.8306
FIBR - Sabiae2-Medium 06336 0609 04480 0.5958 0.6020 0.9595 0.8869 10000 0.6377  0.6596 07963 0.7976
Gemma-2-9B-Instruct 06270 0.619% 08937 08965 0.5957 0.9388 0.9391 1.0000 06458 06616 0.8048 0.7986
Qwen-2-7B-Instruct 06203 05877 08653 05947 05793 0.9496 0.9415 1.0000 06423 06578 05252 0.7414
LLaMA-3-8B-Instruct 06255 05874 05763 05914 08545 0.6285 0.9415 0.9714 06373 06528 0.5301 0.7806
. IntemLM-2-7B-Chat 06225 08656 08013 08856 08520 0.8755 0.9688 0.8833 09268 09780 0.7488 0.7806
Generalist 1 pSeek-R1-Distill-LLaMA-SB 09093 0.8658 08339 08569 08465 0.9289 0.9138 0.9714 0.5564 09801 07384 07113
DeepSeck-R1-Distill-Qwen-7B 0582 08103 07834 0.5368 0.8026 0.9103 0.7841 09143 0594  0.6460 07231 07113
Gemma-7B-Instruct 05405 05727 04828 05454 04920 0.4661 0.5832 0.6074 05747 06428 05127 04314
Small Scale LLaMA-3.1-8B-Instruct 06138 05330 05560 05741 0.5740 0.5371 0.4561 0.6148 05114 06116 05097 0.3611
(<13B) Bode-3.1-8B-Instruct-lora 06091 0.5921 05433 05978 08744 0.9499 0.6000 09714 06245 06574 0.7620 0.5040
InternLM-ChatBode-7B 09395 08391 07852 08997 08458 0.8755 0.9688 0.9428 09188 06473 07923 0.6709
CabralLaMA-3-8B 06182 05795 07203 0579 08151 0.8400 0.9106 0.9424 09104  0.6481 07501 0.7806
prpp | CobraMistly3-TB-32k 05924 08663 08078 05800 08151 0.8728 1.0000 0.9140 09093 09767 0.5091 0.7414
GemBode-7B-Instruct 06164 05505 04886 0.5492 0.7867 0.4639 0.9702 0.6566 09370 06380  0.6135 0.6073
Bode-7B 06142 05499 0.6551 0.5615 0.7190 0.8451 0.9013 09713 09302 06284 0.599 0.7638
Bode-13B 06060 0.5583 04826 05491 0.5289 0.5531 0.6107 0.6344 05945 06232 03694 04438
Sabid-7B 04716 04222 02760 06359 03600 0.4824 0.6833 0.5100 05283 06135 03351 0.4744
Table 10. Hallucination statistics across language models categorized by scale and linguistic specialization.
Datasets
Scale F}::_g.ll.::::‘g Model IMDB_PT SST2_PT TweetSentBR ReLI Computer-BR MTMSLA CSP-Eletronicos CSP-Livros 4P Corpus RePro OPCovidBR TA-Restaurantes
) Weak Classifier (Train set majority class)
Basclines
Strong Classifier (DeepSeek R1) 4 2 1 1
Claude-3.5-Sonnet
 DeepSeck-V3 4 12 3 2 1 4
Generalist
Large Sacle GPT-40
(>70B) Gemini-1.5-Pro 44 12 11
g b3 6 2 1 2
Sabia-2-Medium 27 4 18 1 2 4 12
Gemma-2-9B-Instruct 1 3 1 1 7
Qwen-2-7B-Instruct 18 4 2 1 2 9 3
LLaMA-3-8B-Instruct 7 4 5 1 1 1 10 2
Generalist InternLM-2-7B-Chat 6
DeepSeek-R1-Distill-LLaMA-8B 1
DeepSeek-R1-Distill-Qwen-7B 17 1 1 12
Gemma-7B-Instruct 842 19 19 18 7 5 3 2 8 44 7 5
Small Scale LLaMA-3.1-8B-Instruct 207 211 105 31 6 2 7 5 35 207 16 5
(<13B) Bode-3.1-8B-Instruct-lora 2 5 6 4 1 7 2 3
InternLM-ChatBode-7B 1
CabralLaMA-3-8B 6 5 1 1
prpn  CobraMisal-TB-32k 1 1
GemBode-7B-Instruct 20 4 1 2 1 1 8
Bode-7B 5 5 5 6
Bode-13B 15 68 30 37 5 2 2 3 16 71 2 3
Sabié-7B 1.469 3

Table 11. Hallucination counts per model and dataset, stratified by
scale and linguistic specialization.

