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Abstract. The ultimate goal of ranking methods is to achieve the best possible ranking performance for the problem at
hand. Recently, a body of empirical evidence has emerged suggesting that methods that learn to rank offer substantial
improvements in enough situations to be regarded as a relevant advance for applications that depend on ranking.

Previous studies have shown that different (learning to rank) methods may produce conflicting ranked lists. Rank
aggregation is based on the idea that combining such lists may provide complementary information that can be used to
improve ranking performance. In this article we investigate learning to rank methods that uncover, from the training

data, associations between document features and relevance levels in order to estimate the relevance of documents with
regard to a given query. There is a variety of statistic measures or metrics that provide a different interpretation for an
association. Interestingly, we observed that each association metric has a specific domain for which it is most competent
(that is, there is a specific set of documents for which a specific metric consistently produces better ranked lists). We

employ a second-stage meta-learning approach, which describes the domain of competence of each metric, enabling a
more sensible aggregation of the ranked lists produced by different metrics. We call this new aggregation paradigm
competence-conscious associative rank aggregation. We conducted a systematic evaluation of competence-conscious
aggregation methods using the LETOR 3.0 benchmark collections. We demonstrate that the proposed aggregation

methods outperform the constituent learning to rank methods not only when they are considered in isolation, but also
when they are combined using existing aggregation approaches.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Information Search and Retrieval;
I.2.6 [Artificial Intelligence]: Learning to Rank

Keywords: Competence, Ranking, Meta-Learning

1. INTRODUCTION

Ranking has emerged as a new class of statistical learning problem, which is distinct from classic
ones (i.e., classification and regression). Ranking problems arise in a wide variety of domains. In
Information Retrieval, ranking becomes particularly important because accurate ordering documents
that are retrieved by search engines is paramount to effective search. Many features may affect the
ordering of these documents, and thus, it is difficult to adapt ranking functions manually. Hence, there
is a growing interest in training search engines to sort documents automatically using machine learning
algorithms [Almeida et al. 2007; Cao et al. 2007; Yue et al. 2007]. The conventional approach to this
learning task assumes the availability of examples (i.e., a training data which typically consists of
document features and the corresponding relevance to specific queries), from which a ranking function
can be learned. When a new query is given, the documents associated with this query are ranked
according to the learned function, which gives a score to each document indicating its relevance to
the query.

There are countless strategies for devising learning to rank methods. Such methods usually rely
on techniques such as neural networks [Burges et al. 2005], genetic programming [Almeida et al.
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2007] and support vector machines [Yue et al. 2007]. A more recent strategy is to directly explore
associations between document features and relevance levels. Such associations are usually hidden
in the training examples, and when uncovered, they may reveal important aspects concerning the
underlying phenomenon that generated these examples. These aspects can be exploited for the sake
of learning ranking functions. This strategy has led to a new family of learning to rank methods
which are hereafter referred to as associative methods [Veloso et al. 2008]. The ranking function

produced by an associative method is essentially a set of rules X
θ
−→ r, where each rule indicates an

association between a set of features X and a relevance level r. A statistic metric θ gives the strength
of this association, and is used to estimate the relevance of documents. Differently from [Veloso et al.
2008], where the only association metric used was the well-known confidence [Agrawal et al. 1993], in
this article we propose to combine multiple association metrics in order to provide improved ranking
performance.

Conflicting ranked lists can be produced from the same set of rules, depending on the way the
association represented by these rules is interpreted (i.e., ranked lists produced by different associ-
ation metrics may have divergent orderings). By investigating such conflicts we observed that, in
fact, the relevance of specific documents is better estimated using specific association metrics (i.e.,
there is an optimal match between documents and the association metrics that are used to estimate
their relevances). Thus, conflicting ranked lists produced by different association metrics may be
complementary, in the sense that a better ranking performance may be obtained by aggregating these
lists. We found that it is possible to approximate the optimal match between documents and met-
rics by exploring the domain of competence of metrics (i.e., sets of documents for which a specific
metric consistently produces more accurate lists than the ones produced using other metrics). This
notion of competence, which is a variation of the one introduced in [Veloso et al. 2009], enables us to
devise a powerful aggregation approach, which we call competence-conscious associative aggregation.
In this new paradigm a second-stage meta-learning approach describes the domain of competence of
each metric, so that a metric is only used to estimate the relevance of documents in its domain of
competence.

We conducted experiments comparing competence-conscious aggregation against existing learning
to rank methods [Freund et al. 2003; Liu 2009; Joachims 2002; Xu and Li 2007; Tsai et al. 2007;
Cao et al. 2007; Qin et al. 2007; Wang et al. 2010] as well as against other aggregation methods
(CombMNZ [Shaw and Fox 1994], Borda Count [Aslam and Montague 2001], Condorcet [Montague
and Aslam 2002], and linear combination [Vogt and Cottrell 1999]). The results, obtained using the
LETOR benchmark, show that the proposed aggregation methods provide gains ranging from roughly
1% to 7% in terms of MAP when compared against other representative aggregation methods. The
specific contributions of this article are summarized as follows:

—We show that the ranking performance of associative methods is strongly dependent on the associa-
tion metric used to estimate the relevance of documents. We also show that no metric is consistently
superior than all others, in the sense that it can be safely used in isolation. In fact, each metric has
a particular domain of competence for which it is able to produce the most accurate ranked list. We
introduce the notion of ranking competence and present a comprehensive study of the competence
of different association metrics.

—We investigate meta-learning methods, which use the training data to learn the domains of compe-
tence of metrics. These domains are then exploited to decide which is the best metric to be applied
in order to rank specific documents, resulting in an aggregation of the ranked lists produced by
different metrics. This enables a more sensible combination of metrics, improving the quality of the
final list.

—We propose two aggregation methods, QC3A and DC3A, based on competence-conscious aggrega-
tion. Their difference resides in the way they perform the analysis of the domains of competence.
While QC3A performs a query-centric analysis, DC3A performs a finer-grained, document-centric
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analysis. We show that the proposed methods provide significant gains in ranking performance.

