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Abstract This study presents an extensive comparative analysis of Large Language Models (LLMs) for sentiment

analysis in Brazilian Portuguese texts. We evaluated 23 LLMs—comprising 13 state-of-the-art multilingual models
and 10 models specifically fine-tuned for Portuguese—across 12 public annotated datasets from diverse domains,

employing the in-context learning paradigm. Our findings demonstrate that large-scale models such as Claude-3.5-
Sonnet, GPT-4o, DeepSeek-V3, and Sabiá-3 delivered superior results with accuracies exceeding 92%, while smaller

models (7-13B parameters) also showed compelling performance with top performers achieving accuracies above

90%. Notably, linguistic specialization through fine-tuning demonstrated mixed results—significantly reducing

hallucination rates for some models but not consistently yielding performance improvements across all model types.

We also observed that newer model generations frequently outperformed their predecessors, and in the one dataset

where traditional machine learning methods were employed by the original authors for sentiment classification, all

evaluated LLMs substantially surpassed these traditional approaches. Moreover, smaller-scale models exhibited

a tendency toward overgeneration despite explicit instructions. These findings contribute valuable insights to the

discourse on language-specific model optimization and establish empirical benchmarks for both multilingual and

Portuguese-specialized LLMs in sentiment analysis tasks.

Keywords: Large Language Models, Sentiment Analysis, Brazilian Portuguese, In-context Learning, Comparative
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1 Introduction

Large Language Models (LLMs) are advanced artificial in-

telligence systems capable of processing and generating co-

herent text through extensive pre-training on massive textual

corpora [Naveed et al., 2024]. These models, with parameters

ranging from millions to billions, comprehend and process

natural language through semantic and contextual modeling,

as well as the probability estimation of associated with words

within a given context [Yao et al., 2024].

The rapid and recent development of LLMs such as

GPT-4.0 [OpenAI et al., 2024b], Gemini [Gemini Team et al.,
2023], and LLaMA-3 [Grattafiori et al., 2024] has revolution-
ized Natural Language Processing (NLP) [Zhao et al., 2023;

Yang et al., 2024b]. These state-of-the-art (SOTA) models

demonstrate remarkable multilingual capabilities [Touvron

et al., 2023b; Gemini Team et al., 2023; OpenAI et al., 2024b],

offering potential benefits for less common languages or those

with limited corpora, such as Brazilian Portuguese [Souza

et al., 2020].

Despite their versatility, these models exhibit limitations

when applied to underrepresented languages in their pre-

training corpus [Larcher et al., 2023]. In an effort to ad-

dress these shortcomings, numerous researchers [Souza et al.,

2020; Larcher et al., 2023; Pires et al., 2023; Garcia et al.,

2024] have explored techniques to enhance the performance

of LLMs initially trained predominantly on English data for

use in other languages. These efforts aim to specialize LLMs

in Portuguese through fine-tuning on monolingual datasets

[Souza et al., 2020; Pires et al., 2023; Garcia et al., 2024] or

adapting tokenization mechanisms [Larcher et al., 2023].

The results have been promising, as the achieved perfor-

mance is comparable to that of SOTA LLMs when evaluated

on tasks in Brazilian Portuguese, while offering the addi-

tional advantage of smaller model sizes and the integration

of domain-specific knowledge relevant to Brazilian culture

[Pires et al., 2023].

Despite the numerous advantages, efforts toward the de-

velopment of LLMs specialized in Brazilian Portuguese can

still be considered nascent when compared to the extensive

research conducted in other languages, such as Chinese [Zeng

et al., 2023; Cui et al., 2024; Cui and Yao, 2024; Du et al.,

2024; Yang et al., 2024a]. Furthermore, there is a noticeable

lack of studies aimed at evaluating the performance of LLMs

in Brazilian Portuguese across a range of specific tasks.

In an effort to help mitigate the identified gaps, this study

aims to compare the predictive capabilities of various SOTA
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LLMs with models fine-tuned for Portuguese, focusing the

classic NLP task of sentiment classification. Sentiment anal-

ysis, or opinion mining, identifies and quantifies subjective

information in textual data [Zhao et al., 2016]. A fundamen-

tal subtask of sentiment analysis is sentiment classification,

which determines the overall sentiment polarity of a text. This

classification can be binary (e.g., positive and negative) or

multi-class (e.g., positive, negative, and neutral) [Zhang et al.,

2023].

To achieve this objective, we conducted an extensive eval-

uation of 23 LLMs: 13 SOTA generalist models and 10
Portuguese-specialized models. The study also incorporated

12 public datasets in Brazilian Portuguese, annotated for sen-
timent polarity, providing a rich corpus for analysis.

The LLMs were rigorously evaluated on their sentiment

analysis capacity for Brazilian Portuguese texts using the in-

context learning (ICL) paradigm. This empirical comparative

approach aimed to elucidate the potential advantages and lim-

itations of language-specific model fine-tuning in sentiment

analysis tasks.

2 Background

2.1 Brief History of LLMs

It is notorious that the capacity and performance of LLMs

have been evolving rapidly in recent years, with each new

release improving upon the state-of-the-art results obtained in

various comparative tests [Brown et al., 2020; Gemini Team

et al., 2023; OpenAI et al., 2024b; Reid et al., 2024]. Since the

disclosure of the Transformers architecture [Vaswani et al.,

2017], a consensus has emerged in the literature regarding

structural terms for LLMs [Devlin et al., 2018; Radford et al.,

2019; Rae et al., 2022; Touvron et al., 2023b; Gemini Team

et al., 2023], with this architecture becoming a fundamental

paradigm in the field [Zhao et al., 2023].

The evolution of Language Models (LM) encompasses dis-

tinct developmental phases. Initially, LMs were grounded

in statistical models with supervised learning, which criti-

cally depended on domain expertise for feature engineering

and the provision of appropriate inductive bias. These early

models were often constrained by limited datasets, yet found

widespread application in information retrieval and NLP tasks

[Liu et al., 2021; Zhao et al., 2023].

The second phase [Zhao et al., 2023] marked a significant

advancement through the introduction of neural networks

(Multilayer Perceptron and Recurrent Networks). These net-

works revolutionized the field by learning representations,

embeddings, and sequential modeling autonomously, shifting

the learning paradigm from feature engineering to architecture

engineering [Liu et al., 2021].

The third phase introduced Pre-trained Language Mod-

els (PLM), predominantly implementing the Transformers

architecture and trained on extensive data with generalist ob-

jectives, such as next-word prediction or masked word identi-

fication [Qiu et al., 2020]. These models learn universal and

contextualized linguistic representations through pre-training

on massive textual corpora, incorporating broad knowledge

into their embeddings [Liu et al., 2021].

While PLMs demonstrated advanced capabilities in NLP,

they initially lacked the specialized knowledge required

for domain-specific tasks [Qiu et al., 2020; Zhao et al.,

2023]. This limitation led to the emergence of the fine-tuning

paradigm, where PLMs are adapted for specialized tasks

through the introduction and adjustment of parameters using

task-specific objective functions [Liu et al., 2021]. The effec-

tiveness of fine-tuning became particularly evident following

the release of BERT [Devlin et al., 2018] and GPT-2.0 [Rad-
ford et al., 2019], establishing itself as a consensus approach

in machine learning [Qiu et al., 2020; Han et al., 2021].

The fourth generation, characterized as Large Scale Lan-

guage Models, represents a quantum leap in model scale, both

in terms of parameters (billions/trillions) and pre-training data

volume [Zhao et al., 2023]. This unprecedented scaling re-

vealed remarkable emergent capabilities, defined by [Wei

et al., 2022] as abilities that are absent in smaller models but

manifest collectively in larger ones.

A striking example of these emergent capabilities is found

in the work of [Brown et al., 2020], which documented the

emergence of ICL in GPT-3.0 (175 billion parameters), a

capability notably absent in its predecessor GPT-2.0 (1.5
billion parameters) [Radford et al., 2019].

Thus, in the fourth generation, the learning paradigm no

longer requires model adaptation via fine-tuning, making

it possible to reformulate the underlying task through the

structuring and modulation of a textual prompt (prompt en-

gineering) to manipulate the LLM’s behavior, enabling it to

make predictions and return the desired output [Liu et al.,

2021].

3 Related Work

3.1 Benchmark of LLMs on sentiment analysis

tasks

As one of the principal tasks within NLP [Zhang et al., 2023;

Přibáň et al., 2024], sentiment classification has emerged as a

significant focus in LLM research [Simmering and Huoviala,

2023; Krugmann and Hartmann, 2024; Přibáň et al., 2024;

Buscemi and Proverbio, 2024], driven by the innovative ca-

pabilities these models bring to the field.

Initial comparative studies between LLMs and specialized

PLMs revealed promising insights. Zhong et al. [2023] eval-

uated ChatGPT against various BERT-derived [Devlin et al.,

2018] task-specific PLMs using the GLUEbenchmark[Wang

et al., 2019], which includes sentiment classification on the

SST2 dataset [Socher et al., 2013]. Their findings demon-

strated superior performance when combining ChatGPT with

prompt engineering refinement. In a more extensive study,

Wang et al. [2023] assessed ChatGPT (gpt-3.5-turbo-0301) as

a potential universal sentiment analyzer for 7 sentiment anal-
ysis tasks and 17 different datasets, including SST2. While

showing promising results, their research indicated that LLMs

still marginally trail behind refined PLMs in sentiment classi-

fication tasks.

Further advancing this line of inquiry, Krugmann and Hart-

mann [2024] conducted a comprehensive evaluation of SOTA

LLMs (GPT-3.5 and 4.0) against high performance transfer
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learning-based models such as BERT, RoBERTa [Liu et al.,

2019] and SiEBERT [Hartmann et al., 2023]. Their findings

revealed important correlations between classification per-

formance and factors such as the number of classes and data

characteristics (source, text length, among others), ultimately

positioning LLMs as powerful tools for sentiment analysis.

While these initial studies [Krugmann and Hartmann, 2024;

Zhong et al., 2023; Wang et al., 2023] demonstrated promis-

ing results for non-specialized LLMs compared to specialized

PLMs, they primarily focused on English-language texts. Ad-

dressing this limitation, recent research has expanded into

multilingual contexts. Přibáň et al. [2024] conducted a com-

parative analysis of various classification methods, including

CNN, LSTM, multilingual Transformers, and LLMs (Chat-

GPT and LLaMA-2), evaluating their performance on En-
glish, Czech, and French texts using datasets such as SST2
[Socher et al., 2013] and IMDB [Maas et al., 2011]. Their

results demonstrated LLMs’ capability to effectively process

multilingual data, often matching or surpassing specialized

multilingual PLMs.

Similarly, Buscemi and Proverbio [2024] evaluated SOTA

LLMs in a complex multilingual scenario, analyzing 20 texts
with challenging sentiment nuances across 10 languages, in-
cluding Brazilian Portuguese. Their comparison of ChatGPT

(versions 3.5 and 4.0), Gemini-1.0-Pro [Gemini Team et al.,

2023], and LLaMA-2-7B [Touvron et al., 2023b] revealed

that while ChatGPT (4.0) and Gemini-1.0-Pro excelled in
ambiguous scenarios, they struggled with more sophisticated

patterns like irony.

Research specifically focusing on Brazilian Portuguese

remains limited but significant. Several studies have con-

tributed to the development of specialized models and the

evaluation of their performance against SOTA models using

Portuguese NLP benchmarks [Souza et al., 2020; Pires et al.,

2023; Larcher et al., 2023; Garcia et al., 2024; Sales Almeida

et al., 2024]. These works, introducing models such as Sabiá

[Pires et al., 2023], Cabrita [Larcher et al., 2023], and Bode

[Garcia et al., 2024], emphasize the importance of language-

specific solutions in increasing the performance and compre-

hension of Brazilian Portuguese compared to predominantly

English-trained SOTA models.

Based on these developments, Souza and Filho [2022] con-

ducted a domain-specific comparative analysis of sentiment

classification for Portuguese user reviews, utilizing embed-

dings from various BERT-based models, including BERTim-

bau [Souza et al., 2020], a Brazilian Portuguese-specialized

BERT variant. Their results established BERTimbau as the

superior BERT variant for Portuguese text classification tasks.

More recently, de Araujo et al. [2024] evaluated GPT-3.5-
Turbo’s capabilities in Portuguese opinion mining tasks, in-

cluding sentiment classification, concluding that the model

demonstrates robust predictive performance without signifi-

cant limitations.

4 Methodology

This study constitutes an empirical comparative research

based on the analysis of 23 language models, comprising

13 SOTA models with multilingual capabilities and 10 with

fine-tuning for the Portuguese language. The characterization

of these models is presented in Section 4.1.

From a wide mapping of public Portuguese datasets for

sentiment classification, 12 datasets were selected, described
in Section 4.2. The in-context learning methodology and

prompt engineering strategy are presented in Section 4.3 and

Section 4.4, respectively. The criteria and processes for com-

parative evaluation of the models’ predictive performance are

detailed in Section 4.5.

4.1 Selected Models

The Table 1 summarizes the metadata of the models selected

for this comparative study. These models are categorized

along two main dimensions. The first concerns the parameter

count: large-scale models contain over 70 billion parameters,
while smaller-scale models range between 7 and 13 billion pa-
rameters. The second dimension relates to linguistic special-

ization, distinguishing between non-specialized (also known

as generalist or multilingual) models and those fine-tuned in

Brazilian Portuguese.

4.1.1 Generalist LLMs

Claude In early 2023, Anthropic released its closed-source
LLM family, Claude, which has evolved to its current ver-

sions: Claude-3 and 3.5 [Anthropic, 2024b, 2023, 2024c].

The models are accessible through APIs and a chat interface1

[Anthropic, 2023], with most technical specifications remain-

ing proprietary.

These models were trained on a diverse dataset combin-

ing public internet information, third-party private data, and

internally generated data, using word prediction techniques

and human feedback reinforcement [Anthropic, 2024a]. The

training approach focused on ensuring alignment with the

company’s guidelines while maintaining versatility across

different domains.

Claude-3.5-Sonnet, the most advanced version, has demon-
strated superior performance across reasoning, reading com-

prehension, mathematics, science, and coding benchmarks

compared to its predecessors [Anthropic, 2024a]. Notably, in

multilingual capabilities, the model achieved significant im-

provements in the Multilingual MMLU benchmark, making

it particularly relevant for comparative studies in linguistic

diversity [Anthropic, 2024a].

GPT TheGenerative Pre-trained Transformer (GPT) family

comprises decoder-based LLMs developed by OpenAI [Mi-

naee et al., 2024]. While the initial models GPT-1 [Radford
et al., 2018] and GPT-2 [Radford et al., 2019] were open-

source, subsequent versions GPT-3 [Brown et al., 2020] and
GPT-4 [OpenAI et al., 2024b] are closed-source, accessible
through APIs and the ChatGPT web application2 [Minaee

et al., 2024].

GPT-4, the latest and most capable model in the family,
is a multimodal LLM based on the Transformer architecture.

It was pre-trained on next-token prediction tasks and refined

using reinforcement learning with human feedback [OpenAI

1https://claude.ai/
2https://chat.openai.com/

https://claude.ai/
https://chat.openai.com/
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Table 1. Metadata of selected Language Models (LLMs) for the comparative benchmark study. The table organizes models by family,

providing information about each model’s characteristics, where PT-BR indicates Brazilian Portuguese fine-tuning. Both proprietary

large-scale LLMs and open-source alternatives with varying parameters and specializations are included for comparison.

Family Model Version
Release

Year

Base

Model

Linguistic

Fine-Tuning

# of

Parameters

Open

Source
Reference

Claude 3 Claude-3.5 Sonnet claude-3-5-sonnet-20240620 2024 - - - 5 [Anthropic, 2024b]

GPT 4 GPT-4o gpt-4o-2024-05-13 2024 - - - 5 [OpenAI et al., 2024a]

Gemini Gemini 1.5 Pro gemini-1.5-pro-001 2024 - - - 5 [Reid et al., 2024]

LLaMA 3
LLaMA 3-8B Instruct llama-3-8b-it 2024 - - 8 B 3

[Meta, 2024]
LLaMA 3.1-8B Instruct llama-3.1-8b-it 2024 - - 8 B 3

Gemma Gemma-7B Instruct gemma-7b-it 2024 - - 7 B 3 [Gemma Team et al., 2024a]

Gemma 2 Gemma 2-9B Instruct gemma-2-9b-it 2024 - - 9 B 3 [Gemma Team et al., 2024b]

Qwen 2 Qwen 2-7B Instruct qwen-2-7b-it 2024 - - 7 B 3 [Yang et al., 2024a]

InternLM 2 InternLM 2-7B Chat internlm2-chat-7b 2024 - - 7B 3 [Cai et al., 2024]

DeepSeek

DeepSeek-V3 deepseek-v3 2025 DeepSeek V3 Base - 671B 3 [DeepSeek-AI et al., 2025b]

DeepSeek-R1 † deepseek-r1 2025 DeepSeek V3 Base - 671B 3

[DeepSeek-AI et al., 2025a]DeepSeek-R1-Distill-Qwen-7B deepseek-r1-distill-qwen-7B 2025 Qwen2.5 Math 7B - 7B 3

DeepSeek-R1-Distill-Llama-8B deepseek-r1-distill-llama-8B 2025 Llama 3.1 8B - 8B 3

Sabiá

Sabiá-7B sabia-7b 2023 LLaMA PT-BR 7 B 3 [Pires et al., 2023]

Sabiá-2 Medium sabia-2-medium 2024 - PT-BR - 5 [Sales Almeida et al., 2024]

Sabiá-3 sabia-3 2024 - PT-BR - 5 [Abonizio et al., 2024]

Bode

Bode-7B bode-7b-alpaca-PT-BR 2023
LLaMA 2

PT-BR 7 B 3

[Garcia et al., 2024]
Bode-13B bode-13b-alpaca-PT-BR 2023 PT-BR 13 B 3

Bode-3.1-8B-Instruct-lora bode-3.1-8b-instruct-lora 2024 LLaMA 3 PT-BR 8 B 3

InternLM-ChatBode-7B internlm-chatbode-7b 2024 InternLM 2 PT-BR 7 B 3

GemBode-7B-Instruct gembode-7b-it 2024 Gemma PT-BR 7 B 3 [Garcia et al., 2025]

Cabra
CabraLLaMA 3-8B cabrallama-3-8b 2024 LLaMA 3 PT-BR 8 B 3 -

CabraMistral-v3-7b-32k cabramistral-v3-7b-32k 2024 Mistral PT-BR 7 B 3 -

† To ensure benchmark parity, the DeepSeek-R1 model, being the only one among those evaluated with enhanced reasoning capabilities and with large

parameters size, was selected as a strong reference classifier to contrast with the weak reference classifier (which always predicts the majority class from

the training set), see Subsection 4.5.

et al., 2024b]. While its exact parameter count remains undis-

closed, estimates suggest approximately 1.7 trillion parame-
ters [Ding et al., 2023; Yao et al., 2024], significantly larger

than its predecessor GPT-3’s 175 billion parameters [Brown
et al., 2020].

The model has demonstrated human-comparable perfor-

mance across various academic and professional tests, sur-

passing state-of-the-art results in traditional LLM bench-

marks [OpenAI et al., 2024b]. Its multilingual capabili-

ties, evaluated through translated versions of the MMLU

test [Hendrycks et al., 2020], showed superior performance

compared to competitors like Chinchilla [Hoffmann et al.,

2022] and PaLM [Chowdhery et al., 2022]. These capabilities

and multilingual proficiency make GPT-4 a crucial candidate
for this comparative study.

Gemini The Gemini family, developed by Google, consists

of Transformer decoder-based LLMs trained on multimodal

data, including text, images, audio, and video [Gemini Team

et al., 2023]. While the first generation (Gemini-1.0) was
available in three variants—Ultra, Pro, and Nano—only the

Nano versions’ parameters were officially disclosed, with

Nano-1 containing 1.8 billion and Nano-2 containing 3.25
billion parameters [Gemini Team et al., 2023].

Gemini-1.5-Pro, the latest iteration, introduced significant
innovations, including a sparse mixture of expert Transformer

models and an expanded context window of millions of to-

kens—substantially surpassing competitors like Claude-2.1
(200K tokens) and GPT-4 (128K tokens) [Reid et al., 2024].

This version demonstrated a 22.3% improvement in multilin-

gual capabilities over its 1.0 counterpart and performed 6.7%
better than the 1.0 Ultra model [Reid et al., 2024].
The selection of Gemini-1.5-Pro for this study is based on

its advanced technical features, effective handling of complex

contexts, and robust multilingual capabilities. Its performance

in comparative tests, particularly in multilingual tasks, has

shown significant improvements over its predecessor, achiev-

ing state-of-the-art results in benchmarks such as MMLU,

where it demonstrated human expert-level performance.

