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Abstract.

Tags have become very popular on the Web 2.0 as they facilitate and encourage users to create and share their own
content. In this context, there is a large interest in developing strategies to recommend relevant and useful tags for a
target object, improving the quality of the generated tags and of the Information Retrieval (IR) services that use them
as data source. Several existing tag recommendation strategies treat the problem as a multiple candidate tag ranking
problem, recommending tags that are in top positions of the generated ranking. This motivates the use of Learning-to-
Rank (L2R) based strategies to automatically “learn” good tag ranking functions. However, previous work has explored
only three different L2R techniques, namely, Genetic Programming (GP), RankSV M and RankBoost, comparing at
most two of them with respect to effectiveness. In contrast, we here perform a much more comprehensive comparative
study of the use of L2R techniques for tag recommendation. Specifically, we compare eight different L2R techniques,
namely, Random Forest (RF), MART, A-MART, ListNet, AdaRank and the three aforementioned techniques, with
respect to both effectiveness (i.e., precision, NDCG) and efficiency (i.e., time complexity). We perform experiments
using real data collected from five popular Web 2.0 applications, namely, Bibsonomy, LastFM, MovieLens, YahooVideo
and YouTube. Our results show that the best L2R based strategy significantly outperforms the best state-of-the-art
unsupervised technique (by up to 29% in NDCG). Moreover, unlike existing comparisons of different L2R techniques
in other domains, we find that, for tag recommendation, there is a clear winning group of methods (RF, M ART and
A-MART) with a slight advantage of two (RF and A-MART) over the other, with gains in NDCG ranging from 4%
to 12% over the best of the remaining alternatives considered. We also find that recommendation time, despite some
variation among the different methods, is under 1.3 seconds, on average (in the worst case scenario), for all L2R methods,
which confirms the feasibility of the L2R approach for tag recommendation.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval|: Content Analysis and Indexing;
H.3.5 [Information Storage and Retrieval|: Online Information Services

Keywords: learning-to-rank, relevance metrics, tag recommendation

1. INTRODUCTION

The Web 2.0 is characterized by the central role played by users in the creation and sharing of
their own content. This content usually comprises a main object (e.g., a video) and several sources
of data associated with it, referred to as its features. An object’s textual features are well defined
blocks of text such as title, tags, description and user comments. Among all textual features, tags
have attracted special attention as they offer an effective data source for Information Retrieval (IR)
services such as search and classification [Figueiredo et al. 2013]. Thus, there is a large interest in
developing strategies to recommend tags to users, improving the quality of the generated tags and,
indirectly, of the IR services that rely on them as data source.

This research is partially funded by the Brazilian National Institute of Science and Technology for Web Research
(MCT/CNPq/INCT Web Grant Number 573871/2008-6), and by the authors’ individual grants from CNPq, CAPES
and FAPEMIG.

Copyright(©2013 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013, Pages 453-468.



454 . Sérgio D. Canuto et al.

Most existing tag recommendation strategies treat the problem as a multiple candidate tag ranking
problem, sorting tag candidates according to some metric of relevance and recommending tags that
are in the top positions of the generated ranking [Belém et al. 2011; Lipczak and Milios 2011; Wu et al.
2009]. The relevance of a candidate usually refers to how well it describes the content of the target
object or helps to discriminate it from other objects. This modeling of the problem motivates the use
of Learning-to-Rank (L2R) based strategies to automatically “learn” good tag ranking functions. How-
ever, previous work on tag recommendation has explored only three different L2R techniques, namely,
Genetic Programming (GP), RankSVM and RankBoost. While Cao et al. [2009] proposed the use of
RankSVM, Wu et al. [2009] explored RankBoost, although neither compared the adopted approach
with alternative L2R methods. Similarly, in previous work [Belém et al. 2011], we investigated the
use of both GP and RankSVM to design tag recommendation methods, comparing them against each
other as well as novel unsupervised heuristic methods that extended previously proposed strategies.
Our results indicated that L2R techniques provide some gains over the best heuristic. Moreover, the
flexibility of the L2R framework in terms of the incorporation of new attributes and ability to maximize
different target measures makes it an attractive solution for the tag recommendation problem.