Linguistic Distinct

o,
Scale Fine-Tuning Model Count Datasets % of Total Mean
. Weak Classifier (Train set majority class) 0 0 0.00% 0
Baselines )

Strong Classifier (DeepSeek R1) 8 4 0.08% 1

Claude-3.5-Sonnet 0 0 0.00% 0

. DeepSeck-V3 26 6 0.25% 2

Generalist
Large Sacle GPT-40 0 0 0.00% 0
(>70B) Gemini-1.5-Pro 67 3 0.65% 6
Sabid-3 11 4 0.11% 1
PT-BR . .

Sabid-2-Medium 68 7 0.66% 6
Gemma-2-9B-Instruct 13 5 0.13% 1

Qwen-2-7B-Instruct 39 7 0.38% 3

LLaMA-3-8B-Instruct 31 8 0.30% 3

. InternLM-2-7B-Chat 6 1 0.06% 1

Generalist )

DeepSeek-R1-Distill-LLaMA-8B 1 1 0.01% 0
DeepSeek-R1-Distill-Qwen-7B 31 4 0.30% 3

Gemma-7B-Instruct 979 12 9.48% 82

Small Scale LLaMA-3.1-8B-Instruct 857 12 8.30% 71
(<13B) Bode-3.1-8B-Instruct-lora 30 8 0.29% 3
InternLM-ChatBode-7B 1 1 0.01% 0

CabraLLaMA-3-8B 70 4 0.68% 6

CabraMistral-v3-7B-32k 2 2 0.02% 0

PT-BR

GemBode-7B-Instruct 37 7 0.36% 3

Bode-7B 21 4 0.20% 2

Bode-13B 254 12 2.46% 21

Sabia-7B 1.472 2 14.25% 123

design accounts for inherent differences in difficulty lev-
els, class distributions, and linguistic characteristics across
datasets, enabling a more direct comparison of model capabil-
ities by focusing on relative differences rather than absolute
performance values.

Results of Wilcoxon tests for paired groups with 5% signif-
icance level for Accuracy metric are consolidated in Figure 7.
The test evaluates the Hy hypothesis that two related paired
samples come from the same distribution, in other words,
tests if the difference between paired observations in the pop-
ulation is zero. The Green circle symbol indicates sufficient
evidence to reject Hy in favor of H; : Model 1 > Model 2.
The Red circle symbol indicates sufficient evidence to reject
Hj in favor of H; : Model 1 < Model 2 at the established
significance level. Yellow circle indicates no sufficient evi-
dence to reject Hy. White circle indicates that the evaluated
models are identical, therefore the test was not applied.

Similarly, Figure 8 presents the results of the Wilcoxon
signed-rank tests for the Macro F; Score metric, using the
same significance level and visual encoding scheme than
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Figure 7. Results of Wilcoxon tests for paired groups with 5% significance level for Accuracy metric.

Figure 7 .

C Qualitative Analysis

This section presents a comprehensive qualitative analysis
of response patterns generated by all 23 evaluated models
across the sentiment classification task. The analysis reveals
distinct behavioral patterns strongly correlated with model
scale. Large-scale models (> 70B) demonstrated superior in-
struction adherence, producing highly concentrated response
distributions with minimal variance from the requested JSON
format.

Conversely, smaller-scale models (<13B) exhibited greater
response fragmentation and systematic generation of struc-
tural artifacts, predominantly derived from prompt elements
such as demonstration examples and task descriptions. De-
spite these formatting inconsistencies, the majority of models
maintained high classification validity rates (> 99.5%), indi-
cating successful task execution even when accompanied by
extraneous content.

The following subsections provide detailed model-by-
model analysis, categorized by scale and linguistic specializa-
tion, examining response consistency, artifact patterns, and
adherence to the specified JSON schema.

C.1 Large-scale models (>70B)
C.1.1 Generalist

DeepSeek-R1 The model demonstrated high consistency
with 97.19% of responses concentrated in five variations
(Table 12) of the requested JSON format, differing only in
quotation marks (single/double) and spacing. The majority
(94.57%) included markdown markers (" json”). The re-
maining 2.81% comprised 8 verbose responses with explana-
tions, 4 malformed JSONs, and 4 with line breaks. The highly
predictable behavior indicates robustness for automated tasks,
with inconsistencies representing rare events. The response
validity rate was 99.92%.

Table 12. DeepSeek-R1 Generation Overview.

Distinct Raw Top 5

Responses Occurrences o
1. "json\n{\n "polaridade™ 1\n}\n"~  38.61 %
2. Vjson\n{\n "polaridade™ -I'n}\n" 33.79 %
463 jsomn{polaridade 1hn " 1246%
. jsonin“polaridade” -1y 923%
‘5. {polaridade 1} 3.07%

Claude-3.5-Sonnet The model demonstrated exceptional
performance with 99.86% of responses in the exact expected
JSON format (“{”polaridade”: 1} or “{”polaridade”:
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Figure 8. Results of Wilcoxon tests for paired groups with 5% significance level for Macro F1 Score metric.