Gemma Google also released Gemma, an open-source

LLM family inspired by Gemini [Gemma Team et al., 2024a].

The first generation included models with 2 and 7 billion pa-
rameters, along with their instruction-tuned variants. These

Transformer decoder-based models were pre-trained primar-

ily on English-language tokens from web documents, code,

and mathematical content [Gemma Team et al., 2024a]. In

benchmark tests, the 7 billion parameter version outperformed
comparablemodels like LLaMA-2-7B [Touvron et al., 2023b]
and Mistral-7B [Jiang et al., 2023], as well as the slightly

larger LLaMA-2-13B [Touvron et al., 2023b].

The second generation, Gemma-2, features models with
2, 9, and 27 billion parameters, each with instruction-tuned
variants [Gemma Team et al., 2024b]. These models incor-

porate architectural improvements, including deeper neural

networks, Grouped-Query Attention[Ainslie et al., 2023], and

alternating global-local attention layers [Beltagy et al., 2020].

The Gemma-2-9B model demonstrated approximately 12%
better average performance compared to its first-generation

counterpart [Gemma Team et al., 2024b].
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While neither generation was specifically designed for

multilingual tasks, both inherit Gemini’s vocabulary archi-

tecture, featuring an extensive embedding parameter space

capable of handling multiple languages [Gemma Team et al.,

2024b]. Given their promising performance and the oppor-

tunity to evaluate them in non-English scenarios, this study

includes representatives from both generations: Gemma-7B
and Gemma-2-9B.

LLaMA LLaMA [Touvron et al., 2023a], Meta’s open-

source multilingual LLM family, has evolved to its third

generation with versions 3 and 3.1, featuring Transformer
decoder-based models ranging from 8 to 405 billion param-
eters [Grattafiori et al., 2024]. Unlike Claude, GPT-4, and
Gemini, LLaMA’s open-source nature and non-commercial

licensing [Minaee et al., 2024] has facilitated its widespread

adoption in research communities as a foundation for special-

ized LLMs.

While LLaMA-3 includes approximately 5% non-English

training data across 30 languages [Meta, 2024], version 3.1
significantly enhanced its multilingual capabilities to sup-

port eight languages, including Portuguese [Grattafiori et al.,

2024]. This improvement was achieved through a specialized

multilingual model that extracted high-quality annotations

from non-English data sources, including human annotations,

NLP tasks, and translated quantitative reasoning data for su-

pervised fine-tuning [Grattafiori et al., 2024]. The models

were pre-trained on over 15 trillion high-quality tokens, pri-
marily from public online sources [Meta, 2024].

Both LLaMA-3 and 3.1 8B models have achieved state-of-

the-art results compared to similarly-sized LLMs [Grattafiori

et al., 2024]. Notably, the pre-trained LLaMA-3.1-8B out-

performed competitors in five out of six evaluated categories,

while its fine-tuned version excelled in multilingual tests,

surpassing models like Mistral-7B [Jiang et al., 2023] and

Gemma-2-9B [Gemma Team et al., 2024b]. Based on these

achievements, their open-source nature, and the opportunity

to compare similar-sized models with different multilingual

capabilities, both LLaMA-3-8B Instruct and LLaMA-3.1-8B
Instruct were selected for this comparative study.

Qwen The Qwen model family, developed by Alibaba, was

initially released in 2023 with various Transformer-based

versions, including open-source pre-trained models ranging

from 1.8 to 14 billion parameters, along with specialized vari-
ants for instruction-following, coding, and mathematics [Bai

et al., 2023]. The 1.0 generation was pre-trained on trillions
of tokens from diverse sources, including web documents,

books, encyclopedias, and programming code, with content

primarily in English and Chinese [Bai et al., 2023].

In 2024, Qwen-2 was released with pre-trained and

instruction-tunedmodels ranging from 0.5 to 72 billion param-
eters [Yang et al., 2024a]. A key innovation of this generation

was the expansion of training data to include 27 languages,
including European Portuguese, significantly enhancing its

multilingual capabilities.

The Qwen-2-7B Instruct model demonstrated improved

performance across most benchmarks compared to both

Qwen-1.5 and other state-of-the-art open-source LLMs, in-

cluding LLaMA-3-70B and LLaMA-3-8B [Yang et al.,

2024a]. Given its significant performance in comparative

tests and multilingual capabilities, the Qwen-2-7B Instruct

version was selected for this study’s evaluation.

InternLM The Intern series of foundation models was de-

veloped through collaboration between SenseTime corpo-

ration, the Shanghai Artificial Intelligence Laboratory, the

Chinese University of Hong Kong, Fudan University, and

Shanghai Jiaotong University [InternLM Team, 2023].

Following the initial InternLM release in 2023 [InternLM
Team, 2023], the second generation InternLM-2 was made
available in sizes ranging from 1.8 to 20 billion parameters
[Cai et al., 2024]. These models use a decoder-only trans-

former architecture and were pre-trained on over 2 trillion

tokens predominantly from English and Chinese sources, fol-

lowed by Supervised Fine-Tuning and Conditional Online

Reinforcement Learning from Human Feedback, having the

ability to handle large contexts (up to 200k tokens) [Cai et al.,
2024].

InternLM-2 models have demonstrated promising results
across various benchmarks when compared with other open-

source LLMs of up to 7 billion parameters [Cai et al., 2024],
such as LLaMA-2-7B [Touvron et al., 2023b] and Qwen-7B
[Bai et al., 2023]. They performed particularly well in the

FLORES 101 comparative examination [Goyal et al., 2022],
which tests translation capabilities across 101 languages in-
cluding Brazilian Portuguese, establishing InternLM-2 as

competitive for applications requiring robust language com-

prehension [Cai et al., 2024].

The inclusion of InternLM-2 LLMs, represented by the

InternLM-2-7B Chat version in the set of evaluated mod-

els, was based on their open-source nature and intermediate

size (7 billion parameters), combined with this proven abil-
ity to understand and generate texts in multiple languages.

InternLM-2-Chat fills an important gap, representing the cat-
egory of smaller-scale multilingual open-source models, thus

offering a valuable counterpoint between large proprietary

models and models fine-tuned in Brazilian Portuguese.

DeepSeek The DeepSeek LLM project represents an ini-

tiative by the Chinese company DeepSeek aimed at the dis-

semination and development of open-source language models

[DeepSeek-AI et al., 2024a]. The first generation of these

models, released in early 2024, comprises versions of 7 and
67 billion parameters, optimized or not for conversational in-
teractions, pre-trained on approximately 2 trillion tokens, pre-
dominantly in English and Chinese languages, showing strong

inspiration from the LLaMA model architecture [DeepSeek-

AI et al., 2024a].

DeepSeek-V3, the most recent version of the family, pre-
served characteristics introduced in the second generation

[DeepSeek-AI et al., 2024b], such as the Mixture-of-Experts

architecture (DeepSeekMoE) and the Multi-head Latent At-

tention mechanism. This new generation presents signifi-

cant scalability regarding the total number of parameters,

reaching 671B with 37B active per token, and also in terms

of pre-training token volume, totaling 14.8 trillion with en-
hanced multilingual coverage compared to previous genera-
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tions, which primarily focused on English and Chinese lan-

guage data [DeepSeek-AI et al., 2024b, 2025b].

Although it achieved superior performance among the eval-

uated open-source models and comparable performance to

proprietary LLMs [DeepSeek-AI et al., 2025b], DeepSeek-

V3 gained notoriety in academic and professional circles

mainly due to its derivative model, DeepSeek-R1 [DeepSeek-
AI et al., 2025a]. This represents the first generation of mod-

els with reasoning capabilities developed by DeepSeek, being

built from DeepSeek-V3 and achieving performance compa-
rable to the state-of-the-art in reasoning models, OpenAI-o1
(OpenAI-o1-1217 3). Initially, the versions DeepSeek-R1-
Zero, DeepSeek-R1, and dense models between 1.5 and 70B
parameters were made available, distilled from DeepSeek-

R1 and based on the LLMs LLaMA-3.1-8B and Qwen-2.5-
Math-7B [DeepSeek-AI et al., 2025a].

For the conduct of this study, 4 models from the DeepSeek

family were selected: the DeepSeek-V3-671B model, repre-

senting large-scale multilingual models (>70B); the smaller-
scale distilled versions DeepSeek-R1-Distill-LLaMA 3.1-8B
and Qwen-7B, as representatives of smaller-dimension mul-
tilingual models (<13B); and DeepSeek-R1-671B, used as a
strong reference classifier.

4.1.2 Brazilian Portugues Fine-tunned LLMs

Bode The Bode model family [Garcia et al., 2024] com-

prises various subsets of Brazilian Portuguese fine-tuned mod-

els derived from LLMs such as LLaMA-2 [Touvron et al.,

2023b], Gemma [Gemma Team et al., 2024a], and InternLM

[Cai et al., 2024]. These models, available on Hugging-

Face,4 aim to enhance the capabilities of existing LLMs in

Portuguese language processing.

The family is organized into distinct subsets based on their

foundation models: the Bode subset derived from LLaMA

models, GemBode [Garcia et al., 2025] from Google’s

Gemma, PhiBode [Garcia et al., 2025] from Microsoft’s

Phi [Gunasekar et al., 2023], and InternLM-ChatBode from

InternLM-2. The fine-tuning process utilized translated ver-
sions of Alpaca and UltraAlpaca datasets, employing efficient

methods such as Low-Rank Adaptation (LoRA) [Hu et al.,

2021] and QLoRA [Dettmers et al., 2023] to incorporate

Brazilian Portuguese linguistic and cultural nuances.

In binary sentiment analysis tasks, Bode-13B demon-

strated superior performance, achieving 10% higher accuracy

than LLaMA-2-7B5 and 64% better than LLaMA-2-13B6.

Based on these results and evaluations from the Open Por-

tuguese LLM Leaderboard [Garcia, 2024], four models were

selected for this comparative study: Bode-7B, Bode-13B,
GemBode-7B-it, and InternLM-ChatBode-7B.

Cabra The Cabra family consists of open-source LLMs

fine-tuned on proprietary Brazilian Portuguese datasets called

“CabraSets”, developed by BotBot [BotBot AI, 2024a]. These

models aim to enhance linguistic understanding of Brazil-

ian language and culture [BotBot AI, 2024b]. Available

3https://platform.openai.com/docs/models#o1
4https://huggingface.co/recogna-nlp
5https://huggingface.co/meta-llama/Llama-2-7b
6https://huggingface.co/meta-llama/Llama-2-13b

on HuggingFace7, the family includes CabraLLaMA3 mod-
els [BotBot AI, 2024c] with 8 and 70 billion parameters,

CabraMistral-v3-7B-32k derived from Mistral-7B [Mistral

AI Team, 2023], and Cabra-72B based on Qwen-1.5-72B
[Qwen Team, 2024].

All models were fine-tuned using the “Cabra” datasets,

with CabraMistral-v3-7B-32k utilizing “Cabra12k” and the
others employing “Cabra30k”. In the Open Portuguese

LLM Leaderboard [Garcia, 2024], particularly in senti-

ment analysis tasks using TweetSentBR [Brum and das

Graças Volpe Nunes, 2018], the models achieved notable

scores: CabraMistral-v3-7B-32k (65.71), CabraLLaMA3-8B
(68.08), CabraLLaMA3-70B (73.85), and Cabra-72B
(71.64).
For this study, CabraMistral-v3-7B-32k and

CabraLLaMA3-8B were selected based on their favor-

able performance-to-size ratio, with CabraLLaMA3-8B
showing competitive performance compared to larger

variants. This selection also aligns with the parameter scale

of other models considered in this study.

Sabiá Sabiá LLMs, developed byMaritaca AI, include both

open-source models like Sabiá-7B [Pires et al., 2023] and

closed-source versions such as Sabiá-65B, Sabiá-2 (Small

and Medium variants), and the latest Sabiá-3 [Pires et al.,

2023; Sales Almeida et al., 2024; Abonizio et al., 2024].

The first-generation models, Sabiá-7B and Sabiá-65B, were
derived from LLaMA-7B and 65B respectively, fine-tuned on

a quality-filtered Portuguese subset of the ClueWeb dataset

[Overwijk et al., 2022a,b].

The models’ performance was evaluated across 14 Por-

tuguese datasets, collectively known as Portuguese Evalua-

tion Tasks (Poeta) [Pires et al., 2023]. In sentiment analysis

tasks, both models showed substantial improvements over

their base LLaMA versions for native Portuguese content,

though Sabiá-65B performed slightly below LLaMA-65B on

translated datasets [Pires et al., 2023].

Sabiá-2-Medium demonstrated the effectiveness of

language-specific specialization by matching or surpassing

GPT-4’s performance [Sales Almeida et al., 2024]. In

professional certification, university admission, and high

school exams, it was only outperformed by GPT-4-Turbo8
and Claude-3-Opus9, while being 10 to 22 times more

cost-effective [Sales Almeida et al., 2024]. Given these

capabilities, three models were selected for this study: the

open-source Sabiá-7B, Sabiá-2-Medium, and the latest

Sabiá-3.

4.2 Datasets

This study utilized 12 public datasets containing annotated
Brazilian Portuguese texts for sentiment classification. The

characteristics of these selected datasets are summarized in

Table 2.

All datasets were standardized for binary sentiment clas-

sification, retaining only instances labeled as Positive and

7https://huggingface.co/botbot-ai
8version gpt-4-0125-preview
9version claude-3-opus-20240229

https://platform.openai.com/docs/models#o1
https://huggingface.co/recogna-nlp
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/botbot-ai
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Table 2. Mapped datasets. The selected datasets for comparative tests contain texts from different domains in Brazilian Portuguese, are

labeled for sentiment polarity, and are published and available online.

Dataset
Translated/

Native
Content

Test

Size

Training set

Label Distribution
Reference

IMDB_PT Translated Movie Reviews 5.000 3 50% 5 50% [Maas et al., 2011; Pires et al., 2023]

SST2_PT Translated Movie Reviews 872 3 56% 5 44% [Socher et al., 2013; Pires et al., 2023]

TweetSentBr Native Social Media Posts 1.495 3 50% 5 50% [Brum and das Graças Volpe Nunes, 2018]

ReLI Native Book Reviews 627 3 83% 5 17% [Freitas et al., 2014]

Computer-BR Native Social Media Posts 128 3 30% 5 70% [Moraes et al., 2016]

MTMSLA Native Social Media Posts 102 3 58% 5 42% [Araujo et al., 2016]

CSP-Eletrônicos Native Product Reviews 38 3 70% 5 30% [Belisário et al., 2019]

CSP-Livros Native Book Reviews 35 3 50% 5 50% [Belisário et al., 2019]

4P Corpus Native Product Reviews 278 3 82% 5 18% [Silva and Pardo, 2019]

RePro Native Product Reviews 1.516 3 54% 5 46% [dos Santos Silva et al., 2024; Real et al., 2019]

OPCovidBR Native Social Media Posts 123 3 50% 5 50% [Vargas et al., 2020]

TA-Restaurantes Native Restaurant Reviews 113 3 90% 5 10% [Oliveira and de Melo, 2020]

Negative, with other labels such as Neutral being removed.
The labels were encoded as integers: 1 for Positive and −1
for Negative. Unless originally partitioned by their authors,
the datasets were split into training (80%) and test (20%)

subsets while preserving the balance of the original labels.

IMDB_PT Is the Portuguese translation of the IMDB

dataset [Maas et al., 2011], containing movie reviews labeled

as Positive or Negative. This study utilized the version
provided by Maritaca AI, which includes predefined training

and test splits and is part of the Poeta benchmark [Pires et al.,

2023].

SST2_PT Another Poeta benchmark dataset [Pires et al.,

2023], is the machine-translated Portuguese version of

SST2 [Socher et al., 2013]. It comprises approximately

67, 000 training and 872 validation instances, each labeled as
Positive or Negative.

TweetSentBr Contains Brazilian Portuguese tweets anno-

tated based on user reactions to the posts’ main topics [Brum

and das Graças Volpe Nunes, 2018]. Part of the Poeta evalu-

ation [Pires et al., 2023], this study used a subset comprising

75 training and 2, 000 test instances.

ReLI The ReLI corpus [Freitas et al., 2014] consists of

1, 600 manually annotated book reviews in Portuguese, cov-
ering 14 different books with 12, 470 sentences. The cor-

pus contains 2, 883 Positive, 596 Negative, and 212 dual-
labeled sentences.

Computer-BR Contains 2, 317 manually annotated Por-

tuguese tweets about computers [Moraes et al., 2016]. Fol-

lowing the authors’ approach, tweets originally labeled as

Irony were converted to Negative.

MTMSLA A subset of [Araujo et al., 2016], contains 774
Portuguese tweets with 297 Positive, 213 Negative, and
264 Neutral labels.

CSP-Eletrônicos Comprises 234 manually annotated elec-
tronic product reviews, containing 131 Positive, 59
Negative, and 43 Neutral reviews [Belisário et al., 2019].

CSP-Livros Contains 350 book reviews extracted from the

ReLI corpus [Freitas et al., 2014], social media, and an online

shopping platform, with 88 Positive, 87 Negative, and
175 Neutral labels [Belisário et al., 2019].

4P Corpus The 4P Corpus [Silva and Pardo, 2019] contains

642 Portuguese sentences from 542Buscapé reviews covering
four products (two digital cameras and two mobile phones),

manually classified as Positive or Negative.

RePro Derived from B2W-Reviews01 [Real et al., 2019],

RePro [dos Santos Silva et al., 2024] contains 10, 000 man-
ually annotated reviews of e-Commerce products. For

this study, only instances with single polarity labels

(['POSITIVE'] or ['NEGATIVE']) were retained.

OPCovidBR Comprises 2, 000 Portuguese tweets about

COVID-19 collected during the pandemic, annotated at

both opinion and document polarity levels as Positive or

Negative [Vargas et al., 2020].

TA-Restaurantes Contains Brazilian Portuguese reviews

of restaurants from TripAdvisor10 [Oliveira and de Melo,

2020] . The dataset includes 561 subjective sentences labeled
as Positive or Negative, extracted from an original set of

1, 049 sentences.

4.3 In-context Learning

Large Language Models applied to Natural Language Pro-

cessing stand out mainly through two paradigms: fine-tuning

and In-Context Learning (ICL) [Han et al., 2021; Dong et al.,

2023]. Fine-tuning consists of using pre-trained weights from

10https://www.tripadvisor.com.br

https://huggingface.co/datasets/maritaca-ai/imdb_pt
https://huggingface.co/datasets/maritaca-ai/sst2_pt
https://huggingface.co/datasets/eduagarcia/tweetsentbr_fewshot
https://www.linguateca.pt/Repositorio/ReLi/
https://github.com/Luizgferreira/subjectivity-classifier/blob/master/src/data/raw
https://homepages.dcc.ufmg.br/%7efabricio/sentiment-languages-dataset/index.htm
https://github.com/Luizgferreira/subjectivity-classifier/blob/master/src/data/raw/sentencas.xlsx
https://github.com/Lubelisa/Natural-Linguage-Processing/tree/master/Corpus%20of%20Book%20Reviews
https://github.com/raphsilva/corpus-4p
https://github.com/lucasnil/repro
https://github.com/franciellevargas/OPCovidBR/tree/master/data/opcovid-br
https://data.mendeley.com/datasets/hsn6g3dbsk/2
https://www.tripadvisor.com.br
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PLM/LLMs as a foundation for specialization in a specific

task, utilizing a reduced dataset [Qiu et al., 2020].

In this approach, the model parameters are refined for a

specific objective, preserving the linguistic knowledge in-

corporated during pre-training [Han et al., 2021]. Studies

demonstrate that this methodology achieves SOTA results

in various NLP tasks when compared to the direct use of

pre-trained models [Brown et al., 2020; Qiu et al., 2020; Han

et al., 2021; Zhao et al., 2023]. However, its implementation

faces challenges such as the need for task-specific datasets

[Brown et al., 2020], significant computational costs, and

commercial restrictions associated with restrictive licenses

of advanced models like GPT 4.0 and Gemini [Brown et al.,
2020; Touvron et al., 2023b].

In contrast, the ICL paradigm emerges as a promising alter-

native, leveraging the emergent capabilities [Wei et al., 2022]

of modern LLMs, which derive from their scale in terms

of parameters and training corpus extension. According to

Dong et al. [2023], ICL can be understood as learning by

analogies through contextual examples, distinguishing itself

from traditional learning by not requiring parameter updates

via gradient backpropagation. In this approach, predictions

are made directly by the pre-trained model, as illustrated in

Figure 1.

