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Abstract. Author name ambiguity in the context of bibliographic citations is a very hard problem. It occurs when
there are citation records of a same author under distinct names or when there exists citation records belonging to
distinct authors with very similar names. Among the several methods proposed in the literature, the most effective

ones are those that perform a direct assignment of the records to their respective authors by means of the application
of supervised machine learning techniques. However, those methods usually need large amounts of labeled training
examples to properly disambiguate the author names. To deal with this issue, in previous work, we have proposed a

method that automatically obtains and labels the training examples, showing competitive performance compared to
representative author name disambiguation methods. In this work, we propose to improve our previous method by
exploiting user relevance feedback. In more details we select a very small portion of the citation records for which our
method was mostly unsure about the correct authorship and ask the administrators for labeling them. This feedback
is then used to improve the effectiveness of the whole process. In our experimental evaluation, we observed that with
a very small labeling effort (usually around 5% of the records), the overall disambiguation effectiveness improves by
almost 10% on average, with gains of up to 61% in some of the largest ambiguous groups.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Information Search and Retrieval;
H.3.7 [Information Storage and Retrieval]: Digital Libraries

Keywords: Bibliographic Citation, Digital Library, Name Disambiguation, Relevance Feedback

1. INTRODUCTION

Author name ambiguity in the context of bibliographic citations is one of the hardest problem currently
faced by the digital library (DL) community. This problem occurs when a set of citation records1

contains ambiguous author names, i.e., the same author may appear under distinct names, or distinct
authors may have very similar names. This problem decreases the quality and reliability on the
information that can be obtained from the digital library repositories as well as the quality of services
such as searching and browsing that rely on this information.

To illustrate the problem, Table 1 shows a set of three citation records {c1, c2, c3} so that each record
has its author names identified by rj , 1≤j≤16. For each record ci, each name rj is a reference to an
author and has a list of attributes associated with it, such as, coauthor names (i.e., the list of references
to other authors of the same citation record), work title, publication venue title, publication year and

1Here understood as a set of bibliographic attributes, such as author names, work title and publication venue title, of
a particular publication.
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Table I. Illustrative example
Citation Id Citation

c1 (r1) S. Godbole, (r2) I. Bhattacharya, (r3) A. Gupta, (r4) A. Verma. Building re-usable
dictionary repositories for real-world text mining. CIKM, 2010.

c2 (r5) Indrajit Bhattacharya, (r6) Shantanu Godbole, (r7) Ajay Gupta, (r8) Ashish Verma,
(r9) Jeff Achtermann, (r10) Kevin English. Enabling analysts in managed services for CRM
analytics. KDD, 2009.

c3 (r11) T. Nghiem, (r12) S. Sankaranarayanan, (r13) G. E. Fainekos, (r14) F. Ivancic, (r15) A.
Gupta, (r16) G. J. Pappas. Monte-carlo techniques for falsification of temporal properties of
non-linear hybrid systems. HSCC, 2010.

so on. Examining Table 1, we see examples of synonyms and polysems, which are subproblems of the
name ambiguity problem. Author names r3 and r15 are examples of polysems where r3 refers to “Ajay
Gupta” from IBM Research India and r15 refers to “Aarti Gupta” from NEC Laboratories America,
USA. Author names r3 and r7 are examples of synonyms.

To help solving such a problem in a scalable and automated manner, an automatic author name

disambiguation procedure may be applied to the digital library content. More formally, the author
name disambiguation procedure may be formulated as follows. Let C = {c1, c2, ..., ck} be a collection
of citation records. Each citation record ci has a list of attributes which includes at least author names,
work title and publication venue title. With each attribute in a citation is associated a specific value,
which may be composed of several elements. In case of the attribute “author names”, an element
corresponds to the name of a single unique author. Each author name element is a reference rj to
an author. In case of the other attributes, an element corresponds to a word/term. The objective of
the disambiguation task is to produce a disambiguation function that is used to partition the set of
references to authors {r1, r2, . . . , rm} into n sets {a1, a2, . . . , an}, so that each partition ai contains
ideally all the references to a same author and no references to other authors. We consider that each
reference r to an author extracted from a citation record c contains at least the following attributes:
author name, coauthor names that contain the other references extracted from the record c, work title
and publication venue title of the citation c.

To disambiguate the bibliographic citations of a digital library (DL), first we may split the set
of references to authors into groups of references whose values of the author name attribute are
ambiguous. These are called ambiguous groups (i.e., groups of references having the value of the
author name attribute with similar names). The ambiguous groups may be obtained by using blocking
methods [On et al. 2005] which address scalability issues avoiding the need for comparisons among all
references.

The challenges of dealing with name ambiguity in citation records have led to the proposal of a
large number of methods [Bhattacharya and Getoor 2007; Cota et al. 2010; Carvalho et al. 2011;
Culotta et al. 2007; Fan et al. 2011; Ferreira et al. 2010; Ferreira et al. 012b; Han et al. 2004; Han
et al. 2005; Huang et al. 2006; Kanani et al. 2007; Kang et al. 2009; Levin and Heuser 2010; On
et al. 2006; Pereira et al. 2009; Shu et al. 2009; Soler 2007; Song et al. 2007; Tang et al. 2012; Torvik
et al. 2005; Treeratpituk and Giles 2009; Veloso et al. 2012; Yang et al. 2008]. One such a challenge
is that, usually, only a minimum set of attributes is available to work with (in most case only author
names and publication and venue titles) which may not be enough to correctly disambiguate all the
references of a DL.

The author name disambiguation methods have been generally classified as performing either [Fer-
reira et al. 012a]: author grouping, which includes methods that attempt to group references to the
same author using some type of similarity between them; or author assignment, including methods
that try to directly assign the references to their respective authors.

Among the several methods proposed in the literature, the most effective ones seem being author
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assignment methods that exploit supervised machine learning techniques [Ferreira et al. 012a]. How-
ever, those methods usually need large amounts of labeled training examples to properly disambiguate
the author names, which are costly and laborious to obtain. Moreover, changes in publication patterns
may require that these training sets may be periodically rebuild in order to capture these new patterns.
To deal with those issues, in previous work [Ferreira et al. 2010], we have proposed a method that
automatically obtains and labels the training examples, showing competitive performance compared
to representative author name disambiguation methods. In this work, we improve upon our previous
proposal by exploiting user relevance feedback. In more details we select a very small portion of the
set of references for which our method was most unsure about the correct authorship and ask the
administrators for labeling them. These labeled references are then incorporated into the training
data automatically selected by our self-training author name method. In our experimental evalua-
tion, we observe that with a very small labeling effort (usually around 5% of all DL records), the
disambiguation effectiveness improves by almost 10% on average in a collection under the pairwise F1
metric, with gains of up to 61% on some of the largest ambiguous groups.

This article is organized as follows. Section 2 discusses related work. Section 3 describes the self-
training author name disambiguation method we explore. Section 4 describes our strategy to extend
this disambiguation method with relevance feedback. Section 5 presents the results of our experimental
evaluation. Finally, Section 6 presents our conclusions and offers possible directions for future work.

2. RELATED WORK

2.1 Author Name Disambiguation

Most of the automatic name disambiguation methods proposed in the literature adopt solutions that
may be classified according to the main type of approach that exploit. Ferreira et al. [2012a] broadly
classify these approaches as performing either: author grouping [Han et al. 2005; Torvik et al. 2005;
Huang et al. 2006; On et al. 2006; Bhattacharya and Getoor 2007; Culotta et al. 2007; Kanani et al.
2007; Kang et al. 2009; On and Lee 2007; Soler 2007; Song et al. 2007; Yang et al. 2008; Pereira
et al. 2009; Torvik and Smalheiser 2009; Treeratpituk and Giles 2009; Cota et al. 2010; Ferreira et al.
2010; Fan et al. 2011; Carvalho et al. 2011], encompassing methods that try to group the references to
the same author using some type of similarity among reference attributes; or author assignment [Han
et al. 2004; Han et al. 2005; Bhattacharya and Getoor 2006; Ferreira et al. 2010; Tang et al. 2012;
Veloso et al. 2012; Ferreira et al. 012b], covering methods that aim at directly assigning the references
to their respective authors.

Author grouping methods attempt to group references to a same author using some clustering
technique along with a similarity function. The similarity function is applied to the attributes of the
references (or group of references) in order to decide whether to place references in a same group or
not, using the clustering technique. This similarity function may be predefined (based on existing
ones and depending on the type of the attribute) [Han et al. 2005; Bhattacharya and Getoor 2007;
On and Lee 2007; Soler 2007; Cota et al. 2010; Carvalho et al. 2011], learned using a supervised
machine learning technique [Torvik et al. 2005; Huang et al. 2006; Culotta et al. 2007; Torvik and
Smalheiser 2009; Treeratpituk and Giles 2009; Levin et al. 2012], or extracted from the relationships
among authors and coauthors, usually represented as a graph [On et al. 2006; Levin and Heuser 2010;
Fan et al. 2011].