Table 14. DeepSeek-V3 Generation Overview

—1}”). Only 0.14% of responses included additional jus-
tifications after the JSON, using markers such as “Justifica-
tiva:”, “Explica¢do:” or “Explanation:”. All 10, 326 infer-
ences maintained 100% compliance with the requested JSON
schema, resulting in a validity rate of 100%. The model pre-
sented only 13 unique responses (Table 13), indicating high
consistency and minimal variability in outputs.

Table 13. Claude-3.5-Sonnet Generation Overview.

Distinct Raw Top S %
Responses Occurrences
1. Tjson\n{’polaridade’: 1}\n" 36.82 %
2. json\n{’polaridade’: -1}\n” 34.13%
61 3. json\n{"polaridade™ 1j\n" 12.89%
4. Vjson\n{"polaridade”: -1\ 6.44%
5. jsonn{\n "polaridade”™ T'nj\n"  4.56 %

Distinct Raw

Top 5

Responses Occurrences %
1. \n{\n "polaridade”: 1\n} 56.01%
“2\n{wpolaridade™ -1y 43.85%
13 3. \n{\n "polaridade”: -1\n}\n\nEmbora o texto ndo exp  0.01 %

-I\n}\n\nJustificativa:

5. \n{\n "polaridade”:

DeepSeek-V3 The model produced 61 distinct responses
(Table 14), with 98.74% concentrated in 6 valid variations
that alternated between single/double quotes and inline/multi-
line formatting. The remaining 1.26% (55 variations) in-
cluded artifacts such as “Agora, realize a classificagdo”
(0.51%), unsolicited explanations like “Para classificar o
sentimento” or “Para realizar a classifica¢do” (0.24%) and
the fragment “Classifica¢do de Sentimento:” (0.14%). The
model presented a high response validity rate (99.74%)

GPT-40 The model presented high consistency with only 4
distinct responses (Table 15), with a validity rate of 100%. All
responses perfectly followed the requested JSON structure,
containing exclusively the “polaridade” field with correct
values (—1 or 1), without extra fields or verbosity. Variations
were limited to minimal formatting differences: multiline
indentation in the main responses and additional line breaks
in minority variations.

Table 15. GPT-40 Generation Overview.

Distinct Raw Top 4 N
%o
Responses Occurrences
1. {\n ’polaridade”: 1\n} 53.62%
4 2. {\n ”polaridade”: -1\n} 46.34 %
3. \n{\n "polaridade”: 1\n} 0.01 %
4. \n{\n "polaridade”: -1\n}  0.00 %
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Gemini-1.5-Pro The model produced only 6 distinct re-
sponses (Table 16), demonstrating high consistency in model
behavior and a validity rate of 99.35%. The 5 most frequent
responses represent 99.99% of outputs, all maintaining per-
fect adherence to the requested JSON structure with the “po-
laridade” field and expected values (—1 or 1). The observed
variations were limited to minimal formatting aspects: pres-
ence of one or two line breaks after JSON closure and a
minority case without space after the colon. Notably, 0.65%
of responses were blocked by the model’s security filters,
returning null values

Table 16. Gemini-1.5-Pro Generation Overview.

Distinct Raw Top S o
Responses Occurrences %
1. {"polaridade™: 1}\n 44.81 %
2. {"polaridade™ -1}\n  34.99%
6 3. {"polaridade”™ -1}\n\n 1050 %
i Ppolaridade Tjnn 895%
5NN 0.65%
C.1.2 PT-BR

Sabia-3 The model generated 12 distinct responses (Ta-
ble 17), with 99.89% concentrated in 4 main variations. These
responses adhered to the requested JSON format, with consis-
tent use of markdown code blocks and inclusion of the “po-
laridade” field. The remaining 0.11% presented anomalies:
in 0.09% (9 occurrences), the returned value was “{ polari-
dade’: 0}, outside the [—1, 1] range, generally accompanied
by explanatory notes (e.g., “Note que a saida padrdo...”);
in 0.02% (2 occurrences), there were error messages related
to the input text (e.g., “Parece que houve um erro na sua
solicitagdo”™). The overall validity rate was 99.89%.

Table 17. Sabia-3 Generation Overview.