2. RELATED WORK

Many prior efforts have been devoted to exploit rank aggregation in order to improve ranking perfor-
mance. Particularly noteworthy contributions include [Shaw and Fox 1994; Vogt and Cottrell 1999;
Bartell et al. 1994; Lee 1995; Montague and Aslam 2002; Aslam and Montague 2001; Dwork et al.
2001; Liu et al. 2007]. Fox and Shaw designed a series of aggregation methods including CombSum
and Comb-MNZ [Shaw and Fox 1994]. CombSum sets the score of each document in the resulting list
to the sum of the scores obtained by each constituent ranked list, while in CombMNZ the score of
each document is obtained by multiplying this sum by the number of lists which have non-zero scores
for this document. Lee [Lee 1995] performed several experiments with CombSum and CombMNZ
methods, showing that for effective aggregation, the constituent lists must present a large overlap of
relevant documents. Bartell [Bartell et al. 1994] and Vogt [Vogt and Cottrell 1999] proposed aggre-
gation methods based on optimizing the parameters of the linear combination of the scores given to
each document.

Adapted election strategies are widely used to solve aggregation problems. Aslam et al. [Aslam and
Montague 2001] developed an aggregation method based on the Borda Count strategy. The Borda
Count is the central representative of the class of positional (consensus-based) election procedures.
This method determines the most relevant document by giving each document a certain number of
points corresponding to the position in which it appears in each of the constituent ranked lists. Once
all points have been counted the document with more points is the most relevant one. The Condorcet
method, which is the central representative of the class of majoritarian election procedures, was
exploited in [Montague and Aslam 2002]. It works similarly to Borda Count, but it specifies that the
most relevant document is the one that, when compared with every other document, has more points.
Both election-based methods are successively applied in order to rank all documents.

Dwork et al. [Dwork et al. 2001] showed the benefits of aggregation for Web search applications.
They demonstrated that a proposal of Kemeny [Kemeny 1959] leads to an effective aggregation
method. The basic idea is to minimize the Kendall τ distance between the constituent ranked lists
(i.e., it minimizes the number of pairs in which two ranked lists disagree). Liu et al. [Liu et al.
2007] proposed a supervised rank aggregation method, which minimizes the disagreement between
the constituent ranked lists and the labeled data.

The work to be presented in this article differs from previous work in the sense that rank aggregation
is performed by meta learning. More specifically, the constituent ranked lists to be aggregated are
produced by different associative learning to rank methods, and the proposed approach learns how
to aggregate these lists. We introduce ranking competence, which is the main artifact exploited
during meta learning. The definition of ranking competence is also different from the definition of
classification competence, which was introduced in [Veloso et al. 2009]. Specifically, a classifier is
competent with regard to a document d, if it correctly predicts the class for d. Ranking competence,
on the other hand, measures the discrepancy (or distance) between the estimated relevance of d and
the true relevance of d. The meta learning approach used in this article is similar to the meta learning
approach used in [Veloso et al. 2009], although the objectives are significantly different − in [Veloso
et al. 2009] meta learning was exploited for the sake of classifier delegation, while in this article we
exploit meta learning for the sake of rank aggregation.

The rank aggregation methods proposed in this article use associative methods as base compo-
nents. These associative methods were previously proposed by us in [Veloso et al. 2008]. However, in
this article, we propose effective aggregation procedures, and we demonstrate that these aggregation
methods are able to provide significant improvements.
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Table I. Training data: queries/documents.

Retrieved

Query Documents rd

id PageRank BM25 tf

d1 [0.85-0.92] [0.36-0.55] [0.23-0.27] 1

q1 d2 [0.74-0.84] [0.36-0.55] [0.46-0.61] 1

d3 [0.51-0.64] [0.56-0.70] [0.23-0.27] 0
d4 [0.74-0.84] [0.36-0.55] [0.28-0.45] 0

D q2 d5 [0.65-0.73] [0.56-0.70] [0.46-0.61] 1

d6 [0.93-1.00] [0.36-0.55] [0.62-0.76] 0

d7 [0.74-0.84] [0.22-0.35] [0.12-0.22] 0

q3 d8 [0.65-0.73] [0.56-0.70] [0.46-0.61] 0
d9 [0.85-0.92] [0.71-0.80] [0.46-0.61] 1

3. LEARNING TO RANK USING ASSOCIATION RULES

The task of learning to rank is defined as follows. We have as input the training data (referred to
as D), which consists of a set of records of the form <q, d, rd>, where q is a query, d is a document
(represented as a list of attribute-values or features {f1, . . . , fm}), and rd is the relevance of d to
q. The relevance draws its values from a discrete set of possibilities (e.g., r0, . . . , rk). The training
data is used to construct a model which relates features of the documents to their corresponding
relevance. The test set (referred to as T ) consists of records <q, d, ?> for which only the query q and
the document d are known, while the relevance of d to q is unknown. The model learned from D is
used to estimate the relevance of such documents to the corresponding queries.

Consider Table I, which shows an illustrative example of training data. There are three queries in
the training data. For each query three documents are retrieved, and each document is represented by
three attributes − PageRank, BM25 and tf (the corresponding features were obtained by discretizing
these attributes). In previous work [Veloso et al. 2008] we have presented a new learning to rank
method which is based on the utilization of association rules [Agrawal et al. 1993]. The proposed

method produces a model, R, composed of rules of the form fj ∧ . . . ∧ fl
θ
−→ ri, which describes D by

means of feature-relevance associations. These rules can contain any mixture of the available features
in the antecedent and a relevance level in the consequent. The strength of the association between
antecedent and consequent is given by a metric, θ.