Author assignment methods attempt to directly assign the references to their corresponding author
using either a supervised classification technique [Han et al. 2004; Ferreira et al. 2010; Veloso et al.
2012; Ferreira et al. 012b] or a model-based clustering technique [Han et al. 2005; Bhattacharya and
Getoor 2006; Tang et al. 2012]. These methods infer models that represent the authors (for instance,
the probabilities of an author publishing an article with other (co-)authors, in a given publication
venue and using a list of specific terms in the work title).
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In this work, we extend a self-training author assignment disambiguation method by exploiting
user relevance feedback. In more details, we select a very small portion of the references for which
our method was not sure about the correct authorship and ask the administrators to label them.
These labeled references are inserted into the training data automatically selected by the self-training
author name disambiguator [Ferreira et al. 2010] that infers a function to disambiguate the remaining
references.

2.2 Relevance Feedback

Relevance Feedback has been largely used mainly in search tasks in Information Retrieval [Baeza-
Yates and Ribeiro-Neto 2008]. In such task, the results obtained from a given search are evaluated as
relevant or not by the user who issued the query. This information about the relevance of the retrieved
documents is given as feedback to the system which modifies the original query with terms belonging
to the indicated documents. The new modified query is then used to retrieve new documents and this
process continues until the user is satisfied or gives up.

Our idea of applying the user feedback for improving the disambiguation process is quite similar,
with the difference that we focus on the cases in which the method is most uncertain about the correct
authorship. We discuss how we measure this uncertainty in Section 3.2.

To the best of our knowledge, in the author name disambiguation task, the only other work to
explore some type of user feedback is ADANA (standing for Active Name Disambiguation) [Wang
et al. 2011]. ADANA works in an interactive mode actively choosing only a few potentially erroneous
disambiguated results, after a disambiguation process has been run, in order to ask the user for
corrections, instead of passively waiting for user inputs. The active selection aims to minimize the
number of interactions needed to maximize effectiveness. Notice that in order to obtain good results,
the authors make use of a lot of additional information such as affiliation, bibliographic references,
etc., that is usually not available in most cases. Differently, we here focus on the most common case
when we have only the minimum amount of information in a citation (i.e., author and coauthor names,
publication and venue titles). Another important differences are that ADANA can be considered as
an author grouping method, while ours lies in the author assignment class of methods and that the
users in ADANA are required to “correct” potentially incorrectly made decisions while we defer this
decision to the end of the process and exploit the relevance feedback in some uncertain cases to help
to solving the remaining ones.

3. SELF-TRAINING ASSOCIATIVE AUTHOR NAME DISAMBIGUATION

In this section, we describe the Self-training Author Name Disambiguation method (SAND) that
will be extended with relevance feedback. SAND follows a two-step approach as described in [Ferreira
et al. 2010; Ferreira 2012]. These steps are applied after a well-known pre-processing procedure, which
includes blocking, stop-word removal, and stemming2. In the following subsections we will present
the SAND steps.

3.1 The Unsupervised Step

The unsupervised step aims to automatically produce training examples for the second step (the
supervised one). To obtain these examples, first we organize references within each ambiguous group
into clusters, so that each cluster contains (ideally) references to a same author. The key intuition is

2Stop-word removal and stemming are performed on the words that compose work and publication venue titles. Then,

authors with ambiguous names are grouped together (i.e., blocked), so that ambiguous groups are created. Disam-
biguation operations are performed within each ambiguous group, so that useless comparisons involving non-ambiguous
authors are avoided.
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to associate each cluster with an author label, so that references within each cluster can be exploited
as training examples.

In order to work properly as training examples, the extracted clusters must be as pure as possible, in
the sense that each cluster must be likely to contain only references that are associated with the same
author. A simple way to extract pure clusters is to ensure that each cluster contains only one reference.
In this case, clusters are totally pure, however, totally fragmented (that is, references associated with
the same author are placed in different clusters). Fragmented clusters are detrimental for training,
since authorship references associated with the same author would receive different author labels. So,
our strategy to automatically produce examples is to extract pure clusters, and then discard those
clusters that increase fragmentation. This strategy is discussed next.

Extracting Pure Clusters. To extract pure clusters, we exploit highly discriminative attributes aim-
ing to place in different clusters references associated with different authors. More specifically, pure
clusters are extracted by exploiting recurring patterns in the coauthorship graph, that is, two author-
ship references are placed together in the same cluster if both references have at least one coauthor in
common. We have based this strategy on the general observation that only very rarely two ambigu-
ous authors share a coauthor [Cota et al. 2007]. While simple, this strategy tends to extract highly
pure clusters. Unfortunately, this strategy also tends to fragment references associated with the same
author into multiple clusters. This is expected, since some authors are likely to have many different
coauthors and these coauthors may not act as coauthors among themselves.

Discarding Fragmented Clusters. In order to produce the best training possible set, which ideally
contains only one cluster per author in the collection, we need to discard fragmented clusters, i.e., two
or more clusters with references to a same author. The process of identification of fragmented clusters
starts by sorting clusters in descending order of size (i.e., the number of references in the cluster). The
result is a sorted list C of clusters. The identification process continues and, at the first iteration, the
largest cluster in C is inserted into the set of selected clusters, denoted as S. Also, the selected cluster
is removed from C. The next clusters in C to be inserted into S should be as dissimilar as possible
to the clusters already in S. The key intuition is that candidate clusters in C that are dissimilar to
clusters in S are those more likely to contain references associated with authors not in S.

In order to compute the similarity among clusters, we employed the well-known cosine func-
tion [Baeza-Yates and Ribeiro-Neto 2008]. Specifically, each reference is represented as a feature
vector, where each coauthor name and each word of work title and publication venue title is a feature,
and the similarity is calculated using the centroid of the vectors (i.e., references) in the clusters. The
identification of fragmented clusters continues by evaluating the next candidate cluster c ∈ C to be
inserted into S. Candidate c ∈ C is inserted into S if:

∀s ∈ S, φ(c, s) ≤ φmax (1)

That is, c is inserted into S if the similarity value φ(c, s) between c and each cluster s ∈ S is at most
φmax (which is a user-specified threshold)3. Then, c is removed from C and the iteration continues
with the next candidate cluster in C. The process finally stops when there is no more candidate
clusters, and C is finally empty. In the end, references in each cluster s ∈ S are inserted into the
training data D. Each reference receives the author label of the corresponding cluster. The remaining
references that were not included in D (i.e., references associated with fragmented clusters that were
not included in S) compose the test set T .

3φ(c, s) is a function that measures the similarity between clusters c and s
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3.2 The Supervised Step

The unsupervised step produces a set of training examples D, which consists of a set of records of
the form <r,a>, where r is a reference to an author (represented as a list of m feature-values or {f1,

f2, . . . , fm}) and a is a label that identifies the correct author of r. The supervised step uses D to
produce a disambiguation function that relates features to the correct author. Our disambiguation
function is a function from {f1, f2, . . . , fm} to {a1, a2, . . . , an} that is used to predict the correct
author for references in the test set T .

The supervised step is inspired by the observed fact that, frequently, there are strong associations
between features {f1, f2, . . . , fm} and specific authors {a1, a2, . . . , an}. Such associations are un-
covered from D, producing a disambiguation function {f1, f2, . . . , fm}→{a1, a2, . . . , an} [Veloso et al.
2006]. Typically, these associations are expressed using rules4 of the form X→a1, X→a2, . . ., X→an,
where X⊆{f1, f2, . . . , fm}. In the following discussion, we denote as R an arbitrary rule set. Similarly,
we denote as Rai

a subset of R that is composed of rules of the form X→ai (i.e., rules predicting
author ai). A rule X→ai is said to match a record x if X⊆x (i.e., x contains all features in X ) and
this rule is included in Rx

ai
. That is, Rx

ai
is composed of rules predicting author ai and matching

record x. Obviously, Rx
ai
⊆Rai

⊆R. The test set (referred to as T ) consists of records <r,?> for which
only the feature-values of the reference r to an author are known, while the author of r is unknown.
Disambiguation functions obtained from D are used to estimate the correct authors of such records
in T .

Prediction. To predict the author of a reference, we use a widely used statistic, called confi-
dence [Agrawal et al. 1993] (denoted as θ(X→ai)), to measure the strength of the association between
X and ai. Put simple, the confidence of the rule X→ai is given by the conditional probability of ai

being the author of record x, given that X⊆x.