Assets

Text Label

Que dia
Maravilhoso! Positivo

Que dia
horrível! Negativo

... ...

Dataset

Comentário: [Text]
Sentimento: [Label]

Template

Prompt

Faça a classificação do sentimento 
da frase abaixo considerando os rótulos:

"Positivo" e "Negativo".

Comentário: Que dia Maravilhoso!
Sentimento: Positivo

Comentário: Hoje o dia está lindo.
Sentimento:

Large Language Model
(LLM)

Positivo

Comentário: Que dia horrível!
Sentimento: Negativo

...

Task
Description

Demonstrations

Query

Input

Output

Prediction

Figure 1. In-Context Learning Strategy. The process illustrates the transfor-

mation of tabular data into a structured template for LLM processing. The

prompt is constructed by incorporating selected examples and task-specific

instructions in natural language. The LLM processes this contextualized

input and generates as output the label corresponding to the query. Adapted

from [Dong et al., 2023]

The ICL technique gained prominence following the publi-

cation by Brown et al. [2020], where the authors demonstrated

a direct correlation between the number of language model pa-

rameters and their in-context learning capability. Using GPT

3.0, with 175 billion parameters, the research showed that

model performance is enhanced by adding natural language

instructions and target task demonstrations.

Dong et al. [2023] highlight the main advantages of ICL: an

interpretable interface for communication with LLM through

natural language, ease of incorporating human knowledge

via adjustments in prompt and examples, decision-making

process analogous to human reasoning, and computational ef-

ficiency as it doesn’t require model adaptation. However, the

approach presents limitations, including inferior performance

compared to fine-tuning [Brown et al., 2020; Mosbach et al.,

2023], restrictions on the number of examples due to LLMs’

maximum input size, opaque operational mechanisms, and

performance instability influenced by task and demonstration

structuring [Lu et al., 2022; Dong et al., 2023; Mosbach et al.,

2023].

Considering ICL’s adaptability [Krugmann and Hartmann,

2024], this method was selected to conduct comparative tests

between LLMs. Based on the findings of Simmering and

Huoviala [2023], which identified superior performance in

sentiment classification using 6 demonstrations, the same

number of examples was adopted. Detailed specifications

regarding prompt structuring and demonstration selection will

be presented subsequently.

4.4 Prompt Engineering

Prompt Engineering is a discipline focused on guiding LLM

responses through systematic design and optimization of input

instructions [Chen et al., 2023]. It can be conceptualized

as natural language programming, where human knowledge

is adapted to address the specific requirements of language

model interactions [Reynolds and McDonell, 2021].

The field gained prominence, as noted by Zhou et al. [2022],

due to the frequent misalignment between natural language

prompts and expected outputs, necessitating extensive ex-

perimentation to achieve desired behaviors given the limited

understanding of instruction-model compatibility. This has

led to research efforts aimed at understanding prompt dynam-

ics, cataloging available knowledge [Dong et al., 2023; Giray,

2023; White et al., 2023], and developing efficient prompt

generation methodologies, both manual [Reynolds and Mc-

Donell, 2021] and automated [Reynolds and McDonell, 2021;

Zhou et al., 2022; Wang et al., 2022]. These studies have

also explored optimal demonstration selection for ICL [Liu

et al., 2022; Rubin et al., 2022; Ye et al., 2023] and their

sequencing [Lu et al., 2022].

For this study, a manual prompt was developed, as shown

in Figure 2, incorporating guidelines to enhance model re-

sponses. These guidelines include clear and objective in-

struction specification, structured output format definition,

and strategic use of demonstrations [Reynolds and McDonell,

2021; Giray, 2023; Simmering and Huoviala, 2023].

The demonstration selection process involved randomly

sampling 3 examples from each class (Positive and

Negative) from the respective training subsets across all

12 datasets utilized in this study. The 6 demonstrations were
organized in an interleaved fashion within the prompt, main-

taining consistent structure up to the Query section (Figure 2)

across all inferences performed on the corresponding test

set. This procedure ensured that the same 6 demonstrations
were systematically employed for all predictions within each

dataset, providing methodological consistency and enabling

direct comparability between the evaluated models while min-

imizing potential confounding variables related to example

selection.

Despite acknowledging the implications of random demon-

stration selection and manual prompt engineering, these

methodologies were adopted for the present study. The

demonstrations selection method for ICL significantly influ-
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Você deverá realizar a tarefa de Classificação de Sentimento Binária em
relação a polaridade de textos escritos no idioma português brasileiro
considerando dois possíveis rótulos de saída: 1 para o sentimentos positivos ou
-1 para negativos.
 
A saída produzida deverá ser em formato JSON, seguindo o esquema definido
entre os marcadores ```. 

```
{"type": "object", "description": "Objeto de saída fornecido pelo classificador
após a classificação de sentimento do texto de entrada.",  "properties":
{"polaridade": {"type": "integer",  "description": "Polaridade em relação ao
sentimento expressado no texto de entrada. Pode assumir 2 valores: [-1,
1]","enum": [-1,1]}},"required": ["polaridade"]}
```

Prompt

Task
Instruction

JSON Format
Specification

   Considere os seguintes exemplos para realizar a predição:

   Exemplo 1:
   "entrada": <EXAMPLE 1 TEXT> 
   "saida":{"polaridade": <EXAMPLE 1 POLARITY>}

    Exemplo 2:
    "entrada": <EXAMPLE 2 TEXT> 
    "saida":{"polaridade": <EXAMPLE 2 POLARITY>}}

                     ...

    Exemplo 6:
    "entrada": <EXAMPLE 6 TEXT> 
    "saida":{"polaridade": <EXAMPLE 6 POLARITY>}

     Classificação de Sentimento:
     "entrada": <TEXT TO BE LABELED>
     "saida":{"polaridade":} Query

Demonstrations

{"polaridade": <PREDICTION>}
Expected LLM

Output

Figure 2. Prompt structure implemented for sentiment classification of Brazilian Portuguese texts. The prompt is organized into four main components,

laterally identified as: (1) Task Instruction: specifies the binary classification task with polarity values of 1 (positive) and −1 (negative); (2) JSON Format

Specification: defines the structured output schema in JSON format, specifying data types and allowed values; (3) Demonstrations: presents a series of
numbered examples (1, 2, ..., 6) containing input-output pairs to guide the classification; and (4) Query: contains the text to be classified. The figure concludes
with the Expected LLM Output, which illustrates the expected prediction format from the model.

ence model outputs, with research indicating that randomly

chosen demonstration subsets tend to produce performance

instabilities in LLMs [Lu et al., 2022; Li and Qiu, 2023].

As noted by Lu et al. [2022], there is no evidence of prompt

performance transferability or label ordering effectiveness

across different LLMs. To maximize predictive performance,

prompt engineering, example selection, and demonstration

ordering should be conducted using automated and systematic

methods [Zhou et al., 2022; Liu et al., 2022; Lu et al., 2022]

for each specific model.

However, given that the primary research objective is to

compare LLMs’ predictive capabilities in sentiment classifi-

cation for Brazilian Portuguese texts, we opted to accept the

risk of sub-optimal performance for feasibility and compara-

bility reasons. This methodological choice is acknowledged

as one of the study’s limitations.

4.5 Evaluation

To evaluate LLMs’ performance in binary sentiment classifi-

cation of Brazilian Portuguese texts, this study employed the

ICL strategy with 6 demonstrations. Each instance from the

test subset was passed to the models as prompts, as shown

in Figure 2. The LLM consumption method, along with the

configurations and main parameters used by each model, are

presented in Table 3.

All experiments were performed using the Google Colab11

service with different hardware (GPUs), since the availability

of specific hardware is not always guaranteed by the provider.

The notebooks containing the experiment codes, as well as the

test and demonstration datasets are available in this article’s

repository12.

To maximize prediction accuracy and reduce the effect of

inherent non-determinism of LLMs, generation randomness-

related parameters were configured to their most conservative

values, ensuring that model outputs frequently correspond to

those tokens with the highest associated probabilities. The

specific configuration of these parameters varied according

to each model’s consumption method and available settings.

11https://colab.google/
12https://github.com/AndreSchuck/EvaluatingLargeLangua

geModelsforBrazilianPortugueseSentimentAnalysis

https://colab.google/
https://github.com/AndreSchuck/EvaluatingLargeLanguageModelsforBrazilianPortugueseSentimentAnalysis
https://github.com/AndreSchuck/EvaluatingLargeLanguageModelsforBrazilianPortugueseSentimentAnalysis
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Table 3. Comparative analysis of hardware configurations, con-

sumption methods and operational parameters for the selected lan-

guage models.

Model
Consuption

Method
Framework Hardware Generation Parameters

Claude-3.5-Sonnet API Proprietary API CPU † max_tokens= 20, temperature=0.0

GPT-4o API? Proprietary API CPU max_tokens=20, n=1, seed=4, temperature=0

Gemini-1.5-Pro API Proprietary API CPU max_output_tokens=20,temperature=0,

LLaMA-3-8B-Instruct Local HFTP * L4 GPU‡ max_new_tokens=150, do_sample=False

LLaMA-3.1-8B-Instruct Local HFTP L4 GPU max_new_tokens=150, do_sample=False

Gemma-7B-Instruct § Local HFT $ L4 GPU max_new_tokens=20, do_sample=False

Gemma-2-9B-Instruct § Local HFT L4 GPU max_new_tokens=20, do_sample=False

Qwen-2-7B-Instruct Local HFT L4 GPU max_new_tokens=20, do_sample=False

InternLM-2-7B-Chat Local HFTP A100 GPU †† max_new_tokens=20, do_sample=False

DeepSeek-V3 API OpenRouter API CPU temperature=0, top_k=1, max_tokens=20

DeepSeek-R1 API OpenRouter API CPU temperature=0, top_k=1

DeepSeek-R1-Distill-Qwen-7B Local HFTP A100 GPU max_new_tokens=20, do_sample=False

DeepSeek-R1-Distill-LLaMA-8B Local HFTP A100 GPU max_new_tokens=20, do_sample=False

Sabiá-7B Local HFTP L4 GPU max_new_tokens=20, do_sample=False

Sabiá-2-Medium API Proprietary API CPU temperature=0, max_tokens=20, do_sample=False

Sabiá-3 API Proprietary API CPU temperature=0, max_tokens=20, do_sample=False

Bode-7B §§ Local HFTP L4 GPU max_new_tokens=20, do_sample=False

Bode-13B§§ Local HFTP L4 GPU max_new_tokens=20, do_sample=False

Bode-3.1-8B-Instruct-lora Local HFTP A100 GPU max_new_tokens=20, do_sample=False

InternLM-ChatBode-7B Local HFTP L4 GPU max_new_tokens=20, do_sample=False

GemBode-7B-Instruct Local HFT A100 GPU max_new_tokens=20, do_sample=False

CabraLLaMA-3-8B Local HFTP A100 GPU max_new_tokens=20, do_sample=False

CabraMistral-v3-7B-32k Local HFTP A100 GPU max_new_tokens=20, do_sample=False

? Batch API.
§ 4 bits quantization.
§§ 8 bits quantization.

* HuggingFace Transformers Pipeline.
$ HuggingFace Transformers.
† CPU = Google Colab CPU with 12 GB of CPU RAM.
‡ L4 GPU = Google Colab L4 GPU with 22.5 GB of GPU RAM.
†† A100 GPU = Google Colab A100 GPU with 40 GB of GPU RAM.

Table 3 presents the complete set of inference parameters

utilized for each evaluated model. For LLaMA-3-8B and

LLaMA-3.1-8B models, a higherMaximum number of new

tokens was required, as these models produced highly lit-

eral responses regarding the JSON structure specified in the

prompt instruction, as demonstrated in Figure 3.

Ex 1:  {"polaridade":1}                Ex 2 : {'polaridade': 1}

Ex 3: {                                          Ex 4:  'polaridade': 1
       "polaridade": 1                       

           }                                                            

(a) Other LLMs Outputs.

Ex:  {'type': 'object', 'description': 'Objeto de saída fornecido
pelo classificador após a classificação de sentimento do texto
de entrada.', 'properties': {'polaridade': {'type': 'integer',
'description': 'Polaridade em relação ao sentimento
expressado no texto de entrada. Pode assumir 2 valores: [-1,
1]','enum': [-1,1]}}, 'required': ['polaridade']}, 'saida':
{'polaridade': 1}}

(b) LLaMA-3-8B and LLaMA-3.1-8B Outputs.

Figure 3. Comparison of output patterns produced by different LLMs

for sentiment analysis tasks. (a) Typical response structures from most

evaluated LLMs. (b) Distinctive output patterns from LLaMA-3-8B and

LLaMA-3.1-8B models, highlighting their “literal” approach to structure

the requested JSON output.

During the experiment, it was necessary to refine the re-

sponse generation process for the Claude-3.5-Sonnet model.
Initially, the model produced the correct JSON object struc-

ture but preceded it with a brief explanatory text about the

task, followed by the word “JSON” before the actual JSON

object containing the desired response. To optimize the output

and reduce inference costs, a content restriction strategy was

implemented 13. In the communication turns between the user

(who provided the prompt with instructions, demonstrations,

and text to be classified) and the assistant (who generated

the model’s response), the word “JSON” was included in the

assistant’s function. This approach effectively limited the

response content, eliminating the unwanted introductory text.

A distinctive behavioral pattern was observed in the

Gemini-1.5-Pro model, where certain input instances trig-
gered internal safety filters, resulting in content flagged as

violating usage policies. In these cases, the API response re-

turned empty values in the primary classification field, while

populating additional fields with safety policy information.

These instances, lacking the expected JSON structure for

sentiment predictions, were systematically categorized as hal-

lucinations (value 2) during the response parsing phase for
evaluation purposes.

The generated responses were processed by an algorithm

using a single regular expression pattern to verify the expected

output format. This pattern was designed to identify a JSON-

like structure containing a key named “polaridade” (which

can be delimited by either single or double quotes) followed

by a colon and a value that must be either 1 or −1, allowing
for possible whitespace variations.

If the pattern is recognized in the model’s response, the

integer value (−1 or 1) associated with the “polaridade” key
is extracted from the text. If the pattern is not identified,

the value 2 is returned, indicating that the model produced
a response outside the expected format, with this behavior

being interpreted as a hallucination.

The evaluation phase involved comparing the models’ out-

puts against the original test set labels. Accuracy (Acc)

was chosen as the primary evaluation metric, following es-

tablished practices in binary sentiment classification tasks

[Larcher et al., 2023; Pires et al., 2023; Garcia et al., 2024].

To address class imbalance effects on Accuracy, we also

report the F1 Score. The F1 Score calculation employs the
unweighted average approach, known as Macro Average,

where individual scores are computed for each class and then

averaged arithmetically.

In scenarios involving hallucinated responses, theMacro

F1 Score inherently penalizes performance due to the ab-

sence of True Positive instances in the hallucination category,

resulting in a local score of zero for this class. While not

contributing to the metric’s numerator, this zero score in-

creases the denominator count, effectively lowering the final

Macro F1 Score to reflect the presence of hallucinations in
the evaluated responses.

The predictive performance of the models was evaluated

through comparative analysis against two benchmark refer-

ences established for each dataset. The first reference consists

of a weak baseline classifier that consistently predicts the ma-

jority class identified in the training subset, representing the

minimum acceptable performance threshold. The second

reference establishes a strong baseline, represented by predic-

tions generated from DeepSeek-R1-671B when subjected to

identical prompts used across all evaluated LLMs.

The selection of DeepSeek-R1 as the strong baseline clas-

13https://docs.anthropic.com/en/api/messages

https://docs.anthropic.com/en/api/messages
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sifier was strategically determined based on its distinctive

characteristics among the evaluated models. As documented

in Table 1, DeepSeek-R1 stands as the only model in the study
combining extensive parameter scale (671 billion parameters)
with advanced reasoning capabilities, making it an optimal

reference point for assessing the relative performance of other

models under equivalent experimental conditions.

To ensure a robust methodology for comparing the results

obtained from both evaluation metrics, the statistical signifi-

cance of performance is assessed using the Wilcoxon signed-

rank test for paired samples at a 5% significance level. This

test compares LLMs results pairwise to evaluate 3 alternative
hypotheses (H1) against a common null hypothesis (H0):

• Test 1 - two-tailed:
H0: The distribution of differences is symmetric around
zero.

H1: The distribution underlying the differences is not
symmetric about zero.

• Test 2 - right-tailed:
H0: The distribution of differences is symmetric around
zero.

H1: The distribution underlying the differences is

stochastically less than a distribution symmetric about

zero.

• Test 3 - left-tailed:
H0: The distribution of differences is symmetric around
zero.

H1: The distribution underlying the differences is

stochastically greater than a distribution symmetric

about zero.

Test 1 is performed for all possible model pair combina-
tions, excluding pairs of identical models. If sufficient ev-

idence exists to reject H0 in Test 1, Tests 2 and 3 are then
applied. Specifically, Test 1’s H0 indicates no significant
difference between paired samples, while its H1 examines
any directional differences between groups. Test 2’s H1 eval-
uates whether group 1 has significantly higher values than

group 2, whereas Test 3’s H1 assesses if group 1’s values are
significantly lower than group 2’s.
Two methodological considerations warrant particular at-

tention in this research context. The first concerns the in-

trinsic non-deterministic behavior of LLMs, which affects

reproducibility not only in the present study but any research

investigating LLM-generated outputs, particularly those em-

ploying single-run evaluations on benchmarks [Song et al.,

2024]. LLMs are fundamentally non-deterministic models,

offering no guarantee that identical outputs will be generated

across multiple executions, even when using the same input

and instructions [Atil et al., 2025].

This output instability directly impacts result reproducibil-

ity, a cornerstone of scientific research. While generation

parameters such as temperature were configured to mini-

mize randomness, other factors such as minimal variations

in floating-point rounding, distributed computing utilization,

and even the architectural essence of Transformer models

themselves can influence their non-deterministic behavior

[Yu, 2023; Atil et al., 2025; Klishevich et al., 2025].

Recognizing this challenge, several methodological ap-

proaches can mitigate the effects of non-determinism and

increase consistency in LLMs. Recent research demonstrates

that binary classification and sentiment analysis tasks can

achieve near-perfect reproducibility [Wang and Wang, 2025].

Additionally, employing parsers for LLM responses amplifies

consistency [Atil et al., 2025], while Greedy Decoding, a tech-

nique employed whenever possible in this work (“do_sam-

ple=False”), demonstrates superior consistency compared to

sampling approaches and LLMs tend to exhibit consistent per-

formance on tasks with constrained output spaces [Song et al.,

2024]. These findings collectively provide methodological

support for the approach adopted in this study.

The second consideration concerns the absence of data

contamination assessment. Since LLMs are pre-trained on

massive amounts of data, primarily sourced from the web,

there is a risk that the LLMs examined in this study may have

already been exposed to the evaluation datasets at some point

during their training process. This potential exposure com-

promises the distinction between the models’ generalization

and memorization capabilities and could potentially overesti-

mate the obtained results. This is therefore recognized as a

methodological limitation of the present work.

5 Experimental Results and Discus-

sions

5.1 Inference Costs, Duration Time and Car-

bon Emissions

Before discussing the experimental results, we present a com-

prehensive analysis of the computational costs associated with

our experiments in terms of financial expenditure (in USD),

inference duration, and estimated carbon emissions. These

data are synthesized in Table 4, with carbon emissions esti-

mated using the Machine Learning CO2 Impact Calculator
14

Lacoste et al. [2019]. It is worth noting that, according to

information provided by the Machine Learning CO2 Impact
Calculator, 100% of emissions generated by locally executed

models were offset by the cloud provider.

Due to the proprietary nature of several LLMs (Claude-3.5-
Sonnet, GPT-4o, Gemini-1.5-Pro, Sabiá-2-Medium, and

Sabiá-3) and the computational requirements of others ne-
cessitating API consumption (DeepSeek-V3 and DeepSeek-
R1), comprehensive inference time measurements and carbon
emission estimations were not feasible for all models. This

limitation stems from providers not supplying detailed opera-

tional metrics, particularly environmental impact data. The

lack of carbon emissions data from API providers is further

discussed in Section 6.

Another limitation relates to the cloud service provider

selected for conducting the experiments. The Google Colab

platform does not currently allow the selection of specific

regions for server allocation, thereby precluding the choice of

regions with enhanced energy efficiency for computational

workloads.

14https://mlco2.github.io/impact

https://mlco2.github.io/impact
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Table 4. Comparative analysis of inference time, cost and carbon

footprint. The top group represents the models consumed via API,

and the bottom group, the models deployed locally. Both groups

are divided by a dashed line, which separates the generalist models

from the fine-tuned models in PT-BR.