3.1 Rule Extraction

The search space for rules is huge, and thus, computational cost restrictions must be imposed during
rule extraction. Typically, a minimum support threshold (σmin) is employed in order to select frequent
rules to compose the ranking model. This strategy, although simple, has some problems. If σmin is
set too low, a large number of rules will be extracted from D, and often most of these rules are useless
for ranking documents in the test set (a rule X −→ ri is only useful to rank document d if the set of
features X ⊆ d, otherwise the rule is meaningless to d). On the other hand, if σmin is set too high,
some important rules will not be included in R, causing problems if some documents in the test set
contain rare features. Usually, there is no optimal value for σmin, that is, there is no single value
that ensures that only rules useful for ranking documents in T are included in R, while at the same
time important rules are not missed. The ranking method proposed here deals with this problem by
extracting rules on a demand-driven basis [Veloso et al. 2006].

On-demand rule extraction is delayed until a set of documents is considered for a given query.
Then, each individual document d in T is used as a filter to remove irrelevant features and examples
from D. This process produces a projected training data, Dd, which is focused only on the useful
examples for ranking a specific document, d. Therefore, there is an automatic reduction of the size
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and dimensionality of the training data, since examples and features that are meaningless to d are
not considered during rule extraction1. As a result, for a given value of σmin, important rules that
are not frequent in D, may become frequent in Dd, providing a better coverage of the examples.

3.2 Relevance Estimation

In order to estimate the relevance of a document d, it is necessary to combine all rules in Rd. Our

strategy is to interpret Rd as a poll, in which each rule X
θ
−→ ri ∈ Rd is a vote given by a set of features

X for relevance level ri. Votes have different weights, depending on the strength of the association
of the corresponding rules (i.e., θ). The weighted votes for relevance level ri are summed and then
averaged, forming the score associated with relevance ri for document d, as shown in Equation 1
(where θ(t) is the value of metric θ assumes for rule t):

s(ri, d) =

∑

t∈Rd

θ(t)

| Rd |
. (1)

Therefore, for a document d, the score associated with relevance ri is given by the average strength of
the rules in Rd predicting ri. The likelihood of d having a relevance level ri is obtained by normalizing
the scores:

p̂(ri|d) =
s(ri, d)

k
∑

j=0

s(rj , d)

(2)

Finally, the rank of document d is estimated by a linear combination of the likelihoods associated
with each relevance level, as shown in Equation 3:

rank(θ, d) =

k
∑

i=0

ri × p̂(ri|d). (3)

The value of rank is an estimation of the true relevance of d (i.e., rd) using rules in Rd. The rank
values are used to produce ranked lists of documents. Thus, both rank(θ, d) and rd assume values
in the same range. This method was extensively evaluated in [Veloso et al. 2008], and in this article
we went further, by exploiting the fact that ranking performance is affected by the association metric
that is used in Equation 1.

3.3 Association Metrics

We employed seven different metrics for measuring the strength of association between document
features (X ) and relevance levels (r1, r2, . . . , rk). These metrics were shown to produce ranked lists
that present conflicts [Veloso et al. 2009]:

—Added Value (θ1) [Hilderman and Hamilton 2001]: This metric measures the gain in accuracy
obtained by using rule X−→ri instead of always using ri, as shown in Eq. 4. Negative values indicate
that always predicting ri is better than using the rule. Its value ranges from -1 to 1.

1An example e ∈ D is useless for ranking d if e ∩ d=∅. That is, e does not share any feature with d.
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θ1 = p(ri|X ) − p(ri). (4)

—Certainty (θ2) [Lavrac et al. 1999]: This metric measures the increase in accuracy between rule
X−→ri and always using ri, as shown in Eq. 5. It assumes values smaller than 1.

θ2 =
p(ri|X ) − p(ri)

p(ri)
(5)

—Confidence (θ3) [Agrawal et al. 1993]: This metric measures the fraction of examples in Dt containing
X that belong to ri. It is the conditional probability of ri being the correct relevance of document
t given that X ⊆ t, as shown in Eq. 6. Its value ranges from 0 to 1.

θ3 = p(ri|X ) (6)

—Strength Score (θ4) [Arunasalam and Chawla 2006]: This metric measures the correlation between
X and ri, but also takes into account how X is correlated with the complement of ri, as shown in
Equation 7. Its value ranges from 0 to ∞.

θ4 =
p(X|ri)p(ri|X )

p(X|ri)
(7)

—Yules’Q (θ5) and Yules’Y (θ6) [Tan et al. 2002]: These metrics are based on odds value, as shown
in Eqs. 8 and 9, respectively. Their values range from -1 to 1. The value 1 implies perfect positive
association between X and ri, and value -1 implies perfect negative association.

θ5 =
p(X ∪ ri)p(X ∪ ri) − p(X ∪ ri)p(X ∪ ri)

p(X ∪ ri)p(X ∪ ri) + p(X ∪ ri)p(X ∪ ri)
(8)

θ6 =

√

p(X ∪ ri)p(X ∪ ri) −
√

p(X ∪ ri)p(X ∪ ri)
√

p(X ∪ ri)p(X ∪ ri) +
√

p(X ∪ ri)p(X ∪ ri)
(9)

—Relative Confidence (θ7) [Lavrac et al. 1999]: This metric trades off accuracy and generality, as
shown in Equation 10. The first component is the accuracy gain that is obtained by using rule
X−→ri instead of always predicting ri. The second component incorporates generality.