These previous studies of L2R techniques for tag recommendation are somewhat limited since:
(1) only three techniques have been considered, (2) only two techniques have been directly compared
against each other, and (3) the considered techniques have been evaluated with respect to effectiveness
only (efficiency aspects have been disregarded). However, given the success of L2R on several other
domains [Gomes et al. 2013; Faria et al. 2010], there is currently a large body of work on L2R
techniques. Moreover, the efficiency of these techniques in terms of recommendation time, which is a
time sensitive online task, should be taken into account when comparing them. This is an important
performance measure since the user must wait for recommendations to be provided and may abandon
the system if the waiting time is beyond a certain level.

In this context, we here perform an extensive evaluation of the use of different L2R techniques for
tag recommendation. Our main contributions are threefold. First, we compare eight L2R techniques,
including the three aforementioned methods as well as five techniques that have not been previously
exploited for tag recommendation. These techniques are Random Forest (RF), MART, -M ART,
ListNet and AdaRank. Second, our evaluation comprises not only effectiveness (e.g., precision,
NDCG [Baeza-Yates and Ribeiro-Neto 1999] and recall of recommended tags), but also efficiency (i.e.,
recommendation time), which has been ignored in previous work. Third, our experiments exploit
real data collected from five popular Web 2.0 applications, namely, Bibsonomy, LastFM, MovieLens,
YahooVideo and YouTube!, which is a much larger number of datasets than used by previous work.
We compare all eight L2R methods against each other as well as against a state-of-the-art heuristic
(the best unsupervised method proposed by Belém et al. [2011]). To our knowledge, this is the most
comprehensive experimental evaluation of the use of L2R methods for tag recommendation.

Our results show that, unlike existing comparisons of different L2R techniques in other domains
(e.g., document ranking) [Gomes et al. 2013], for tag recommendation, there is a clear winning group
of methods (RF, MART and \-M ART), with a slight advantage of two (RF and A-M ART) over the
other, with gains in NDCG [Baeza-Yates and Ribeiro-Neto 1999] ranging from 4% to 12% over the
best of the remaining L2R techniques considered. We also find that recommendation time, despite
some variation across methods, is under 1.3 seconds, on average, for all L2R techniques, in a worst
case scenario in which no pre-computed data is available in cache. Thus, this recommendation time
is reasonably short for an interactive task. Finally, we find that the best L2R method significantly
outperforms the best unsupervised solution, with gains in NDCG of 29%, on average. These results
confirm the feasibility and effectiveness of the L2R approach for the tag recommendation task.

The rest of this article is organized as follows. Section 2 discusses related work, whereas Section

Thttp://www.bibsonomy.org, http://www.last.fm, http://www.movielens.org, http://www.yahoo.com/video, and
http://www.youtube.com, respectively.
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3 defines the problem. Section 4 introduces the methods analyzed here, while our experimental
methodology and results are presented in Sections 5 and 6, respectively. Finally, conclusions and
future work are offered in Section 7.

2. RELATED WORK

One of the main sources of information exploited by tag recommendation methods are co-occurrence
patterns computed over a history of tag assignments. In particular, co-occurrences are used to expand
an initial set of tags associated with the object that is target of the recommendation [Belém et al.
2011; Wu et al. 2009; Sigurbjornsson and van Zwol 2008; Menezes et al. 2010]. To that end, existing
solutions often exploit association rules, i.e., implications of the form X — gy, where the antecedent
X is a set of tags, and y is a candidate tag for recommendation, restricting the rules by a confidence
threshold. Such methods have been called as associative tag recommenders. One example is LATRE
- Lazy Associative Tag Recommendation [Menezes et al. 2010], which computes association rules in
an on-demand manner, allowing an efficient generation of more complex and potentially better rules.

A few other efforts do not exploit tags previously assigned to the target object, focusing, rather, on
other textual features [Lipczak and Milios 2011; Wang et al. 2009]. For example, Lipczak and Milios
[2011] extract terms from other textual features (e.g., title) of the target object, expanding them with
association rules, and sorting the extracted terms by their usage as tags in a training set. Wang et al.
[2009], in turn, use the traditional TF x IDF metric to extract and rank the most important terms
from the object’s textual content.

In Belém et al. [2011], we extend LATRE and the best method proposed by Sigurbjornsson and
van Zwol [2008] to exploit not only co-occurrence patterns among tags previously assigned to the
target object, but also the contents of multiple textual features associated with it, and various metrics
of relevance. Our comparison of the proposed strategies against various state-of-the-art baselines,
including the original associative methods and a method that exploits only other textual features
Lipczak and Milios [2011] showed that our solutions outperform the previous techniques.

