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Abstract. The amount of complex data, such as images, videos and time series, has been increasing in the past few
years in a very fast pace. The main property employed to query such kind of data based on its content is the similarity
between elements. One of the most common similarity queries is the k-Nearest Neighbor query (k-NNq), which returns
the k elements most similar to a given reference element. Although this kind of query is useful for many applications, it
does not consider additional conditions that may modify the basic nearest neighbor search, which would allow retrieving
more relevant information to the user. Complex data are usually associated with other information and usually have
metadata describing the data content and/or context. Such external (non-content-based) information can be employed
to define the conditions modifying the k-NN search to answer advanced queries over complex data. This article presents
a new variation to the k-NNq, which includes counting aggregate-based conditions. This extension allows answering
queries that are not easily definable using only external conditions and regular k-NN operations. Our work defines the
counting aggregate-based conditions and presents algorithms to execute k-NN queries with these conditions, using either
sequential scan or a metric access method. Experiments over real datasets are also presented, comparing the developed
algorithms and showing that search performance can be largely improved using an appropriate access method.

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous|: Databases; H. Information
Systems [H.3. Information Storage and Retrieval|: H.3.1. Content-Analysis and Indexing

Keywords: Metric Access Methods, Nearest Neighbor Search, Similarity Queries

1. INTRODUCTION

With the increasing dissemination of devices to capture digital data, such as digital cameras, med-
ical scanners, satellites and biomolecular machines, huge amounts of complex data are being gen-
erated every day. In this article, complex data are those data that cannot be represented using
simple/traditional data types, such as numbers, dates and short strings. To allow querying such data,
a set of features can automatically be extracted from the data. Retrieving complex data based on
these features is known as content-based retrieval. The set of features extracted is called a feature
vector, or signature, which is used in place of the original data to evaluate queries. Comparisons over
complex data are based on (dis)similarity relations between pairs of feature vectors, therefore, the
queries that employ such comparisons are known as similarity queries. The most common similarity
queries are the Range query (Rq), which returns the stored elements whose dissimilarity to a given
query reference is less than or equal to a threshold, and the k-Nearest Neighbor query (k-NNq), which
returns the k elements that are the closest to the query element [Barioni et al. 2011].
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Data structures and algorithms to answer similarity queries have been extensively addressed in
the literature [Hjaltason and Samet 2003]. However, most of the existing works consider similarity
operations isolated from other filter conditions. Complex data frequently have associated metadata,
which can be employed to define queries. For example, geographical applications usually associate
information to a stored map. Therefore, a public area can be represented as a polygon with touristic
information associated to it, and a hotel can be a point whose metadata include its amenities and
room rates. Other examples are the images of medical imaging exams. They are part of the patient
record, which stores information about the patient’s history of health and medical care. Furthermore,
medical images themselves store metadata about the patient, the exam and the imaging equipment, as
they usually follow the DICOM (Digital Imaging and Communications in Medicine) standard, which
defines a rich set of attributes in the image header to describe the image context.

A Ek-NN query is represented through a variation of the relational selection, represented as
Fselection predicate(R), where the selection predicate has the form (S ANN[J, k] s,), being S an at-
tribute, in the domain S, of the relation R, ENNI6, k] the k-NN operator and s, € S the reference
element [Barioni et al. 2011]. Therefore, the query Gs jnns,k) s, (12) Teturns the tuples whose attribute
S stores an element that is one of the k nearest neighbors of s,, regarding the distance function
0. This definition allows combining a & with the remainder relational operators in a query. How-
ever, there still are neighbor-based queries that cannot be represented using a regular k-NN operator
in the & predicate. For instance, suppose that one wants to issue Query following, over the table
Cities(name, pop, coord), which stores the names, the populations and the coordinates of cities.

Query 1: Return the 20 cities that are the closest to Bristol city, USA, such that the result includes
at least 5 cities having a population of 100,000 or more people.

The nearest neighbor search that answers this query is constrained by a condition that can-
not be stated as a selection neither before nor after the k-NNqg. That is, Query 1 is not an-
swered bY 0pop>100,000(F coord kNN[L2,20] BristolCoord (Cities)), where Lo is the Euclidean distance and
BristolCoord is the coordinates of the Bristol city, because this statement only returns the cities
having 100,000 or more people that are among the 20 Bristol’s nearest neighbors. The query is not
answered by Gcoord kNN[Ls,20] BristolCoord(Tpop>100,000(Cities)) either, as this statement only returns
cities with population greater than or equal to 100,000. In fact, Query 1 may require discarding
cities having less than 100,000 people that are closer to Bristol city to include at least 5 cities with
a population of 100,000 or more people. This kind of condition is best computed during the k-NN
search, as it modifies the behavior of the basic search. In this article, we call this kind of condition
as a aggregate-based similarity condition, as it depends on an aggregation function computed over
the elements that compose the similarity-based query answer. More specifically, Query 1 relies on
a condition involving a filtered count of the tuples in the result, which we refer herein as counting
aggregate-based similarity conditions, or ca-cond.

Another example of query with a similar reasoning is Query 2, defined over a georeferenced database
of hotels as follows.

Query 2: Return the 10 hotels that are the closest to the conference meeting place, such that at most
2 of them are 10 miles or more far from the airport.

This query may also return hotels that are farther than the k-th closest hotel to the conference
meeting place, in order to satisfy the given condition. Furthermore, notice that this is an example
of a k-NN query constrained by a ca-cond employing another similarity-based criterion (the distance
from the airport).