Distinct Raw Top 5 o
%o
Responses Occurrences
1. "json\n{’polaridade’: 1}\n" 51.81 %
2. "json\n{’polaridade’: -1}\n 41.77 %
1 3. "json\n{”polaridade”: 1}\n" 3.83 %
4. "json\n{”polaridade”™: -1}\n 2.46 %
5. json\n{’polaridade’: 0}\n \n\n 0.02 %

(Note que a saida padrao

Sabia-2-Medium The 5 most frequent responses (Table 18)
account for 91.29% of outputs and present good adherence
to the instruction and specified format. There is a sharp drop
from the 6th (6.22%) to the 7th position (0.53%). Between
positions 6 t023 (8.36%), returns follow the JSON format
but with greater variation in formatting and some cases of
class 0. The remaining 0.34% correspond to error messages,
generally attributed to problems in the input text. The validity
rate of produced responses was 99.34%.

Schuck et. al., 2025

Table 18. Sabia-2-Medium Generation Overview.

Distinct Raw Top 5 o
)
Responses Occurrences
1. {’polaridade’: -1} 39.24 %
2. {’polaridade’: -1} 26.20 %
54 3. ’polaridade’: -1 10.71 %
4. ’saida’: {’polaridade’: 1} 7.85 %
5. ’saida’: {’polaridade’: -1}  7.28%

C.2 Small-scale models (<13B)
C.2.1 Generalist

Gemma-2-9B-Instruct The model produced 31 distinct
responses (Table 19), with 95.7% concentrated in the five
main variations, all adhering to the requested JSON structure.
The four most frequent differ only by formatting artifacts (e.g.,
, " json™), without affecting content. The valid response
rate was 99.87%, with prompt artifacts in 0.20% of cases
and consistency in polarity (values —1 or 1). The remaining
4.25%, distributed across 26 smaller variations, exhibit small
inconsistencies such as decimal values (1.0, —1.0), occasional
JSON duplications, and rare cases of invalid polarity (0).

Table 19. Gemma-2-9B-Instruct Generation Overview.

Distinct Raw Top 5 o
%0
Responses Occurrences

1. {"polaridade’: 1}\n\n\n\n <end_of turn><eos>  46.60 %
2. {’polaridade’: -1}\n\n\n\n <end_of turn><eos > 35.71 %

31 3. {"polaridade’: 1}\n\n\n\n" json 8.03 %
4. {’polaridade’: -1}\n\n\n\n " json 4.60 %
5. {’polaridade’: 1}\n\n\n\n <end_of turn>\n 0.79 %

Qwen-2-7B-Instruct The model generated 16 distinct re-
sponses (Table 20), with 96.1% concentrated in two main
variations (“{ polaridade’: 1} and “{ polaridade’: —1}"),
faithfully adhering to the JSON format with single quotes and
no artifacts. The remaining 3.9% were divided into 14 smaller
variations: 2.6% with alternative formatting (“ " json”, dou-
ble quotes), 1.2% with decimal values (1.0, —1.0), 0.35%
with invalid polarity (0), and 0.02% with unsolicited explana-
tory responses. The valid response rate was 99.62%, evidenc-
ing excellent adherence to instructions and low incidence of
artifacts.

Table 20. Qwen-2-7B-Instruct Generation Overview.

Distinct Raw Top 5

Responses Occurrences Yo
1. {"polaridade’: 1} 56.19 %
2. {'polaridade’: -1} 39.94%
16 3. jsonn{polaridade” -1}\n"  1.10%
‘4 {polaridade’: 1.0} 0.54%
5. jsonin Fpolaridade™s 17n" 0.51%
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LLaMA-3-8B-Instruct The model presented bimodal be-
havior, with 83.28% of inferences concentrated in five main
variations (Table 21). Two categories stood out: clean re-
sponses with only the polarity JSON (46.5%) and responses
that partially or totally reproduce the original prompt schema
(51.4%), including fields such as “’type’: "object” and “’de-
scription’: ’Objeto de saida...””. The top ten responses to-
taled 93.28%, while the remaining 396 formed a long tail
(6.72%). Despite the high validity rate (99.7%), the model
demonstrated a tendency toward literal prompt reproduction.

Table 21. LLaMA-3-8B-Instruct Generation Overview.

Top 5
Occurrences

Distinct Raw
Responses

1. {’polaridade’: 1}
2. {’type’: *object’,’description’: Objeto de saida
fornecido pelo classificador apos a classifica¢do de
sentimento do texto de entrada.’, *properties’: {’polaridade’:
{’type’: ’integer’,’description’: ’Polaridade em relagdo ao
sentimento expressado no textode entrada.
Pode assumir 2 valores: [-1, 1]°,’enum’: [-1,1]}},
\n ’required’: [’polaridade’]}\n
\n’saida’: {’polaridade’: 1}

406 3. {"type’: object’,’description’: Objeto de saida
fornecido pelo classificadorapos a classificagdo de
sentimento do texto de entrada.’, *properties’: {’polaridade’:
{’type’: ’integer’,’description’: "Polaridade em rela¢do ao
sentimento expressado no textode entrada.
Pode assumir 2 valores: [-1, 1]’,’enum’: [-1,1]}},
\n "required’: [’polaridade’]}\n
\n’saida’: {’polaridade’: -1}