In addition to tag co-occurrence and textual features, other dimensions, such as image content [Wu
et al. 2009], video content [Pedro et al. 2011] and graph clustering [Song et al. 2011], have also been
exploited for tag recommendation. A recent work [Yin et al. 2013] addresses not only the problem of
recommending tags, but also of predicting different kinds of relationships (such as relations between
users and comments), exploiting a generalized latent factor model and Bayesian inference. The authors
found that connecting comments and tags within the same model allows mutual reinforcement and
improves predictive accuracy. However, it is not possible to compare this method with our strategies
because comments are absent in our datasets. Moreover, even if present in a collection, they are
usually noisy and tend to be absent in a large fraction of the objects [Figueiredo et al. 2013]. In another
direction, in our work by Belém et al. [2013], we extend our previous methods [Belém et al. 2011]
to consider not only relevance, but also novelty and diversity as important aspects in recommender
systems. Similarly, other studies tackle the problem of producing personalized recommendations, often
exploiting the history of tag assignments of all users of the application or of a specific user [Rendle
and Schmidt-Thie 2010; Lipczak and Milios 2011]. Our current focus is on recommending tags that
are relevant to a target object. We plan to address personalized recommendations in the future.

We are aware of only a few prior efforts to apply learning-to-rank (L2R) techniques to recommend
tags. One such effort is our prior investigation [Belém et al. 2011], where both RankSVM and Genetic
Programming were used to recommend tags, producing some gains over state-of-the-art (unsuper-
vised) methods. Although such gains are somewhat limited, the flexibility and the easiness at which
the solutions can be extended, for example to include as attributes metrics that capture new aspects
of the problem (e.g., personalization, novelty), makes L2R a very attractive technique. Two other
related efforts are those by Cao et al. [2009] and Wu et al. [2009], which exploit RankSVM and Rank-
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Boost as L2R techniques, respectively, but do not compare them against alternative L2R methods.
Moreover, Wu et al. [2009] consider only metrics related to tag co-occurrences and image content,
and do not exploit textual features, whereas Cao et al. [2009] consider only metrics related to tag fre-
quency, disregarding tag co-occurrence metrics. Instead, we here exploit a much richer set of metrics.
Furthermore, these prior efforts focus only on the effectiveness of the L2R based tag recommenders.
We here analyze not only their effectiveness but also their efficiency with respect to the time required
to produce a recommendation for a target object.

The effectiveness of L2R has been studied in other domains, particularly document and image
retrieval [Gomes et al. 2013; Faria et al. 2010]. Gomes et al. [2013] compare 13 L2R techniques
for document ranking using various datasets of the LETOR benchmark. They found that: (i) in
most datasets the results of all analyzed methods are statistically tied with each other and with
an unsupervised strategy that uses the best individual attribute in isolation, and (ii) for the other
datasets, there is not a clear winner method. In contrast, in the context of image ranking, Faria et al.
[2010] show that all studied L2R methods outperform the unsupervised technique (i.e., ranking by
attribute values in isolation), and that two L2R methods, one based on association rules and the other
based on Genetic Programming, are clear winners. To the best of our knowledge, no previous work has
studied issues related to the effectiveness and the efficiency of L2R methods for tag recommendation.

3. TAG RECOMMENDATION: PROBLEM STATEMENT

A Web 2.0 object refers to an instance of a media (text, audio, video, image) in an application.
There are various features associated with an object. Textual features, the main source of information
exploited by the tag recommendation strategies considered here, are self-contained blocks of text,
usually with a well defined functionality [Figueiredo et al. 2013]. We here exploit the following textual
features, commonly found in various applications: tags, title and description.

As in our previous work [Belém et al. 2011], we define the tag recommendation problem as follows.
Given a target object o, a set of input tags I, associated with it, and a set of (other) textual features
F, = {F} F2,..,F"}, where each element F! is the set of terms in textual feature i of object o,
generate a set of candidates C, (C, NI, = (), sorted according to their relevance to 0?. Considering
this scenario, out of the various tag recommendation methods available, those that have consistently
produced the most competitive results often exploit term co-occurrence patterns with tags previously
assigned to the target object (i.e., tags in I,,) and possibly other metrics of tag relevance [Belém et al.
2011; Menezes et al. 2010; Lipczak and Milios 2011]. We here include metrics that capture such
co-occurrence patterns as attributes exploited by the considered L2R methods (see Section 4.1).