An additional example involves medical images databases. Medical exams, such as computed to-
mography (CT) and magnetic resonance imaging (MRI), usually organize the series of images that
compose an exam into what the radiologists call a study. In most situations, the physicians are inter-

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Nearest Neighbor Queries with Counting Aggregate-based Conditions . 403

ested in the study as a whole, seldom analyzing an image out of the study context. Therefore, when
issuing a k-NNq over the exam image database, they usually want to define the number of elements
of the result, i.e. the value of k, as a function of the number of studies and not as the number of
individual images, as stated in Query 3, stated as follows.

Query 3: Return the 10 medical images that are the most similar to the query image iq, such that
every image returned is from a distinct exam study.

The result of Query 3 should include only the image that is the most similar to the query image
in each exam study, maybe discarding images that are more similar to ¢, than other images in the
result, in order to have images from 10 distinct studies.

The objective of this article is to introduce a new variation to the k-NN query, called the condition-
extended k-NN query (.k-NNq). The .k-NNq allows indicating an assertion modifying the nearest
neighbor search, which can be a tuple-based condition or an aggregate-based similarity condition.
In this work we focus on a particular kind of aggregate-based similarity condition: the counting
aggregate-based condition. We define counting aggregate-based similarity conditions, present the
main algorithms to solve them and show experiments evaluating the proposed algorithms.

This article is structured as follows. Section 2 summarizes the concepts needed to understand our
approach and existing related works. Section 3 introduces the new .k-NNq operation. Section 4 defines
the counting aggregate-based conditions to the .k-NNq, while Section 5 shows the proposed algorithms
to execute counting aggregate-based .k-NN queries. Section 6 presents experiments comparing the
developed algorithms and Section 7 presents the conclusions and future work.

2. BACKGROUND AND RELATED WORK

The nature of similarity queries precludes using conventional indexes based on the total order property
to speed up their execution. Metric Access Methods (MAMs) are the most adequate data structures
to index complex data. MAMs represent data as elements in a Metric Space, which only require the
elements and their pairwise distance [Zezula et al. 2006]. Therefore, a MAM is able to efficiently index
data whenever a distance function is defined, such as (high-)dimensional feature vectors as well as
feature vectors that do not have a defined dimensionality, such as the features generated by extractors
recognizing regions of interest in an image, whose number can vary for each image. Examples of
efficient dynamic MAMs are the M-tree [Ciaccia et al. 1997; Skopal and Loko¢ 2009] and the Slim-
tree [Traina Jr. et al. 2002], which improved the M-tree adding functionalities to measure and to
reduce the overlap between subtrees.

The most known methods to execute k-NN queries over index structures are the branch-and-bound
and the incremental approaches. The branch-and-bound approach traverses the indexing tree from
the root, employing at each step a heuristic to determine if the branch can be pruned from the
search. One of the landmark branch-and-bound k-NN algorithm was proposed in [Roussopoulos et al.
1995|, traversing an R-tree [Guttman 1984] in depth-first fashion. Regarding MAMs, the M-tree
introduced a variation of the branch-and-bound approach [Ciaccia et al. 1997]. The M-tree algorithm,
which was also included in the Slim-tree, maintains a global priority list containing the nodes not
yet traversed, which allows proceeding the search from the node closest to the query reference. Such
visiting order improves the search performance, thus this algorithm is known as the Best-First k-NN.
The incremental approach aims at retrieving with minimal effort the k 4+ 1 nearest neighbor after the
first & have been found. The Incremental k-NN algorithm [Hjaltason and Samet 2003] delays as much
as possible real distance calculations, using a priority queue containing the elements not yet visited.
This algorithm is optimal regarding both disk accesses and distance calculations, however, the number
of queue operations is usually very high, which drastically degrades the execution performance, being
much slower than the Best-Fit algorithm regarding execution time [Vieira et al. 2007].
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There are a few approaches that allow posing queries combining a k-NN search with additional filters
on other attributes. DBMS vendors have released modules to perform similarity queries inside their
database engines, such as the Oracle interMedia [Oracle Corporation 2005] and the IBM DB2 Image,
Audio and Video Extenders [IBM Corporation 2003], which include proprietary algorithms and data
structures. Open-source systems adding similarity retrieval functionalities to commercial DBMS have
also been developed, such as the FMI-SiR, (user-defined Features, Metrics and Indexes for Similarity
Retrieval) [Kaster et al. 2010], the SIREN (Similarity REtrieval ENgine) [Barioni et al. 2005] and the
PostgreSQL-IE [Guliato et al. 2008] systems. Although such approaches allow combining similarity
and built-in DBMS operators, the combination is restricted to conjunctions and/or disjunctions of
filtering conditions, which cannot answer queries involving aggregate-based conditions.

There also are works combining a k-NN query and a filter on a traditional attribute into a single
index. For instance, in [Park and Kim 2003] an incremental k-NN algorithm over the RS-tree was
proposed, which is a hybrid of the R-tree and the S-tree [Deppisch 1986], based on a hierarchical
signature file. However, this algorithm supports only a keyword-based equality condition involving
the traditional attribute, as the signature file generated by the S-tree is targeted to keyword-based
queries. A similar approach is presented in [Lee and Park 2005], which proposes another structure
based on a variation of the RS-tree, called the SPY-TEC+ index. The SPY-TEC+ is tailored to high-
dimensional content-based retrieval, but it is also restricted to keyword-based conditions. Another
work combining similarity and keyword-based conditions is presented in [De Felipe et al. 2008]. This
work proposes a method to efficiently answer top-k spatial queries with conditions based on traditional
attributes using the Information Retrieval R-tree (IR2-tree), which integrates of Information Retrieval
(IR) techniques and data structures and algorithms used in spatial databases. However, this approach
cannot execute k-NNq with aggregate-based conditions either.