Model
Cloud Provider

Region

Inferece

Hours

Cost

(USD)*

Carbon Emitted

(kg CO2eq)

Claude-3.5-Sonnet - 4.60 $47.15 -

GPT-4o - 9.63 $34.50 -

Gemini-1.5-Pro - - $39.39 -

DeepSeek-V3 - 4.76 $25.15 -

DeepSeek-R1 - 73.37 $59.98 -

Sabiá-2-Medium - - $15.18 -

Sabiá-3 - - $22.46 -

LLaMA-3-8B-Instruct us-west4§ 30.48 $6.08 0.53 - 0.66

LLaMA-3.1-8B-Instruct us-west4 30.40 $6.06 0.53 - 0.66

Gemma-7B-Instruct asia-southeast1 10.31 $2.06 0.31

Gemma-2-9B-Instruct asia-southeast1 10.63 $2.12 0.32

Qwen-2-7B-Instruct us-west4 3.00 $0.60 0.05 - 0.07

InternLM-2-7B-Chat us-central1 7.16 $4.69 1.02

DeepSeek-R1-Distill-Qwen-7B us-central1 4.68 $3.06 0.67

DeepSeek-R1-Distill-LLaMA-8B asia-southeast1 5.11 $3.35 0.54

Sabiá-7B us-west4 5.00 $1.00 0.09 - 0.11

Bode-7B asia-southeast1 7.76 $1.55 0.23 †

Bode-13B asia-southeast1 7.04 $1.40 0.21

Bode-3.1-8B-Instruct-lora asia-southeast1 5.14 $3.36 0.54

InternLM-ChatBode-7B us-west4 6.19 $1.23 0.11 - 0.14

GemBode-7B-Instruct us-central1 6.41 $4.20 0.91

CabraLLaMA-3-8B us-central1 4.78 $3.13 0.68

CabraMistral-v3-7B-32k us-central1 5.76 $3.77 0.82

Total 242.22 $291.46 7.56 - 7.89

* 1 USD = 6.08 BRL
§ us-west4 region for GCPwas not availabe at ML CO2 Impact Calculator,

se we report the min and max values between regions us-west1, 2 and 3.
† Estimated using linear projection of Bode-13B and Gemma-7B-Instruct

emissions values.

Regarding inference duration, we observed relatively bal-

anced performance between API-consumed and locally de-

ployed models. Notable exceptions include DeepSeek-

R1, GPT-4o, LLaMA-3-8B-Instruct, and LLaMA-3.1-8B-
Instruct. The substantially extended inference time for

DeepSeek-R1 is attributable to its reasoning phase that pre-
cedes inference, considerably increasing execution duration.

To optimize financial resources, GPT-4o was accessed

through its batch API, which reduces inference costs in ex-

change for extended response windows of up to 24 hours.

The duration reported in Table 4 represents the total time

from batch submission to complete processing. The extended

inference times for LLaMA models primarily results from

utilizing a configuration with a maximum number of new

tokens set to 150, compared to 20 tokens for other models.
Beyond these configuration-specific factors, model-

specific efficiency variations also significantly impact in-

ference duration. An illustrative case involves the Gemma

and Gemma-2 models, which, despite utilizing 4-bit quan-
tized versions, maintained considerably elevated inference

times (±10 hours) compared to other models deployed on

L4 hardware. Conversely, the Qwen-2 model, executed in
full precision (Bfloat16) on identical L4 hardware, completed
all inferences in merely 3 hours, establishing itself as one of
the most computationally optimized models in our analysis.

This comparison underscores the significant impact of model

architecture and optimization on computational efficiency,

independent of quantization strategies.

Concerning financial costs, a substantial disparity emerges

between API-consumed and locally deployed models. Lo-

cally executed models incurred an average cost of $3.53, rep-
resenting a 9.85-fold reduction compared to API-consumed
models ($34.83). Among API-consumed models, the Sabiá
family demonstrates cost-effectiveness, with proprietary mod-

els exhibiting lower costs than open-source alternatives ac-

cessed via API, exemplified by DeepSeek-V3.
Cost variations among locally deployed models are pri-

marily attributable to hardware differences (L4 GPUs with
22.5GB RAM versus A100 with 40GB RAM) and total infer-

ence duration. On average, models running on A100 GPUs
cost $0.65 per hour, approximately 3.25 times higher than

those deployed on L4 GPUs ($0.20 per hour). However, this
cost differential must be weighed against performance gains,

as deploying models on A100GPUs tends to reduce inference
time to an average of 5.57 hours compared to 7.13 hours for
L4 GPUs (excluding LLaMA-3 and LLaMA-3.1 models).
The environmental dimension of our computational anal-

ysis reveals equally significant patterns. Carbon emissions

for locally deployed models were estimated to range between

7.56 − 7.89 kg CO2 equivalent (kg CO2eq). These estimates
were derived using IP addresses from Google Colab servers

allocated during experimental execution to determine geo-

graphic regions and server locations. This geographic infor-

mation was combined with per-model inference times and

hardware specifications, subsequently input into the Machine

Learning CO2 Impact Calculator for emission calculations.

The carbon equivalent emissions of L4 machines were, on
average, at least 2.45 times lower than A100 machines. The
average emissions for A100 machines was 0.74 kg CO2eq,
while L4 computers ranged between 0.26 to 0.30 kg CO2eq.
To contextualize this comparison, we examine the LLaMA-3
models case, where inference time took approximately 30
hours while the average for other models was 6.36 hours. The
estimated emissions range was 0.53 to 0.66 kg CO2eq, which
is comparable to 4 to 5 hours of A100 machine emissions,

depending on the cloud provider’s server region.

These findings collectively demonstrate that selecting ap-

propriate hardware for LLM deployment involves a com-

plex trade-off between computational efficiency, financial

cost, and environmental impact. While higher-capacity GPUs

GPUs offer superior computational performance with reduced

inference times, specially for models that do not require inten-

sive computational resources, they incur substantially higher

environmental and financial costs. Although some models

require more robust hardware configurations, deployment

decisions merit careful consideration of these multifaceted

implications.

5.2 Large-Scale Models Performance

The experimental evaluation for large LLMs encompassed Ac-

curacy and F1 Score metrics across 12 datasets. Performance
statistics (mean and standard deviation) were aggregated per

LLM, as presented in Table 5. The performance distribution

across models is visualized in Figure 4a for Accuracy and

Figure 4b for F1 Score. Detailed dataset-specific results are
available in Appendix A, with Accuracy and F1 Score results
presented in Table 8 and Table 9 respectively.
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(a) Boxplot Accuracy by LLM.
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(b) Boxplot Macro F1 Score by LLM.

Figure 4. Performance distribution of larger scale models across sentiment analysis tasks. The boxplots illustrate the statistical distribution of (a) Accuracy

and (b) Macro F1 Score, providing insights into performance variability across the evaluated datasets. The 5 marker represents the mean value for each

evaluation metric, allowing comparison of central tendencies alongside the distribution spread, quartiles, and outliers.

Table 5. Performance comparison between small-scale LLMs (>70B
parameters) in Brazilian Portuguese sentiment analysis tasks. Re-

sults present mean Accuracy and F1 Score with standard deviations,

stratified by linguistic specialization (Generalist vs. PT-BR fine-

tuned) and ordered by decreasing Accuracy in each category. Two

baseline classifiers are included as comparative reference.

Linguistic

Fine-tuning
Model Acc F1 Score

Baseline
Weak Classifier (Train Set Majority Class) 0.6382 ± 0.1458 0.3853 ± 0.0524

Strong Classifier (DeepSeek-R1) 0.9401 ± 0.0488 0.8180 ± 0.1552

Generalist

Claude-3.5-Sonnet 0.9481 ± 0.0482 0.9343 ± 0.0607

DeepSeek-V3 0.9358 ± 0.0600 0.7636 ± 0.1439

GPT-4o 0.9351 ± 0.0687 0.9218 ± 0.0739

Gemini-1.5-Pro 0.9245 ± 0.0760 0.8395 ± 0.1727

PT-BR
Sabiá-3 0.9457 ± 0.0581 0.8267 ± 0.1588

Sabiá-2-Medium 0.9086 ± 0.0879 0.7189 ± 0.1676

Large-scale LLMs frequently achieve high-performance

sentiment analysis in Brazilian Portuguese via in-context

learning Analysis of Table 5 and Figure 4 reveals that all

large-scale LLMs outperformed the Weak Classifier across

both evaluation metrics. Furthermore, considerable parity is

observed between the results obtained by the Strong Refer-

ence Classifier and the other large-scale LLMs, particularly

regarding the primary evaluation metric, Accuracy. All large-

scale models, whether with multilingual capabilities or fine-

tuned for PT-BR, including the Strong Reference Classifier,

produced mean accuracies exceeding 0.9. This finding pro-
vides strong evidence of the capability of large-scale LLMs to

understand and execute the downstream task of binary senti-

ment classification in Brazilian Portuguese via the in-context

learning paradigm.

The combined analysis of the Accuracy metric from Ta-

ble 5 and Figure 4a indicates comparable performance among

large-scale models, regardless of whether they are general-

purpose or specifically optimized for Brazilian Portuguese.

Claude-3.5-Sonnet, DeepSeek-V3, GPT-4, and Sabiá-3 ex-
hibited lower variability (Acc standard deviation ranging from

0.0482 to 0.0687) and substantial performance overlap, while
Gemini-1.5-Pro and Sabiá-2-Medium (0.076 and 0.0879)
demonstrated marginally higher variability and slightly lower

performance.

Regarding the F1 score metric, Claude-3.5-Sonnet and
GPT-4 models achieved consistently high values (average

of 0.9343 and 0.9218, respectively) with minimal variabil-
ity (0.0607 and 0.0739), whereas DeepSeek-V3, Sabiá-3,
Gemini-1.5-Pro, and Sabiá-2 exhibited lower average val-

ues (0.7189 to 0.8395) with greater performance variability
(standard deviation ranging from 0.1439 to 0.1727). This vari-
ability is primarily attributed to the occurrence of even a single

response categorized as hallucination per dataset, which sig-

nificantly impacts the F1 Score calculation, reducing values
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by 33.33% and thereby increasing the overall variability for

this metric compared to Accuracy.

Statistical tests indicate performance equivalence among

large-scale LLMs in the downstream task. Statistical

analysis using the Wilcoxon paired non-parametric test at 5%
significance level confirmed significant differences between

all LLMs and the Weak Classifier, as well as performance

parity among the large-scale models themselves. Results for

Accuracy and F1 Score are presented in Table 7 and Table 8,
respectively.

Among the large-scale models, the Wilcoxon signed-rank

test results for Claude-3.5-Sonnet, DeepSeek-V3, GPT-4o,
and Sabiá-3, when compared pairwise, do not support the idea
that the distribution of differences between these groups is

asymmetric. This suggests that the Accuracy scores obtained

by these models across the 12 datasets are unlikely to be

statistically different from each other.

Similarly, the results point in the same direction when

comparing Claude-3.5-Sonnet and GPT-4o for the F1 Score
metric.However, when these two models are compared pair-

wise with the other large-scale LLMs, the results do not

support the symmetry of distribution differences, indicat-

ing that their Macro F1 Scores are likely superior. Both

Claude-3.5-Sonnet and GPT-4o performed significantly bet-
ter than Gemini-1.5-Pro and Sabiá-2-Medium, while the re-

maining LLMs (DeepSeek-V3, Sabiá-3, Gemini-1.5-Pro, and
Sabiá-2-Medium) demonstrated statistically equivalent per-

formance levels among themselves for this metric.

The comparison between general-purposemodels and those

fine-tuned for Brazilian Portuguese further supports conclu-

sions favoring performance equivalence between these cate-

gories. Although statistical test results indicated significant

differences between most general-purpose LLMs when com-

pared to Sabiá-2-Medium, it is important to note that the latter

essentially belongs to a previous generation. In contrast, the

most recent LLM from the Sabiá family demonstrates sta-

tistical equivalence in comparison with all general-purpose

large-scale LLMs.

Proprietary large-scale generalist models demonstrate

superior reliability in prompt adherence with minimal

hallucinations. Based on the results of the experiments re-

ported in Table 11, Claude-3.5-Sonnet and GPT-4o were the
only large-scale LLMs that followed the prompt specifica-

tions with complete consistency, generating responses that

precisely matched the expected output format. However, it

is important to note that, across all models, the percentage

of responses categorized as hallucinations relative to the to-

tal number of responses produced (10, 372) was remarkably
low, with an average of merely 0.25% for large-scale LLMs

(including the strong reference model DeepSeek-R1).
Qualitative analysis of responses classified as hallucina-

tions revealed distinct error patterns specific to each model ar-

chitecture. The DeepSeek-R1 model, employed as the Strong
Reference Classifier, exhibited consistent JSON syntax errors

in all its hallucination cases, including omission of colons or

quotation marks, and misspellings of the key term “polari-

dade”. Similarly, the DeepSeek-V3 model produced some

syntactically incorrect JSON structures, but its hallucinations

were predominantly characterized by responses lacking the

expected JSON format entirely, instead generating explana-

tory text describing its sentiment classification approach. This

behavior likely stems from the knowledge distillation pro-

cess from DeepSeek-R1, which enhances reasoning capabil-
ities while significantly expanding average response length

[DeepSeek-AI et al., 2025b].

The hallucination patterns observed in other models re-

vealed different underlying mechanisms. The Gemini-1.5-
Pro model’s hallucinations (100% of cases) were exclusively

caused by its internal safety filters, which identified certain

input texts as potentially violating usage policies, resulting

in empty responses rather than sentiment classifications. In

contrast, the Sabiá family of large-scale LLMs produced hal-

lucinations primarily by assigning labels outside the specified

binary range, particularly by generating correctly structured

JSON objects containing a value of 0 (typically associated
with neutral sentiment, which was not part of the task specifi-

cation). Additionally, the Sabiá-2-Medium model frequently

generated responses erroneously claiming defects or errors in

the input text itself.

5.3 Small-Scale Models Performance

Similar to the approach taken with larger-scale models, de-

scriptive statistics were also reported for smaller-scale LLMs

(Table 6), along with evaluation metric variations summa-

rized in boxplot graphs: Figure 5a for Accuracy and Figure 5b

for F1 Score.

Table 6. Performance comparison between small-scale LLMs (<13B
parameters) in Brazilian Portuguese sentiment analysis tasks. Re-

sults present mean Accuracy and F1 Score with standard deviations,

stratified by linguistic specialization (Generalist vs. PT-BR fine-

tuned) and ordered by decreasing Accuracy in each category. Two

baseline classifiers are included as comparative reference.

Linguistic

Fine-tuning
Model Acc F1 Score

Baseline
Weak Classifier (Train Set Majority Class) 0.6382 ± 0.1458 0.3853 ± 0.0524

Strong Classifier (DeepSeek-R1) 0.9401 ± 0.0488 0.7905 ± 0.1507

Generalist

Gemma-2-9B-Instruct 0.9337 ± 0.0507 0.7851 ± 0.1481

Qwen-2-7B-Instruct 0.9232 ± 0.0604 0.7001 ± 0.1937

LLaMA-3-8B-Instruct 0.9189 ± 0.0550 0.6472 ± 0.1943

InternLM-2-7B-Chat 0.8990 ± 0.0657 0.8361 ± 0.1354

DeepSeek-R1-Distill-LLaMA-8B 0.8939 ± 0.0640 0.8427 ± 0.1219

DeepSeek-R1-Distill-Qwen-7B 0.8613 ± 0.0709 0.7215 ± 0.1446

Gemma-7B-Instruct 0.8276 ± 0.0796 0.4915 ± 0.1212

LLaMA-3.1-8B-Instruct 0.7587 ± 0.1250 0.4896 ± 0.0773

PT-BR

Bode-3.1-8B-Instruct-lora 0.9054 ± 0.0613 0.6778 ± 0.1722

InternLM-ChatBode-7B 0.9010 ± 0.0622 0.8438 ± 0.1040

CabraLLaMA-3-8B 0.8873 ± 0.0711 0.7252 ± 0.1854

CabraMistral-v3-7B-32k 0.8814 ± 0.1046 0.7988 ± 0.1610

GemBode-7B-Instruct 0.8670 ± 0.1056 0.6079 ± 0.2080

Bode-7B 0.8593 ± 0.1095 0.7035 ± 0.1820

Bode-13B 0.8445 ± 0.0911 0.5336 ± 0.0814

Sabiá-7B 0.6630 ± 0.1558 0.4670 ± 0.1362

Small-scale LLMs prove to be efficient and viable alterna-

tives for the underlying task. The evaluation of Table 6

and Figure 5 reveals that, similar to larger-scale models, small-

scale LLMs achieved results consistently superior to theWeak

Classifier in the vast majority of cases. Considering the results
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(a) Accuracy Boxplot.

W
ea

k 
C

la
ss

ifi
er

St
ro

ng
 C

la
ss

ifi
er

 (D
ee

pS
ee

k-
R

1)

G
em

m
a-

2-
9B

-I
ns

tru
ct

Q
w

en
-2

-7
B

-I
ns

tru
ct

LL
aM

A
-3

-8
B

-I
ns

tru
ct

In
te

rn
LM

-2
-7

B
-C

ha
t

D
ee

pS
ee

k-
R

1-
D

is
til

l-L
La

M
A

-8
B

D
ee

pS
ee

k-
R

1-
D

is
til

l-Q
w

en
-7

B

G
em

m
a-

7B
-I

ns
tru

ct

LL
aM

A
-3

.1
-8

B
-I

ns
tru

ct

B
od

e-
3.

1-
8B

-I
ns

tru
ct

-lo
ra

In
te

rn
LM

-C
ha

tB
od

e-
7B

C
ab

ra
LL

aM
A

-3
-8

B

C
ab

ra
M

is
tra

l-v
3-

7B
-3

2k

G
em

B
od

e-
7B

-I
ns

tru
ct

B
od

e-
7B

B
od

e-
13

B

Sa
bi

á-
7B

Models

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F 1
 S

co
re

Weak Classifier
<13B Generalist

Strong Classifier (DeepSeek-R1)
<13B Fine-tuned

(b)Macro F1 Score Boxplot.

Figure 5. Performance distribution of smaller scale models across sentiment analysis tasks. The boxplots illustrate the statistical distribution of (a) Accuracy

and (b) Macro F1 Score, providing insights into performance variability across the evaluated datasets. The 5 marker represents the mean value for each

evaluation metric, allowing comparison of central tendencies alongside the distribution spread, quartiles, and outliers.

obtained by the top 10 small-scale models (including both

general-purpose and those fine-tuned for the target language),

the average mean Accuracy was 0.8975, approximately 41%
higher than the average of the weak reference classifier and

only 4.5% lower than the strong reference classifier, despite

the latter having, on average, 6.63 · 1011 more parameters.

Regarding Accuracy, Table 6 and Figure 5a demon-

strate that Gemma-2-9B-Instruct, Qwen-2-7B-Instruct,
LLaMa-3-8B-Instruct, InternLM-2-7B-Chat and DeepSeek-
R1-Distill-LLaMA-8B LLMs achieved results competitive

with the strong classifier, as did the Brazilian Portuguese

specialized models Bode-3.1-8B-Instruct-lora and InternLM
ChatBode-7B, with their mean accuracies ranging between
0.8939 and 0.9337. Slightly behind are the PT-BR fine-tuned

models CabraLLaMA-3-8B, CabraMistral-v3-7B-32k,
GemBode-7B-Instruct, Bode-7B, and Bode-13B, with

accuracies fluctuating between 0.8445 and 0.8882.
The models LLaMA-3.1-8B-Instruct and the Sabiá-7B

LLM, based on first-generation LLaMA, demonstrated the

lowest average performance in terms of the main metric, with

the latter approaching the performance observed in the Weak

classifier.

Lower values along with greater variability were also

observed for the F1 Score metric which, similar to larger-

scale models, can be primarily explained through the lens

of responses categorized as hallucinations. Most models

achieved results close to the strong reference classifier, ex-

cept for the general-purpose LLMs Gemma-7B-Instruct and
LLaMA-3.1-8B-Instruct together with the Brazilian Por-

tuguese fine-tuned models Bode-13B and Sabiá-7B, which
exhibited the worst average performance for this metric, re-

maining relatively close to the weak reference classifier.

Overall, small-scale models generated a considerably

low percentage of responses categorized as hallucina-

tions, but they struggled with overgeneration. Exclud-

ing the general-purpose models Gemma-7B-Instruct and
LLaMA-3.1-8B-Instruct and the PT-BR fine-tuned models

Sabiá-7B and Bode-13B, which were most affected by halluci-
nations (average of 8.62%), the remaining small-scale LLMs

produced a low percentage of responses outside the specified

pattern. The average for the remaining general-purpose mod-

els was 0.20% and for those specialized in the target language

was 0.26%, both relatively close to the value obtained by the

strong reference model.