The probability (or likelihood) of ai being the author of record x is estimated by combining rules
in Rx

ai
. More specifically, Rx

ai
is interpreted as a poll, in which each rule X→ai ∈ Rx

ai
is a vote given

by features in X for author ai. The weight of a vote X→ai depends on the strength of the association
between X and ai, which is given by θ(X→ai). The process of estimating the probability of ai being
the author of record x starts by summing weighted votes for ai and then averaging the obtained value
by the total number of votes for ai, as expressed by the score function s(ai, x) shown in Equation 2
(where rj⊆Rx

ai
and |Rx

ai
| is the number of rules in Rx

ai
). Thus, s(ai, x) gives the average confidence

of the rules in Rx
ai

(obviously, the higher the confidence, the stronger the evidence of authorship).

s(ai, x) =

|Rx

ai
|∑

j=1

θ(rj)

|Rx
ai
| (2)

The estimated probability of ai being the author of record x, denoted as p̂(ai|x), is simply obtained
by normalizing s(ai, x), as shown in Equation (3). A higher value of p̂(ai|x) indicates a higher
likelihood of ai being the author of x. The author associated with the highest likelihood is finally
predicted as the author of record x.

p̂(ai|x) =
s(ai, x)

n∑

j=1

s(aj , x)

(3)

4These rules can be efficiently extracted from D using the strategy proposed in [Veloso et al. 2006].
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Detecting Novel Authors. To indicate that a reference belong to an unseen author, we use the lack
of rules supporting any already seen author (i.e., authors that are present in some record in D) as
evidence. The number of rules that is necessary to consider an author as an already seen one is
controlled by a parameter, γmin. Specifically, for a record x ∈ T , if the number of rules extracted
from Dx (which is denoted as γ(x)) is smaller than γmin (i.e., γ(x) < γmin), then the author of x is
considered as a new/unseen author and a new label ak is created to identify such author. Further,
this prediction is considered as a new example and included into D. We estimate the appropriate
value for γmin by performing cross-validation [Geisser 1993], which is a way to predict the fit of a
disambiguation function to a hypothetical validation set.

Exploiting Reliable Predictions. To increase the coverage of the training data, additional examples
may be obtained from the predictions performed using the disambiguation function. In this case,
reliable predictions are regarded as correct ones and, thus, they can be safely included in the training
examples. Next we define the reliability of a prediction.

Given an arbitrary record x ∈ T , and the two most likely authors for x, ai and aj , we denote as
∆(x) the reliability of predicting ai, as shown in Equation 4.

∆(x) =
p̂(ai|x)

p̂(aj |x)
(4)

The idea is to only predict ai if ∆(x) ≥ ∆min, where ∆min is a threshold that indicates the minimum
reliability necessary to regard the corresponding prediction as correct, and, therefore, to include it into
the training data D. An appropriate value for ∆min can be obtained by performing cross-validation.

Naturally, some predictions are not enough reliable for certain values of ∆min. An alternative is
to abstain from such doubtful predictions. As new examples are included into D (i.e., the reliable
predictions), new evidence may be exploited, hopefully increasing the reliability of the predictions
that were previously abstained. To optimize the usage of reliable predictions, we place records in a
queue, so that records associated with reliable predictions are considered first. The process works
as follows. Initially, records in the test set are randomly placed in the queue. If the author of the
record that is located in the beginning of the queue can be reliably predicted, then the prediction is
performed, the record is removed from the queue and included into D as a new example. Otherwise, if
the prediction is not reliable, the corresponding record is simply placed in the end of the queue and will
be only processed after all other records. The process continues performing more reliable predictions
first, until no more reliable predictions are possible. The remaining records in the queue (for which
only doubtful predictions are possible) are then processed normally but they are not inserted into the
training data D.

4. RELEVANCE FEEDBACK FOR AUTHOR NAME DISAMBIGUATION

In this section, we describe our proposed strategy for author name disambiguation that exploits user
relevance feedback. Our objective is to select a very small portion of the references for which SAND
is not sure about the correct authorship and asks the administrators for labeling them. These labeled
references are then incorporated into the training data that was automatically produced by self-
training author name method, for the application of the supervised step. We describe this procedure
in more details next.

By using Equation 4, we can consider reliable a prediction of the author of a record x for which
∆(x) ≥ ∆min. The unreliable predictions are the candidates for labeling. In order to try to maximize
the amount of useful information that can be obtained by labeling these instances with the minimum
effort, we start the labeling by considering first the references with the most unreliable predictions,
ordered by ∆(x). Algorithm 1 describes this process in more details.
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Algorithm 1 Author Name Disambiguation with User Relevance Feedback

Input: Set of references R

Input: Threshold φmax

Input: Percentage p to select references
Output: Set of disambiguated references R′

1: [D, T ] ⇐ perform unsupervised step on the set of references R using φmax

2: U ⇐ get doubtful predictions from test set T using training data D
3: U ⇐ sort U in ascending order of ∆(x)
4: U ′ ⇐ percentage p of references on top of U
5: U ′ ⇐ labeling U ′

6: D′ ⇐ D
⋃

U ′

7: T ′ ⇐ T − U ′

8: R′ ⇐ perform supervised step on T ′ using D′

9: return R′

First, we select the training data D and test set T (line 1) from the set of references using the
SAND unsupervised step. Next, using the supervised step (first round of the supervised step), we
select the records whose predictions are doubtful (i.e., unreliable) and these records are inserted into
set U . In more detail, we select the records to be inserted into U by running SAND’s supervised step
with the training data D and test set T and extract from T those records whose reliability ∆(x) is
smaller than ∆min. In lines 3 and 4, we select the records to be labeled by the administrator. In line
3, we sort the records in U in ascending order of ∆(x) to have in the first positions of U ′ the records
with the most doubtful predictions and, in line 4, we select a percentage of them to be labeled, what
happens in line 5. Next, we make a new training data D′ with the records from D and U ′ (line 6).
And, finally, we remove each record x ∈ U ′ from T and perform the supervised step with these new
training data D′ and test set T ′ (second round of the supervised step).

5. EXPERIMENTAL EVALUATION

In this section we present experimental results that demonstrate the effectiveness of our proposed
strategy. We first describe the collections, the baselines and the evaluation metric. Then, we discuss
the effectiveness of our strategy in comparison with the baselines.

5.1 Collections

We use two collections of references derived from DBLP5 to evaluate our strategy for disambiguating
author name with user feedback relevance. These collections contain several ambiguous groups (i.e.,
groups of references with ambiguous author names).

The first collection, hereafter referred to as DBLP, contains references extracted from DBLP. It sums
up 4,287 references associated with 220 distinct authors, which means an average of approximately 20
references per author. Small variations of this collection have been used in several other works [Ferreira
et al. 2010; Ferreira et al. 012b; Han et al. 2004; Han et al. 2005; Han et al. 2005; Pereira et al. 2009;
Yang et al. 2008]. Its original version was created by Han et al. [2004] and they manually labeled
the references. For this, they used the author’s publication home page, affiliation name, e-mail and
coauthor names in a complete name format, and also sent emails to some authors to confirm their
authorship. They eliminated the references for which they had insufficient information to identify
the correct author. Han et al. [2004] also replaced the abbreviated publication venue titles by their
complete version obtained from DBLP. We used 11 ambiguous groups extracted by Han et al. [2004]

5http://www.informatik.uni-trier.de/∼ley/db/
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with some corrections6.

The second collection, hereafter referred to as KISTI, was built by the Korea Institute of Science
and Technology Information [Kang et al. 2011] for English homonyms author name disambiguation.
The top 1000 most frequent author names from late-2007 DBLP citation records were obtained jointly
with their citation records. Afterwards, for each author name in each citation record, a reference was
built. To disambiguate this collection, the authors submitted a query composed of the surname of the
author and the work title of each reference to the Google search engine, aiming at finding personal
publication pages. The first 20 web pages retrieved for each query were manually checked to identify
the correct personal publication page for each authorship record. This identified page was then used to
disambiguate the record. This collection has 37,613 citation records, 881 groups of same-name persons
and 6,921 authors7. Due to the very large number of experiments and comparisons we perform, in
our evaluation we use the top 40 most frequent ambiguous groups, i.e., the groups with the largest
number of ambiguous authors. These groups are potentially the most difficult ones to disambiguate.
In this subset, there are 7,841 citation records, 40 groups of same-name persons and 1,132 authors,
with an average of 28.3 different ambiguous authors per group (with a maximum of 59).

5.2 Baselines

We used four baselines in our experiments: SAND that was discussed in Section 3, the two supervised
author assignment methods proposed by Han et al. [2004] and the supervised author grouping method
proposed by Huang et al. [2006].