Therefore, to the best of our knowledge, there is no work in the literature addressing k-NN queries
constrained by aggregate-based conditions as those we propose in this article.

3. CONDITION-EXTENDED K-NN QUERIES

The k-Nearest Neighbor query can be extended to include additional conditions. We define in this
article a variation on the k-NN query as a condition-extended k-NN query, represented as .k-NNq.
A (k-NNq is an exact query that retrieves the k elements nearest to the query reference that meet a
given condition — or assertion, using a well known SQL terminology. Generally speaking, a traditional
k-NN query can be understood as an operation that sorts all the elements in the dataset according
to their dissimilarity to the query reference and takes the first k£ elements in this list. Following this
reasoning, a .k-NNq can also be answered sorting the elements according to the similarity to the
reference element, however, it selects the first k£ elements in the list that satisfy the query assertion.
To formally state the meaning of the .k-NNq, we introduce the definitions following, regarding a
complex data domain S, a set of elements S € S, a distance function ¢ defined over S, a reference
element s, € S and a condition ¢ defined over elements in S.

Definition 3.1. A dissimilarity-induced set S%*" is a set containing the elements s; € S, [S%*"| =
|S], such that the elements have an additional property, the dissimilarity value regarding s,., defined
as 0(s;, s,). It is said that S%* is a dissimilarity set induced by S, 6 and s,..

Definition 3.2. A k-dissimilarity-induced set Si’}? is a subset of a dissimilarity-induced set S%°r
such that | S

= k and whose elements satify the condition c.

Definition 3.3. A minimal k-dissimilarity-induced set S’g’zr is a k-dissimilarity-induced set whose
sum of the dissimilarity values of its elements is minimal regarding any k-dissimilarity set induced by
S, 0, s, and c.
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According to these definitions, the answer set of a .k-NNq regarding a dataset S, a query element
50,84

sq € S, a distance function J and a condition ¢, is the minimal k-dissimilarity-induced set S e -

In the same way as the regular k-NNq, the .k-NNq operation can be algebraically represented
through the selection variation ¢, but with a predicate having the form (S kNNIJ, k, cond] s,),
where S is an attribute in the domain S of the input relation, s, € S is the reference element and
kNN[0, k, cond)] is the k-NN operator, being ¢ the employed distance function, k& the number of
neighbors and cond the condition modifying the nearest neighbor search. The condition of a .k-NNq
is expressed using attributes in the input relation and it can be null, a tuple-based condition or an
aggregate-based condition. If cond is null, the .k-NNq is a regular k-NNq. A Tuple-based condition, or
t-cond, is a condition that can be verified analyzing just one tuple at a time. For instance, considering
a relation Exams(imageld, studyld, patient N ame, patient Age, image) storing the tuple of medical
exam images, as well as its identification, the identification of the exam which it belongs and the name
and age of the patient, the query Gimage .kNN[s,k,patient Age>65] queryImage (FFTams) uses a .k-NNq with
a t-cond, as the condition (patientAge > 65) is able to be checked just accessing each single tuple.
An Aggregate-based condition, or a-cond, is a condition employing an aggregation function over the
query result. This means that the condition has to be satisfied regarding the subset of elements that
compose the result as a whole, as aggregation functions are table-based, i.e. they inherently depends
on the whole input dataset to be computed.

A .k-NNq whose assertion includes an aggregate-based condition cannot be expressed neither as a
conjunction nor as a disjunction of tuple-based conditions. Therefore, it cannot be expressed using a
single query expression, and thus it cannot be optimized in a DBMS. As evaluating similarity-based
operators are computationally costly processes, it is worth defining efficient algorithms to execute
<k-NN queries with aggregate-based conditions, such that this operation can be included in a query
expression together with other query operators and efficiently executed by the DBMS. In this article,
we explore .k-NN queries constrained by one type of aggregate-based condition, called the counting
aggregate-based condition, presented in the next section.

4. COUNTING AGGREGATE-BASED CONDITIONS FOR EXTENDED K-NN QUERIES

We define the Counting Aggregate-based similarity condition, or ca-cond, as an aggregate-based con-
dition of a .k-NN query that employs a filtered count aggregate function, stated as follows:

COUNT (aggAttr,t-cond) © ¢

where aggAttr is the attribute employed to count elements, t-cond is a tuple-based condition to filter
the elements that are considered in the COUNT aggregation function, © is one of {<, <, >,>} and
¢ > 0 is an integer value. Therefore, a ca-cond defines that the number of elements in the .k-NNq
result that satisfy the provided t-cond, and whose values of aggAttr are not null, have to be © c.
Alike the regular COUNT aggregation function of database systems, the parameter aggAttr can be
replaced by an *, indicating counting tuples, instead of non-null attribute values.

This construction allows defining several useful queries, including those presented in the Introduc-
tion. For example, Query 1 (“return the 20 cities that are the closest ones to Bristol city, USA, such
that the result includes at least 5 cities having a population of 100,000 or more people”) can be posed
as follows.

G coord .kNN[Ls,20,COUNT (x,pop>100,000)>5] BristolCoord(Cilies)

Similarly, Query 2 (“return the 10 hotels that are the closest to the conference meeting place, such
that at most 2 of them are 10 miles or more far from the airport”) can be stated as a condition-extended
kE-NN query as follows, considering the table Hotels(name, amenities, roomRates, coord):

Geoord ¢kNN[L2,10,COUNT (*, L2 (coord,airportCoord)>10 miles)<2] meetingCoord(HOtels)
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where airportCoord and meetingCoord are constants representing the geographical coordinates of
the respective places and coord is an attribute of the input table.