θ7 = (p(ri|X ) − p(ri))p(X ) (10)

Example. The entire process of learning to rank using association rules is illustrated using the
example shown in Table II. Suppose we want to calculate the rank value for document d10. The
original training data shown in Table I is projected according to d10, resulting in Dd10

={d1, d2, d3,
d4, d6}. Five rules are extracted from Dd10

:

(1) PageRank=[0.51-0.64]→ r=0
(θ1 = 0.72, θ2 = 1.00, θ3 = 1.00, θ4 = 0.99, θ5 = 0.99, θ6 = 888,888, θ7 = 0.44)

(2) BM25=[0.36-0.55]→ r=1
(θ1 = 0.72, θ2 = 1.00, θ3 = 1.00, θ4 = 0.99, θ5 = 0.99, θ6 = 888,888, θ7 = 0.44)

(3) BM25=[0.36-0.55]→ r=0
(θ1 = 0.72, θ2 = 1.00, θ3 = 1.00, θ4 = 0.99, θ5 = 0.99, θ6 = 888,888, θ7 = 0.44)

(4) BM25=[0.36-0.55]∧tf=[0.28-0.45]→ r=0
(θ1 = 0.47, θ2=0.01, θ3=0.50, θ4=0.40, θ5=0.45, θ6=0.40, θ7=0.05)
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Table II. Test Set: Ranked Lists produced by different Metrics and Ideal Rank Aggregation.
Retrieved

Documents rd Ranked Lists Agg.
id PageRank BM25 tf θ1 θ2 θ3 θ4 θ5 θ6 θ7

d10 [0.51-0.64] [0.36-0.55] [0.28-0.45] 0 0.33 0.08 0.26 0.30 0.28 0.00 0.10 0.00

T d11 [0.85-0.92] [0.56-0.70] [0.46-0.61] 1 0.60 0.81 0.62 0.68 0.66 0.99 0.83 0.99

d12 [0.34-0.50] [0.22-0.35] [0.46-0.61] 1 0.48 0.72 0.47 0.56 0.48 0.00 0.77 0.77
d13 [0.74-0.84] [0.71-0.80] [0.62-0.76] 0 0.49 0.39 0.44 0.44 0.47 0.61 0.44 0.39

(5) tf=[0.28-0.45]→ r=0
(θ1 = 0.53, θ2 = 0.10, θ3 = 0.50, θ4 = 0.60, θ5 = 0.55, θ6 = 625,000, θ7 = 0.05)

These rules are combined in order to estimate rd10 . Different ranked lists are obtained from different
metrics, as shown in Table II. Conflicts or disagreements in the ranked lists produced by these metrics
may provide complementary information. Ideally, a rank aggregation method should be able to select
the best rank value for each document from each ranked list. In this case, as shown in the last column
of Table II, the selected rank value should be the one which is closest to the true relevance of each
document (which are are the values highlighted in bold). Next we will discuss aggregation methods
that are based on this idea.

4. RANK AGGREGATION

Selecting an appropriate association metric is a major issue while devising an associative ranking
method. As will be shown in our experiments, depending on characteristics of the documents, some
metrics may be more suitable than others. This suggests that different metrics are only able to
accurately rank a subset of the entire set of documents, which is the domain of competence of such
metric. In this section we present aggregation methods that learn the domain of competence of these
metrics, and use this information to aggregate ranked lists produced by different metrics.

4.1 Learning Domains of Competence

The optimal match between association metrics and documents is valuable information. In this section
we present an approach to estimate such matching. We start by defining the ranking competence of a
metric. Then, we present approaches that learn to separate documents that are accurately ranked by
some metric, from documents that are not.

The ranking competence of metric θi, with regard to document d, which is denoted as φ(θi, d), is
defined in Equation 11. It is essentially given by the discrepancy between the estimated relevance of
d (i.e., rank(θi, d)) and the true relevance of d (i.e., rd). Metric θi is more competent to rank d than
metric θj if φ(θi, d) < φ(θj , d). For instance, the most competent metrics are highlighted in bold in
the example shown in Table II (i.e., those metrics with lowest φ(θi, d) values).

φ(θi, d) =| rank(θi, d) − rd | (11)

The ranking competence of a metric is novel information that may be used to enhance the original
training data, D. Specifically, for each document in D, it is informed which metric is the most
competent one by following a procedure which is similar to cross-validation (one query in D is used
for testing, and the remaining queries in D are used for training). This process, which is illustrated in
Algorithm 1, creates an enhanced training data, denoted as D∗

dc, so that for each document d ∈ D∗
dc

we have the most competent metric to rank d.
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Algorithm 1 Representing the Competence of Metrics.

Require: The original training data D
Ensure: The enhanced training data D∗

dc

1: split D into k partitions, {p1 ∪ . . .∪ pk} (each partition pi is composed of the documents retrieved
for query qi)

2: D∗
dc ⇐ ∅

3: for each partition pi do

4: for each document d ∈ pi do

5: Rd ⇐ rules X −→ rj extracted from {D − pi} such that X ⊆ d

6: for each metric θl do

7: produce rank(θl, d) using Rd

8: end for

9: d∗ ⇐ d + θi, where φ(θi, d) ≤ φ(θj , d)∀φ(θj , d) (i.e., the most competent metric is appended
to document d, creating d∗)

10: D∗
dc ⇐ D∗

dc ∪ d∗

11: end for

12: end for

Algorithm 2 Selecting a Competent Metric.

Require: D∗
dc (or D∗

qc), and a document d ∈ T
Ensure: The most competent metric for document d

1: Rd ⇐ rules X −→ θi extracted from D∗
dc (or D∗

qc) such that X ⊆ d

2: Estimate p̂(θi|d), according to Equation 2
3: return metric θj such that p̂(θj |d) > p̂(θi|d)∀i 6= j

Another enhanced training data, D∗
qc can be obtained following a very similar approach. The

difference is that, instead of associating to each document d ∈ D the most competent metric for d, the
metric to be associated to d is the one which was the most competent for the majority of documents
retrieved for the corresponding query.

4.2 Competence-Conscious Aggregation

Any method discussed in Section 2 can be used to aggregate ranked lists produced by different metrics.
However, such methods neglect information about the competence of these metrics. In this section we
discuss how to exploit D∗

dc and D∗
qc in order to produce competence-conscious aggregation methods.

Next we present methods that properly select a competent metric θi to rank a specific document d.