20.92 %

17.17 %

5. {"polaridade’: 1}

InternLLM-2-7B-Chat The model presented highly frag-
mented behavior, with 1,359 distinct responses and only
78.17% concentrated in the 20 most frequent variations. It
demonstrated a strong tendency to reproduce demonstration
artifacts, with 95.3% containing “Exemplo.” and 99.4% start-
ing with “’entrada’:”, in addition to generating spurious frag-
ments such as “O que é”, “O que eu g” and “Agora,”. In 4.7%,
it also reproduced “Classifica¢do de Sentimento:” from the
main prompt. Despite contamination by artifacts and irrele-
vant text, the validity rate was high (99.94%). No response,
however, presented the requested clean JSON, indicating fail-
ure to separate the demonstration structure from task execu-
tion. The overview of model response generation is presented
in Table 22.

Table 22. InternLM-2-7B-Chat Generation Overview.

Distinct Raw
Responses

Top 5

%
Occurrences

1. {’polaridade’: 1}\nExemplo:\n’entrada’: *O que é 14.72 %

6.43 %

5. {’polaridade’: -1}\nExemplo:\n’entrada’: O que eu g

DeepSeek-R1-Distill-LLaMA-8B The model presented
verbose behavior, with 427 distinct responses and 74.1% con-
centrated in the ten main variations. In 72.58% of cases, it
generated unsolicited explanations in Portuguese, initiated
by “Ok, eu preciso...”, indicating self-narration not induced
by the prompts. Only 8.0% of responses included prompt
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artifacts (“Classificagdo de Sentimento:”), suggesting low
literal reproduction. No response brought only the requested
JSON. Despite this, the validity rate was excellent (99.99%),
evidencing correct task execution combined with a system-
atic pattern of autonomous verbalization, possibly inherited
from training. The overview of model response generation is
presented in Table 23.

Table 23. DeepSeek-R1-Distill-LLaMA-8B Generation Overview.

Distinct Raw Top 5 o
%o
Responses Occurrences

1. { pf)larldade : 1}\nOKk, eu preciso classificar 15.06 %
o sentimento de um
2.4 po}landade : 1}\nOKk, eu preciso classificar 1235 %
a polaridade desse

47 3.4 po}arldade : 1}\nOKk, eu preciso classificar 3.89 %
a polaridade de um
4. {’polaridade’: -1}\nOk, eu preciso classificar o

. 8.82 %
a polaridade desse
5 PEI s 10Ok von anal; e T

5. {’polaridade’: -1}\nOk, vou analisar o texto de 6.45 %

entrada para determin

DeepSeek-R1-Distill-Qwen-7B  The model presented
highly heterogeneous behavior (Table 24), with 733 distinct
responses and 74.6% concentrated in 20 main variations.
The leakage of internal reasoning tokens stood out, with
43.7% containing thinking (not present in prompts), followed
by markdown JSON blocks (42.3%). Also frequent were
the reproduction of prompt artifacts (41.0%) and the
generation of spurious fragments such as ‘O que vocé”,
“ninguem je” and “aqui estd” (24.2%). In 10.1%, unsolicited
self-instructions emerged (“Agora, considere...”). The model
combined correct task execution with reasoning leakage,
literal reproduction, and autonomous generation, maintaining
a high validity rate (99.66%).

Table 24. DeepSeek-R1-Distill-Qwen-7B Generation Overview.

Distinct Raw Top 5 o
%o
Responses Occurrences
«1&{ polar’ldade.: —1}’\n </think>\n\n 18.09 %
json\n{’polaridade’: -1
%;_{ polar’ldade‘: 1}\’n</thmk>\n\n 10.78 %
json\n{’polaridade’: 1
733 ? { polaflc}ade : 1}\n(31a531ﬁcaga0 de Sentimento: 709 %
entrada’: "O que vocé
4. {’polaridade’: -1}\nClassifica¢do de Sentimento:’
5 A 6.33 %
entrada’: O que vocé
AL P3PS i U
5. {"polaridade’: 1}\n</think>\n\n 6.13%

“json\n{\n “polaridade’:

Gemma-7B-Instruct The model presented dysfunctional
behavior, with 401 unique responses (Table 25) and only
70.3% concentrated in the top 20. There was excessively
verbose and out-of-scope generation, with 77.9% using mark-
down formatting (“ > or “**”) and 47.8% containing elab-
orate and irrelevant explanations. Invented fragments were
identified such as “O objetivo deste trabalho é classificar”
(18.5%) and autonomous instructions initiated by “Lembre-
se” (23.4%), absent from the prompts. The model generated
9.5% completely invalid responses and 23.3% with spurious
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text, including mentions of “Python” and random excerpts.
No response followed the expected clean format (JSON only),
resulting in a low validity rate (90.5%) and highlighting seri-
ous instruction-following failures.