A variation of the counting aggregate-based condition consists in adding the modifier DISTINCT
to the COUNT aggregate function. The DISTINCT modifier makes the query to return at least/most
¢ elements satisfying t-cond having distinct values for the attribute aggAttr. This variation allows
posing queries such as Query 3 (“return the 10 medical images are the most similar to the query image
iq, such that every image returned is of a distinct exam study”), over the relation Exams, presented
in the previous section, as follows:

Fimage «kNN[L2,10,COUNT(DISTINCT (studyld))>10] iq (Ezams)

Notice that this aggregate-based condition does not employ a filtering tuple-based condition
(t-cond), thus every element is considered in the aggregate function. Being the attribute studyld
the study identifier, the query will not return more than one image of a same study, as the value of ¢
is equal to k. One example of query using the COUNT(DISTINCT) function and a t-cond is shown
as Query 4.

Query 4: Return the 10 images that are the most similar to the reference image iq, such that at least
8 of them are from distinct exams/studies of senior citizens (65 years old or more) and the remainder
images can be of younger patients.

Query 4 can be written using the .k-NNq operation as follows:

&image <kNN[L2,10,COUNT(DISTINCT (studyld,patient Age>65))>8] i, (Exams)

It is worth mentioning that this query is different from the .k-NN query with tuple-based condition
presented in Section 3, because it looks for images from distinct exams as well as it allows returning
images of younger patients, even being more than one in the same study. The reason for allowing
returning more than one image per study from younger patient exams is that the ¢-cond filter the
elements that should be considered in the aggregate function, thus only senior citizens’ exam images
are counted and checked for distinctness. The meaning behind this condition in this query is that if
there are images of younger patients that are more similar to the reference one than images of senior
citizens, it is desired to see them, regardless of they being from the same exam or not.

The behavior of the COUNT(DISTINCT) aggregate-based condition can lead to a misleading on
the meaning of the inverse, or negated form of the condition. Regarding the COUNT condition the
following equivalence rule is valid:

COUNT(aggAttr, t-cond) > ¢ < COUNT (aggAttr, ~t-cond) < (k —c+1)

Therefore, for instance, Query 1 could be alternatively written using the following condition:

F coord kNN|L3,20,COUNT (x,pop<100,000)<16] BristolCoord(Cities)

However, the same notion is not valid when employing the DISTINCT modifier. That is:
COUNT(DISTINCT (aggAttr, t-cond)) > ¢ ¢» COUNT(DISTINCT (aggAttr, —t-cond)) < (k —c+ 1)

as the left side of the rule allows returning several elements that do not satisfy the t-cond and have the
same aggAttr value, while in the right side of the rule these elements (i.e. the elements not satisfying
t-cond, and consequently satisfying —t-cond) are checked for distinctness regarding agg Attr, generating
different results.

Figure 1 illustrates results of a .k-NN query using k = 10, regarding variations of ca-cond. The
region shown in the figures is the neighborhood of the Bristol city, in the Virginia state, USA, near to
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Fig. 1. Comparation of the results of a k-NNq and of .k-NN queries with variations of counting aggregate-based
conditions, defined below each figure.

the division with the Tennessee state. The query reference is the Bristol city, which is represented by
the red star, and was previously removed from the dataset to make the examples clearer. The solid
circles are cities having population of 100,000 or more people, the circles are cities/counties having
population between 10,000 and 99,999 people and the small gray points are cities/counties having less
than 10,000 people. The cities that compose the query result are shown as small crosses. Figure la
shows the result of a regular k-NNq and figures 1b-le show results of .k-NNq constrained by the
ca-cond indicated above each figure. The ca-cond of Figure 1b included 4 cities with 100,000 or more
people that were not in the result of the k-NNq of Figure la. Figure 1c shows that the provided
ca-cond included only the 2 closest cities/counties that have population of less than 10,000 people.
Figure 1d selected cities having more than 10,000 people of at least three distinct states (notice the
state divisions). Finally, Figure le included in the result only cities having less than 10,000 people
from the North Carolina state, as the ca-cond defines that they should be of the same state (< 1) and
the nearest cities having population of less than 10,000 are in the North Carolina. Notice that two
cities with population between 10,000 and 100,000 inhabitants are in the result, which, fortuitously,
also are in South Carolina. However, the result could include cities with 10,000 or more inhabitants
from other states, if they were close enough to the query reference.

5. ALGORITHMS FOR COUNTING AGGREGATE-BASED CONSTRAINED K-NN QUERIES

This section presents the algorithms developed to execute k-NN queries with counting aggregate-
based conditions, employing sequential and indexed scans. The algorithms assume that each complex
element is stored in a table containing the feature vector(s) as well as other attributes describing the
element. The data structure employed to generate the result is a “three-way” priority list ordered by
the dissimilarity value of the elements. This structure is composed of three sub-lists: the first storing
the elements satisfying the counting condition, the second storing the elements that do not satisfy the
counting condition and the third merging all elements in the result.
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5.1 Sequential Scan Algorithms