Document-Centric(DC3A) and Query-Centric(QC3A) Competence-Conscious Aggregation. The ag-
gregation methods to be presented are based on selecting, for each document d ∈ T , a metric θi, which
is likely to be competent for d (i.e., φ(θi, d) is expected to be low). Both D∗

dc and D∗
qc can be used to

estimate the ranking competence of each metric. Instead of extracting rules of the form X−→ri, DC3A
and QC3A extract rules of the form X−→θi. Specifically, the only difference between DC3A and QC3A
is that, while DC3A extracts rules from D∗

dc (where the domains of competence are fine-grained),
QC3A extracts rules from D∗

qc (where the domains of competence are coarse-grained). The extracted
rules are combined and the association metric with the highest likelihood of being the most compe-
tent one for d, is finally selected. This is essentially a meta-learning process, since the competence
of metrics is learned from inputs, that are, in turn, the outputs of associative learning methods (i.e.,
D∗

dc and D∗
qc). This process is illustrated in Algorithm 3.

Once metric θi is selected for document d, a rank value rank(θi, d) is finally produced. It is expected

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Competence-Conscious Associative Rank Aggregation · 345

Algorithm 3 Competence-Conscious Rank Aggregation.

Require: D∗
dc (or D∗

qc), and a document d ∈ T
Ensure: The rank value for document d

1: select θi (the most competent metric for d), using Algorithm 3

2: Rd ⇐ rules X
θi−→ rj extracted from D∗

dc (or D∗
qc) such that X ⊆ d

3: return rank(θi, d), using Rd

Table III. Enhanced training data, D∗

dc
and D∗

qc.

Retrieved
Query Documents rd Metric Metric

id PageRank BM25 tf D∗

dc
D∗

qc

d1 [0.85-0.92] [0.36-0.55] [0.23-0.27] 1 θ3 θ3

q1 d2 [0.74-0.84] [0.36-0.55] [0.46-0.61] 1 θ1 θ3

d3 [0.51-0.64] [0.56-0.70] [0.23-0.27] 0 θ3 θ3

d4 [0.74-0.84] [0.36-0.55] [0.28-0.45] 0 θ5 θ5

q2 d5 [0.65-0.73] [0.56-0.70] [0.46-0.61] 1 θ5 θ5

d6 [0.93-1.00] [0.36-0.55] [0.62-0.76] 0 θ3 θ5

d7 [0.74-0.84] [0.22-0.35] [0.12-0.22] 0 θ1 θ1

q3 d8 [0.65-0.73] [0.56-0.70] [0.46-0.61] 0 θ1 θ1

d9 [0.85-0.92] [0.71-0.80] [0.46-0.61] 1 θ3 θ1

that, at the end of the process, the final ranked list will be composed of rank values produced by the
most competent metric for each document. This process is shown in Algorithm 3.

Example. We illustrate how competence-conscious algorithms work by using Tables I, II, and III.
Lets discuss DC3A first. DC3A takes as input the enhanced training data, D∗

dc, which was produced
according Algorithm 1, and is shown in Table III. Next, DC3A takes as input T , and uses Algorithm 3
in order to select the most competent metric for each document d ∈ T . In the last step, DC3A uses
the selected metric, θ, in order to produce rules X → ri. Then, DC3A calculates rank(θ, d) according
to Equation 3. QC3A essentialy works in the same way as DC3A. The only difference resides in the
second step, since QC3A uses D∗

qc instead of D∗
dc.

5. EXPERIMENTAL EVALUATION

In this section we empirically analyze the proposed rank aggregation methods, DC3A and QC3A. We
first present the collections employed in the evaluation, and then we discuss the effectiveness of the
methods in these collections.

5.1 The LETOR Benchmark

LETOR 3.0 [Liu et al. 2007] makes available 7 subsets (OHSUMED, TD2003, TD2004, HP2003,
HP2004, NP2003 and NP2004), each containing a set of queries, document features, and relevance
judgments. Features cover properties [Baeza-Yates and R-Neto 2011] such as BM25, PageRank, HITS
etc. In order to conduct 5-fold cross validation, each subset is arranged in 5 folds, including training,
validation and test data. Performance is evaluated using NDCG, precision, and MAP measures [Baeza-
Yates and R-Neto 2011]. Pre-processing involved only the discretization [Fayyad and Irani 1993].

The LETOR 3.0 benchmark also makes available a set of ranking methods, including Ranking
SVM [Yue et al. 2007], RankBoost [Freund et al. 2003], FRank [Tsai et al. 2007], and ListNet
[Cao et al. 2007]. Details about these methods can be found in the LETOR 3.0 website (http:
//research.microsoft.com/users/LETOR). Our evaluation is based on a comparison against these
ranking methods, as well as against several aggregation methods, such as CombMNZ [Shaw and Fox
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Table IV. MAP numbers for the OHSUMED subset. Best results, including ties, are shown in bold.
Associative Methods Ranking Rank FRank ListNet SVM

Trial θ1 θ2 θ3 θ4 θ5 θ6 θ7 SVM Boost MAP

1 0.349 0.344 0.352 0.316 0.349 0.352 0.345 0.304 0.332 0.333 0.346 0.342

2 0.450 0.447 0.463 0.395 0.445 0.451 0.462 0.447 0.445 0.438 0.450 0.454
3 0.466 0.449 0.460 0.438 0.466 0.463 0.444 0.465 0.456 0.456 0.461 0.462

4 0.521 0.512 0.521 0.498 0.515 0.521 0.519 0.499 0.508 0.513 0.511 0.518

5 0.479 0.476 0.482 0.488 0.481 0.480 0.466 0.453 0.464 0.481 0.461 0.450

Avg 0.453 0.446 0.456 0.427 0.451 0.453 0.447 0.433 0.441 0.444 0.446 0.445

Table V. MAP numbers for the TD2003 subset.
Associative Methods Ranking Rank FRank ListNet SVM