The first method proposed by Han et al. [2004], referred to as NB, uses a naïve Bayes model, a
generative statistical model frequently used in word sense disambiguation tasks, to capture all writing
patterns in the authors’ citations. The second method, referred to as SVM, is based on Support Vector
Machines, which are discriminative models basically used as a classifier [Mitchell 1997]. An important
difference between the two techniques is that a naïve Bayes model requires only positive examples to
learn about the writing patterns whereas SVMs require both positive and negative examples to learn
how to identify the author. The method proposed by Huang et al. [2006], referred to as LaSVM-
DBSCAN, uses a clustering strategy based on the DBSCAN method [Ester et al. 1996] to cluster the
references by author after an SVM-based classifier, LaSVM [Bordes et al. 2005], is applied to create
a similarity function among the records.

5.3 Evaluation Metrics

In order to evaluate the effectiveness of the proposed disambiguation method, we used two evaluation
metrics: the K metric, and pairwise F1. These metrics allow us to compare different disambiguation
methods under a number of different criteria, which is not usually done in the literature.

In the discussion that follows, we describe these metrics. The key idea is to compare the clusters
extracted by disambiguation methods against ideal, perfect clusters, which were manually extracted.
Hereafter, a cluster extracted by a disambiguation method will be referred to as empirical cluster,
while a perfect cluster will be referred to as theoretical cluster.

K Metric

The K metric [Lapidot 2002] determines the trade-off between the average cluster purity (ACP)
and the average author purity (AAP). Given an ambiguous group, ACP evaluates the purity of the
empirical clusters with respect to the theoretical clusters for this ambiguous group. Thus, if the
empirical clusters are pure (i.e., they contain only references associated with the same author), the

6It is available at http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation
7It is available at http://www.kisti.re.kr
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corresponding ACP value will be 1. ACP is defined in Equation 5:

ACP =
1

N

e∑

i=1

t∑

j=1

n2
ij

ni

(5)

where N is the total number of references in the ambiguous group, t is the number of theoretical
clusters in the ambiguous group, e is the number of empirical clusters for this ambiguous group, ni is
the total number of references in the empirical cluster i, and nij is the total number of references in
the empirical cluster i which are also in the theoretical cluster j.

For a given ambiguous group, AAP evaluates the fragmentation of the empirical clusters with
respect to the theoretical clusters. If the empirical clusters are not fragmented, the corresponding
AAP value will be 1. AAP is defined in Equation 6:

AAP =
1

N

t∑

j=1

e∑

i=1

n2
ij

nj

(6)

where nj is the total number of references in the theoretical cluster j.

The K metric consists of the geometric mean between ACP and AAP values. It evaluates the purity
and cohesion of the empirical clusters extracted by each method. The K metric is given in Equation 7:

K =
√

ACP × AAP (7)

Pairwise F1

Pairwise F1 (pF1) is the F1 metric [Rijsbergen 1979] calculated using pairwise precision and pairwise
recall. Pairwise precision (pP ) is calculated as pP= a

a+c
, where a is the number of pairs of references

in an empirical cluster that are (correctly) associated with the same author, and c is the number of
pairs of references in an empirical cluster not corresponding to the same author. Pairwise recall (pR)
is calculated as pR= a

a+b
, where b is the number of pairs of references associated with the same author

that are not in the same empirical cluster. The F1-metric is defined in Equation 8:

pF1 = 2 × pP × pR

pP + pR
(8)

5.4 Experimental setup

Experiments were conducted with each ambiguous group, considering author name, list of coauthor
names, work title and publication venue title as attributes. The same preprocessing was applied to all
baselines, by removing punctuation and stopwords of work and publication venue titles, and stemming
work titles using Porter’s algorithm [Porter 1980]. Additionally, all coauthor names were standardized
by considering only the initial letter of the first name along with the full last name.

Each method was executed ten times. In each execution, the metrics for each ambiguous group
were calculated and averaged for all groups. The presented result is the average of the class averages
for all runs, with the corresponding standard deviations.

For SVM and NB, each ambiguous group was randomly split into training (50%) and testing (50%)
sets. Our strategy with user relevance feedback were performed only with the testing sets. This split
ensures that the supervised methods have enough data for training as well as a fair comparison with
our strategy. All results shown below also correspond to the performance in the testing sets. The
results are compared using statistical significance tests (t-test) with 99% confidence interval.
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Table II. SANDReF performance in DBLP under K metric labeling p% of doubts.

Group # of references# of doubts p=0% p=20% Gain p=40% Gain p=60% Gain p=80% Gain p=100% Gain

A. Gupta 288 14.3 (9.6) 0.71 (0.03) 0.73 (0.02) 2.6% 0.75 (0.03) 4.3% 0.76 (0.03) 6.8% 0.78 (0.02) 8.7% 0.78 (0.02) 9.1%
A. Kumar 121 8.8 (6.1) 0.63 (0.05) 0.65 (0.05) 3.6% 0.66 (0.05) 5.4% 0.68 (0.05) 8.6% 0.69 (0.05) 9.9% 0.69 (0.05) 10.0%
C. Chen 399 55.5 (23.3) 0.55 (0.01) 0.58 (0.01) 5.8% 0.60 (0.03) 9.3% 0.63 (0.03) 13.3% 0.64 (0.03) 15.8% 0.65 (0.04) 18.6%
D. Johnson 184 6.0 (2.8) 0.66 (0.04) 0.67 (0.04) 1.8% 0.67 (0.04) 2.4% 0.68 (0.04) 3.5% 0.68 (0.04) 4.0% 0.68 (0.04) 4.1%

J. Martin 56 0.9 (0.8) 0.82 (0.05) 0.83 (0.05) 0.7% 0.83 (0.05) 0.8% 0.83 (0.05) 0.8% 0.83 (0.05) 0.8% 0.83 (0.05) 0.8%

J. Robinson 85 3.7 (1.6) 0.72 (0.04) 0.72 (0.04) 1.1% 0.73 (0.04) 1.8% 0.73 (0.04) 2.1% 0.74 (0.04) 2.7% 0.74 (0.04) 2.7%
J. Smith 460 28.7 (14.0) 0.70 (0.03) 0.72 (0.03) 2.7% 0.73 (0.03) 3.9% 0.74 (0.03) 5.8% 0.76 (0.03) 7.7% 0.76 (0.03) 8.6%
K. Tanaka 140 9.0 (5.4) 0.73 (0.04) 0.78 (0.05) 5.9% 0.79 (0.05) 7.3% 0.79 (0.05) 8.3% 0.80 (0.05) 9.5% 0.81 (0.05) 9.9%
M. Brown 76 2.7 (1.1) 0.77 (0.04) 0.79 (0.04) 2.0% 0.80 (0.05) 3.3% 0.80 (0.05) 4.1% 0.80 (0.04) 4.1% 0.80 (0.04) 4.1%

M. Jones 130 5.1 (2.6) 0.74 (0.06) 0.75 (0.06) 1.4% 0.76 (0.06) 2.3% 0.76 (0.05) 3.5% 0.77 (0.05) 3.8% 0.77 (0.05) 4.4%

M. Miller 202 3.6 (1.7) 0.86 (0.02) 0.86 (0.02) 0.5% 0.87 (0.02) 1.2% 0.87 (0.02) 1.5% 0.87 (0.02) 1.5% 0.87 (0.02) 1.5%

Average 195 13 0.72 (0.01) 0.73 (0.01) 2.4% 0.74 (0.01) 3.6% 0.75 (0.01) 5.0% 0.76 (0.01) 5.8% 0.76 (0.01) 6.3%

Table III. SANDReF performance in DBLP under pF1 metric labeling p% of doubts.
Group # of references# of doubts p=0% p=20% Gain p=40% Gain p=60% Gain p=80% Gain p=100% Gain

A. Gupta 288 14.3 (9.6) 0.68 (0.04) 0.70 (0.04) 3.0% 0.72 (0.04) 5.3% 0.74 (0.05) 8.3% 0.75 (0.04) 10.6% 0.76 (0.04) 10.9%

A. Kumar 121 8.8 (6.1) 0.42 (0.09) 0.45 (0.09) 8.1% 0.47 (0.09) 13.4% 0.50 (0.08) 21.2% 0.51 (0.08) 23.1% 0.52 (0.08) 24.0%
C. Chen 399 55.5 (23.3) 0.30 (0.03) 0.35 (0.05) 19.5% 0.38 (0.07) 30.0% 0.42 (0.07) 42.3% 0.45 (0.08) 51.7% 0.48 (0.09) 61.7%
D. Johnson 184 6.0 (2.8) 0.62 (0.05) 0.63 (0.06) 1.7% 0.64 (0.06) 2.2% 0.64 (0.06) 3.0% 0.64 (0.06) 3.2% 0.64 (0.06) 3.3%