Algoritm 1 is the proposed sequential scan solution for executing .k-NN queries with counting
aggregate-based conditions whose count value is greater than or equal to the provided value,
such as the ca-cond aforecited for representing Query 1. This algorithm starts initializing the result
data structure and the query radius, which is used to dynamically prune the search space (lines 1-2).
For every tuple in the table data pages, the distance between the tuple and the query element is evalu-
ated, and if the distance is smaller than the dynamic radius, the tuple is qualified to be included in the
result regarding the dissimilarity (lines 3-6). Thereafter the algorithm checks if the tuple satisfies the
provided t-cond and if the value of the aggregation attribute is not null, to decide whether the tuple
must be considered in the counting (line 7). If the tuple fulfill all these requirements, it is included in
the result in the satisfying elements sub-list, and, if this insertion makes the result to have more than
k elements, the farthest element is cut out, maintaining exactly k elements in the result, as informed
in the function parameter (lines 8-9). Otherwise, tuple is a non-satisfying element. In this case, it is
verified whether there is room in the result for storing a non-satisfying element without breaking the
counting condition, which states that at least ¢ elements have to satisfy the t-cond, and therefore the
result can have at most k — ¢ non-satisfying elements (line 11). If there is, the tuple is added in the
non-satisfying sub-list (line 12). If after this operation the result has more than k elements it means
that there were more than ¢ elements in the satisfying sub-list, so the farthest element can be safely
dropped, regardless of being a satisfying or non-satisfying element (line 13). If there is no room for
additional non-satisfying elements (i.e. the result already stores k — ¢ non-satifying elements), the
current tuple will only be included in the result if it is closer to the query element than the farthest
non-satisfying element (line 15). If the tuple is closer than the farthest, they are exchanged in the
result by adding the tuple in the non-satisfying sub-list and cutting out the farthest element in this
sub-list (lines 16-17). Finally, the algorithm checks if the result has k elements and, in this case, the
dynamic radius is updated with the maximum distance in the result, which is the distance between
the farthest element in the result and the query element (lines 21-22).

Algorithm 1: .k-NN_CountAggregate GreaterThanOrEqual

Input: table, d, k, sq, aggAttr, t-cond, c
Output: result

1 result — @

2 maxDist « oo;

3 foreach dataPage in table do

4 foreach tuple in dataPage do

5 distance <« d(tuple.s, sq);

6 if distance < maxDist then

7 if tuple satisfies t-cond and tuple.aggAttr # NULL then

// tuple is added as a satisfying element

8 result.addSatisfyElement(tuple, distance);

9 if result.getNumElements() > k then result.cutElements(k);
10 else

// tuple is a non-satisfying element

11 if result.getNumNotSatisfyElements() < (k — ¢) then
12 result.addNotSatisfyElement(tuple, distance);
13 ‘ if result.getNumElements() > k then result.cutElements(k);
14 else
15 if distance < result.getMaxDistanceNotSatisfy() then
16 result.addNotSatisfyElement(tuple, distance);
17 L result.cutNotSatisfyElements(k — ¢);
18 if result.getNumElements() > k then
19 L maxDist « result.getMaxDistance();
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The algorithm to execute .k-NN queries with aggregate-based conditions whose count value is less
than or equal to the provided value are alike to Algorithm 1. However, the less than or equal to
algorithm inverts the treatment of satisfying and non-satisfying elements, as, in this case, the number
of satisfying elements is which have to be limited in the result, while in the greater than or equal to
approach the number of non-satisfying elements is limited.

Algorithm 2 answers .k-NN queries with counting distinct aggregate-based conditions, such that
the count is greater than or equal to the given value. The first seven lines of this algorithm are
exactly equal to the respective ones in the previous algorithm. In line 8, the algorithm scans the result
looking for a duplicate satisfying elements regarding aggAttr. If a duplicate is found, the algorithm
tests if the current tuple is closer to the query reference than the duplicate (lines 9-10). If so, the
tuple is included in the satisfying sub-list, replacing the duplicate (line 11). Thereafter, it is checked if
the duplicate should be maintained in the result, now as a non-satisfying element. The algorithm first
verifies if there is room for additional non-satisfying elements and, in this case, moves the duplicate
to the non-satisfying sub-list (lines 12-13). If after this operation the result exceeds k elements, the
farthest element is cut out, as it is known that, in this point of the algorithm, the result contains more
than ¢ satisfying elements (line 14). If the number of non-satisfying elements is in the borderline,
the duplicate is only maintained if it is closer than the farthest non-satisfying element (line 15). If it
is in the border, the duplicate is moved to the non-satisfying sub-list and the farthest non-satisfying
element is cut out (lines 16-17). If the duplicate does not meet any of the two alternatives, it is
removed from the result. In the case of the tuple (satisfying t-cond) being farther than the duplicate,
the algorithm checks if the tuple should be added to the result as a non-satisfying element (lines 22-
27), following a logic similar to that used earlier to verify if the farther duplicate should be maintained
in the result. Lines 30-31 handles the tuples satisfying the element-based condition that do not have
duplicates in the result. In this case, the tuple is added to the result, and, if the result exceeds k
elements, the last one is cut out, as in this point it is guaranteed that the number of distinct satisfying
elements in the result is greater than c. Tuples that do not satisfy the provided t-cond follow the
aforementioned procedure regarding non-satisfying elements. Finally, if the result holds k elements,
the dynamic radius is updated (lines 37-38) and the search continues until the final query result is
obtained.

The algorithm to execute .k-NN queries with counting distinct aggregate-based conditions whose
number of satisfying elements is less than or equal to the provided value has a trickier treatment
of satisfying elements, requiring maintaining additional candidate lists. Due to space limitations, this
algorithm is not shown in this article. However, we present a quick the intuition. A .k-NNq with a
COUNT(DISTINCT (aggAttr, t-cond)) < ¢ condition, such that ¢ < k, allows more than one satisfying
tuple having the same value for aggAttr in the result, where only one of them is considered in the
aggregate function. During the execution of the query, if the number of (distinct) satisfying elements
in the result is in the borderline and the algorithm reachs another satisfying tuple that is distinct from
the remainder satisfying tuples in the result, it should replace another satisfying one. However, if the
replaced tuple have duplicates, they must also be removed from the result. When this occurs, previous
duplicate satisfying tuples that were not included in the result may now be included. Therefore, it is
necessary to maintain additional duplicate satisfying tuples to complete the result when such situation
occurs.