Trial θ1 θ2 θ3 θ4 θ5 θ6 θ7 SVM Boost MAP

1 0.132 0.115 0.169 0.132 0.156 0.152 0.144 0.164 0.110 0.113 0.192 0.172

2 0.284 0.281 0.293 0.289 0.291 0.291 0.270 0.258 0.291 0.297 0.325 0.237

3 0.362 0.356 0.365 0.322 0.361 0.364 0.350 0.401 0.251 0.155 0.381 0.342

4 0.390 0.378 0.394 0.373 0.386 0.381 0.371 0.237 0.262 0.212 0.275 0.276

5 0.211 0.209 0.220 0.202 0.218 0.217 0.198 0.249 0.222 0.238 0.202 0.196

Avg 0.277 0.268 0.288 0.264 0.281 0.281 0.267 0.263 0.227 0.203 0.275 0.244

Table VI. MAP numbers for the TD2004 subset.
Associative Methods Ranking Rank FRank ListNet SVM

Trial θ1 θ2 θ3 θ4 θ5 θ6 θ7 SVM Boost MAP

1 0.196 0.181 0.213 0.173 0.209 0.209 0.205 0.211 0.247 0.226 0.225 0.185

2 0.216 0.210 0.280 0.204 0.271 0.276 0.258 0.209 0.281 0.203 0.215 0.192

3 0.281 0.284 0.285 0.229 0.272 0.275 0.263 0.206 0.241 0.218 0.223 0.201

4 0.246 0.231 0.267 0.249 0.261 0.248 0.240 0.218 0.238 0.285 0.223 0.211

5 0.238 0.224 0.260 0.238 0.252 0.251 0.244 0.274 0.299 0.262 0.229 0.235

Avg 0.235 0.226 0.261 0.219 0.253 0.252 0.242 0.224 0.261 0.239 0.223 0.205

1994], Borda Count [Aslam and Montague 2001], Condorcet [Montague and Aslam 2002], and Linear
Combination [Vogt and Cottrell 1999]. All aggregation methods combine ranked lists produced by
associative methods (i.e., each method uses a different association metric).

5.2 Results

All experiments were performed on a Linux PC with an Intel Core 2 Duo 1.63GHz and 2GBytes RAM.
For associative methods we followed the standard parameter setting procedure, in which a separate
validation set is used to calculate MAP numbers. We maximize MAP on the validation set by selecting
the appropriate parameter (σmin = 0.01), hoping that this parameter value will also maximize MAP
numbers in the test set.

How effective are associative methods when compared to other learning to rank methods?

Tables IV, V, VI, VII, VIII, IX, and X show MAP numbers for different subsets. The result for each
trial is obtained by averaging partial results obtained from each query in the trial. The final result
is obtained by averaging the five trials. We conducted two sets of significance tests (t-test) for each
subset. The first set of significance tests was carried on the average of the results for each query. The
second set of significance tests was carried on the average of the five trials.

As can be seen in Table IV, all methods showed competitive results in the OHSUMED subset. The
worst overall result was obtained using θ4 (0.426), while the best result was obtained using θ3 (0.455).
The main reason for so much competitiveness is that OHSUMED contains only few features, which are
extracted basically from textual evidence, reducing the possibilities of obtaining large improvements.
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Table VII. MAP numbers for the HP2003 subset.
Associative Methods Ranking Rank FRank ListNet SVM

Trial θ1 θ2 θ3 θ4 θ5 θ6 θ7 SVM Boost MAP

1 0.702 0.708 0.717 0.688 0.729 0.729 0.702 0.684 0.634 0.674 0.728 0.717

2 0.788 0.780 0.807 0.785 0.812 0.804 0.802 0.796 0.813 0.804 0.852 0.845
3 0.724 0.716 0.737 0.715 0.738 0.733 0.732 0.783 0.781 0.737 0.821 0.780

4 0.742 0.740 0.762 0.715 0.780 0.780 0.757 0.763 0.745 0.684 0.772 0.760

5 0.741 0.732 0.755 0.712 0.771 0.764 0.748 0.679 0.692 0.648 0.657 0.608

Avg 0.739 0.735 0.756 0.723 0.766 0.762 0.748 0.741 0.733 0.709 0.766 0.742

Table VIII. MAP numbers for the HP2004 subset.
Associative Methods Ranking Rank FRank ListNet SVM

Trial θ1 θ2 θ3 θ4 θ5 θ6 θ7 SVM Boost MAP

1 0.632 0.638 0.666 0.618 0.670 0.670 0.631 0.664 0.621 0.632 0.700 0.729

2 0.750 0.744 0.756 0.728 0.774 0.774 0.755 0.680 0.618 0.648 0.759 0.775

3 0.802 0.795 0.806 0.778 0.802 0.806 0.798 0.742 0.637 0.842 0.780 0.785
4 0.627 0.617 0.625 0.608 0.631 0.637 0.622 0.715 0.611 0.632 0.619 0.719

5 0.622 0.616 0.626 0.603 0.619 0.621 0.633 0.536 0.638 0.654 0.591 0.579

Avg 0.687 0.682 0.696 0.667 0.699 0.702 0.688 0.667 0.625 0.682 0.690 0.718

Table IX. MAP numbers for the NP2003 subset.
Associative Methods Ranking Rank FRank ListNet SVM

Trial θ1 θ2 θ3 θ4 θ5 θ6 θ7 SVM Boost MAP

1 0.674 0.674 0.695 0.673 0.699 0.699 0.697 0.625 0.685 0.591 0.593 0.623

2 0.638 0.625 0.676 0.611 0.672 0.677 0.671 0.662 0.666 0.645 0.648 0.640

3 0.662 0.650 0.670 0.635 0.670 0.662 0.649 0.695 0.711 0.673 0.751 0.714

4 0.737 0.740 0.751 0.731 0.739 0.739 0.736 0.761 0.733 0.769 0.724 0.736

5 0.729 0.721 0.746 0.716 0.736 0.732 0.727 0.735 0.743 0.642 0.732 0.721

Avg 0.688 0.682 0.707 0.673 0.703 0.702 0.696 0.696 0.707 0.664 0.689 0.687

For TD2003, ListNet was the hardest baseline. As shown in Table V, gains obtained with θ3 ranges
from 15.02% (relative to ListNet) to 41.89% (relative to FRank). Similar results were obtained for
HP2003 and NP2004, as shown in Tables VII and X. In contrast to OHSUMED, TD2003 and NP2004
contain more and diverse features, making possible the achievement of significant improvements.