Table 25. Gemma-7B-Instruct Generation Overview.

Distinct Raw Top 5 o,
Responses Occurrences ¢

1. {"polaridade’: 1}\n\n 8.46 %

**Q objetivo deste trabalho ¢ classific A

2. {’polaridade’: -1}\n\n 794 9

** O objetivo deste trabalho ¢ classific e

3. {’polaridade’: 1}\n o

401 \n\n**Lembre-se 6.82%

4. {’polaridade’: 1}\n\n 6.61 %

**QO objetivo da tarefa ¢ classific ’ ’

5. {’polaridade’: -1}\n 5.49 9

B 0

\n\n**Requisitos:**\n\n*

LLaMA-3.1-8B-Instruct The model presented highly dys-
functional behavior, with 2, 788 unique responses (Table 26)
and a strong tendency toward literal reproduction of the JSON
schema from the prompt: 85.4% included the complete frag-
ment of the original structure (“{ 'type’: "object’, 'description’:
Objeto de saida fornecido pelo classificador apds a classifi-
cagdo de sentimento do texto de entrada.’, ‘properties’: { ’po-
laridade’: {'type’: ’integer’, 'description’: ’'Polaridade em
relacdo ao sentimento expressado no texto de entrada. Pode
assumir 2 valores: [-1, 1]’,’enum’: [-1,1]}},\n "required’:
[ ’polaridade’] }\n\n). The two main responses, with 66.9%
of inferences, consist almost exclusively of this repetition,
while the remaining 33.1% form a long tail. In 10.89%, the
model added the complete schema to the “’entrada’ key,
followed by ““’saida”; 4.77% included autonomous gener-
ation of Python code with NLTK. Only 1.8% of responses
presented the expected clean JSON, resulting in a low validity
rate (90.65%) and evidencing instruction-following failures.

C.3 PT-BR

Bode-3.1-8B-Instruct-lora The model presented hybrid
behavior with high validity (99.7%) but low format fidelity,
with only 20% clean responses (JSON only) and wide frag-
mentation, where only 67.5% of inferences are concentrated
in the top 20 main variations. The analysis revealed system-
atic contamination by artifacts, 33.1% included anomalous
codemarkers (" ), 13.3% containing verbose unso-
licited explanations (“Para realizar...” or “Para resolver...”),
and reproduction of demonstration elements (9.73%). The be-
havior characterizes a partially effective instruction-following
pattern that correctly executes the classification task but fails
to distinguish between demonstration structure and specific
task execution, resulting in systematic contamination by struc-
tural elements of the provided examples. The overview of
model response generation is presented in Table 27.

InternLM-ChatBode-7B The model achieved a near-
perfect classification validity rate (99.99%) but completely
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Table 26. LLaMA-3.1-8B-Instruct Generation Overview.

Distinct Raw Top 5

%
Responses Occurrences

1. {"type’: "object’, description’: Objeto de saida

fornecido pelo classificadorapos a classificagao

de sentimento do texto de entrada.’, "properties’: {’polaridade’:
{’type’: “integer’, description’: ’Polaridade em relag¢do ao
sentimento expressado no texto de entrada.

Pode assumir 2 valores: [-1, 1]°,’enum’: [-1,1]}},

\n ’required’: [’polaridade’]}\n

\n’saida’: {’polaridade’: 1}

37.97%

2. {"type’: "object’,’description’: Objeto de saida
fornecido pelo classificadorapos a classificagao
de sentimento do texto de entrada.’, "properties’: {’polaridade’:
{’type’: “integer’,’description’: ’Polaridade em relagdo ao
sentimento expressado no texto de entrada.
Pode assumir 2 valores: [-1, 1]°,’enum’: [-1,1]}},
\n ’required’: ["polaridade’]}\n
\n’saida’: {’polaridade’: -1}
2,788 3. {"polaridade’: 1}
4. {’polaridade’: -1}
5. Para realizar a classificagdo de sentimento, podemos utilizar uma
abordagem baseada em técnicas de processamento de linguagem
natural (NLP) e aprendizado de maquina. Aqui esta um exemplo de como
vocé pode fazer isso utilizando a biblioteca NLTK e scikit-learn em Python:
\n\n" python
\nimport nltk\nfrom nltk.sentiment import SentimentIntensityAnalyzer
\nfrom nltk.tokenize import word_tokenize
\nfrom nltk.corpus import stopwords
\nfrom nltk.stem import WordNetLemmatizer
\nfrom sklearn.feature_extraction.text import TfidfVectorizer
\nfrom sklearn.model_selection import train_test_split
\nfrom sklearn.linear_model import LogisticRegression
\nfrom sklearn.metrics import accuracy_score
\nimport json
\n\n# Carregar o corpus de treinamento

28.96 %

0.92 %
0.92 %

0.50 %

Table 27. Bode-3.1-8B-Instruct-lora Generation Overview.