5.2 Algorithms in the Slim-tree Metric Access Method

While the traditional k-NN algorithm needs only the feature vectors and a distance function to compare
them, the counting aggregate-based algorithms also demand additional attributes to be executed.
It is not difficult to realize that this extra information can be explored to develop new indexing
structures. However, this option is out of the scope of this article, thus we choose developing algorithms
for executing .k-NN queries with counting aggregate-based conditions for the Slim-tree, which is a
consolidated structure for metric and complex data.
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Algorithm 2: .k-NN _CountDistinctAggregate GreaterThanOrEqual

Input: table, §, k, sq, aggAttr, t-cond, c
Output: result

1 result — @

2 maxDist «— oo;

3 foreach dataPage in table do

4 foreach tuple in dataPage do

5 distance « d(tuple.s, sq);

6 if distance < maxDist then

7 if tuple satisfies t-cond and tuple.aggAttr # NULL then

8 duplicate < result.lookForSatisfyingDuplicate(tuple.agg Attr);

9 if duplicate # NULL then
10 if §(tuple.s, sq) < d(duplicate.s, sq) then
11 result.addSatisfyElement(tuple, distance);

// Check whether duplicate is maintained, now as non-satisfying
12 if result.getNumNotSatisfyElements() < (k — ¢) then
13 result.toNotSatisfy(duplicate);
14 ‘ if result.getNumElements() > k then result.cutElements(k);
15 else if §(duplicate.s, sq) < result.getMaxDistanceNotSatisfy() then
16 result.toNotSatisfy(duplicate);
17 ‘ result.cutNotSatisfyElements(k — c);
18 else
19 L removeSatisfyElement(duplicate);
20 else
// Treat tuple as a non-satisfying element
21 if result.getNumNotSatisfyElements() < (k — ¢) then
22 result.addNotSatisfyElement(tuple, distance);
23 ‘ if result.getNumElements() > k then result.cutElements(k);
24 else if §(tuple.s, sq) < result.getMaxDistanceNotSatisfy() then
25 result.addNotSatisfyElement(tuple, distance);
26 L result.cutNotSatisfyElements(k — ¢);
27 else
28 result.addSatisfyElement(tuple, distance);
29 if result.getNumElements() > k then result.cutElements(k);
30 else
// Treat tuple as a non-satisfying element

31
32 if result.getNumElements() > k then
33 L maxDist «— result.getMaxDistance();

We implemented in the Slim-tree two variations of each algorithm presented in the previous section,
according to the way employed to access the additional attributes. Both of them follow the logic of
the respective linear algorithms with regard to the management of the result data structure. However,
they also include the logic to prune subtrees and to avoid unnecessary distance calculations using the
triangle inequality property and use the the Best-First k-NN strategy to define the node visiting order.

The first variation, called the Table-Slim algorithms, uses a regular Slim-tree, storing only the
feature vector and the row identifier (rowld) of each indexed element. The algorithms check if the
visited elements are qualified regarding the distance to the query reference inside the tree. However,
to check the conditions based on external attributes, the algorithms retrieve the tuples from the table,
thus, accessing data pages during the search. Although this variation can demand a huge amount of
data page accesses, it is a generic alternative that allows employing any external attribute together
with a Slim-tree and, depending on the query, it can be much faster than the sequential scan.
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The second variation, called the Covering-Slim algorithms, defines the Slim-tree as a covering index.
This means that the Slim-tree stores additional attributes associated to the indexed element, besides
the feature vector and the rowld. Thus, if a Covering-Slim index including the external attributes
used in the .k-NNq condition is available, it is not necessary to access data pages during the search,
as all data required to execute the search is in the index.

6. EXPERIMENTS
6.1 Datasets and Experiment Description

We have executed experiments evaluating the proposed algorithms over geographic and image datasets.
This section shows results achieved over two of them. The first dataset, called the USCities dataset,
contains the name, state and geographic coordinates of 25374 cities/counties in the United States
together with 97 associated (numeric) demographic attributes. This dataset was obtained combining
demographic data from the year 2000 census of the United States and the coordinates from the Tiger
system, both provided from the U.S. Census Bureau. Regarding this dataset, we executed queries
similar to Query 1, with and without the DISTINCT modifier. The performance of a .k-NNq is affected
by the number of neighbors (k), by the value of ¢ and by the selectivity of the t-cond provided. It
is easy to notice that a greater than or equal to ¢ counting aggregate condition with a ¢-cond that is
satisfied by only 1% of the input table tends to be costlier than a query having a t-cond that selects
20% of the table. Therefore, to allow evaluating the impact of these parameters, the queries in this test
were stated as follows: Query 5: “return the k cities that are the closest to the reference city, such
that the result includes at least ¢ cities having population greater than or equal to x”; and Query 6:
“return the k cities that are the closest to the reference city, such that the result includes at least c
cities, of distinct states, having population greater than or equal to x”. We executed three rounds of
500 queries, using the Lo distance for the coordinates, each query with a distinct city reference, being:
1%t round) varying c¢ from 1 to 100 for Query 5 and from 1 to 10 for Query 6 and, for both these
queries, fixing k = 100 and the t-cond selectivity in 5% (using x = 29674); 2"? round) varying k from
20 to 400 and fixing ¢ = 20 for Query 5 and ¢ = 5 for Query 6 and x = 29674 for both queries; and
374 round) varying the t-cond selectivity from 1% to 50% and fixing ¢ = 20 for Query 5 and ¢ = 5 for
Query 6 and k& = 100 for both queries.