J. Martin 56 0.9 (0.8) 0.68 (0.10) 0.69 (0.09) 1.8% 0.69 (0.09) 2.1% 0.69 (0.09) 2.1% 0.69 (0.09) 2.1% 0.69 (0.09) 2.1%
J. Robinson 85 3.7 (1.6) 0.65 (0.07) 0.66 (0.07) 1.6% 0.66 (0.07) 2.7% 0.67 (0.07) 2.9% 0.67 (0.07) 3.8% 0.67 (0.07) 3.8%
J. Smith 460 28.7 (14.0) 0.70 (0.04) 0.72 (0.04) 3.2% 0.73 (0.04) 4.4% 0.74 (0.04) 6.6% 0.76 (0.04) 8.9% 0.77 (0.04) 10.3%
K. Tanaka 140 9.0 (5.4) 0.62 (0.05) 0.69 (0.09) 12.4% 0.71 (0.08) 15.3% 0.72 (0.08) 17.0% 0.73 (0.08) 19.0% 0.74 (0.08) 19.7%
M. Brown 76 2.7 (1.1) 0.71 (0.08) 0.73 (0.08) 2.9% 0.75 (0.09) 5.0% 0.76 (0.09) 6.2% 0.76 (0.08) 6.2% 0.76 (0.08) 6.2%

M. Jones 130 5.1 (2.6) 0.69 (0.09) 0.71 (0.09) 1.9% 0.72 (0.08) 3.6% 0.73 (0.07) 5.2% 0.73 (0.08) 5.8% 0.74 (0.08) 6.7%
M. Miller 202 3.6 (1.7) 0.86 (0.03) 0.86 (0.03) 0.6% 0.87 (0.03) 1.1% 0.87 (0.03) 1.3% 0.87 (0.03) 1.3% 0.87 (0.03) 1.3%

Average 195 13 0.63 (0.02) 0.66 (0.03) 4.1% 0.67 (0.03) 6.1% 0.68 (0.03) 8.1% 0.69 (0.02) 9.5% 0.69 (0.03) 10.3%

In our work, we used the SVM implementation provided by the LibSVM package [Chang and Lin
2001], with RBF (Radial Basis Function) as the kernel function, where the best γ and cost values
were obtained from the Grid program, available with the LibSVM package, for each training data.
LibSVM uses the “one-against-one” and voting for multi-class classification [Chang and Lin 2001].
In our experiments, we used TF-IDF (term frequency-inverse document frequency) as feature weight
scheme. We used a non-parametric implementation for Naïve Bayes [Domingos and Pazzani 1997].

For LaSVM-DBSCAN, we used the LaSVM package [Bordes et al. 2005]8 with RBF as the kernel
function using the default values for cost and γ, respectively, and the DBSCAN version available from
Weka9 with the values of 1.5 and 2 for ǫ and the minimum number of points, respectively. We should
stress that parameter tuning with cross-validation in the training was also performed for LaSVM but
results produced by the default parameters turned out to be the best.

Hereafter we will refer to our strategy to author name disambiguation with user relevance feedback
as SANDReF (standing for Self-training Author Name Disambiguation with Relevance Feedback).
For it, we used the same parameters (e.g., φmax) as defined in the original work that proposed
SAND [Ferreira et al. 2010].

5.5 Results

The effectiveness of SANDReF. To evaluate the effectiveness of SANDReF and also the labeling
effort needed to improve the disambiguation process, we take a percentage x, varying from 0% to
100%, of the first references with doubtful predictions from U ′ ordered by ∆(x) and execute the
method. p=0% corresponds to the SANDReF performance without user relevance feedback, i.e., the
original implementation of SAND. Tables II and III show the SANDReF performance in DBLP under
K and pF1 metrics, respectively. In both tables, the column “# of doubts” corresponds to the average
number of doubtful predictions obtained by the first round of the supervised step (line 2 of Algorithm
1). The column titles p=x% indicate the percentage of references manually labeled from the doubtful
predictions. Each column named Gain, shows the percentage gains of SANDReF of p=x% over p=0%.

8Available at http://leon.bottou.org/research/lasvm
9http://www.cs.waikato.ac.nz/ml/weka/
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Table IV. SANDReF performance in KISTI under K metric labeling p% of doubts.

Group # of references# of doubts p=0% p=20% Gain p=40% Gain p=60% Gain p=80% Gain p=100% Gain

A. Choudhary 80 0.1 (0.3) 0.89 (0.03) 0.90 (0.03) 0.1% 0.90 (0.03) 0.1% 0.90 (0.03) 0.1% 0.90 (0.03) 0.1% 0.90 (0.03) 0.1%

A. Gupta 83 5.1 (2.8) 0.76 (0.04) 0.80 (0.05) 5.3% 0.82 (0.05) 7.0% 0.82 (0.06) 8.2% 0.83 (0.05) 8.6% 0.83 (0.05) 8.8%

D. Eppstein 98 12.5 (4.8) 0.44 (0.16) 0.49 (0.18) 12.1% 0.52 (0.19) 17.4% 0.53 (0.20) 20.9% 0.55 (0.20) 24.1% 0.56 (0.21) 26.3%

D. Lee 93 6.3 (3.7) 0.69 (0.24) 0.70 (0.25) 1.7% 0.71 (0.25) 3.1% 0.71 (0.25) 3.5% 0.71 (0.25) 3.6% 0.71 (0.25) 3.8%

H. Chen 75 5.8 (2.2) 0.72 (0.02) 0.73 (0.02) 2.2% 0.74 (0.03) 3.8% 0.74 (0.03) 3.8% 0.75 (0.03) 4.4% 0.75 (0.03) 5.1%
H. Wang 134 9.0 (5.9) 0.72 (0.26) 0.73 (0.26) 0.5% 0.74 (0.26) 2.6% 0.75 (0.27) 3.3% 0.76 (0.27) 4.4% 0.76 (0.27) 4.9%

J. Chen 126 10.1 (4.5) 0.66 (0.23) 0.67 (0.24) 1.1% 0.67 (0.24) 2.3% 0.69 (0.24) 4.3% 0.70 (0.25) 5.7% 0.70 (0.25) 5.9%

J. Dongarra 73 1.5 (1.4) 0.78 (0.07) 0.80 (0.08) 1.8% 0.80 (0.08) 1.8% 0.80 (0.08) 1.8% 0.80 (0.08) 1.8% 0.80 (0.08) 1.9%

J. Halpern 118 10.3 (8.0) 0.51 (0.19) 0.53 (0.20) 4.7% 0.56 (0.20) 8.9% 0.57 (0.21) 11.9% 0.58 (0.21) 13.3% 0.58 (0.21) 14.0%
J. Kim 74 3.6 (2.2) 0.82 (0.03) 0.82 (0.03) 0.8% 0.82 (0.03) 0.9% 0.83 (0.03) 1.7% 0.83 (0.03) 1.7% 0.83 (0.03) 2.2%

J. Lee 101 8.2 (4.4) 0.73 (0.26) 0.74 (0.26) 2.0% 0.75 (0.26) 3.0% 0.75 (0.27) 3.6% 0.76 (0.27) 4.3% 0.76 (0.27) 4.6%

J. Li 87 5.7 (1.8) 0.76 (0.27) 0.77 (0.27) 1.2% 0.78 (0.28) 2.4% 0.79 (0.28) 3.3% 0.79 (0.28) 3.7% 0.79 (0.28) 3.9%

J. Liu 85 7.2 (4.0) 0.69 (0.25) 0.70 (0.25) 1.4% 0.72 (0.25) 4.1% 0.72 (0.25) 4.4% 0.72 (0.25) 4.9% 0.72 (0.25) 4.9%

J. Mitchell 85 3.5 (1.8) 0.61 (0.22) 0.61 (0.22) 1.2% 0.63 (0.22) 3.4% 0.64 (0.23) 5.2% 0.64 (0.23) 6.1% 0.64 (0.23) 6.1%
J. Smith 80 4.4 (1.4) 0.79 (0.04) 0.80 (0.04) 1.2% 0.81 (0.05) 2.7% 0.82 (0.05) 3.4% 0.82 (0.05) 4.0% 0.82 (0.05) 4.1%
J. Wang 162 11.6 (4.4) 0.68 (0.24) 0.69 (0.24) 1.8% 0.70 (0.25) 3.0% 0.71 (0.25) 4.4% 0.72 (0.25) 5.8% 0.72 (0.25) 5.9%