In order to learn such co-occurrence patterns and to compute relevance metrics, we exploit a training
set D = {{Iy4, Fy)}, where I (I # () contains all tags assigned to object d, and F; contains the term
sets of the other textual features associated with d. There is also a test set O, which is a collection of
tuples {(I,, F,,Y,)}, where both I, and Y, are sets of tags associated with object 0. However, while
tags in I, are known (and given as input to the recommender), tags in Y, are assumed to be unknown
and are taken as the relevant recommendations to the target object o (i.e., the gold standard). This
split of the tags of each test object is done to enable an automatic assessment of the recommendations,
as performed in various previous studies [Rendle and Schmidt-Thie 2010; Yin et al. 2013] and further
discussed in Section 5.2. Similarly, there is a validation set V used for tuning parameters and “learning”
recommendation functions (see Section 5.2). Thus, each object v in V also has its tag set split into
input tags (I,) and gold standard (Y,).

2We focus on the scenario when there are some initial tags in the target object (i-e., I # 0), and we want to recommend
new (different) tags to it. Our methods are also able to recommend relevant tags to an object with no tags by exploiting
other textual features and metrics of relevance. We plan to investigate this scenario in future work.
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4. TAG RECOMMENDATION STRATEGIES

In this section, we present the tag recommendation strategies analyzed in this work. We start
by introducing in Section 4.1 several metrics used to assess the relevance of candidate tags. Next,
in Section 4.2, we present a state-of-the-art unsupervised method, considered here a baseline for
comparison, which uses a simple linear combination of two relevance metrics as tag ranking function.
In Section 4.3, we present the L2R techniques considered here, and describe how we apply them to
automatically “learn” good ranking functions by combining a larger number of relevance metrics.

4.1 Relevance Metrics for Tag Recommendation

We here briefly present several metrics that can be used to estimate the relevance of a candidate
term ¢ for tag recommendation. Most of them have been previously applied for recommending tags
[Belém et al. 2011; Sigurbjornsson and van Zwol 2008; Menezes et al. 2010; Heymann et al. 2008], and
are used here as attributes by the L2R based methods. Each metric fall into one of these categories:

—Tag Co-occurrence Metrics: estimates how relevant a candidate ¢ is given a set of input tags that
often co-occur with ¢ in the dataset.

—Descriptive Power Metrics: estimate how accurately candidate ¢ describes the object’s content,
which is important for information services that exploit object’s semantics.

—Discriminative Power Metrics: estimate the capability of ¢ to distinguish the target object from
others, which supports tasks such as separating the objects into semantic classes or into levels of
relevance regarding a query.

—Term Predictability: indicates the likelihood that ¢ occurs as a tag.

Table I summarizes all considered metrics. More details can be found in the work by Belém et al.
[2011] and Lipczak and Milios [2011].

4.2 Unsupervised Strategy

We consider as a baseline LATRE+wT'S, a state-of-the-art unsupervised tag recommender that
is the best heuristic approach proposed by Belém et al. [2011]. LATRE+wTS generates candidate
tags for a target object o exploiting: (1) association rules (tags which co-occur with the tags already
available in o), and (2) terms extracted from other textual features. The scores assigned to these
candidates are a linear combination of the values of metrics Sum and wT'S (Section 4.1):

LATRE 4+ wTS(c,0,¢,a) = aSum(c, I,,¢) + (1 — a)wTS(c, 0) (13)

Parameter o (0 < a < 1) is used as a weighting factor. Note that Sum is computed ounly over
candidates generated from the association rules, whereas wT'S is computed for terms extracted from
other textual features of target object o.

4.3 Learning-to-Rank Based Strategies

Our goal is to investigate the benefits of applying L2R techniques to the tag recommendation
problem. The basic idea is to use such algorithms to “learn” a good ranking function based on a list
L, of relevance metrics. We here evaluate eight different techniques, namely, Genetic Programming
(GP), RankSV M, RankBoost, Random Forest (RF), MART, A-M ART, ListNet, AdaRank. Out of
these, only the first three have been previously applied to the tag recommendation problem [Cao et al.
2009; Wu et al. 2009; Belém et al. 2011], whereas only the first two have been compared against each
other [Belém et al. 2011]. Thus, the application of the other five techniques to tag recommendation
as well as a thorough evaluation of all solutions are key contributions of this present work. For all
strategies, L,, includes all metrics defined in Table I (Section 4.1), which is a richer set of metrics
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Table I. Metrics used to estimate the relevance of a candidate tag c as a recommendation for an object o [Belém et al.
2011; Lipczak and Milios 2011]