Despite being minimally affected by hallucinations, quali-

tative analysis of responses generated by small-scale models,

both general-purpose and specialized, revealed a high rate of
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overgeneration. This means that small-scale models appeared

to have greater difficulty recognizing when the requested task

had been completed, generating numerous additional unnec-

essary/unwanted tokens beyond those used to compose the

requested JSON object, typically continuing until reaching the

maximum token limit established as a generation parameter.

This overgeneration behavior is clearly demonstrated in the

raw outputs produced by smaller-scale models, with detailed

examples available in Appendix C.2. Both generalist mod-

els (such as InternLM-2-7B-Chat and Gemma-7B-Instruct)
and Portuguese fine-tuned variants (including InternLM-

ChatBode-7B and CabraMistral-v3-7B-32k) exhibit similar
patterns. Their outputs characteristically contain the correct

JSON structure with sentiment classification, but are system-

atically contaminated by extraneous artifacts, mostly derived

from prompt elements. For instance, typical responses in-

clude fragments such as “{’polaridade’: 1}\nExemplo:\n’en-

trada’: ’O que é” or “{’polaridade’: 1}\nClassificação de

Sentimento:\n’entr”, illustrating this pervasive issue.

While this verbose behavior affects most small-scale mod-

els, a notable exception includes Qwen-2-7B-Instruct, which
demonstrates markedly superior output consistency that more

closely approximates the concise response patterns observed

in large-scale models (Appendix C.1). A comprehensive qual-

itative analysis of output patterns across all evaluated models

is provided in Appendix C.

To quantify the influence of overgeneration in small-scale

models, the number of output tokens produced by each LLM

was calculated using a common tokenizer (OpenAI Tiktoken

o200k_base15). From this calculation, Figure 6 was produced,

illustrating the distribution of tokens by model size, and Ta-

ble 7, available in Appendix A, which consolidates the main

descriptive statistics regarding the output tokens produced.

Analysis of Figure 6 reveals a higher concentration of out-

put tokens in two distinct intervals: first, a peak near 7 tokens
is identifiable, followed by a more dispersed distribution be-

tween 13 and 20 tokens for smaller-scale LLMs (< 13B),
while larger-scale models also exhibit this concentration near

7 tokens with another peak around 11 tokens. Quantitatively
(Table 7), a higher average number of tokens is observed

for smaller-scale models (14.86), excluding LLaMA-3-8B-
Instruct and LLaMA-3.1-8B-Instruct from the comparison,

when compared to LLMs with more than 70B parameters

(9.61). These two LLaMA models were excluded from this

specific analysis because they demonstrated notably literal

adherence to the JSON object structure as discussed in Subsec-

tion 4.5, necessitating a higher maximum output token limit

(150) compared to the 20-token limit used for other models.
The overgeneration phenomenon observed predominantly

in smaller-scale models presents significant implications for

practical applications. While it did not substantially impede

the workflow of this study—as regex pattern matching ef-

fectively extracted the required JSON objects from verbose

outputs—it nevertheless constitutes an important consider-

ation for real-world implementations. This behavior may

implies on additional post-processing steps when integrating

these models into production systems, creating overhead that

could impact efficiency and resource utilization.

15https://github.com/openai/tiktoken
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Figure 6. Distribution of output token counts across models by parameter

size and scale. The analysis illustrates token generation patterns for both large

and small-scale models, with comparative plots highlighting outputs token

count distribution and variability. This visualization excludes data from

LLaMA-3-8B-Instruct, LLaMA-3.1-8B-Instruct, and the Strong Reference
Classifier (DeepSeek-R1) to maintain focus on models with comparable
generation behaviors.

During analysis, we hypothesized that prompt complexity

may have been a primary contributing factor to overgener-

ation, specifically the structural complexity of our prompt

which contained, besides the task instructions and the text to

be classified, a JSON schema definition and few-shot exam-

ples. Notably, we found very limited research addressing this

specific phenomenon in the literature, suggesting that over-

generation might be a prompt-specific issue unique to this

study’s experimental design rather than a universal limitation

of these models.

On the other hand, the fact that models generated su-

perfluous tokens despite explicit instructions to produce

only a JSON object highlights a potential limitation in their

instruction-following capabilities when presented with our

particular prompt structure. We leave this hypothesis open

for future research, which might also explore whether ar-

chitectural modifications, prompt engineering techniques, or

specialized fine-tuning could mitigate this overgeneration ten-

dency without compromising the models’ performance on the

primary sentiment analysis task.

Linguistic specialization of models in the target language,

in some cases, tends to reduce hallucinations. In several

cases, it was possible to directly compare the effect of lin-

guistic specialization by examining LLMs alongside their

base models, such as InternLM-2-7B-Chat versus InternLM-

ChatBode-7B, Gemma-7B-Instruct versus GemBode-7B-
Instruct, LLaMA-3-8B versus CabraLLaMA-3-8B and

LLaMA-3.1-8B-Instruct versus Bode-3.1-8B-Instruct-lora.
This comparative analysis revealed that linguistic fine-

tuning seems to reduce the number of hallucinations pro-

duced by the models by an average of 92% for Bode’s Family

https://github.com/openai/tiktoken
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against their base versions. Specifically, there was a reduction

of 942 hallucinations (−96.2%) from Gemma-7B-Instruct to
GemBode-7B-Instruct, 827 (−96.5%) from LLaMA-3.1-8B-
Instruct to Bode-3.1-8B-Instruct-lora, and 5 (−83.3%) from

InternLM-2-7B-Chat to InternLM-ChatBode-7B.
On the other hand, the Cabra family model

CabraLLaMA-3-8B showed an increase of 39 (+125%)

hallucinations compared to the results obtained from its base

model. Despite the increase in the number of responses

categorized as hallucinations, there was less dispersion

regarding the hallucinations and the datasets in which they

occurred, with a reduction of 50% (4 datasets) compared to
LLaMA-3-8B (8 datasets).
For Bode-3.1-8B-Instruct-lora, a substantial improvement

in average performance compared to its base model was ob-

served across both evaluation metrics (19% in Accuracy and

38% in F1 Score), with this improvement also reflected in the
statistical tests (Figure 7 and Figure 8).

Improvements were also observed in the other two PT-

BR fine-tuned models relative to their general-purpose ver-

sions, though these were less pronounced: a gain of 5%
in mean Accuracy and 24% in mean F1 Score between

Gemma-7B-Instruct and GemBode-7B-Instruct, and a gain
of 0.22% in mean Accuracy and 0.92% in mean F1 Score

from InternLM-2-7B-Chat to InternLM-ChatBode-7B. These
smaller improvements did not constitute sufficient evidence

to accept the alternative hypothesis of statistical superior-

ity, except in the case of the F1 Score metric between the
Gemma-7B-Instruct and GemBode-7B-Instruct models.
Meanwhile, the CabraLLaMA-3-8B model showed an

improvement of 8.57% in mean F1 Score compared to the
LLaMA-3-8B model, largely due to the reduction in the dis-

persion of the total number of datasets with at least one halluci-

nation, while the mean Accuracy exhibited a slight reduction

of 3.44% relative to its base model.

5.4 Cross-Scale Models Comparison

Comparative analysis with previous reported results high-

lights the potential of in-context learning with LLMs over

conventional supervised learning approaches for this par-

ticular sentiment analysis task in Brazilian Portuguese.

Evidence from this investigation substantiates that both large-

scale and small-scale LLMs achieved promising performance

in binary sentiment classification of Brazilian Portuguese

texts using the ICL paradigm. This conclusion is supported

not only by the magnitude of the obtained results but also

through comparative evaluations with findings reported in

prior research.

A pattern emerged regarding performance variations across

datasets. For both large and small-scale models, the majority

of the lowest accuracy values (19 out of 23 models) were

observed on the same dataset: OPCovidBR [Vargas et al.,

2020]. This dataset accounts for 5 of the 9 outliers visible in
Figure 4a for large-scale models, and for all 5 outliers (ex-
cluding the previously counted strong reference classifier) in

Figure 5a for small-scale LLMs. Quantitatively, large-scale

models (including the strong reference classifier) achieved a

mean accuracy of 0.7782 on this dataset, while small-scale
models averaged 0.7104, indicating greater difficulty in cor-

rectly interpreting and classifying texts from this particular

corpus.

Despite these challenges, the Accuracy achieved by most

of the LLMs significantly exceeded the results reported by

Vargas et al. [2020], in which traditional classifiers includ-

ing Naive Bayes, Decision Trees, and SVM—specifically

trained on this dataset—achieved accuracy scores ranging be-

tween 0.48 and 0.63 (accuracy results were obtained from the

supplementary materials available in the paper’s repository).

Some recent-generation smaller-scale LLMs (between 7
and 13 billion parameters) demonstrate statistically equiv-

alent performance to SOTA large-scale models (over 70
billion parameters) for Portuguese sentiment analysis.

Considering the primary evaluation metric, Accuracy, the

analysis showed statistical equivalence (Figure 7) between

large-scale SOTA models such as DeepSeek-V3 (mean Accu-
racy: 0.9358) and GPT-4o (mean Accuracy: 0.9351) when
compared with smaller-scale LLMs such as Gemma-2-9B-
Instruct (mean Accuracy: 0.9337) and Qwen-2-7B-Instruct
(mean Accuracy: 0.9232). This pattern of statistical equiva-
lence was also observed in the comparison between GPT-4o
and the smaller-scale Brazilian Portuguese specialized model

InternLM-ChatBode-7B (mean Accuracy: 0.9010).
These findings represent a significant contribution to the

debate on the relationship between scale and performance

in NLP tasks for languages beyond English. Although mod-

els with a larger number of parameters, such as Claude-3.5-
Sonnet and Sabiá-3, achieved the best absolute Accuracy

averages (0.9481 and 0.9457, respectively), the ability of

smaller and more recent models to achieve statistically com-

parable performance challenges the premise that larger scale

necessarily results in better performance for specific tasks in

languages not dominant in training datasets.

The demonstration that smaller-scale models can effec-

tively compete with large LLMs has significant practical

implications. These smaller models represent viable alter-

natives both from a performance perspective and computa-

tional efficiency, enabling their execution on more modest

and economically accessible hardware infrastructures. This

characteristic amplifies their potential application in contexts

with computational resource constraints, particularly relevant

for researchers and developers working with Brazilian Por-

tuguese.

The experimental results reveal a consistent pattern of

cross-generational improvements within language model

families when evaluated on Brazilian Portuguese senti-

ment analysis. This evolution manifests in multiple perfor-

mance dimensions including mean Accuracy, mean Macro

F1 Score, and hallucination rates. The comparative analy-
sis demonstrates how newer generations of the same model

family tend to exhibit enhanced capabilities in processing

Portuguese text.

The results indicate a significant improvement in Brazil-

ian Portuguese performance of Gemma-2-9B-Instruct com-
pared to its previous version, Gemma-7B-Instruct. While

Gemma-7B-Instruct achieved an average Accuracy of 0.8276
and an average F1 Score of 0.4915 (Table 6), ranking lower
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among smaller-scale models, the Gemma-2-9B-Instruct ver-
sion recorded an average Accuracy of 0.9337 and an F1 Score
of 0.7851, along with a 98.67% reduction in hallucinations,

positioning it as the top general small-scale model. It is worth

noting that the developers emphasize that neither the first nor

the second generation of Gemma models have multilingual

aspirations [Gemma Team et al., 2024a,b].

The statistically significant difference in Accuracy (Fig-

ure 7) and Macro F1 Score (Figure 8) between LLaMA-3-8B
and earlier LLaMA-based models such as Bode-7B,
Bode-13B, and Sabiá-7B demonstrates the evolution of

LLaMA’s capabilities for Brazilian Portuguese across gen-

erations. This is evidenced by results reported by Pires et al.

[2023] and Garcia et al. [2024], which indicate the superior-

ity of Sabiá-7B models compared to their base LLaMA-7B
model, and of Bode7B and 13B compared to LLaMA-2-7B
and LLaMA-2-13B.
The LLaMA family has been expanding its multilin-

gual capabilities with each new version [Meta, 2024],

with LLaMA-3.1-8B being explicitly designed to offer

enhanced support for multiple languages including Por-

tuguese. However, despite this targeted multilingual ex-

pansion, LLaMA-3.1-8B showed significantly lower perfor-

mance than LLaMA-3-8B (which does not claim specific

multilingual capabilities) [Grattafiori et al., 2024] in both

evaluation metrics. Furthermore, version 3.1 produced 27
times more responses categorized as hallucinations than ver-

sion 3.
Qualitative analysis of the responses generated by

LLaMA-3.1-8B revealed a pattern of task misinterpretation

that warrants further examination. In responses classified

as hallucinations, rather than producing the required JSON

output object, the model frequently generated code snippets

related to machine learning algorithms for sentiment classifi-

cation. This behavior suggests potential limitations in prompt

understanding or instruction following. One plausible ex-

planation is, again, the relative complexity of the provided

prompt structure, which may have exceeded the model’s abil-

ity to accurately parse and respond to multi-part instructions

in Portuguese.

This hypothesis is particularly noteworthy given that,

according to the developers [Grattafiori et al., 2024],

LLaMA-3.1-8Bwas specifically designedwith enhancedmul-

tilingual support including Portuguese, which theoretically

should have resulted in superior performance compared to

LLaMA-3-8B. These contradictory findings highlight the im-
portance of prompt engineering and testing when deploying

multilingual language models, as expanded language capabil-

ities may not necessarily translate to improved task perfor-

mance across all instruction contexts.

The evolution of large-scale models fine-tuned for Brazil-

ian Portuguese was also evident in the experimental results.

The comparative analysis between specialized PT-BRmodels,

Sabiá-3 and Sabiá-2-Medium (as illustrated in Figure 7 and

Figure 8), indicated a rejection of the null hypothesis (H0) for
both evaluated metrics. These findings suggest that Sabiá-3
significantly outperforms Sabiá-2-Medium in terms of both

average Accuracy (0.9457 versus 0.9086) and average F1
Score (0.8267 versus 0.7189). Additionally, Sabiá-3 demon-
strated enhanced response reliability, exhibiting a substan-

tially lower hallucination rate (0.11% compared to 0.66%),

which represents an approximate 83% reduction in hallucina-

tions.

6 Limitations

This research presents several methodological and scope lim-

itations that warrant consideration. The experimental design

decisions, while methodologically justified, introduce spe-

cific constraints that may influence the interpretation and

generalizability of our findings.

As discussed in Section 4.4, the random selection of 6
demonstrations for In-Context Learning, while methodologi-

cally feasible, may introduce instabilities in language model

performance. Recent studies [Liu et al., 2022; Lu et al., 2022;

Rubin et al., 2022; Ye et al., 2023] demonstrate that system-

atic and automated selection and ordering of demonstrations

can significantly enhance predictive performance.

Similarly, the manual construction of prompts used in the

experiments, although following established guidelines for

optimizing response effectiveness, may not have fully ex-

plored the optimization potential that other methods could

provide, possibly resulting in sub-optimal model performance

[Reynolds andMcDonell, 2021; Zhou et al., 2022;Wang et al.,

2022]. This limitation represents a methodological consider-

ation that may have served as a potential confounder in our

comparative analysis, as different models may exhibit varying

degrees of sensitivity to prompt formulation and demonstra-

tion selection strategies.

Furthermore, the complexity and structure of the crafted

prompt may differentially affect models performance, with

smaller-scale language models potentially exhibiting greater

sensitivity to prompt complexity compared to their larger

counterparts. Future research should investigate how prompt

complexity influences model performance across different

architectural scales and explore diverse prompt engineering

techniques to identify approaches that are both adequate and

effective for the majority of evaluated models, thereby reduc-

ing the methodological bias introduced by manual prompt

construction.

A fundamental methodological consideration that perme-

ates this entire study concerns the inherent non-deterministic

behavior of LLMs, which directly impacts the reproducibility

of our findings. This output variability stems from multiple

sources including algorithmic factors (sampling strategies

and model architecture), implementation aspects (floating-

point precision variations, distributed computing and opti-

mizations), and system-level considerations [Yu, 2023; Song

et al., 2024; Atil et al., 2025; Klishevich et al., 2025].

Although we implemented conservative generation parame-

ters and employed structured response parsing to enhance con-

sistency, the single-run evaluation approach adopted, while

methodologically justified by computational and financial

constraints, limits the statistical robustness of our compara-

tive conclusions. Future research should consider multi-run

evaluations with appropriate statistical analysis to better char-

acterize the variance inherent in LLM performance assess-

ments.

Compounding these reproducibility challenges, our experi-
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mental setup utilized different hardware configurations (L4
GPUs and A100 GPUs) across models, which may introduce
subtle variations in computational outcomes. Additionally,

the consumption of proprietary APIs for several key models

presents ongoing challenges, as these systems undergo contin-

uous updates without public notification, potentially altering

their behavior between evaluation periods and compromising

long-term reproducibility.

Another methodological limitation concerns the absence of

comprehensive evaluation regarding potential model contam-

ination with respect to the datasets used in this study. Large

language models are trained on vast corpora of text, which

may include portions of public datasets similar or identical to

those used in our evaluation.

This contamination could introduce biases in our analysis,

potentially inflating performance metrics for certain models

while providing an inaccurate representation of their actual

generalization capabilities [Sainz et al., 2023; Dong et al.,

2024]. Future work should implement rigorous contamination

detection methods to ensure that performance evaluations

reflect genuine model capabilities rather than memorization

of previously encountered data [Elangovan et al., 2021].

Furthermore, a relevant methodological and ethical limita-

tion is the absence of a systematic investigation into biases,

such as social and demographics. This limitation is primarily

linked to an inherent challenge in the NLP field: the construc-

tion of datasets that are simultaneously comprehensive, high-

quality, and annotated to permit the analysis of diverse biases.

Creating datasets with these characteristics is a highly com-

plex task, involving substantial costs in time and resources.

As a result, it is common for developers of such resources to

prioritize certain features over others.

Thus, conducting a bias analysis on existing datasets be-

comes an initiative as complex and costly as creating a new re-

source annotated specifically for this purpose. Consequently,

our analysis could not determine whether the models exhibit

differential performance across the diverse linguistic varia-

tions of Brazilian Portuguese or among different demographic

groups. This gap is particularly relevant given that the training

data of LLMs themselves may also not equitably represent all

segments of speakers, specially in low resources languages, in-

troducing another latent biases that our evaluation was unable

to detect. Therefore, we encourage future work to consider

methodologies that enable the analysis of these biases.

Beyond methodological constraints, the study’s scope

presents important limitations regarding the breadth of eval-

uation. The analysis focused on a restricted set of models

(23) and exclusively evaluated binary sentiment classification
tasks. This delimitation may restrict the generalization of

results to other natural language processing tasks, limiting the

applicability of findings in broader contexts where different

linguistic phenomena, task complexities, or domain-specific

requirements might reveal alternative performance patterns.

Finally, environmental and transparency considerations

represent an emerging limitation that extends beyond this

study to the broader field of LLM research. As discussed

in Subsection 5.1, the absence of carbon footprint data from

proprietary models and/or those consumed via API, or at

minimum, information that would enable estimation of these

values, represents a limitation not only of the present study

but of all research utilizing these LLMs.

This lack of transparency, often concealed behind com-

mercial justifications but also resulting from the absence of

standardized guidelines for climate reporting [Hershcovich

et al., 2022], may obscure the real effects of the complex

interaction between utility benefits and environmental costs

[Strubell et al., 2020; Bender et al., 2021]. While open-source

models allow for more precise environmental and compu-

tational cost assessments, the proprietary nature of leading

commercial LLMs prevents comprehensive environmental

impact evaluation across all evaluated models.

7 Conclusion

This study conducted an extensive comparative analysis of

Large Language Models’ capabilities in binary sentiment

classification for Brazilian Portuguese texts. We evaluated 23
LLMs comprising 13 state-of-the-art multilingual models and
10models fine-tuned specifically for the Portuguese language,
testing their performance across 12 annotated datasets using
the in-context learning paradigm.

Our findings demonstrate that both large-scale and small-

scale LLMs exhibit significant effectiveness in sentiment

analysis of Brazilian Portuguese texts. Large models such

as Claude-3.5-Sonnet, DeepSeek-V3, GPT-4o, and Sabiá-3
achieved outstanding results, with average accuracies exceed-

ing 93% andminimal hallucination rates. Notably, the special-

ized model Sabiá-3 performed comparably to leading multi-
lingual models, indicating that high-quality language-specific

optimization can match the capabilities of general-purpose

large-scale LLMs.