J. Wu 95 2.9 (1.9) 0.69 (0.25) 0.70 (0.25) 2.1% 0.71 (0.25) 2.5% 0.71 (0.25) 3.1% 0.71 (0.25) 3.6% 0.71 (0.25) 3.6%
J. Zhang 101 7.7 (1.9) 0.73 (0.26) 0.74 (0.26) 1.2% 0.76 (0.27) 3.1% 0.77 (0.27) 4.6% 0.77 (0.27) 5.3% 0.78 (0.27) 5.8%

L. Zhang 93 4.4 (1.8) 0.72 (0.25) 0.72 (0.26) 0.9% 0.73 (0.26) 1.3% 0.73 (0.26) 1.9% 0.73 (0.26) 2.5% 0.74 (0.26) 2.7%

M. Chen 94 6.5 (2.3) 0.62 (0.22) 0.63 (0.23) 2.4% 0.64 (0.23) 3.0% 0.65 (0.23) 4.7% 0.65 (0.24) 5.3% 0.65 (0.24) 5.3%

M. Pedram 79 5.0 (3.8) 0.71 (0.11) 0.72 (0.10) 2.7% 0.74 (0.10) 5.4% 0.77 (0.08) 9.0% 0.78 (0.06) 10.2% 0.78 (0.06) 10.6%
M. Vardi 88 5.8 (3.8) 0.58 (0.21) 0.59 (0.21) 2.5% 0.60 (0.22) 4.5% 0.61 (0.22) 5.2% 0.61 (0.22) 6.5% 0.61 (0.22) 6.7%

N. Jennings 75 4.0 (3.7) 0.67 (0.11) 0.70 (0.10) 4.9% 0.71 (0.10) 6.0% 0.71 (0.10) 6.0% 0.71 (0.09) 6.6% 0.71 (0.09) 6.7%
N. Jha 89 0.0 (0.0) 0.84 (0.29) 0.84 (0.29) 0.0% 0.84 (0.29) 0.0% 0.84 (0.29) 0.0% 0.84 (0.29) 0.0% 0.84 (0.29) 0.0%

N. Lynch 82 6.5 (4.4) 0.58 (0.11) 0.61 (0.11) 5.1% 0.62 (0.11) 6.6% 0.63 (0.11) 8.7% 0.64 (0.09) 10.4% 0.65 (0.09) 11.7%

P. Yu 83 0.5 (0.5) 0.82 (0.29) 0.82 (0.29) 0.6% 0.82 (0.29) 0.6% 0.82 (0.29) 0.6% 0.82 (0.29) 0.6% 0.82 (0.29) 0.6%

Q. Yang 79 4.6 (2.1) 0.67 (0.04) 0.69 (0.04) 3.0% 0.70 (0.03) 4.7% 0.71 (0.03) 6.2% 0.72 (0.03) 7.6% 0.72 (0.03) 7.8%

S. Jajodia 109 0.7 (0.9) 0.77 (0.27) 0.78 (0.28) 0.3% 0.78 (0.28) 0.3% 0.78 (0.28) 0.3% 0.78 (0.28) 0.3% 0.78 (0.28) 0.3%
S. Kim 78 3.8 (2.0) 0.87 (0.03) 0.88 (0.03) 0.6% 0.89 (0.02) 1.4% 0.89 (0.03) 1.7% 0.89 (0.03) 2.1% 0.89 (0.02) 2.4%
S. Lee 88 5.8 (3.6) 0.71 (0.25) 0.72 (0.25) 1.0% 0.72 (0.25) 1.4% 0.72 (0.26) 1.8% 0.74 (0.26) 3.7% 0.74 (0.26) 4.3%

T. Henzinger 87 0.1 (0.3) 0.81 (0.29) 0.81 (0.29) 0.0% 0.81 (0.29) 0.0% 0.81 (0.29) 0.0% 0.81 (0.29) 0.0% 0.81 (0.29) 0.0%
W. Wang 89 1.8 (2.2) 0.70 (0.25) 0.71 (0.25) 1.3% 0.71 (0.25) 1.6% 0.71 (0.25) 1.8% 0.72 (0.25) 2.0% 0.72 (0.25) 2.0%

X. Li 152 10.5 (4.8) 0.66 (0.23) 0.67 (0.24) 1.2% 0.68 (0.24) 3.2% 0.69 (0.24) 4.2% 0.69 (0.24) 4.8% 0.69 (0.24) 5.0%

X. Zhou 74 1.3 (1.3) 0.90 (0.04) 0.91 (0.04) 1.0% 0.91 (0.04) 1.6% 0.92 (0.04) 1.8% 0.92 (0.04) 1.9% 0.92 (0.04) 1.9%
Y. Chen 151 10.3 (4.1) 0.66 (0.23) 0.67 (0.24) 1.2% 0.68 (0.24) 2.4% 0.68 (0.24) 3.6% 0.70 (0.24) 5.2% 0.70 (0.25) 5.7%

Y. Liu 156 9.6 (5.1) 0.72 (0.26) 0.74 (0.26) 1.8% 0.74 (0.26) 2.8% 0.76 (0.27) 4.4% 0.76 (0.27) 4.4% 0.76 (0.27) 4.8%
Y. Wang 128 11.7 (5.0) 0.67 (0.24) 0.69 (0.24) 2.6% 0.69 (0.24) 3.9% 0.70 (0.25) 5.0% 0.71 (0.25) 6.1% 0.71 (0.25) 6.8%

Y. Yang 82 5.5 (2.0) 0.77 (0.06) 0.78 (0.05) 2.0% 0.79 (0.05) 2.6% 0.79 (0.04) 3.3% 0.80 (0.04) 4.1% 0.80 (0.05) 4.3%

Y. Zhang 104 6.5 (2.2) 0.69 (0.24) 0.70 (0.25) 1.2% 0.71 (0.25) 2.7% 0.71 (0.25) 4.0% 0.72 (0.25) 4.7% 0.72 (0.26) 5.0%
Z. Zhang 103 5.1 (3.1) 0.74 (0.26) 0.75 (0.27) 1.4% 0.75 (0.27) 1.7% 0.75 (0.27) 1.6% 0.75 (0.27) 1.5% 0.75 (0.27) 2.2%

Average 98 6 0.76 (0.01) 0.77 (0.01) 1.8% 0.79 (0.01) 2.9% 0.79 (0.01) 3.8% 0.80 (0.01) 4.4% 0.80 (0.01) 4.7%

In Table II and III, we can notice that labeling all references (p=100%) with doubtful predictions
produces gains of up to 6.3% and 10.3% under K and pF1 metrics, respectively, on average. This
corresponds to labeling around 6%10of the total number of references11. We can also see that labeling
around 80% of the references with doubtful predictions (5% of the total number of references) the
gains are very similar, around 5.8% and 9.5% under K and pF1 metrics. Notice also that even if we
label only 20% of the doubts (about 1.2% of the total number of references), we still can get up to
4.1% of improvement in pF1. Finally, by looking at specific ambiguous groups, we can see some gains
are quite impressive: up to 61.7% for the “C. Chen” group and 19.7% for the “J. Smith” group in terms
of pF1. These are exactly the largest and most difficult groups to disambiguate in this collection.

Tables IV and V show the SANDReF performance under K and pF1 metrics in KISTI collection.
We also notice that labeling about 80% of the doubtful predictions (around 4.5% of the total number
of references in this collection), the gains are also close to those when we label all doubtful predictions:
around 4.5% and 8.5% under K and pF1 metrics, respectively. We also see a similar trend for higher
gains in some large and more ambiguous groups (e.g., 44.9% of gains in the “D. Eppstein” and 26.1%
for the “J. Chen” ambiguous groups).

Comparing SANDReF with Supervised Methods. Here we compare SANDReF with four supervised
author assignment and grouping methods, namely, SVM, NB, LaSVM-DBSCAN and SSAND which
have historically produced some of the best performances in the author name disambiguation task.
Particularly, SSAND corresponds to the supervised step of SAND. As said before, the supervised

10We believe that this is very reasonable amount as we are talking about 6% of the ambiguous references, which is only
a subset of all entries in a DL.
11Notice that labeling this percentage of instances does not guarantee the same percentage of improvement, as some of
the doubts could be in fact correctly predicted in the end of the process of the original method without feedback.
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Table V. SANDReF performance in KISTI under pF1 metric labeling p% of doubts.