[ [ Name [ Equation/Description
Sum Let X be a set of tags and ¢ a candidate tag. X — c is an association rule and 0(X — c¢) is its
confidence. Sum is defined as:
Sum(e,Io,£) = > 0(X =), (X —>c)€eR,[X|<E, (1)
XClo
where R is a set of association rules computed offline over the training set D, and £ is the size limit
o for the antecedent X. As in our previous work by Belém et al. [2011], we use the LAT RE algorithm
% to generate these rules.
3 Sum™
5
§ Sum™ (¢, 1o, ko, ke, kr) = Ywer, 0(@ = c) x Stab(x, kg) x Stab(c, ke) x Rank(c,z, kr), (2)
8 where Stab(z, k,) is defined in Eq. (10), and k,, k. and k, are tuning parameters. Rank(c,z, k) is
0 equal to k,/(k, + p(c, x)), where p(c, ) is the position of ¢ in the ranking of candidates according to
g the confidence of the corresponding association rule (whose antecedent is z).
Vote
_ . . J1if(x—c)eER
Vote(c,Io) = 3, cg, J, Where j = { 0 otherwise (3)
Vote™
VoteT (¢, I, ka, ke, kr) = Yaer, J X Stab(z, kg) x Stab(c, ke) X Rank(c, z, k),
._J1,4if x—=ceER (4)
where j = { 0, otherwise
Term
Spread _ . . J1 if c € F(f
(TS) T5(e,0) = Z g, where j = { 0 otherwise ®)
FieF,
Term
Frequency _ i
. | (TF) TF(c,0)= Y tf(e,F)), (6)
) FieFo
% 5
~ where tf(c, Fé) is the number of occurrences of ¢ in textual feature Foi of object o.
o
>
2 Weighted Let the Feature Instance Spread of a feature F; associated with object o, FIS(F}), be the average T'S
5 Term over all terms in F;. We define the Average Feature Spread AFS(F") as the average FIS(F,) over
g ?'ngg)d all instances of F'* associated with objects in the training set D. The wT'S is defined as:
w ) )
- . . _ | AFS(F") if c € F,
wTS(c,0) = Z j, where j = { 0 otherwive (7)
FlEF,
Weighted ] ]
Term wl'F(c,0)= Y tf(c,F.) x AFS(F") (8)
Frequency FicF
(wTF) e
Inverse
5] Feature D]+ 1
% Frequency IFF(c) = logifﬁa‘q i1 9)
a (IFF) ]
o where ff,“g is the number of objects in the training set D that contain ¢ associated as a tag.
.%
= Stability
£ ks
g (Stab) Stab(c, ks) = Tagy (10)
5 Ko + 1Ko — log(£2°)]
= where the tuning parameter ks represents the “ideal frequency” of a term in the data collection.
Entropy
L | (H?) H'™% ()=~ > 0(c— i)logh(c — i) (11)
= (c=i)eR
%
s Predictability
3 Pred tag,F
g | (Pred) Pred(c) = Lo, (12)
Ay jc
g where f!?9F is the number of objects in the training set D in which ¢ appears both as a tag and as
5 c
= a term in any other textual feature, and fCF is the number of objects in which ¢ is a term associated
with any of its textual features (except tags).

compared to those exploited in previous work [Cao et al. 2009; Wu et al. 2009]. Particularly, metric
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Sum is used with values =1 and ¢=3, generating thus two attributes: Sum(c,0,1) and Sum(c,o,3).

For all analyzed L2R strategies, the set of candidate tags C, for each object o is the same produced
by our unsupervised strategy LAT RE-+wTS, including all terms generated by association rules and
all terms extracted from other textual features. For each candidate ¢ € C, for object o, we compute
all metrics in L,, using the training set D and the other textual features associated with o. Each
candidate ¢ is then represented by a vector of metric values M, € R? where a is the number of
considered attributes (metrics). We also assign a binary label r. to each candidate ¢ for each object
v in validation set V, indicating whether c is a relevant recommendation for v (r.=1) or not (r.=0),
based on the contents of Y,,, the gold standard for tag recommendation. Note that we use training
set D only to extract the association rules and to compute the metrics, relying on validation set V to
learn the solutions (see discussion in Section 5.2). Thus, we only assign labels r. for objects in V. The
learned model, i.e., the ranking function f(M.,), is then applied to each candidate ¢ for each object o
in the test set. All reported results are based on the performance on the test sets.