Smaller models (7-13B parameters) also demon-

strated competitive performance, with top performers

like Gemma-2-9B-Instruct, Qwen-2-7B-Instruct, and

LLaMA-3-8B-Instruct achieving accuracies above 91%.

Among Portuguese-specialized smaller models, Bode-3.1-8B-
Instruct-lora and InternLM-ChatBode-7B showed the most

promising results. These findings suggest that smaller, more

efficient models can serve as viable alternatives for practical

applications in resource-constrained environments.

Our comparative analysis revealed several noteworthy pat-

terns. First, newer generations within model families con-

sistently outperformed their predecessors in Brazilian Por-

tuguese sentiment analysis, highlighting the rapid advance-

ment in LLM capabilities. Second, linguistic specialization

through fine-tuning demonstrated mixed results—while sub-

stantially reducing hallucination rates for some models (par-

ticularly in the Bode family), it did not consistently yield

significant performance improvements across all metrics and

model types.

The study also uncovered interesting behavioral patterns

among different model categories. Small-scale models ex-

hibited a tendency toward overgeneration despite explicit

instructions, producing additional unnecessary text beyond

the requested format. This finding suggests that further re-

search into prompting techniques and model adaptation may

be beneficial for optimizing thesemodels for structured output

tasks.

In the broader context of sentiment analysis for Brazil-
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ian Portuguese, our experimental results significantly outper-

formed previously reported benchmarks that used traditional

machine learning approaches specifically trained for this task.

This demonstrates the considerable potential of in-context

learning with LLMs as an efficient alternative to traditional

supervised learning approaches for Portuguese NLP tasks.

Future research directions could address several limitations

of the current study. First, developing systematic method-

ologies for demonstration selection and prompt optimization

could further enhance models performance. Second, expand-

ing the evaluation to include more complex NLP tasks be-

yond binary sentiment classification would provide a more

comprehensive assessment of these models’ capabilities in

Portuguese. Finally, a deeper qualitative analysis of selected

datasets and LLMs could yield important findings about bi-

ased performance across different demographic groups or

linguistic variations within Brazilian Portuguese.

In conclusion, this study contributes to the growing body

of research on multilingual and language-specialized LLMs

by providing empirical evidence of their effectiveness in Por-

tuguese natural language processing. The results demonstrate

that both approaches—general-purpose multilingual models

and Portuguese-specialized models—offer viable paths for-

ward, with their relative advantages depending on specific

use cases and deployment constraints.
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A Consolidated Experimental Results

This appendix section presents a view of the experimental

results obtained in the comparative analysis of generalist and

Portuguese fine-tuned Language Models. The detailed tables

showcase various aspects of model performance and behavior

during the sentiment analysis task.

Table 7. Descriptive statistics of output token generation across

models, quantified using the OpenAI Tiktoken o200k_base tok-

enizer.

Scale
Linguistic

Fine-tuning
Model Mean Standard Deviation Median Min Max

Baselines Strong Classifier (DeepSeek-R1) 13.12 4.84 14 4 231

Large-scale

(>70B)

Generalist

Claude-3.5-Sonnet 11.01 0.18 11 11 17

DeepSeek-V3 11.33 1.09 11 10 21

GPT-4o 10.00 0.02 10 10 11

Gemini-1.5-Pro 6.95 0.56 7 0 7

PT-BR
Sabiá-3 11.01 0.22 11 11 19

Sabiá-2-Medium 7.34 1.30 7 6 16

Small-Scale

(<13B)

Generalist

Gemma-2-9B-Instruct 14.18 2.29 15 9 22

Qwen-2-7B-Instruct 7.15 0.86 7 7 16

LLaMA-3-8B-Instruct 54.15 45.40 96 7 140

InternLM-2-7B-Chat 16.87 0.81 17 15 18

DeepSeek-R1-Distill-LLaMA-8B 17.15 0.78 17 16 19

DeepSeek-R1-Distill-Qwen-7B 18.47 1.08 19 1 21

Gemma-7B-Instruct 13.94 0.63 14 6 16

LLaMA-3.1-8B-Instruct 102.78 20.27 96 7 171

PT-BR

Bode-3.1-8B-Instruct-lora 16.01 4.63 18 0 21

InternLM-ChatBode-7B 15.61 1.39 15 13 18

CabraLLaMA-3-8B 15.16 5.32 19 0 20

CabraMistral-v3-7B-32k 14.92 0.44 15 12 18

GemBode-7B-Instruct 18.56 2.38 19 0 25

Bode-7B 10.27 2.96 13 3 14

Bode-13B 7.59 1.78 7 7 15

Sabiá-7B 8.04 0.54 8 3 11

Table 7 presents descriptive statistics of output token gen-

eration across all evaluated models. For each LLM, the table

quantifies mean, standard deviation, median, minimum, and

maximum of output tokens produced during sentiment anal-

ysis. All token counts were calculated using the OpenAI

Tiktoken o200k_base tokenizer for standardization purposes.

It is worth noting that the reported counts may be slightly
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Table 8. Accuracy obtained per model and dataset, stratified by scale and linguistic specialization.

Datasets

Scale
Linguistic

Fine-Tuning
Model IMDB_PT SST2_PT TweetSentBR ReLI Computer-BR MTMSLA CSP-Eletrônicos CSP-Livros 4P Corpus RePro OPCovidBR TA-Restaurantes

Baselines
Weak Classifier (Train set majority class) 0.5000 0.5092 0.6071 0.8262 0.6953 0.5784 0.6842 0.4857 0.8201 0.5449 0.5041 0.9027

Strong Classifier (DeepSeek R1) 0.9544 0.9323 0.9177 0.9378 0.9609 0.9902 0.9211 0.9714 0.9784 0.9921 0.8130 0.9115

Large Sacle

(70B)

Generalist

Claude-3.5-Sonnet 0.9548 0.9507 0.9217 0.9713 0.9609 0.9608 0.9211 1.0000 0.9892 0.9960 0.8211 0.9292

DeepSeek-V3 0.9508 0.9117 0.9183 0.9346 0.9453 0.9804 0.9474 0.9714 0.9856 0.9908 0.7642 0.9292

GPT-4o 0.9484 0.9312 0.9250 0.9442 0.9609 0.9902 0.8421 1.0000 0.9856 0.9914 0.7642 0.9381

Gemini-1.5-Pro 0.9344 0.9037 0.9284 0.9298 0.9531 0.9804 0.8947 0.9714 0.9856 0.9941 0.7073 0.9115

PT-BR
Sabiá-3 0.9518 0.9300 0.9210 0.9474 0.9453 0.9804 0.9737 1.0000 0.9856 0.9947 0.7805 0.9381

Sabiá-2-Medium 0.9478 0.9128 0.6847 0.9298 0.9063 0.9608 0.8947 1.0000 0.9640 0.9855 0.7967 0.9204

Small Scale

(13B)

Generalist

Gemma-2-9B-Instruct 0.9404 0.9278 0.9016 0.9378 0.9063 0.9412 0.9474 1.0000 0.9784 0.9901 0.8049 0.9292

Qwen-2-7B-Instruct 0.9422 0.8807 0.8768 0.9378 0.8828 0.9510 0.9474 1.0000 0.9748 0.9842 0.7805 0.9204

LLaMA-3-8B-Instruct 0.9376 0.8796 0.8742 0.9346 0.8750 0.9412 0.9474 0.9714 0.9712 0.9763 0.7886 0.9292

InternLM-2-7B-Chat 0.9334 0.8670 0.8226 0.9362 0.8672 0.8824 0.9737 0.8857 0.9568 0.9782 0.7561 0.9292

DeepSeek-R1-Distill-LLaMA-8B 0.9096 0.8658 0.8380 0.9187 0.8672 0.9314 0.9211 0.9714 0.8813 0.9802 0.7398 0.9027

DeepSeek-R1-Distill-Qwen-7B 0.8780 0.8108 0.7965 0.8868 0.8281 0.9118 0.7895 0.9143 0.9281 0.9657 0.7236 0.9027

Gemma-7B-Instruct 0.7452 0.8498 0.7557 0.8963 0.7422 0.7255 0.8421 0.8857 0.9137 0.9505 0.7480 0.8761

LLaMA-3.1-8B-Instruct 0.9018 0.7041 0.8159 0.8931 0.8516 0.7255 0.5000 0.8571 0.6043 0.8536 0.7154 0.6814

PT-BR

Bode-3.1-8B-Instruct-lora 0.9138 0.8865 0.8327 0.9378 0.8906 0.9510 0.8947 0.9714 0.9424 0.9855 0.7642 0.8938

InternLM-ChatBode-7B 0.9396 0.8429 0.8112 0.9458 0.8594 0.8824 0.9737 0.9429 0.9532 0.9710 0.7967 0.8938

CabraLLaMA-3-8B 0.9214 0.8681 0.7731 0.9330 0.8281 0.8529 0.9211 0.9429 0.9496 0.9723 0.7561 0.9292

CabraMistral-v3-7B-32k 0.8896 0.8670 0.8246 0.9266 0.8359 0.8824 1.0000 0.9143 0.9460 0.9769 0.5935 0.9204

GemBode-7B-Instruct 0.9228 0.8280 0.7764 0.9171 0.7969 0.7451 0.9737 0.9714 0.9640 0.9551 0.6504 0.9027

Bode-7B 0.9208 0.8268 0.7222 0.9123 0.7266 0.8529 0.9211 0.9714 0.9604 0.9420 0.6341 0.9204

Bode-13B 0.9092 0.8073 0.7577 0.8708 0.8047 0.8333 0.8947 0.9143 0.9137 0.9156 0.6098 0.9027

Sabiá-7B 0.5970 0.5493 0.6198 0.8628 0.3906 0.6275 0.7895 0.6000 0.8345 0.6788 0.5041 0.9027

higher than the expected limits described in the methodology

section (see Table 3) due to the use of a different tokenizer

than those employed by the models during inference. This

table provides insights into the verbosity characteristics and

response consistency of each model when performing senti-

ment analysis tasks in Brazilian Portuguese.

Table 8 presents the raw experimental results for each

model across all evaluated datasets, organized by Accuracy.

Models are arranged according to their scale (LLMs with

more than 70 billion parameters and LLMs with less than 13
billion parameters) and linguistic specialization (generalist

versus Portuguese fine-tuned), then listed in descending order

based on their mean Accuracy performance. The table in-

cludes two baseline references: a weak classifier representing

the majority class in each training set, and a strong classifier

implemented with DeepSeek-R1. This organization enables
detailed analysis of how each model performs across differ-

ent domains represented by the twelve Brazilian Portuguese

sentiment analysis datasets.

Table 9 complements the accuracy analysis by presenting

the Macro F1 Score for each model-dataset combination. This
metric is particularly valuable as it provides a more balanced

assessment when dealing with class imbalance, which is com-

mon in several of the evaluated datasets. Unlike accuracy,

which can be artificially inflated in imbalanced scenarios, the

Macro F1 Score gives equal weight to each class by calculat-
ing the harmonic mean of precision and recall independently

for each class before averaging.

This approach reveals important nuances that might be ob-

scured when relying solely on accuracy metrics. For instance,

models with comparable accuracy values may exhibit sub-

stantial differences in their F1 Scores, indicating variations in
their ability to correctly identify both positive and negative

sentiments with equal proficiency.

Understanding the relationship between model hallucina-

tions and performance metrics is crucial for an extensive

evaluation of LLMs. As discussed in Subsection 4.5, hal-

lucinations significantly impact the calculation of Macro F1
Score, as these instances receive a local score of zero for the

hallucination class, which reduces the overall metric value

despite not affecting the accuracy in the same way. This rela-

tionship explains some of the discrepancies observed between

the Accuracy and F1 Score results in the previous tables.

Table 11 provides a consolidated view of hallucination

statistics across all evaluated language models, maintaining

the same stratification by scale and linguistic specialization.

The table quantifies the absolute count of hallucinations, the

number of distinct datasets where hallucinations occurred, the

percentage of total hallucinations attributed to each model,

and the mean hallucination count per dataset.

Table 10 displays the raw results for hallucination occur-

rences across all experiments. This detailed breakdown al-

lows for the identification of specific model-dataset combina-

tions that are particularly prone to hallucinations, revealing

patterns that may not be apparent in the consolidated statistics.

For instance, some models demonstrate consistent halluci-

nation behavior across multiple datasets, while others show

pronounced vulnerability only with specific data types or

domains. This granular view provides researchers and practi-

tioners with insights into the reliability constraints of different

LLMs when processing Brazilian Portuguese content for sen-

timent analysis tasks.

B Hypotesis Testing

This section presents the details of the hypothesis tests con-

ducted to evaluate the statistical significance of performance

differences between the language models. The Wilcoxon

signed-rank test [Wilcoxon, 1945] was chosen due to several

advantageous characteristics compatible with the experiments:

it is robust for small sample sizes, makes no assumptions

about the data distribution, and is a non-parametric alterna-

tive to the paired t-test [Scheff, 2016; Holmes, 2020].

The paired nature of this test is well-suited for the experi-

mental design, where 23 different language models were com-
pared against each other across the same set of 12 datasets.
This approach is methodologically appropriate since all mod-

els processed identical test instances with the same prompts,

creating naturally matched pairs of observations. The paired
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Table 9. Macro F1 Score obtained per model and dataset, stratified by scale and linguistic specialization.

Datasets

Scale
Linguistic

Fine-Tuning
Model IMDB_PT SST2_PT TweetSentBR ReLI Computer-BR MTMSLA CSP-Eletrônicos CSP-Livros 4P Corpus RePro OPCovidBR TA-Restaurantes

Baselines
Weak Classifier (Train set majority class) 0.3333 0.3374 0.3778 0.4524 0.4101 0.3665 0.4063 0.3269 0.4506 0.3527 0.3351 0.4744

Strong Classifier (DeepSeek R1) 0.6365 0.6222 0.6096 0.9023 0.9529 0.9900 0.9138 0.9714 0.6461 0.9920 0.8126 0.7669

Large Sacle

(>70B)

Generalist

Claude-3.5-Sonnet 0.9548 0.9507 0.9156 0.9518 0.9529 0.9595 0.9138 1.0000 0.9821 0.9960 0.8210 0.8135

DeepSeek-V3 0.9508 0.6091 0.6114 0.8960 0.6303 0.6609 0.9415 0.9714 0.6540 0.6613 0.7632 0.8135

GPT-4o 0.9484 0.9312 0.9208 0.9118 0.9529 0.9900 0.8348 1.0000 0.9763 0.9914 0.7611 0.8426

Gemini-1.5-Pro 0.6257 0.6066 0.9250 0.8901 0.9447 0.9799 0.8869 0.9714 0.9763 0.9940 0.4903 0.7827

PT-BR
Sabiá-3 0.6349 0.9300 0.6110 0.6110 0.9350 0.9799 0.9702 1.0000 0.9756 0.6636 0.7790 0.8306

Sabiá-2-Medium 0.6336 0.6099 0.4480 0.5958 0.6020 0.9595 0.8869 1.0000 0.6377 0.6596 0.7963 0.7976

Small Scale

(<13B)

Generalist

Gemma-2-9B-Instruct 0.6270 0.6196 0.8937 0.8965 0.5957 0.9388 0.9391 1.0000 0.6458 0.6616 0.8048 0.7986

Qwen-2-7B-Instruct 0.6293 0.5877 0.8653 0.5947 0.5793 0.9496 0.9415 1.0000 0.6423 0.6578 0.5252 0.7414

LLaMA-3-8B-Instruct 0.6255 0.5874 0.5763 0.5914 0.8545 0.6285 0.9415 0.9714 0.6373 0.6528 0.5301 0.7806

InternLM-2-7B-Chat 0.6225 0.8656 0.8013 0.8856 0.8520 0.8755 0.9688 0.8833 0.9268 0.9780 0.7488 0.7806

DeepSeek-R1-Distill-LLaMA-8B 0.9093 0.8658 0.8339 0.8569 0.8465 0.9289 0.9138 0.9714 0.5564 0.9801 0.7384 0.7113

DeepSeek-R1-Distill-Qwen-7B 0.5862 0.8103 0.7834 0.5368 0.8026 0.9103 0.7841 0.9143 0.5964 0.6460 0.7231 0.7113

Gemma-7B-Instruct 0.5405 0.5727 0.4828 0.5454 0.4920 0.4661 0.5832 0.6074 0.5747 0.6428 0.5127 0.4314

LLaMA-3.1-8B-Instruct 0.6138 0.5330 0.5569 0.5741 0.5740 0.5371 0.4561 0.6148 0.5114 0.6116 0.5097 0.3611

PT-BR

Bode-3.1-8B-Instruct-lora 0.6091 0.5921 0.5433 0.5978 0.8744 0.9499 0.6000 0.9714 0.6245 0.6574 0.7620 0.5040

InternLM-ChatBode-7B 0.9395 0.8391 0.7852 0.8997 0.8458 0.8755 0.9688 0.9428 0.9188 0.6473 0.7923 0.6709

CabraLLaMA-3-8B 0.6182 0.5795 0.7203 0.5794 0.8151 0.8400 0.9106 0.9424 0.9104 0.6481 0.7501 0.7806

CabraMistral-v3-7B-32k 0.5924 0.8663 0.8078 0.5809 0.8151 0.8728 1.0000 0.9140 0.9093 0.9767 0.5091 0.7414

GemBode-7B-Instruct 0.6164 0.5505 0.4886 0.5492 0.7867 0.4639 0.9702 0.6566 0.9370 0.6380 0.6135 0.6073

Bode-7B 0.6142 0.5499 0.6551 0.5615 0.7190 0.8451 0.9013 0.9713 0.9302 0.6284 0.5999 0.7638

Bode-13B 0.6069 0.5583 0.4826 0.5491 0.5289 0.5531 0.6107 0.6344 0.5945 0.6232 0.3694 0.4438

Sabiá-7B 0.4716 0.4222 0.2760 0.6359 0.3600 0.4824 0.6833 0.5100 0.5283 0.6135 0.3351 0.4744

Table 10. Hallucination statistics across language models categorized by scale and linguistic specialization.

Datasets

Scale
Linguistic

Fine-Tuning
Model IMDB_PT SST2_PT TweetSentBR ReLI Computer-BR MTMSLA CSP-Eletrônicos CSP-Livros 4P Corpus RePro OPCovidBR TA-Restaurantes

Baselines
Weak Classifier (Train set majority class)

Strong Classifier (DeepSeek R1) 4 2 1 1

Large Sacle

(>70B)

Generalist

Claude-3.5-Sonnet

DeepSeek-V3 4 12 3 2 1 4

GPT-4o

Gemini-1.5-Pro 44 12 11

PT-BR
Sabiá-3 6 2 1 2

Sabiá-2-Medium 27 4 18 1 2 4 12

Small Scale

(<13B)

Generalist

Gemma-2-9B-Instruct 1 3 1 1 7

Qwen-2-7B-Instruct 18 4 2 1 2 9 3

LLaMA-3-8B-Instruct 7 4 5 1 1 1 10 2

InternLM-2-7B-Chat 6

DeepSeek-R1-Distill-LLaMA-8B 1

DeepSeek-R1-Distill-Qwen-7B 17 1 1 12

Gemma-7B-Instruct 842 19 19 18 7 5 3 2 8 44 7 5

LLaMA-3.1-8B-Instruct 207 211 105 31 6 22 7 5 35 207 16 5

PT-BR

Bode-3.1-8B-Instruct-lora 2 5 6 4 1 7 2 3

InternLM-ChatBode-7B 1

CabraLLaMA-3-8B 63 5 1 1

CabraMistral-v3-7B-32k 1 1

GemBode-7B-Instruct 20 4 1 2 1 1 8

Bode-7B 5 5 5 6

Bode-13B 15 68 30 37 5 2 2 3 16 71 2 3

Sabiá-7B 1.469 3

Table 11. Hallucination counts per model and dataset, stratified by

scale and linguistic specialization.