Group # of references# of doubts p=0% p=20% Gain p=40% Gain p=60% Gain p=80% Gain p=100% Gain

A. Choudhary 80 0.1 (0.3) 0.89 (0.03) 0.89 (0.03) 0.2% 0.89 (0.03) 0.2% 0.89 (0.03) 0.2% 0.89 (0.03) 0.2% 0.89 (0.03) 0.2%

A. Gupta 83 5.1 (2.8) 0.73 (0.06) 0.79 (0.06) 7.2% 0.80 (0.06) 9.2% 0.81 (0.07) 10.3% 0.81 (0.06) 11.0% 0.81 (0.06) 11.2%

D. Eppstein 98 12.5 (4.8) 0.34 (0.14) 0.41 (0.16) 20.5% 0.44 (0.18) 29.5% 0.46 (0.18) 35.6% 0.48 (0.19) 41.0% 0.49 (0.19) 44.8%

D. Lee 93 6.3 (3.7) 0.56 (0.20) 0.58 (0.20) 3.3% 0.59 (0.21) 5.3% 0.59 (0.21) 6.2% 0.59 (0.21) 6.5% 0.60 (0.21) 6.9%

H. Chen 75 5.8 (2.2) 0.40 (0.07) 0.46 (0.09) 15.2% 0.49 (0.08) 23.0% 0.51 (0.10) 25.8% 0.51 (0.11) 27.8% 0.52 (0.10) 30.1%
H. Wang 134 9.0 (5.9) 0.68 (0.24) 0.68 (0.24) 0.5% 0.71 (0.26) 3.5% 0.71 (0.26) 4.3% 0.72 (0.26) 6.1% 0.73 (0.27) 6.9%

J. Chen 126 10.1 (4.5) 0.37 (0.15) 0.38 (0.15) 2.1% 0.41 (0.15) 9.1% 0.45 (0.18) 20.9% 0.47 (0.18) 25.5% 0.47 (0.18) 26.1%

J. Dongarra 73 1.5 (1.4) 0.75 (0.09) 0.77 (0.10) 2.3% 0.77 (0.10) 2.3% 0.77 (0.10) 2.3% 0.77 (0.10) 2.3% 0.77 (0.09) 2.4%

J. Halpern 118 10.3 (8.0) 0.46 (0.18) 0.49 (0.19) 6.8% 0.52 (0.20) 13.3% 0.54 (0.20) 17.5% 0.55 (0.20) 19.6% 0.55 (0.20) 20.3%
J. Kim 74 3.6 (2.2) 0.53 (0.05) 0.55 (0.05) 3.6% 0.55 (0.05) 4.3% 0.56 (0.04) 5.6% 0.55 (0.07) 4.7% 0.56 (0.07) 5.7%

J. Lee 101 8.2 (4.4) 0.56 (0.21) 0.58 (0.22) 4.8% 0.60 (0.22) 7.9% 0.61 (0.22) 10.0% 0.63 (0.23) 13.0% 0.63 (0.23) 14.0%

J. Li 87 5.7 (1.8) 0.68 (0.25) 0.69 (0.26) 2.4% 0.71 (0.26) 4.6% 0.71 (0.26) 5.8% 0.73 (0.27) 7.6% 0.73 (0.27) 8.1%

J. Liu 85 7.2 (4.0) 0.52 (0.20) 0.53 (0.20) 1.0% 0.56 (0.21) 7.3% 0.57 (0.21) 8.9% 0.58 (0.21) 11.0% 0.58 (0.21) 11.0%

J. Mitchell 85 3.5 (1.8) 0.53 (0.20) 0.54 (0.20) 2.1% 0.56 (0.20) 5.8% 0.57 (0.21) 8.8% 0.58 (0.21) 10.5% 0.58 (0.21) 10.5%
J. Smith 80 4.4 (1.4) 0.75 (0.09) 0.77 (0.10) 2.0% 0.78 (0.10) 3.9% 0.79 (0.10) 5.1% 0.80 (0.09) 6.3% 0.81 (0.09) 6.8%
J. Wang 162 11.6 (4.4) 0.60 (0.22) 0.62 (0.23) 2.6% 0.63 (0.23) 4.8% 0.65 (0.23) 7.3% 0.67 (0.24) 10.5% 0.67 (0.24) 10.4%

J. Wu 95 2.9 (1.9) 0.63 (0.24) 0.65 (0.24) 3.8% 0.65 (0.24) 4.7% 0.66 (0.24) 5.6% 0.67 (0.24) 6.6% 0.67 (0.24) 6.6%
J. Zhang 101 7.7 (1.9) 0.62 (0.23) 0.64 (0.23) 2.5% 0.66 (0.24) 6.5% 0.69 (0.25) 10.6% 0.70 (0.25) 12.5% 0.71 (0.25) 13.8%

L. Zhang 93 4.4 (1.8) 0.61 (0.23) 0.61 (0.23) -0.1% 0.63 (0.23) 2.6% 0.64 (0.23) 3.8% 0.64 (0.24) 4.6% 0.64 (0.24) 4.8%

M. Chen 94 6.5 (2.3) 0.48 (0.21) 0.50 (0.22) 4.7% 0.50 (0.22) 5.2% 0.52 (0.23) 8.4% 0.52 (0.23) 9.5% 0.52 (0.23) 8.7%

M. Pedram 79 5.0 (3.8) 0.66 (0.15) 0.68 (0.13) 3.8% 0.70 (0.13) 7.5% 0.74 (0.09) 12.5% 0.75 (0.08) 14.1% 0.75 (0.07) 14.7%
M. Vardi 88 5.8 (3.8) 0.51 (0.19) 0.53 (0.20) 3.8% 0.55 (0.21) 6.8% 0.55 (0.21) 7.8% 0.56 (0.21) 9.8% 0.57 (0.21) 10.0%

N. Jennings 75 4.0 (3.7) 0.61 (0.15) 0.65 (0.13) 7.0% 0.66 (0.12) 8.7% 0.66 (0.13) 8.6% 0.66 (0.12) 9.5% 0.67 (0.12) 9.6%
N. Jha 89 0.0 (0.0) 0.83 (0.29) 0.83 (0.29) 0.0% 0.83 (0.29) 0.0% 0.83 (0.29) 0.0% 0.83 (0.29) 0.0% 0.83 (0.29) 0.0%

N. Lynch 82 6.5 (4.4) 0.50 (0.14) 0.54 (0.14) 7.9% 0.55 (0.14) 10.1% 0.56 (0.14) 13.3% 0.58 (0.12) 15.9% 0.58 (0.11) 17.8%

P. Yu 83 0.5 (0.5) 0.81 (0.29) 0.81 (0.29) 0.9% 0.81 (0.29) 0.9% 0.81 (0.29) 0.9% 0.81 (0.29) 0.9% 0.81 (0.29) 0.9%

Q. Yang 79 4.6 (2.1) 0.57 (0.07) 0.60 (0.07) 5.4% 0.61 (0.07) 7.0% 0.63 (0.07) 9.5% 0.64 (0.06) 12.6% 0.65 (0.06) 12.9%

S. Jajodia 109 0.7 (0.9) 0.78 (0.28) 0.78 (0.28) 0.4% 0.78 (0.28) 0.4% 0.78 (0.28) 0.4% 0.78 (0.28) 0.4% 0.78 (0.28) 0.4%
S. Kim 78 3.8 (2.0) 0.81 (0.07) 0.81 (0.07) 0.4% 0.84 (0.06) 3.2% 0.84 (0.06) 3.0% 0.84 (0.06) 3.4% 0.84 (0.05) 3.8%
S. Lee 88 5.8 (3.6) 0.52 (0.20) 0.53 (0.21) 2.7% 0.55 (0.21) 5.6% 0.56 (0.21) 7.1% 0.58 (0.23) 12.4% 0.59 (0.23) 13.7%

T. Henzinger 87 0.1 (0.3) 0.81 (0.28) 0.81 (0.28) 0.0% 0.81 (0.28) 0.0% 0.81 (0.28) 0.0% 0.81 (0.28) 0.0% 0.81 (0.28) 0.0%
W. Wang 89 1.8 (2.2) 0.56 (0.20) 0.57 (0.21) 1.9% 0.58 (0.21) 2.3% 0.58 (0.21) 2.6% 0.58 (0.21) 3.4% 0.58 (0.21) 3.4%

X. Li 152 10.5 (4.8) 0.53 (0.19) 0.54 (0.19) 1.9% 0.56 (0.20) 5.9% 0.58 (0.21) 8.5% 0.58 (0.21) 9.4% 0.58 (0.21) 9.5%

X. Zhou 74 1.3 (1.3) 0.86 (0.06) 0.88 (0.06) 1.7% 0.88 (0.06) 2.4% 0.88 (0.06) 2.6% 0.89 (0.06) 2.8% 0.89 (0.06) 2.8%
Y. Chen 151 10.3 (4.1) 0.50 (0.19) 0.51 (0.19) 1.9% 0.52 (0.19) 4.4% 0.53 (0.19) 7.3% 0.55 (0.20) 10.9% 0.56 (0.20) 12.3%