The second dataset, called the DICOM HC dataset, was obtained from a collection of 200,000
DICOM images from the Ribeirdo Preto Medical School Clinics Hospital of the University of Sao
Paulo (HCFMRP-USP). From each image, we extracted a 256-bin grayscale normalized histogram
and 13 attributes from the image header, including exam description, patient age and some patient
information. The queries executed over this dataset, comparing the histograms using the L; distance,
were: Query T: “Return the k images that are the most similar to the given reference image, such
that at least ¢ of them are from patients whose age is x years old or more”; and Query 8: “Return
the k images that are the most similar to the given reference image, such that at least ¢ of them are
from distinct exams/studies of patients whose age is x years old or more and the remainder images
can be of younger patients”. With regard to this dataset, we also performed three rounds of queries
with parameters similar to the USCities dataset, but taking the average of 50 queries with random
reference images. Moreover, regarding Query 8, when the ¢ parameter was varied, it was from 1 to
35, and when the other parameters were varied, ¢ was fixed in 15.

The experiments were run on a dedicated machine equipped with an Intel Core 2 Quad 2.83GHz
processor, 4GB of RAM and a SATA2 HD of 2TB and 7,200RPM, running the Kubuntu GNU/Linux
10.04 64bit. The algorithms were implemented in C-++, using the Arboretum library!, and compiled
with GCC 4.4.3 for GNU/Linux.

Thttp://gbdi.icmc.usp.br/arboretum
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6.2 Results and Discussion

The figures 2 and 3 show, respectively, the results of answering Query 5 over the USCities dataset and
Query 7 over the DICOM _HC dataset. The graphs in the first column of the figures show the behavior
of the developed algorithms with regard to the variation of the ¢ parameter, while the graphs of the
second and of the third columns show, respectively, the algorithms’ behavior regarding the variation
of k and of the t-cond selectivity, being the graphs of the third column always presented in log
scale. The graphs on top of the figures show the wall clock time demanded to execute the algorithms
over the datasets according the variation on the parameters, summarizing the behavior of the other
observed variables: average number of distance calculations, average number of comparisons involving
the traditional /external attributes, average number of disk accesses (of data and index pages) and
average number of operations in the three-way priority list storing the result.

With regard to the USCities dataset, analyzing the graph of Fig. 2a, it can be seen that both the
Sequential and the Covering-Slim algorithms presented an almost constant behavior regarding the
variation of ¢, being the Covering-Slim up to more than 4 times faster than the Sequential. Observ-
ing the other graphs in this column, it can be seen that the variables that presented an increasing
behavior, which were the number of comparisons (Fig. 2d) for the Sequential algorithm and the num-
ber of distance calculations (Fig. 2d) and the number of comparisons (Fig. 2g) for the Covering-Slim
algorithm, were compensated by the decreasing behavior of the number of list operations (Fig. 2m).
On the other hand, the Table-Slim algorithm presented a linear increasing behavior regarding time,
performing poorly than the Covering-Slim for every value of ¢ and poorly than the Sequential for
¢ > 30. Although for most variables the Table-Slim performed slightly better than the Covering-Slim,
the Table-Slim was very costly regarding disk accesses (Fig 2j), impacting in the execution time.
Fig. 2b shows that the three algorithms presented a linear curve with the increasing of k. Again, the
Covering-Slim was the fastest, being up to 6 times faster than the Sequential and up to 5 times faster
than the Table-Slim. However, in this case, the Table-Slim was around 20% faster than the Sequential,
because the larger number of disk accesses required by the Table-Slim (Fig. 2k) was compensated by
its much better performance in the remainder variables comparing to the Sequential (figures 2e, 2h
and 2n). The graph of Fig. 2c¢ shows that only the Table-Slim presented acute degradation in the ex-
ecution time for high ¢-cond selectivities. Again, such poor performance was mainly due to the large
amount of disk accesses (Fig 21). Both the Covering-Slim and the Sequential presented an almost
constant behavior regarding the t-cond selectivity, having a slightly increase in the execution time for
selectivities greater than 97%, due to the comparisons (Fig. 2i) in the Sequential and the distance
calculations (Fig. 2f) and comparisons (Fig. 2i), as for all algorithms the number of list operations
was almost constant (Fig 20). The Covering-Slim was the best regarding time, being around 4 times
faster than the Sequential and up to 6.5 times faster than the Table-Slim. The Table-Slim performed
better than the Sequential for selectivities smaller than 97%, being up to 2.5 times faster.

With regard to the execution of Query 7 over the DICOM HC dataset, Fig. 3a shows that the
Sequential algorithm presented the poorest performance, with a constant execution time. Differently
from the USCities dataset, querying the DICOM HC dataset using Table-Slim presented a sub-
linear behavior, being faster than the Sequential Scan for every value for ¢. Covering-Slim presented
an interesting execution time curve, having the maximum value in the middle of the curve. The
reduction occurred after the middle value was due the reduction in the number of list operations
(Fig. 3m), which in this dataset is more costly than in the previous one, as the feature vector is
much larger. The Covering-Slim was up to 29% faster than the Table-Slim and 33% faster than the
Sequential, while the Table-Slim was up to 23% faster than the Sequential. Again, the Table-Slim
and the Covering-Slim performed very close regarding distance calculations (Fig. 3d) and comparisons
(Fig. 3g), being several times faster than the Sequential Scan. Nevertheless, observing Fig. 3j it can
be noticed that the Table-Slim demanded less disk accesses than the Sequential when ¢ < 70 and just
up to 20% more accesses in the worst case. According to the variation of k, Fig. 3b shows that the
execution time of both the Sequential and the Table-Slim presented an almost constant behavior, while
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Fig. 2. Results of executing Query 5 over the USCities dataset comparing the behavior of the Sequential, Table-Slim
and Covering-Slim algorithms with the variation of ¢ (left column), k& (middle column) and ¢-cond selectivity (right).