Scale
Linguistic

Fine-Tuning
Model Count

Distinct

Datasets
% of Total Mean

Baselines
Weak Classifier (Train set majority class) 0 0 0.00% 0

Strong Classifier (DeepSeek R1) 8 4 0.08% 1

Large Sacle

(>70B)

Generalist

Claude-3.5-Sonnet 0 0 0.00% 0

DeepSeek-V3 26 6 0.25% 2

GPT-4o 0 0 0.00% 0

Gemini-1.5-Pro 67 3 0.65% 6

PT-BR
Sabiá-3 11 4 0.11% 1

Sabiá-2-Medium 68 7 0.66% 6

Small Scale

(<13B)

Generalist

Gemma-2-9B-Instruct 13 5 0.13% 1

Qwen-2-7B-Instruct 39 7 0.38% 3

LLaMA-3-8B-Instruct 31 8 0.30% 3

InternLM-2-7B-Chat 6 1 0.06% 1

DeepSeek-R1-Distill-LLaMA-8B 1 1 0.01% 0

DeepSeek-R1-Distill-Qwen-7B 31 4 0.30% 3

Gemma-7B-Instruct 979 12 9.48% 82

LLaMA-3.1-8B-Instruct 857 12 8.30% 71

PT-BR

Bode-3.1-8B-Instruct-lora 30 8 0.29% 3

InternLM-ChatBode-7B 1 1 0.01% 0

CabraLLaMA-3-8B 70 4 0.68% 6

CabraMistral-v3-7B-32k 2 2 0.02% 0

GemBode-7B-Instruct 37 7 0.36% 3

Bode-7B 21 4 0.20% 2

Bode-13B 254 12 2.46% 21

Sabiá-7B 1.472 2 14.25% 123

design accounts for inherent differences in difficulty lev-

els, class distributions, and linguistic characteristics across

datasets, enabling a more direct comparison of model capabil-

ities by focusing on relative differences rather than absolute

performance values.

Results of Wilcoxon tests for paired groups with 5% signif-

icance level for Accuracy metric are consolidated in Figure 7.

The test evaluates the H0 hypothesis that two related paired
samples come from the same distribution, in other words,

tests if the difference between paired observations in the pop-

ulation is zero. The Green circle symbol indicates sufficient

evidence to reject H0 in favor of H1 : Model 1 > Model 2.

The Red circle symbol indicates sufficient evidence to reject

H0 in favor of H1 : Model 1 < Model 2 at the established

significance level. Yellow circle indicates no sufficient evi-

dence to reject H0. White circle indicates that the evaluated

models are identical, therefore the test was not applied.

Similarly, Figure 8 presents the results of the Wilcoxon

signed-rank tests for the Macro F1 Score metric, using the
same significance level and visual encoding scheme than
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Baselines
Weak Classifier (Majority Train Class) ⚪ 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡

Strong Classifier (DeepSeek-R1) 🟢 ⚪ 🟡 🟡 🟡 🟡 🟡 🟢 🟡 🟡 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

Large-scale
(>70B)

Generalist

Claude-3.5-Sonnet 🟢 🟡 ⚪ 🟡 🟡 🟢 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

DeepSeek-V3 🟢 🟡 🟡 ⚪ 🟡 🟡 🔴 🟡 🟡 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

GPT-4o 🟢 🟡 🟡 🟡 ⚪ 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟡 🟢 🟢 🟢 🟢 🟢 🟢

Gemini-1.5-Pro 🟢 🟡 🔴 🟡 🟡 ⚪ 🔴 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢 🟢 🟡 🟡 🟡 🟢 🟢 🟢 🟢 🟢

PT-BR
Sabiá-3 🟢 🟡 🟡 🟢 🟡 🟢 ⚪ 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

Sabiá-2-Medium 🟢 🔴 🔴 🟡 🟡 🟡 🔴 ⚪ 🟡 🟡 🟡 🟡 🟡 🟢 🟢 🟢 🟡 🟡 🟡 🟡 🟡 🟢 🟢 🟢

Small-Scale
 (<13B)

Generalist

Gemma-2-9B-Instruct 🟢 🟡 🔴 🟡 🟡 🟡 🔴 🟡 ⚪ 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

Qwen-2-7B-Instruct 🟢 🟡 🔴 🟡 🟡 🟡 🔴 🟡 🟡 ⚪ 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

LLaMA-3-8B-Instruct 🟢 🟡 🔴 🔴 🟡 🟡 🔴 🟡 🔴 🟡 ⚪ 🟢 🟢 🟢 🟢 🟢 🟡 🟡 🟢 🟢 🟢 🟢 🟢 🟢

InternLM-2-7B-Chat 🟢 🔴 🔴 🔴 🔴 🟡 🔴 🟡 🔴 🔴 🔴 ⚪ 🟡 🟢 🟢 🟢 🟡 🟡 🟡 🟡 🟢 🟢 🟢 🟢

DeepSeek-R1-Distill-LLaMA-8B 🟢 🔴 🔴 🔴 🔴 🟡 🔴 🟡 🔴 🔴 🔴 🟡 ⚪ 🟢 🟢 🟢 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢

DeepSeek-R1-Distill-Qwen-7B 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 ⚪ 🟡 🟢 🔴 🔴 🟡 🟡 🟡 🟡 🟡 🟢

Gemma-7B-Instruct 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 ⚪ 🟡 🔴 🔴 🔴 🔴 🟡 🟡 🟡 🟢

LLaMA-3.1-8B-Instruct 🟡 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 ⚪ 🔴 🔴 🔴 🔴 🟡 🟡 🟡 🟡

PT-BR

Bode-3.1-8B-Instruct-lora 🟢 🔴 🔴 🔴 🔴 🟡 🔴 🟡 🔴 🔴 🟡 🟡 🟡 🟢 🟢 🟢 ⚪ 🟡 🟡 🟡 🟡 🟡 🟢 🟢

InternLM-ChatBode-7B 🟢 🔴 🔴 🔴 🟡 🟡 🔴 🟡 🔴 🔴 🟡 🟡 🟡 🟢 🟢 🟢 🟡 ⚪ 🟡 🟡 🟢 🟢 🟢 🟢

CabraLLaMA-3-8B 🟢 🔴 🔴 🔴 🔴 🟡 🔴 🟡 🔴 🔴 🔴 🟡 🟡 🟡 🟢 🟢 🟡 🟡 ⚪ 🟡 🟡 🟢 🟢 🟢

CabraMistral-v3-7B-32k 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🔴 🔴 🔴 🟡 🟡 🟡 🟢 🟢 🟡 🟡 🟡 ⚪ 🟡 🟡 🟢 🟢

GemBode-7B-Instruct 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🔴 🔴 🔴 🔴 🟡 🟡 🟡 🟡 🟡 🔴 🟡 🟡 ⚪ 🟡 🟡 🟢

Bode-7B 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🟡 🟡 🟡 🟡 🔴 🔴 🟡 🟡 ⚪ 🟡 🟢

Bode-13B 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🟡 🟡 🔴 🔴 🔴 🔴 🟡 🟡 ⚪ 🟢

Sabiá-7B 🟡 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🔴 🔴 🔴 🔴 🔴 🔴 🔴 ⚪
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Figure 7. Results of Wilcoxon tests for paired groups with 5% significance level for Accuracy metric.

Figure 7 .

C Qualitative Analysis

This section presents a comprehensive qualitative analysis

of response patterns generated by all 23 evaluated models

across the sentiment classification task. The analysis reveals

distinct behavioral patterns strongly correlated with model

scale. Large-scale models (> 70B) demonstrated superior in-
struction adherence, producing highly concentrated response

distributions with minimal variance from the requested JSON

format.

Conversely, smaller-scale models (<13B) exhibited greater
response fragmentation and systematic generation of struc-

tural artifacts, predominantly derived from prompt elements

such as demonstration examples and task descriptions. De-

spite these formatting inconsistencies, the majority of models

maintained high classification validity rates (> 99.5%), indi-

cating successful task execution even when accompanied by

extraneous content.

The following subsections provide detailed model-by-

model analysis, categorized by scale and linguistic specializa-

tion, examining response consistency, artifact patterns, and

adherence to the specified JSON schema.

C.1 Large-scale models (>70B)

C.1.1 Generalist

DeepSeek-R1 The model demonstrated high consistency

with 97.19% of responses concentrated in five variations

(Table 12) of the requested JSON format, differing only in

quotation marks (single/double) and spacing. The majority

(94.57%) included markdown markers (“ ̀ ̀ ̀json”). The re-

maining 2.81% comprised 8 verbose responses with explana-
tions, 4malformed JSONs, and 4with line breaks. The highly
predictable behavior indicates robustness for automated tasks,

with inconsistencies representing rare events. The response

validity rate was 99.92%.

Table 12. DeepSeek-R1 Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

46

1.  ̀ ̀ ̀json\n{\n ”polaridade”: 1\n}\n ̀ ̀ ̀ 38.61 %

2.  ̀ ̀ ̀json\n{\n ”polaridade”: -1\n}\n ̀ ̀ ̀ 33.79 %

3.  ̀ ̀ ̀json\n{”polaridade”: 1}\n ̀ ̀ ̀ 12.46 %

4.  ̀ ̀ ̀json\n{”polaridade”: -1}\n ̀ ̀ ̀ 9.23 %

5. {’polaridade’: 1} 3.07 %

Claude-3.5-Sonnet The model demonstrated exceptional

performance with 99.86% of responses in the exact expected

JSON format (“{”polaridade”: 1}” or “{”polaridade”:
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Baselines
Weak Classifier (Majority Train Class) ⚪ 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴

Strong Classifier (DeepSeek-R1) 🟢 ⚪ 🔴 🟡 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟡 🟡 🟡 🟢 🟢 🟢 🟡 🟡 🟡 🟢 🟡 🟢 🟢

Large-scale
(>70B)

Generalist

Claude-3.5-Sonnet 🟢 🟢 ⚪ 🟢 🟡 🟢 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

DeepSeek-V3 🟢 🟡 🔴 ⚪ 🔴 🟡 🟡 🟡 🟡 🟡 🟢 🟡 🟡 🟡 🟢 🟢 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢

GPT-4o 🟢 🟡 🟡 🟢 ⚪ 🟢 🟡 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢 🟢

Gemini-1.5-Pro 🟢 🟡 🔴 🟡 🔴 ⚪ 🟡 🟡 🟡 🟡 🟢 🟡 🟡 🟡 🟢 🟢 🟢 🟡 🟢 🟡 🟢 🟢 🟢 🟢

PT-BR
Sabiá-3 🟢 🟡 🟡 🟡 🟡 🟡 ⚪ 🟢 🟡 🟢 🟢 🟡 🟡 🟢 🟢 🟢 🟢 🟡 🟢 🟡 🟢 🟢 🟢 🟢

Sabiá-2-Medium 🟢 🟡 🔴 🟡 🔴 🟡 🔴 ⚪ 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢

Small-Scale
 (<13B)

Generalist

Gemma-2-9B-Instruct 🟢 🟡 🔴 🟡 🔴 🟡 🟡 🟡 ⚪ 🟢 🟢 🟡 🟡 🟡 🟢 🟢 🟢 🟡 🟡 🟡 🟡 🟡 🟢 🟢

Qwen-2-7B-Instruct 🟢 🟡 🔴 🟡 🔴 🟡 🔴 🟡 🔴 ⚪ 🟡 🟡 🟡 🟡 🟢 🟢 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢

LLaMA-3-8B-Instruct 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🔴 🟡 ⚪ 🔴 🔴 🟡 🟢 🟢 🟡 🔴 🟡 🟡 🟡 🟡 🟢 🟢

InternLM-2-7B-Chat 🟢 🟡 🔴 🟡 🔴 🟡 🟡 🟡 🟡 🟡 🟢 ⚪ 🟡 🟢 🟢 🟢 🟢 🟡 🟢 🟡 🟢 🟢 🟢 🟢

DeepSeek-R1-Distill-LLaMA-8B 🟢 🟡 🔴 🟡 🔴 🟡 🟡 🟡 🟡 🟡 🟢 🟡 ⚪ 🟢 🟢 🟢 🟢 🟡 🟡 🟡 🟢 🟡 🟢 🟢

DeepSeek-R1-Distill-Qwen-7B 🟢 🟡 🔴 🟡 🔴 🟡 🔴 🟡 🟡 🟡 🟡 🔴 🔴 ⚪ 🟢 🟢 🟡 🔴 🟡 🟡 🟡 🟡 🟢 🟢

Gemma-7B-Instruct 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 ⚪ 🟡 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🟡

LLaMA-3.1-8B-Instruct 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 ⚪ 🔴 🔴 🔴 🔴 🟡 🔴 🟡 🟡

PT-BR

Bode-3.1-8B-Instruct-lora 🟢 🔴 🔴 🟡 🔴 🔴 🔴 🟡 🔴 🟡 🟡 🔴 🔴 🟡 🟢 🟢 ⚪ 🔴 🟡 🟡 🟡 🟡 🟢 🟢

InternLM-ChatBode-7B 🟢 🟡 🔴 🟡 🔴 🟡 🟡 🟡 🟡 🟡 🟢 🟡 🟡 🟢 🟢 🟢 🟢 ⚪ 🟢 🟡 🟢 🟢 🟢 🟢

CabraLLaMA-3-8B 🟢 🟡 🔴 🟡 🔴 🔴 🔴 🟡 🟡 🟡 🟡 🔴 🟡 🟡 🟢 🟢 🟡 🔴 ⚪ 🟡 🟢 🟡 🟢 🟢

CabraMistral-v3-7B-32k 🟢 🟡 🔴 🟡 🔴 🟡 🟡 🟡 🟡 🟡 🟡 🟡 🟡 🟡 🟢 🟢 🟡 🟡 🟡 ⚪ 🟢 🟡 🟢 🟢

GemBode-7B-Instruct 🟢 🔴 🔴 🟡 🔴 🔴 🔴 🟡 🟡 🟡 🟡 🔴 🔴 🟡 🟢 🟡 🟡 🔴 🔴 🔴 ⚪ 🟡 🟢 🟢

Bode-7B 🟢 🟡 🔴 🟡 🔴 🔴 🔴 🟡 🟡 🟡 🟡 🔴 🟡 🟡 🟢 🟢 🟡 🔴 🟡 🟡 🟡 ⚪ 🟢 🟢

Bode-13B 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🟡 🔴 🔴 🔴 🔴 🔴 🔴 ⚪ 🟡

Sabiá-7B 🟢 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🟡 🟡 🔴 🔴 🔴 🔴 🔴 🔴 🟡 ⚪
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Figure 8. Results of Wilcoxon tests for paired groups with 5% significance level for Macro F1 Score metric.

−1}”). Only 0.14% of responses included additional jus-

tifications after the JSON, using markers such as “Justifica-

tiva:”, “Explicação:” or “Explanation:”. All 10, 326 infer-
ences maintained 100% compliance with the requested JSON

schema, resulting in a validity rate of 100%. The model pre-

sented only 13 unique responses (Table 13), indicating high
consistency and minimal variability in outputs.

Table 13. Claude-3.5-Sonnet Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

13

1. \n{\n ”polaridade”: 1\n} 56.01%

2. \n{\n ”polaridade”: -1\n} 43.85 %

3. \n{\n ”polaridade”: -1\n}\n\nEmbora o texto não exp 0.01 %

4. \n{\n ”polaridade”: -1\n}\n\nJustificativa: 0.01 %

5. \n{\n ”polaridade”: -1\n}\n\nJustificativa: 0.01 %

DeepSeek-V3 The model produced 61 distinct responses
(Table 14), with 98.74% concentrated in 6 valid variations
that alternated between single/double quotes and inline/multi-

line formatting. The remaining 1.26% (55 variations) in-

cluded artifacts such as “Agora, realize a classificação”

(0.51%), unsolicited explanations like “Para classificar o

sentimento” or “Para realizar a classificação” (0.24%) and

the fragment “Classificação de Sentimento:” (0.14%). The

model presented a high response validity rate (99.74%)

Table 14. DeepSeek-V3 Generation Overview

Distinct Raw

Responses

Top 5

Occurrences

%

61

1.  ̀ ̀ ̀json\n{’polaridade’: 1}\n ̀ ̀ ̀ 36.82 %

2.  ̀ ̀ ̀json\n{’polaridade’: -1}\n ̀ ̀ ̀ 34.13 %

3.  ̀ ̀ ̀json\n{”polaridade”: 1}\n ̀ ̀ ̀ 12.89 %

4.  ̀ ̀ ̀json\n{”polaridade”: -1}\n ̀ ̀ ̀ 6.44 %

5.  ̀ ̀ ̀json\n{\n ”polaridade”: 1\n}\n ̀ ̀ ̀ 4.56 %

GPT-4o The model presented high consistency with only 4
distinct responses (Table 15), with a validity rate of 100%. All

responses perfectly followed the requested JSON structure,

containing exclusively the “polaridade” field with correct

values (−1 or 1), without extra fields or verbosity. Variations
were limited to minimal formatting differences: multiline

indentation in the main responses and additional line breaks

in minority variations.

Table 15. GPT-4o Generation Overview.

Distinct Raw

Responses

Top 4

Occurrences
%

4

1. {\n ”polaridade”: 1\n} 53.62%

2. {\n ”polaridade”: -1\n} 46.34 %

3. \n{\n ”polaridade”: 1\n} 0.01 %

4. \n{\n ”polaridade”: -1\n} 0.00 %
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Gemini-1.5-Pro The model produced only 6 distinct re-

sponses (Table 16), demonstrating high consistency in model

behavior and a validity rate of 99.35%. The 5 most frequent
responses represent 99.99% of outputs, all maintaining per-

fect adherence to the requested JSON structure with the “po-

laridade” field and expected values (−1 or 1). The observed
variations were limited to minimal formatting aspects: pres-

ence of one or two line breaks after JSON closure and a

minority case without space after the colon. Notably, 0.65%
of responses were blocked by the model’s security filters,

returning null values

Table 16. Gemini-1.5-Pro Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

6

1. {”polaridade”: 1}\n 44.81 %

2. {”polaridade”: -1}\n 34.99 %

3. {”polaridade”: -1}\n\n 10.50 %

4. {”polaridade”: 1}\n\n 8.96 %

5. NaN 0.65 %

C.1.2 PT-BR

Sabiá-3 The model generated 12 distinct responses (Ta-

ble 17), with 99.89% concentrated in 4main variations. These
responses adhered to the requested JSON format, with consis-

tent use of markdown code blocks and inclusion of the “po-

laridade” field. The remaining 0.11% presented anomalies:

in 0.09% (9 occurrences), the returned value was “{’polari-
dade’: 0}”, outside the [−1, 1] range, generally accompanied
by explanatory notes (e.g., “Note que a saída padrão...”);

in 0.02% (2 occurrences), there were error messages related
to the input text (e.g., “Parece que houve um erro na sua

solicitação”). The overall validity rate was 99.89%.

Table 17. Sabiá-3 Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

12

1.  ̀ ̀ ̀json\n{’polaridade’: 1}\n ̀ ̀ ̀ 51.81 %

2.  ̀ ̀ ̀json\n{’polaridade’: -1}\n ̀ ̀ ̀ 41.77 %

3.  ̀ ̀ ̀json\n{”polaridade”: 1}\n ̀ ̀ ̀ 3.83 %

4.  ̀ ̀ ̀json\n{”polaridade”: -1}\n ̀ ̀ ̀ 2.46 %

5.  ̀ ̀ ̀json\n{’polaridade’: 0}\n ̀ ̀ ̀\n\n

(Note que a saída padrão
0.02 %

Sabiá-2-Medium The 5most frequent responses (Table 18)
account for 91.29% of outputs and present good adherence

to the instruction and specified format. There is a sharp drop

from the 6th (6.22%) to the 7th position (0.53%). Between

positions 6 to23 (8.36%), returns follow the JSON format

but with greater variation in formatting and some cases of

class 0. The remaining 0.34% correspond to error messages,

generally attributed to problems in the input text. The validity

rate of produced responses was 99.34%.

Table 18. Sabiá-2-Medium Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

54

1. {’polaridade’: -1} 39.24 %

2. {’polaridade’: -1} 26.20 %

3. ’polaridade’: -1 10.71 %

4. ’saida’: {’polaridade’: 1} 7.85 %

5. ’saida’: {’polaridade’: -1} 7.28 %

C.2 Small-scale models (<13B)

C.2.1 Generalist

Gemma-2-9B-Instruct The model produced 31 distinct

responses (Table 19), with 95.7% concentrated in the five

main variations, all adhering to the requested JSON structure.

The four most frequent differ only by formatting artifacts (e.g.,

, “ ̀ ̀ ̀ json”), without affecting content. The valid response

rate was 99.87%, with prompt artifacts in 0.20% of cases

and consistency in polarity (values −1 or 1). The remaining
4.25%, distributed across 26 smaller variations, exhibit small
inconsistencies such as decimal values (1.0,−1.0), occasional
JSON duplications, and rare cases of invalid polarity (0).