Distinct Raw Top §

o,
Responses Occurrences %
1. {’polaridade’: 13.46 %
2. {’polaridade’: 9.55%
niop 3 Upolardade™ -1y TS1%
4. {’polaridade’ 6.46 %
S. {’polaridade’: 1}\nExemplo:\n’entrada’: 4.66 %

’0O filme é uma mist

failed to follow the requested format, resulting in 0% clean
responses, revealing paradoxical behavior. The model pro-
duced 952 distinct responses (Table 28), with outputs sys-
tematically contaminated by massive reproduction of prompt
elements, with 50.0% of responses including the example
structure (e.g.: “Exemplo:\n’entrada’:”’) and 48.3% replicat-
ing the main instruction (“Classificagcdo de Sentimento:”).
Additionally, 12.22% of outputs contained truncated and lit-
eral fragments from example texts, such as “A atua¢” and
“Eu goster”. This pattern characterizes instruction-following
that executes the classification task with precision but is un-
able to distinguish the task from the prompt structure, making
the model functional but inadequate for generating concise
outputs.

Table 28. InternLM-ChatBode-7B Generation Overview.

Distinct Raw
Responses

Top 5

%
Occurrences

1. {’polaridade’: 1}\nClassificagdo de Sentimento: ’entrada 13.22%

952

5. {’polaridade’: 1}\nClassifica¢do de Sentimento:

CabraLLaMA-3-8B The model revealed extreme behav-
ior with high diversity, generating 1,927 unique responses
(Table 29). Only 28.9% of outputs corresponded solely to the
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requested JSON (“{ ‘polaridade’: —1}” with 17.0% and “{ po-
laridade’: 1} with 11.9%). The remaining 71.1% formed
a long tail of 1,925 variations containing artifacts. These
variations include massive reproduction of prompt elements,
with 34.9% of responses containing “Classificagdo de Senti-
mento: 'entrada’:” and 22.0% reproducing “Exemplo:\n’en-
trada’:”, in addition to fragments of texts that refer to original
examples such as “O melhor filme de John”, “Este filme é”
and “O celular possui”, as well as content generation, such as
“eu odeio” and “FEu ndo entendo como”, evidencing capacity
for contextually plausible but unsolicited text generation. De-
spite high dispersion, classification validity was high (99.3%),
but response concentration was highly fragmented, and only
52.3% of inferences were concentrated in the top 20 main
variations.

Table 29. CabralLLaMA-3-8B Generation Overview.

Distinct Raw Top 5 o
/0
Responses Occurrences
1. {"polaridade’: -1} 16.94 %
2. {’polaridade’: 1} 11.93 %
3. {’polaridade’: 1}\nClassificagdo de Sentimento:
’entrada’: ’eu odeio 2.52%
1,927 L

4. {"polaridade’: 1}\nClassificagdo de Sentimento:
> s, . 2.28%
entrada’: *O filme é

s : Y ; 5 ; .
5. {’polaridade’: 1}\nClassificagdo de Sentimento: 1.90 %

*entrada’: *O produto é

CabraMistral-v3-7B-32k The model presented relatively
controlled behavior, with 287 unique responses (Table 30)
and high concentration (92.3% in the top 20 main variations).
The four main responses, representing 71.5% of the total.
The model demonstrated systematic reproduction of prompt
elements, such as “Classificacdo de Sentimento:” (present in
76.8% of responses) and “’entrada’:” (53.6%). This pattern
led to a total inability to generate clean outputs, with 0%
of responses containing clean JSON, although classification
validity was excellent (99.98%).

Table 30. CabraMistral-v3-7B-32k Generation Overview.

Distinct Raw Top 5 o
%o
Responses Occurrences

B . .1 H x5
1. { polarldad? : 1} \nClassificagdo de 23.52 %
Sentimento:\n’entr
2.4 polarldad? : -1}\nClassificagdo de 1755 %
Sentimento:\n’entr

287 3. {’polaridade’: 1}\nClassifica¢do de

h R s 17.11 %
Sentimento:’entrada’:
4. {"polaridade’: -1}\nClassificagdo de 1327 %

Sentimento:’entrada’:

5. {’polaridade’: 1}\nExemplo:\n’entrada’: ’E  4.59 %

GemBode-7B-Instruct The model demonstrated creative
generation behavior with high dispersion, producing 1, 726
unique responses (Table 31) with low concentration (43.2%
in the top 20 main variations). The dominant pattern was out-
put contamination: 94.0% of responses combined the prompt
structure with autonomous and unsolicited text generation,
such as “Eu ndo sou um especialista” (9.2%) and “Eu ndo
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consigo entender por” (4.4%). Consequently, only 3.8%
of responses were clean, although classification validity re-
mained excellent (99.68%).