the Covering-Slim presented a sub-linear curve. However, the Covering-Slim was the more efficient,
being up to 67% faster than the Sequential and up to 45% faster than the Table-Slim. The Table-
Slim was up to 24% faster than the Sequential, having performed between the Covering-Slim and the
Sequential in every observed variable, being better than the Sequential even regarding disk accesses
(figures 3e, 3h, 3k and 3n). With regard to the t-cond selectivity, Fig. 3c shows that the execution
time of both indexed approaches was smaller than the Sequential algorithm, for every selectivity that
was tested (from 50% to 99%). The Covering-Slim was up to 33% faster than the Sequential and up
to 20% faster than the Table-Slim, which was up to 25% faster than the Sequential. It can also be
seen that the Sequential presented a constant behavior regarding execution time, which was the same
behavior of the other variables, excepting the number of comparisons (Fig. 3i). On the other hand,
the indexed algorithms presented a constant behavior only regading the number of list operations
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Fig. 3. Results of executing Query 7 over the DICOM HC dataset comparing the behavior of the developed algorithms
according to the parameters c (left column), k& (middle column) and ¢-cond selectivity (right column).

(Fig. 30), having the performance degraded considering high selectivities for the other variables. The
indexed algorithms produced similar curves regarding the number of distance calculations (Fig 3f)
and the number of comparisons (Fig 3i), however the Table-Slim experienced a sharp increase in the
number of disk accesses for selectivites greater than 90%, while the Covering-Slim presented a subtle
increase for selectivities greater than 97% (Fig. 31).

With regard to .k-NN queries with counting distinct aggregate-based conditions, due to space
limitations, this article only shows the algorithms’ execution time behavior, summarizing the overall
performance. The first line of graphs in Fig. 4 show the results of executing Query 6 over the USCities
dataset and the second line presents the results of executing Query 8 over the DICOM _HC dataset.
Considering the USCities dataset, the behavior of the three algorithms regarding the variation of ¢
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Fig. 4. Results of experiments evaluating the counting distinct aggregate-based algorithms over the datasets USCities
(top) and DICOM_HC (bottom), regarding varying k (left column), ¢ (middle column) and t-cond selectivity (right).

in Query 6 (Fig. 4a) was similar to the behavior of Query 5 (compare with Fig. 2a). On the other
hand, varying k while the algorithms answer Query 6 (Fig. 4b) lead to the linear behavior of answering
Query 5 and the Covering-Slim presented similar gains over the Sequential, the Table-Slim was slightly
slower than the Sequential in Query 6, mainly because the number of disk accesses of the Table-Slim
increased. A similar behavior can be noticed according to the variation of the t-cond selectivity, shown
in Fig. 4c. The performance of the Table-Slim algorithm degraded due to the increase in the number
of disk accesses, being only up to 25% faster than the Sequential (it was up to 2.5 times faster than
the Sequential in Query 5). The Covering-Slim did not experienced a substantial increment in the
observed variables, being around 3.5 times faster than the Sequential. Considering the DICOM HC
dataset, both indexed algorithms presented a sub-linear behavior with the increase of ¢, while the
execution time of the Sequential was invariant to this aspect (Fig. 4d). The Covering-Slim was the
fastest, but being very close to the Sequential with high values for ¢, and the Table-Slim was only
faster than the Sequential for ¢ < 10. When varying k, Fig. 4e shows that the execution time of the
Covering-Slim incresed sub-linearly, nevertheless outperforming the Sequential in up to 30%. On the
other hand, the Table-Slim had a poorer performance than the Sequential, being 4.5% slower in the
average, which was promoted again by the excessive number of disk accesses. Finally, with respect
to the t-cond variation in Query 8, the behavior of the algorithms was similar to such variation in
Query 7. However, in Query 8 the impact in the performace of the indexed algorithms regarding high
seletivities was more visible. The Covering-Slim tied with the Sequential for the selectivity of 99%, but
it was up to 37% faster than the Sequential concerning lower selectivies. The Table-Slim was slower
than the Sequential for t-cond selectivies greater than 92% and up to 23% faster with respect to lower
selectivities. When compared to the Covering-Slim, the Table-Slim was always slower, demanding up
to 25% more time to execute.

Observing the results achieved, we can conclude that the indexed approaches improved the per-
formance to a great extent, specially the Covering-Slim algorithm, which proved to be adequate to
execute the queries proposed in this article.
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7. CONCLUSIONS AND FUTURE WORK

In this article, we proposed an extension to the k-NN similarity query, called the condition-extended
kE-NN query (.k-NNgq). The .k-NN query allows providing an assertion over attributes associated to
the complex data modifying the search, which can be either based on a single tuple, a tuple-based
condition, or based on the query result set, which is an aggregate-based condition. In particular, this
work addressed counting aggregate-based conditions (ca-cond) for .k-NN queries, which are conditions
based on a filtered count aggregate function that the query result must satisfy. We defined the ca-cond
and presented several examples of queries that can be answered employing it in a .k-NNqg. We also
presented the main algorithms to solve .k-NN queries with ca-cond, and developed three variations
of each algorithm. The first variation is based on a sequential scan and the two other variations
were developed under the MAM Slim-tree. The experiments presented in the article showed that
the performance of the search can be largely boosted using an appropriate access method. Future
works include to address other types of aggregate-based conditions to .k-NN queries and explore their
peculiarities to develop new algorithms and indexing structures to efficiently execute them.
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