Next, we describe the analyzed L2R techniques, and how they were applied to tag recommendation.

4.3.1 RankSVM Based Strategy. RankSVM is based on the state-of-the-art Support Vector Ma-
chine (SVM) classification method |Joachims 2006]. We use the SVM-rank tool® to learn a function
f(M)=f(W, M.), where W = < wy,ws,...w,, > is a vector of weights associated with the considered
metrics (i.e., W € R™). W is learned by a maximum-margin optimization method that tries to find a
hyperplane, defined by W, that best separates the “closest" candidate tags (represented by their met-
ric vectors in R™) belonging to two different levels of relevance (i.e., relevant and irrelevant) assigned
to each object-candidate pair in the training. They are employed to produce ranking statements (i.e.,
relevant tags must precede irrelevant ones), which in turn are used as input to the RankSVM learning
process. At recommendation time, f(M.) is used to rank all candidates for target object o according
to their relative distances to the separating hyperplane. RankSVM has 2 key parameters: the type of
kernel function, which indicates the structure of the solution function, and cost j, which controls the
penalty to classification errors in the training process.

4.3.2  Random Forest Based Strategy. The Random Forest (RF) algorithm [Breiman 2001] is an
ensemble method that combines a collection of decision trees. The learning of each decision tree in
the ensemble happens in a recursive way: first, the most discriminative attribute (according to some
measure, such as Information Gain) is selected as a decision node. The selected candidate tags are
split according to a split value (e.g., average attribute value), and the process repeats in a top-down
fashion to form a tree with [ terminal nodes, where [ is a tuning parameter. Once the decision tree is
built, it can assign a real-valued score as output for an unseen (test) candidate tag.

The RF method exploits the bagging ensemble technique, i.e., each tree within the forest is built
with a different bootstrap sample drawn from the original set of pairs (M., r.) that represents each
candidate tag c for the considered objects in our dataset, where, as discussed before, M, € R™ and
r. € {0,1}. The attribute selection for each split in a tree is conducted on a randomly selected subset
of attributes, instead of on the full attribute set, as usually done in traditional decision tree algorithms.
Each leaf in each tree corresponds to an output score to be assigned to a candidate tag. Once the
forest is built, for each tag candidate ¢ in a target object o, the scores given by each tree to c¢ are
averaged and used to produce the final ranking of candidates.

Besides [, the number T of trees to grow and the number of attributes m to consider when splitting
each node are tuning parameters in RF. We note that, although each decision tree may suffer from
overfitting, the aggregation of a larger number of low-correlated trees can mitigate this problem. The
generalization error of a RF depends on both the correlation between trees in the forest and the
strength of each individual tree. The more correlated each tree is, the higher the error rate becomes.

3http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
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The stronger each individual tree is (high accuracy), the lower the error rate becomes. By increasing m
or lowering [, both the correlation and the strength of each tree increases. By lowering m or increasing
[, each tree becomes more independent (less correlated), but also becomes weaker at the same time.
Thus, there exists some optimal values of m and [ that provide the optimal balance between the
correlation and the strength to get the minimum generalization error. We set those parameters using
the validation set, as described in Section 5.2. The implementation of RF and the next four approaches
were provided by the RankLib learning to rank tool?.

RF has been shown consistently effective and competitive in several real world benchmarks [Mohan
et al. 2011]. Some of its strengths are its insensitivity to parameter choices, resilience to overfitting,
and high degree of parallelization due the fact that single decision trees are built independently from
others, thus making RFs inherently parallel.

4.3.3 MART Based Strategy. Similarly to RF, M ART (Multiple Additive Regression Trees) [Fried-
man 2000] combines multiple decision trees. However, unlike RF, M ART exploits the boosting en-
semble technique, which is based on the idea that it is easier to find and average many weak learners,
than to find a single, highly accurate predictor. Boosting is an iterative method that produces and
combines different weak learners. In each of i iterations, it increases emphasis on training instances
which were not well modeled in the previous iteration (i.e., candidate tags in the training set which
were not correctly ranked by the model built in the previous iteration, in our case). Increasing the
weight given to these “harder” training examples, it potentially improves the final model, which is a
linear combination of the weak learners, with weights defined by the learning rate Ir, a tuning param-
eter. Each weak learner is a decision tree with [ leaves. However, unlike RF', M ART does not build
randomized trees, i.e., it considers the whole training set and the complete set of attributes.