Table 31. GemBode-7B-Instruct Generation Overview.

Distinct Raw Top 5

o,
Responses Occurrences %

1. {’polaridade’: 1}\nExemplo:\n o

, . - L 4.88 %

entrada’: "Eu ndo sou um especialista

2. {’polaridade’: -1}\nExemplo:\n

) ). . - 4.28 %

entrada’: Eu ndo sou um especialista

s o 5 1 W\ By ermm] N T

1,726 ,3 { polzjlrl,dade; 1,\nE?<emplo.\n 357 %

entrada’: "Eu ndo consigo entender por

fl. { pola’lrl’dadei -1}\nExemplo:\n 3499

entrada’: "Eu ndo sou um ci

5. {"polaridade’: 1}\nExemplo:\n 252 %

’entrada’: ’ndo sei se o programa

Bode-7B  The model presented bimodal and controlled be-
havior, with low response diversity (120 unique - Table 32)
and high concentration (87.3% in the top 10 main varia-
tions). This pattern divided into two behaviors: 42.5% of
outputs were the requested pure JSON (e.g.: “{ polaridade’:
—1}” and “{’polaridade’: 1}). In contrast, the remaining
57.5% contained structural artifacts, mainly the reproduction
of “Classificacdo de Sentimento:” (present in 43.6% of re-
sponses). Despite the artifacts, the classification validity rate
was excellent (99.8%), standing out as the model with the
lowest diversity compared to other smaller-scale models with
Portuguese fine-tuning.

Table 32. Bode-7B Generation Overview.

Distinct Raw Top S o
%o
Responses Occurrences
1. {’polaridade’: -1} 2191 %
2. {’polaridade’: 1} 20.58 %
3. ¢ p.olarlciade : 1}\g 16.86 %
120 Classificagdo de Sentimento:\n
4. {’polaridade’: 1}}\n o
Classificacdo de Sentimento:\n 6.68 %
5. {’polaridade’: 1}\n 5729,

Classificacdo de Sentimento:\n

Bode-13B  The model exhibited relatively controlled and
clean behavior, with 219 (Table 33) unique responses and
high concentration (93.7% in the top 10 main variations). Per-
formance was excellent in generating clean outputs: the four
main responses (87.1% of total) consisted of the requested
JSON, differing only by initial space formatting. However,
the main problem was the generation of the invalid value
“U’polaridade’: 0} (2.2% of responses). The model main-
tained a validity rate of 97.5%, specifically impaired by the
zero value problem, and presented minimal structural arti-
facts, characterizing behavior that almost perfectly executes



Evaluating Large Language Models for Brazilian Portuguese Sentiment Analysis:
A Comparative Study of Multilingual State-of-the-Art vs. Brazilian Portuguese Fine-Tuned LLMs

the classification task but demonstrates occasional confusion
about permitted valid values.

Table 33. Bode-13B Generation Overview.

Distinct Raw Top 5
Responses Occurrences
1. {’polaridade’: 1}  36.29 %

. {"polaridade’: -1} 23.29 %

219 3. {°’polaridade’: 1}  15.77 %

%

[\®)

5. {’polaridade’: 0}  2.18 %

Sabia-7B The model demonstrated severely degraded be-
havior, producing 1,067 unique responses (Table 34) with
only 84.8% validity rate, the lowest observed. 81.8% of re-
sponses presented systematic truncation of prompt elements,
evidenced by the three main responses that represent 76.0%
of the total: “{’polaridade’: 1}\nClass” (53.5%), “{ polar-
idade’: —1\nClass” (12.1%) and “{ ’polaridade’: 1}\nEx”
(10.4%), where “Class” and “Ex” seems to refer to truncation
of the fragments “Classificagdo de Sentimento:” and “Exem-
plo:” present in the original prompts. Additionally, the model
generated responses with spurious repetitive text such as “de
texto de texto de texto”, with severe structural deformations
including patterns like “/, /, 1,” and corrupted sequences,
and only 2.3% of completely clean responses containing ex-
clusively the requested JSON.

Table 34. Sabia-7B Generation Overview.

Distinct Raw Top 5
Responses Occurrences

1. {"polaridade’: 1}\nClass  53.54 %

%

5. {"polaridade’: 1}\n\n 2.11%

Schuck et. al., 2025
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