Table 19. Gemma-2-9B-Instruct Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

31

1. {’polaridade’: 1}\n\n\n\n <end_of_turn><eos > 46.60 %

2. {’polaridade’: -1}\n\n\n\n <end_of_turn><eos > 35.71 %

3. {’polaridade’: 1}\n\n\n\n ̀ ̀ ̀json 8.03 %

4. {’polaridade’: -1}\n\n\n\n ̀ ̀ ̀json 4.60 %

5. {’polaridade’: 1}\n\n\n\n <end_of_turn>\n 0.79 %

Qwen-2-7B-Instruct The model generated 16 distinct re-
sponses (Table 20), with 96.1% concentrated in two main

variations (“{’polaridade’: 1}” and “{’polaridade’: −1}”),
faithfully adhering to the JSON format with single quotes and

no artifacts. The remaining 3.9%were divided into 14 smaller
variations: 2.6% with alternative formatting (“ ̀ ̀ ̀ json”, dou-

ble quotes), 1.2% with decimal values (1.0, −1.0), 0.35%
with invalid polarity (0), and 0.02% with unsolicited explana-

tory responses. The valid response rate was 99.62%, evidenc-

ing excellent adherence to instructions and low incidence of

artifacts.

Table 20. Qwen-2-7B-Instruct Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

16

1. {’polaridade’: 1} 56.19 %

2. {’polaridade’: -1} 39.94 %

3.  ̀ ̀ ̀json\n{”polaridade”: -1}\n ̀ ̀ ̀ 1.10 %

4. {’polaridade’: 1.0} 0.54 %

5.  ̀ ̀ ̀json\n{”polaridade”: 1}\n ̀ ̀ ̀ 0.51 %
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LLaMA-3-8B-Instruct The model presented bimodal be-

havior, with 83.28% of inferences concentrated in five main

variations (Table 21). Two categories stood out: clean re-

sponses with only the polarity JSON (46.5%) and responses

that partially or totally reproduce the original prompt schema

(51.4%), including fields such as “’type’: ’object’” and “’de-

scription’: ’Objeto de saída...’”. The top ten responses to-

taled 93.28%, while the remaining 396 formed a long tail

(6.72%). Despite the high validity rate (99.7%), the model

demonstrated a tendency toward literal prompt reproduction.

Table 21. LLaMA-3-8B-Instruct Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

406

1. {’polaridade’: 1} 25.10 %

2. {’type’: ’object’,’description’: Objeto de saída

fornecido pelo classificador após a classificação de

sentimento do texto de entrada.’, ’properties’: {’polaridade’:

{’type’: ’integer’,’description’: ’Polaridade em relação ao

sentimento expressado no textode entrada.

Pode assumir 2 valores: [-1, 1]’,’enum’: [-1,1]}},

\n ’required’: [’polaridade’]}\n

\n’saida’: {’polaridade’: 1}

20.92 %

3. {’type’: ’object’,’description’: Objeto de saída

fornecido pelo classificadorapós a classificação de

sentimento do texto de entrada.’, ’properties’: {’polaridade’:

{’type’: ’integer’,’description’: ’Polaridade em relação ao

sentimento expressado no textode entrada.

Pode assumir 2 valores: [-1, 1]’,’enum’: [-1,1]}},

\n ’required’: [’polaridade’]}\n

\n’saida’: {’polaridade’: -1}

17.17 %

4. {’polaridade’: -1} 15.68 %

5. {’polaridade’: 1} 4.39 %

InternLM-2-7B-Chat The model presented highly frag-

mented behavior, with 1, 359 distinct responses and only

78.17% concentrated in the 20 most frequent variations. It
demonstrated a strong tendency to reproduce demonstration

artifacts, with 95.3% containing “Exemplo:” and 99.4% start-

ing with “’entrada’:”, in addition to generating spurious frag-

ments such as “O que é”, “O que eu g” and “Agora,”. In 4.7%,

it also reproduced “Classificação de Sentimento:” from the

main prompt. Despite contamination by artifacts and irrele-

vant text, the validity rate was high (99.94%). No response,

however, presented the requested clean JSON, indicating fail-

ure to separate the demonstration structure from task execu-

tion. The overview of model response generation is presented

in Table 22.

Table 22. InternLM-2-7B-Chat Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

1,359

1. {’polaridade’: 1}\nExemplo:\n’entrada’: ’O que é 14.72 %

2. {’polaridade’: 1}\nExemplo:\n’entrada’: ’O que eu g 9.14 %

3. {’polaridade’: -1}\nExemplo:\n’entrada’: ’Agora, 8.88 %

4. {’polaridade’: 1}\nExemplo:\n’entrada’: ’Agora, 7.23 %

5. {’polaridade’: -1}\nExemplo:\n’entrada’: ’O que eu g 6.43 %

DeepSeek-R1-Distill-LLaMA-8B The model presented

verbose behavior, with 427 distinct responses and 74.1% con-

centrated in the ten main variations. In 72.58% of cases, it

generated unsolicited explanations in Portuguese, initiated

by “Ok, eu preciso...”, indicating self-narration not induced

by the prompts. Only 8.0% of responses included prompt

artifacts (“Classificação de Sentimento:”), suggesting low

literal reproduction. No response brought only the requested

JSON. Despite this, the validity rate was excellent (99.99%),

evidencing correct task execution combined with a system-

atic pattern of autonomous verbalization, possibly inherited

from training. The overview of model response generation is

presented in Table 23.

Table 23. DeepSeek-R1-Distill-LLaMA-8B Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

427

1. {’polaridade’: 1}\nOk, eu preciso classificar

o sentimento de um
15.06 %

2. {’polaridade’: 1}\nOk, eu preciso classificar

a polaridade desse
12.35 %

3. {’polaridade’: 1}\nOk, eu preciso classificar

a polaridade de um
8.89 %

4. {’polaridade’: -1}\nOk, eu preciso classificar

a polaridade desse
8.82 %

5. {’polaridade’: -1}\nOk, vou analisar o texto de

entrada para determin
6.45 %

DeepSeek-R1-Distill-Qwen-7B The model presented

highly heterogeneous behavior (Table 24), with 733 distinct
responses and 74.6% concentrated in 20 main variations.

The leakage of internal reasoning tokens stood out, with

43.7% containing thinking (not present in prompts), followed

by markdown JSON blocks (42.3%). Also frequent were

the reproduction of prompt artifacts (41.0%) and the

generation of spurious fragments such as ‘‘O que você”,

“ninguem je” and “aqui está” (24.2%). In 10.1%, unsolicited

self-instructions emerged (“Agora, considere...”). The model

combined correct task execution with reasoning leakage,

literal reproduction, and autonomous generation, maintaining

a high validity rate (99.66%).

Table 24. DeepSeek-R1-Distill-Qwen-7B Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

733

1. {’polaridade’: -1}\n </think>\n\n

 ̀ ̀ ̀json\n{’polaridade’: -1
18.09 %

2. {’polaridade’: 1}\n</think>\n\n

 ̀ ̀ ̀json\n{’polaridade’: 1
10.78 %

3. {’polaridade’: 1}\nClassificação de Sentimento:

’ entrada’: ’O que você
7.09 %

4. {’polaridade’: -1}\nClassificação de Sentimento:’

entrada’: ’O que você
6.33 %

5. {’polaridade’: 1}\n</think>\n\n

 ̀ ̀ ̀json\n{\n ”polaridade”:
6.13 %

Gemma-7B-Instruct The model presented dysfunctional

behavior, with 401 unique responses (Table 25) and only

70.3% concentrated in the top 20. There was excessively
verbose and out-of-scope generation, with 77.9% using mark-

down formatting (“ ̀ ̀ ̀ ̀‘” or “**”) and 47.8% containing elab-

orate and irrelevant explanations. Invented fragments were

identified such as “O objetivo deste trabalho é classificar”

(18.5%) and autonomous instructions initiated by “Lembre-

se” (23.4%), absent from the prompts. The model generated

9.5% completely invalid responses and 23.3% with spurious
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text, including mentions of “Python” and random excerpts.

No response followed the expected clean format (JSON only),

resulting in a low validity rate (90.5%) and highlighting seri-

ous instruction-following failures.

Table 25. Gemma-7B-Instruct Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

401

1. {’polaridade’: 1}\n\n

**O objetivo deste trabalho é classific
8.46 %

2. {’polaridade’: -1}\n\n

** O objetivo deste trabalho é classific
7.94 %

3. {’polaridade’: 1}\n

 ̀ ̀ ̀\n\n**Lembre-se
6.82 %

4. {’polaridade’: 1}\n\n

**O objetivo da tarefa é classific
6.61 %

5. {’polaridade’: -1}\n

 ̀ ̀ ̀\n\n**Requisitos:**\n\n*
5.49 %

LLaMA-3.1-8B-Instruct The model presented highly dys-

functional behavior, with 2, 788 unique responses (Table 26)
and a strong tendency toward literal reproduction of the JSON

schema from the prompt: 85.4% included the complete frag-

ment of the original structure (“{’type’: ’object’,’description’:

Objeto de saída fornecido pelo classificador após a classifi-

cação de sentimento do texto de entrada.’, ’properties’: {’po-

laridade’: {’type’: ’integer’,’description’: ’Polaridade em

relação ao sentimento expressado no texto de entrada. Pode

assumir 2 valores: [-1, 1]’,’enum’: [-1,1]}},\n ’required’:

[’polaridade’]}\n\n”). The two main responses, with 66.9%
of inferences, consist almost exclusively of this repetition,

while the remaining 33.1% form a long tail. In 10.89%, the

model added the complete schema to the “’entrada’” key,

followed by “’saida’”; 4.77% included autonomous gener-

ation of Python code with NLTK. Only 1.8% of responses

presented the expected clean JSON, resulting in a low validity

rate (90.65%) and evidencing instruction-following failures.

C.3 PT-BR

Bode-3.1-8B-Instruct-lora The model presented hybrid

behavior with high validity (99.7%) but low format fidelity,

with only 20% clean responses (JSON only) and wide frag-

mentation, where only 67.5% of inferences are concentrated

in the top 20 main variations. The analysis revealed system-
atic contamination by artifacts, 33.1% included anomalous

code markers (“ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀”), 13.3% containing verbose unso-

licited explanations (“Para realizar...” or “Para resolver...”),

and reproduction of demonstration elements (9.73%). The be-

havior characterizes a partially effective instruction-following

pattern that correctly executes the classification task but fails

to distinguish between demonstration structure and specific

task execution, resulting in systematic contamination by struc-

tural elements of the provided examples. The overview of

model response generation is presented in Table 27.

InternLM-ChatBode-7B The model achieved a near-

perfect classification validity rate (99.99%) but completely

Table 26. LLaMA-3.1-8B-Instruct Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

2,788

1. {’type’: ’object’,’description’: Objeto de saída

fornecido pelo classificadorapós a classificação

de sentimento do texto de entrada.’, ’properties’: {’polaridade’:

{’type’: ’integer’,’description’: ’Polaridade em relação ao

sentimento expressado no texto de entrada.

Pode assumir 2 valores: [-1, 1]’,’enum’: [-1,1]}},

\n ’required’: [’polaridade’]}\n

\n’saida’: {’polaridade’: 1}

37.97 %

2. {’type’: ’object’,’description’: Objeto de saída

fornecido pelo classificadorapós a classificação

de sentimento do texto de entrada.’, ’properties’: {’polaridade’:

{’type’: ’integer’,’description’: ’Polaridade em relação ao

sentimento expressado no texto de entrada.

Pode assumir 2 valores: [-1, 1]’,’enum’: [-1,1]}},

\n ’required’: [’polaridade’]}\n

\n’saida’: {’polaridade’: -1}

28.96 %

3. {’polaridade’: 1} 0.92 %

4. {’polaridade’: -1} 0.92 %

5. Para realizar a classificação de sentimento, podemos utilizar uma

abordagem baseada em técnicas de processamento de linguagem

natural (NLP) e aprendizado de máquina. Aqui está um exemplo de como

você pode fazer isso utilizando a biblioteca NLTK e scikit-learn em Python:

\n\n ̀ ̀ ̀python

\nimport nltk\nfrom nltk.sentiment import SentimentIntensityAnalyzer

\nfrom nltk.tokenize import word_tokenize

\nfrom nltk.corpus import stopwords

\nfrom nltk.stem import WordNetLemmatizer

\nfrom sklearn.feature_extraction.text import TfidfVectorizer

\nfrom sklearn.model_selection import train_test_split

\nfrom sklearn.linear_model import LogisticRegression

\nfrom sklearn.metrics import accuracy_score

\nimport json

\n\n# Carregar o corpus de treinamento

0.50 %

Table 27. Bode-3.1-8B-Instruct-lora Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

1,191

1. {’polaridade’: -1} 13.46 %

2. {’polaridade’: 1} ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ 9.55 %

3. {’polaridade’: -1} ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ ̀ 7.51 %

4. {’polaridade’: 1} 6.46 %

5. {’polaridade’: 1}\nExemplo:\n’entrada’:

’O filme é uma mist
4.66 %

failed to follow the requested format, resulting in 0% clean

responses, revealing paradoxical behavior. The model pro-

duced 952 distinct responses (Table 28), with outputs sys-

tematically contaminated by massive reproduction of prompt

elements, with 50.0% of responses including the example

structure (e.g.: “Exemplo:\n’entrada’:”) and 48.3% replicat-

ing the main instruction (“Classificação de Sentimento:”).

Additionally, 12.22% of outputs contained truncated and lit-

eral fragments from example texts, such as “A atuaç” and

“Eu gostei”. This pattern characterizes instruction-following

that executes the classification task with precision but is un-

able to distinguish the task from the prompt structure, making

the model functional but inadequate for generating concise

outputs.

Table 28. InternLM-ChatBode-7B Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

952

1. {’polaridade’: 1}\nClassificação de Sentimento: ’entrada 13.22 %

2. {’polaridade’: -1}\nClassificação de Sentimento: ’entrada 11.34 %

3. {’polaridade’: -1}\nClassificação de Sentimento: 6.12 %

4. {’polaridade’: -1}\nClassificação de Sentimento:’entrada’: 6.11 %

5. {’polaridade’: 1}\nClassificação de Sentimento: 5.93 %

CabraLLaMA-3-8B The model revealed extreme behav-

ior with high diversity, generating 1, 927 unique responses
(Table 29). Only 28.9% of outputs corresponded solely to the
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requested JSON (“{’polaridade’: −1}”with 17.0% and “{’po-

laridade’: 1}” with 11.9%). The remaining 71.1% formed

a long tail of 1, 925 variations containing artifacts. These

variations include massive reproduction of prompt elements,

with 34.9% of responses containing “Classificação de Senti-

mento:’entrada’:” and 22.0% reproducing “Exemplo:\n’en-

trada’:”, in addition to fragments of texts that refer to original

examples such as “O melhor filme de John”, “Este filme é”

and “O celular possui”, as well as content generation, such as

“eu odeio” and “Eu não entendo como”, evidencing capacity

for contextually plausible but unsolicited text generation. De-

spite high dispersion, classification validity was high (99.3%),

but response concentration was highly fragmented, and only

52.3% of inferences were concentrated in the top 20 main

variations.

Table 29. CabraLLaMA-3-8B Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

1,927

1. {’polaridade’: -1} 16.94 %

2. {’polaridade’: 1} 11.93 %

3. {’polaridade’: 1}\nClassificação de Sentimento:

’entrada’: ’eu odeio
2.52 %

4. {’polaridade’: 1}\nClassificação de Sentimento:

’entrada’: ’O filme é
2.28 %

5. {’polaridade’: 1}\nClassificação de Sentimento:

’entrada’: ’O produto é
1.90 %

CabraMistral-v3-7B-32k The model presented relatively

controlled behavior, with 287 unique responses (Table 30)
and high concentration (92.3% in the top 20 main variations).
The four main responses, representing 71.5% of the total.

The model demonstrated systematic reproduction of prompt

elements, such as “Classificação de Sentimento:” (present in

76.8% of responses) and “’entrada’:” (53.6%). This pattern

led to a total inability to generate clean outputs, with 0%
of responses containing clean JSON, although classification

validity was excellent (99.98%).

Table 30. CabraMistral-v3-7B-32k Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

287

1. {’polaridade’: 1}\nClassificação de

Sentimento:\n’entr
23.52 %

2. {’polaridade’: -1}\nClassificação de

Sentimento:\n’entr
17.55 %

3. {’polaridade’: 1}\nClassificação de

Sentimento:’entrada’:
17.11 %

4. {’polaridade’: -1}\nClassificação de

Sentimento:’entrada’:
13.27 %

5. {’polaridade’: 1}\nExemplo:\n’entrada’: ’E 4.59 %

GemBode-7B-Instruct The model demonstrated creative

generation behavior with high dispersion, producing 1, 726
unique responses (Table 31) with low concentration (43.2%
in the top 20 main variations). The dominant pattern was out-
put contamination: 94.0% of responses combined the prompt

structure with autonomous and unsolicited text generation,

such as “Eu não sou um especialista” (9.2%) and “Eu não

consigo entender por” (4.4%). Consequently, only 3.8%
of responses were clean, although classification validity re-

mained excellent (99.68%).

Table 31. GemBode-7B-Instruct Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

1,726

1. {’polaridade’: 1}\nExemplo:\n

’entrada’: ’Eu não sou um especialista
4.88 %

2. {’polaridade’: -1}\nExemplo:\n

’entrada’: ’Eu não sou um especialista
4.28 %

3. {’polaridade’: 1}\nExemplo:\n

’entrada’: ’Eu não consigo entender por
3.57 %

4. {’polaridade’: -1}\nExemplo:\n

’entrada’: ’Eu não sou um ci
3.49 %

5. {’polaridade’: 1}\nExemplo:\n

’entrada’: ’não sei se o programa
2.52 %

Bode-7B The model presented bimodal and controlled be-

havior, with low response diversity (120 unique - Table 32)
and high concentration (87.3% in the top 10 main varia-

tions). This pattern divided into two behaviors: 42.5% of

outputs were the requested pure JSON (e.g.: “{’polaridade’:

−1}” and “{’polaridade’: 1}”). In contrast, the remaining
57.5% contained structural artifacts, mainly the reproduction

of “Classificação de Sentimento:” (present in 43.6% of re-

sponses). Despite the artifacts, the classification validity rate

was excellent (99.8%), standing out as the model with the

lowest diversity compared to other smaller-scale models with

Portuguese fine-tuning.

Table 32. Bode-7B Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

120

1. {’polaridade’: -1} 21.91 %

2. {’polaridade’: 1} 20.58 %

3. {’polaridade’: 1}\n

Classificação de Sentimento:\n
16.86 %

4. {’polaridade’: 1}}\n

Classificação de Sentimento:\n
6.68 %

5. {’polaridade’: 1}\n

Classificação de Sentimento:\n
5.72 %

Bode-13B The model exhibited relatively controlled and

clean behavior, with 219 (Table 33) unique responses and

high concentration (93.7% in the top 10main variations). Per-
formance was excellent in generating clean outputs: the four

main responses (87.1% of total) consisted of the requested

JSON, differing only by initial space formatting. However,

the main problem was the generation of the invalid value

“{’polaridade’: 0}” (2.2% of responses). The model main-

tained a validity rate of 97.5%, specifically impaired by the

zero value problem, and presented minimal structural arti-

facts, characterizing behavior that almost perfectly executes
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the classification task but demonstrates occasional confusion

about permitted valid values.

Table 33. Bode-13B Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

219

1. {’polaridade’: 1} 36.29 %

2. {’polaridade’: -1} 23.29 %

3. {’polaridade’: 1} 15.77 %

4. {’polaridade’: -1} 11.71 %

5. {’polaridade’: 0} 2.18 %

Sabiá-7B The model demonstrated severely degraded be-

havior, producing 1, 067 unique responses (Table 34) with
only 84.8% validity rate, the lowest observed. 81.8% of re-

sponses presented systematic truncation of prompt elements,

evidenced by the three main responses that represent 76.0%
of the total: “{’polaridade’: 1}\nClass” (53.5%), “{’polar-

idade’: −1}\nClass” (12.1%) and “{’polaridade’: 1}\nEx”
(10.4%), where “Class” and “Ex” seems to refer to truncation

of the fragments “Classificação de Sentimento:” and “Exem-

plo:” present in the original prompts. Additionally, the model

generated responses with spurious repetitive text such as “de

texto de texto de texto”, with severe structural deformations

including patterns like “1, 1, 1,” and corrupted sequences,

and only 2.3% of completely clean responses containing ex-

clusively the requested JSON.

Table 34. Sabiá-7B Generation Overview.

Distinct Raw

Responses

Top 5

Occurrences
%

1,067

1. {’polaridade’: 1}\nClass 53.54 %

2. {’polaridade’: -1}\nClass 12.13 %

3. {’polaridade’: 1}\nEx 10.39 %

4. {’polaridade’: -1}\nEx 4.28 %

5. {’polaridade’: 1}\n\n 2.11 %
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