4.3.4  A-MART Based Strategy. -MART [Wu et al. 2010], the winning approach at the Yahoo!
Learning to Rank Challenge [Chapelle and Chang 2011], is a combination of MART and the A-Rank
ranking model, which tries to directly optimize the value of an evaluation metric. The main difference
between \-MART and MART is that A-MART learns which candidate in a pair of candidate tags
must appear first in the ranking. In order to learn these pairwise preferences, A-MART uses the
gain in Normalized Cumulative Discounted Gain (NDCG) [Baeza-Yates and Ribeiro-Neto 1999] from
swapping the rank positions of candidates in any given pair of candidate tags for the same object
0. Thus, unlike MART, the training is made by considering that each candidate tag is in the set of
candidate tags C, for an object 0. Similarly to MART, the learning rate [r, the number of terminal
nodes [ and the number of iterations ¢ must be specified.

4.3.5 ListNet Based Strategy. The goal of the learning in ListNet [Cao et al. 2007] is minimizing
ranking errors, rather than minimizing errors in classification of pairs of tags or building regression
models. ListNet is based on comparing the probability distribution of permutations of lists of candidate
tags. Specifically, for a set of candidate tags to an object o, ListNet first defines a permutation
probability distribution based on the scores produced by a ranking function for each candidate tag.
It then defines another distribution based on the ground truth labels, and measures the inconsistency
between these two distributions. The ranking function is defined as a neural network model. Thus, it
is possible to iteratively adjust this ranking function according to the measured inconsistency. This
adjustment is done at a pre-defined learning rate Ir during ¢ iterations.

4.3.6 AdaRank Based Strategy. The basic idea of AdaRank [Xu and Li 2007] is to plug a selected
evaluation metric into the boosting framework and directly optimize this metric. Specifically, it re-
peatedly builds weak rankers on the basis of re-weighted training of sets of candidate tags, i.e., each
set of candidate tags C, for an object o receives a weight. The weak rankers are linearly combined

4nttp://people.cs.umass.edu/ vdang/ranklib.html
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to make ranking predictions. Each attribute in Table I, in isolation, is used as a weak ranker. The
selected weak ranker in each iteration of the algorithm corresponds to the attribute that leads to the
best performance over the weighted objects, measured by a given evaluation metric (NDCG, in our
case). AdaRank runs for ¢ iterations. At each iteration, AdaRank maintains a distribution of weights
over the objects in the training data. Initially, AdaRank sets equal weights to the objects. At each
iteration, it increases the weights of those objects whose tags are not ranked well by the model created
so far. As a result, the learning at the next iteration will be focused on the creation of a weak ranker
that can work on the tag ranking of those “hard” objects.

4.3.7 RankBoost Based Strategy. Similarly to AdaBoost, RankBoost [Freund et al. 2003] also
adopts the boosting framework, i.e., it trains one weak learner at each iteration, and learns a lin-
ear combination of weak rankers as the final ranking function. Each weak ranker consists of a single
attribute (one of the metrics in Table I) and a threshold that best distinguishes between relevant and
non-relevant candidate tags. However, similarly to RankSVM, RankBoost operates on pair of tags.
After each iteration, the tag pairs are re-weighted: it decreases the weight of correctly ranked pairs
and increases the weight of wrongly ranked pairs. As a result, the learning at the next iteration will
be focused on dealing with pairs which are more difficult to rank. The total number of iterations ¢ is
a tuning parameter.

4.3.8 GP Based Strategy. Genetic Programming (GP) is a framework inspired by the biological
mechanisms of genetic inheritance and evolution of individuals in a population [Banzhaf et al. 1998].
GP implements a global search mechanism by evolving a population of individuals over multiple
generations. Each individual, representing a possible solution for the target problem (a tag ranking
function), is modeled as a tree composed of terminals (leaves) and operators (inner nodes), related to
the target problem. In our case, terminals are constants (uniformly distributed between 0 and 1) and
attributes (metrics in Table I), while the inner nodes are operators sum, subtraction, multiplication
as well as protected division and logarithm (so that they return the default value 0 if their inputs are
out of their domains). In each generation, each individual is evaluated by a fitness function, defined
based on quality metrics related to the problem at hand. We here use the NDCG metric as fitness
function. Only individuals with the highest fitness values are selected, according to some selection
method (we adopt the tournament selection, i.e., selecting the best individual among k randomly
chosen individuals), to evolve the population.