For TD2004, the hardest baseline was RankBoost. As shown in Table VI, θ1 showed gains in the
first two trials, and also the best overall results, with gains ranging from 2.35% (relative to RankBoost)
to 27.32% (relative to SVMMAP). Again, the worst results were obtained using θ4. Similar results
were obtained for HP2004, as shown in Table VIII.

How is competence distributed among metrics? Can we estimate the matching between documents
and metrics?

Figure 1 (Left) shows the domains of competence of each metric (we grouped documents that belong
to the same domain of competence in order to ease visualization). Lighter colored regions indicate
documents in the y-axis that were competently ranked by the corresponding metric in the x-axis(i.e.,
φ(x,y) is low). Darker regions, on the other hand, indicate documents that were not competently
ranked by the corresponding metric (i.e., φ(x,y) is high). Interestingly, for most of the documents,
Strength Score (θ4) is either the most (i.e., yellow regions) or the least competent metric (i.e., black
regions). This is interesting because, differently from what would be expected due to its poor effec-
tiveness shown in Tables IV, V and VI, for most of the documents Strength Score is, in fact, a very
competent metric. This paradox happens because this metric tends to assign very low rank values
to documents (as shown in Figure 2). While this is advantageous for less relevant documents, this
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Table X. MAP numbers for the NP2004 subset.
Associative Methods Ranking Rank FRank ListNet SVM

Trial θ1 θ2 θ3 θ4 θ5 θ6 θ7 SVM Boost MAP

1 0.523 0.538 0.591 0.502 0.602 0.602 0.572 0.535 0.550 0.599 0.550 0.574
2 0.642 0.621 0.648 0.625 0.640 0.645 0.641 0.608 0.559 0.629 0.659 0.669

3 0.832 0.812 0.869 0.837 0.869 0.880 0.826 0.756 0.609 0.731 0.739 0.767
4 0.614 0.609 0.611 0.601 0.610 0.618 0.619 0.694 0.531 0.485 0.728 0.599

5 0.612 0.526 0.649 0.583 0.634 0.639 0.608 0.701 0.570 0.560 0.684 0.701

Avg 0.645 0.641 0.674 0.630 0.671 0.677 0.653 0.659 0.564 0.601 0.672 0.662

Table XI. MAP numbers for OHSUMED subset. Best results, including ties, are shown in bold.
Trial DC3A QC3A CombMNZ Borda Count Condorcet Linear Combination Best Metric (θ3)

1 0.350 0.353 0.341 0.346 0.347 0.360 0.352

2 0.469 0.460 0.458 0.462 0.458 0.456 0.463

3 0.477 0.461 0.455 0.455 0.459 0.462 0.460

4 0.522 0.513 0.492 0.483 0.494 0.513 0.521

5 0.492 0.478 0.433 0.419 0.426 0.477 0.482

Avg 0.462 0.454 0.436 0.433 0.437 0.454 0.456

Table XII. MAP numbers for TD2003 subset.
Trial DC3A QC3A Condorcet Linear Combination Best Metric (θ3)

1 0.188 0.184 0.181 0.188 0.169
2 0.312 0.301 0.298 0.306 0.293

3 0.409 0.411 0.371 0.398 0.365

4 0.402 0.397 0.378 0.384 0.394

5 0.229 0.221 0.217 0.221 0.220

Avg 0.308 0.303 0.289 0.299 0.288

causes problems for ranking the most relevant ones (explaining its poor effectiveness). In contrast
to Strength Score, Added Value (θ1), Certainty (θ2), and Confidence (θ3) are more competent for
ranking more relevant documents. An aggregation method can only take advantage of these different
properties if the matching between documents and metrics is well estimated. Figure 1 (Right) shows
the effectiveness of DC3A in selecting competent metrics according to each document. As can be
seem, DC3A usually selects clearer regions, while avoiding darker ones.

How effective is competence-conscious rank aggregation methods when compared to other methods?

Tables XI, XII, XIII, XIV, XV, XVI, and XVII, show MAP numbers for different subsets. The result
for each trial is obtained by averaging results obtained from each query in the trial. The final result is
obtained by averaging the five trials. In all subsets, DC3A was the best overall performer, followed by
QC3A, which was also the best performer in the TD2003, TD2004, and NP2003 subsets. CombMNZ
and Borda Count achieved the worst results in most of the subsets. This is mainly because these
methods are not robust when some (possibly only one) constituent ranked lists are not accurate.
Thus, the poor list produced by metric θ4 severely impacted the effectiveness of these methods. The
Condorcet method seems to be more robust, but still, DC3A and QC3A achieved much better results.
Linear Combination was the best performer in some trials, and it was able to provide overall results
that are very close to the results provided the best metric when applied in isolation. DC3A was, most
of the times, better than QC3A, suggesting that the more fine-grained the analysis of competence,
the more effectively lists are combined.