Y. Liu 156 9.6 (5.1) 0.66 (0.24) 0.69 (0.25) 4.0% 0.70 (0.25) 5.9% 0.72 (0.26) 8.6% 0.72 (0.26) 9.2% 0.73 (0.26) 10.0%
Y. Wang 128 11.7 (5.0) 0.49 (0.18) 0.51 (0.18) 5.3% 0.54 (0.20) 11.2% 0.56 (0.21) 14.1% 0.58 (0.22) 18.0% 0.58 (0.22) 19.6%

Y. Yang 82 5.5 (2.0) 0.61 (0.12) 0.63 (0.12) 4.0% 0.65 (0.12) 6.1% 0.66 (0.11) 7.6% 0.67 (0.12) 9.9% 0.67 (0.12) 10.2%

Y. Zhang 104 6.5 (2.2) 0.52 (0.19) 0.53 (0.19) 2.3% 0.54 (0.20) 5.7% 0.56 (0.20) 7.8% 0.57 (0.21) 9.7% 0.57 (0.21) 10.1%
Z. Zhang 103 5.1 (3.1) 0.64 (0.24) 0.65 (0.24) 0.8% 0.65 (0.24) 0.7% 0.65 (0.24) 0.5% 0.65 (0.24) 1.2% 0.66 (0.24) 2.2%

Average pF1 98 6 0.65 (0.02) 0.67 (0.02) 3.1% 0.69 (0.02) 5.5% 0.70 (0.02) 7.0% 0.71 (0.02) 8.5% 0.71 (0.02) 8.9%

author assignment methods use 50% of the references as training data and other 50% as test set
and the performance of all methods corresponds to the performance on test set. The SANDReF
performance corresponds to the performance after labeling all references with doubtful predictions
(p=100%).

Table VI. Comparison with supervised author grouping and assignment methods in DBLP and KISTI. The best results
are highlighted in bold.

Collection Method K pF1

DBLP SANDReF 0.76 (0.01) 0.69 (0.03)

SSAND 0.88 (0.01) 0.87 (0.01)

SVM 0.80 (0.01) 0.72 (0.01)
NB 0.74 (0.01) 0.65 (0.01)

LaSVM-DBSCAN 0.61 (0.02) 0.44 (0.02)

KISTI SANDReF 0.80 (0.01) 0.71 (0.02)

SSAND 0.90 (0.00) 0.86 (0.01)
LaSVM-DBSCAN 0.76 (0.01) 0.60 (0.01)

SVM 0.76 (0.00) 0.58 (0.01)
NB 0.75 (0.00) 0.60 (0.01)

We can notice that the supervised step of SAND using the same training data of the other supervised
methods (SSAND) produces the best results. However, as mentioned, SSAND requires the initial
labeling of half of the collection. In DBLP, SVM outperforms SANDReF and NB, but SANDReF is
only 4.6% and 3.7% worse than SVM under the K and pF1 metrics, respectively, without using any
initial training data. SANDReF also outperforms NB and LaSVM-DBSCAN, in this collection, this
last one by a large margin.

In KISTI, SANDReF is the second best performer among all methods, being around 5% and 21%
better than LaSVM-DBSCAN and SVM, under the K and pF1 metrics, and with gains of more than
7% and 18% over NB, under the same metrics.
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Table VII. SANDReF performance in DBLP under K metric labeling p% of doubts and performing the supervised step
on references with doubtful predictions.

Group p=0% p=20% Gain p=40% Gain p=60% Gain p=80% Gain p=100% Gain

A. Gupta 0.71 (0.04) 0.71 (0.04) 0.1% 0.72 (0.04) 1.1% 0.73 (0.04) 2.1% 0.73 (0.04) 2.8% 0.73 (0.04) 2.9%

A. Kumar 0.64 (0.05) 0.64 (0.04) 0.7% 0.65 (0.04) 1.5% 0.66 (0.04) 2.9% 0.66 (0.04) 3.3% 0.66 (0.04) 3.4%

C. Chen 0.55 (0.02) 0.57 (0.02) 2.3% 0.59 (0.03) 5.9% 0.60 (0.03) 8.6% 0.62 (0.04) 11.4% 0.63 (0.05) 13.5%

D. Johnson 0.67 (0.04) 0.67 (0.04) 0.9% 0.68 (0.04) 2.3% 0.68 (0.04) 2.5% 0.68 (0.04) 2.9% 0.68 (0.04) 3.0%

J. Martin 0.82 (0.03) 0.83 (0.03) 1.1% 0.83 (0.03) 1.3% 0.83 (0.03) 1.3% 0.83 (0.03) 1.3% 0.83 (0.03) 1.3%
J. Robinson 0.73 (0.03) 0.73 (0.03) -0.1% 0.74 (0.03) 1.0% 0.75 (0.04) 2.1% 0.75 (0.04) 2.5% 0.75 (0.04) 2.5%

J. Smith 0.70 (0.03) 0.70 (0.03) 0.6% 0.71 (0.03) 1.4% 0.72 (0.03) 2.7% 0.72 (0.03) 3.6% 0.73 (0.03) 4.4%
K. Tanaka 0.73 (0.04) 0.73 (0.04) 0.6% 0.74 (0.04) 1.6% 0.75 (0.04) 2.8% 0.75 (0.04) 3.5% 0.75 (0.04) 3.7%

M. Brown 0.76 (0.03) 0.76 (0.03) 0.4% 0.77 (0.03) 1.0% 0.77 (0.02) 1.2% 0.77 (0.02) 1.4% 0.77 (0.02) 1.4%

M. Jones 0.74 (0.07) 0.75 (0.07) 1.6% 0.76 (0.07) 2.1% 0.76 (0.07) 2.6% 0.76 (0.07) 2.7% 0.76 (0.07) 2.8%
M. Miller 0.74 (0.09) 0.74 (0.09) -0.1% 0.75 (0.09) 0.3% 0.75 (0.09) 0.5% 0.75 (0.09) 0.7% 0.75 (0.09) 0.9%

In sum, our proposed method is very competitive when compared to the supervised author grouping
and even with most supervised author assignment ones, outperforming some of them by large margins
like in KISTI, loosing only to SSAND, which has the cost of having to label half of the collection to
obtain such gains, against 6% of our method. Therefore if the cost of labeling is very high for a given
DL, our method would be a good choice.

Checking whether the labeling helps the prediction. One issue that remains to be investigated is how
much of the observed gains are really coming from information being obtained from these doubtful
cases and used in the models learned for the supervised step of our method and how much is from the
actual labeling of these instances.

To answer this question, we performed an additional experiment, in DBLP predicting only the
references in U − U ′ (i.e., references with doubtful predictions that were not labeled and inserted into
the training data D′) instead of predicting all test set T ′ in the second round of the supervised step.
For instance, with p=60%, we label 60% of the doubtful cases and use D′ to assign authors to the
remaining 40%. The case of p=100% corresponds to the situation in which we label all doubts and
this would be the maximum gain that could be obtained without re-running the supervised step in
the test set of the method, as we did in the previous experiments. Table VII shows the results of this
experiment.

Comparing the results from Table VII with the ones from Table II, mainly the case of p=100%,
we can see that all gains are much higher in Table II than in Table VII in all ambiguous groups
meaning that the labeling of the doubtful cases really helped to correctly assign some references that
otherwise would be incorrectly predicted without the information coming from these additional labeled
instances.

Regarding efficiency issues of proposed method, we measured the time spent to infer the author of
each reference in the test set. On average, the time to assign each reference to its author was around
0.2 second. We perform our evaluation in a Intel Xeon E5620 with 2.40GHz and 8 gigabytes of RAM.
This means that we could disambiguate approximately half million records in one day.

6. CONCLUSIONS

In this article, we exploited user relevance feedback in the author name disambiguation task. We
propose to select a very small portion of the references for which our method was not sure about
the correct authorship and ask the administrators for labeling them. These labeled references are
then incorporated into the training data automatically selected by our self-training author name
method and used by the supervised step of our method for disambiguation. In our experimental
evaluation, we observed that with a very small labeling effort (usually around 5% of all DL records),
the disambiguation effectiveness improved by almost 10% on average in a collection under the pairwise
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F1 metric, with gains of up to 61% in some of the most difficult ambiguous groups.

In future work, we intend to explore issues related to the ∆min parameter in order to better
investigate the tradeoffs between labeling and effectiveness gains. We also want to study the impact
of using several rounds of relevance feedback and the corresponding tradeoffs (since labeling costs
tend to increase with more rounds) as well as to better investigate why certain predictions made with
certainty were wrongly assigned.
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