The last set of experiments evaluates the effectiveness of DC3A and QC3A, in terms of NDCG and
precision. Fig. 3 shows results obtained from the execution of the evaluated aggregation methods. For
the TD2003 subset, QC3A is in close rivalry with DC3A, specially in terms of NDCG. Higher gains
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Table XIII. MAP numbers for TD2004 subset.
Trial DC3A QC3A Condorcet Linear Combination Best Metric (θ3)

1 0.214 0.219 0.194 0.203 0.213

2 0.297 0.297 0.277 0.281 0.280
3 0.285 271 0.272 0.278 0.285

4 0.297 0.282 0.276 0.281 0.267

5 0.271 0.273 0.259 0.259 0.260

Avg 0.273 0.268 0.256 0.260 0.261

Table XIV. MAP numbers for HP2003 subset.
Trial DC3A QC3A Condorcet Linear Combination Best Metric (θ5)

1 0.743 0.724 0.720 0.723 0.729

2 0.833 0.827 0.801 0.824 0.812

3 0.758 0.754 0.742 0.758 0.738

4 0.782 0.780 0.753 0.745 0.780

5 0.784 0.762 0.766 0.763 0.771

Avg 0.780 0.769 0.756 0.763 0.766

Table XV. MAP numbers for HP2004 subset.
Trial DC3A QC3A Condorcet Linear Combination Best Metric (θ6)

1 0.743 0.724 0.720 0.723 0.729

1 0.656 0.672 0.667 0.672 0.670

2 0.794 0.779 0.730 0.760 0.774

3 0.819 0.810 0.781 0.803 0.806

4 0.635 0.627 0.618 0.647 0.637
5 0.649 0.624 0.620 0.643 0.621

Avg 0.711 0.702 0.683 0.705 0.702

of DC3A were achieved in the OHSUMED and TD2004 subsets. The worst baselines were Borda
Count (in terms of NDCG), and CombMNZ (in terms of precision). The best baseline was Linear
Combination. In terms of NDCG, the gains provided by DC3A range from 9.30% (relative to Linear
Combination) to 25.92% (relative to Borda Count). In terms of precision, gains range from 4.68%
(relative to Linear Combination) to 13.11% (relative to CombMNZ).

What are the computational costs of QC3A and DC3A?

Table XVIII shows execution times for each method evaluated, namely, CombMNZ, Borda Count,
Condorcet, Linear Combination, DC3A, and QC3A. Execution time reflects the entire process, which
includes: the time spent for each constituent learning to rank associative method, in order to produce
the base ranked lists (i.e., those based on θ1, θ2, θ3, θ4, θ5, θ6, and θ7), and the time spent to aggregate
these lists. As can be seen, CombMNZ is the fastest method, since it simply sums and normalizes the
score associated with each ranked list for each document. On the other hand, the Linear Combination
method is the slowest one. Competence-conscious methods, DC3A and QC3A, are somewhat slower
than Borda Count and Condorcet methods, but much faster than Linear Combination. The average
time per query for QC3A ranges from 0.37 (OHSUMED) to 2.41 (TD2004), and the average time per
query for DC3A ranges from 0.40 (OHSUMED) to 2.51 (TD2003).

6. CONCLUSIONS

This article focused on the important problem of ranking. We have shown that the performance of
learning to rank methods that use association rules [Veloso et al. 2008] are strongly related to the
metric that is used to estimate the association between document features and relevance levels. No
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Table XVI. MAP numbers for NP2003 subset.
Trial DC3A QC3A Condorcet Linear Combination Best Metric (θ3)

1 0.703 0.708 0.690 0.693 0.695

2 0.683 0.689 0.677 0.687 0.676
3 0.659 0.669 0.663 0.651 0.670

4 0.765 0.752 0.761 0.776 0.751

5 0.754 0.759 0.745 0.748 0.746

Avg 0.713 0.716 0.707 0.711 0.707

Table XVII. MAP numbers for NP2004 subset.
Trial DC3A QC3A Condorcet Linear Combination Best Metric (θ6)

1 0.600 0.596 0.600 0.603 0.602

2 0.642 0.632 0.644 0.640 0.645

3 0.879 0.865 0.861 0.868 0.880

4 0.635 0.628 0.623 0.630 0.618

5 0.652 0.645 0.629 0.639 0.639

Avg 0.682 0.673 0.671 0.676 0.677
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Table XVIII. Execution times (in seconds) for different aggregation methods.

Method OHSUMED TD2003 TD2004 HP2003 HP2004 NP2003 NP2004

CombMNZ 25.656 71.485 101.206 162.994 67.727 145.395 72.285
Borda Count 32.187 92.179 138.278 204.931 91.416 193.292 82.521

Condorcet 34.117 100.766 150.164 217.400 100.136 211.845 88.071
QC3A 40.139 115.633 181.395 266.613 118.191 244.928 103.478

DC3A 43.284 125.239 188.723 274.282 127.788 259.180 111.827

Linear Comb. 272.223 739.481 1,289.910 2,179.376 949.668 2,647.137 784.929

metric is consistently superior than all others, in the sense that it can be safely used in isolation.
In fact, each metric has a particular competence, for which it is able to produce accurate lists. We
proposed to further improve the performance of these learning to rank methods, by aggregating their
ranked lists. The proposed methods introduce effective innovations, such as the notion of ranking
competence. Specifically, we investigate meta-learning approaches, which use the training data to
learn the competence of each metric. Finally, the competence of metrics are exploited to decide
which is the best metric to be applied to estimate the relevance of each document, resulting in a
effective aggregation of ranked lists produced by different metrics. This aggregation paradigm, which
we denote as competence-conscious rank aggregation, maximizes the accuracy of the final ranked list.
We present the analysis of two aggregation methods that follow this new paradigm, DC3A and QC3A.
The difference between them resides in how they perform the analysis of the domains of competence.
The query-centric method (QC3A) provides lower gains when compared to the finer-grained analysis,
performed by the document-centric method (DC3A), which outperforms all other competitors.
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Veloso, A., Almeida, H., Gonçalves, M. A., and Meira, W. Learning to rank at query-time using association rules.
In Proceedings of the International ACM SIGIR Conference on Research & Development of Information Retrieval.

Singapore, pp. 267–274, 2008.

Veloso, A., Jr., W. M., and Zaki, M. Lazy associative classification. In Proceedings of the IEEE International

Conference on Data Mining. Hong Kong, pp. 645–654, 2006.
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