An initial randomly generated population is evolved in a number of generations, through crossover
and mutation operations. The crossover operation, performed on two selected individuals with prob-
ability p., is implemented by randomly choosing one node of each tree representing a selected indi-
vidual and exchanging the subtrees below them. It aims at combining good solutions towards a more
promising one. The mutation operation, on the other hand, adds new individuals (solutions) to the
population, thus increasing the diversity in it. This is useful, for instance, to avoid being trapped in
local optima. With probability p,,, the mutation of a selected individual is done by first randomly
choosing one node of its tree, and then replacing the subtree rooted at it by a new randomly gen-
erated subtree, without exceeding a maximum tree depth d. Note that population size n, is kept
fixed through all generations. This process continues until a target fitness value f! or a maximum
number of generations n, is reached. The individual with the best fitness value, usually part of the
last generation, is chosen as the final solution for the problem.

GP is a non-linear method that has been applied to various IR tasks. We were the only to use it for
recommending tags [Belém et al. 2011; Belém et al. 2013|, having obtained competitive (or superior)
results over RankSVM.

The main features of the above L2R techniques are summarized in Table II.
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Table II. Characteristics of our L2R strategies.

Approach Ensemble | Training instances Directly optimize | Generated model

evaluation metric?
RankSVM | - Pairs of candidate tags | no Hyperplane
RF bagging Sets of candidate tags no Set of “randomized” decision trees
MART boosting Sets of candidate tags no Set of boosted decision trees
A-MART boosting Sets of candidate tags yes Set of boosted decision trees
ListNet - Sets of candidate tags no Neural network
AdaRank boosting Sets of candidate tags yes Sets of weighted weak rankers
RankBoost | boosting Pairs of candidate tags | no Sets of weighted weak rankers
GP - Sets of candidate tags yes Any function formed by a given set of

operators and attributes

5. EXPERIMENTAL SETUP

In this section, we describe the datasets used to evaluate the tag recommendation strategies (Section
5.1), our evaluation methodology (Section 5.2), and how we parameterized each strategy (Section 5.3).

5.1 Data Collections

We evaluate the tag recommendation methods on five datasets, each containing the title, tags
and description associated with real objects from Bibsonomy, LastFM, MovieLens, YouTube and
YahooVideo. The Bibsonomy dataset is a recent snapshot of the system comprising 543,872 objects
(bibtex records of publications), obtained on January 1°¢ 2012. It is publicly available®, and has
been used in several previous efforts [Lipczak and Milios 2011; Rendle and Schmidt-Thie 2010; Yin
et al. 2013]. The MovieLens dataset, also available online®, contains 10,000 objects. The LastFM and
YouTube datasets were collected” in August 2009, following a snowball sampling. That is, starting
from a set of users (the most popular users) selected as seeds, the crawler recursively collected the
objects posted by them and followed their social links to other users, collecting the objects posted
by them as well. Our datasets include the textual features associated with 2,758,992 LastFM artists
and more than 9 million YouTube videos. The YahooVideo dataset was also gathered by snowball
sampling, but using the most popular objects as seeds and following links of related videos. It was
gathered in October 2008, and contains the features of 160,228 objects.

We considered only objects with textual features in English, removed stopwords, and used the
Porter Stemming algorithm® to remove affixes of the words in the collected features. Stemming was
performed to avoid trivial recommendations (e.g., plurals and simple variations of the same word).

5.2 Evaluation Methodology

Recall that our goal is to compare the use of alternative L2R techniques to recommend tags in terms
of effectiveness, which relates to the quality of the recommended tags, and efficiency, measured by
the time required to perform a recommendation. We focus on relevance as main criterion of quality,
leaving other aspects such as novelty and diversity to future work [Belém et al. 2013].

As in the work of Rendle and Schmidt-Thie [2010], Menezes et al. [2010] and Yin et al. [2013], we
adopt a fully-automated methodology to evaluate the effectiveness of these techniques: we use a subset
of the tags previously assigned to the target object o as a gold standard, i.e., as the relevant tags for
0. As such, these tags are disregarded for the computation of metrics of relevance. This methodology

Shttp://www.kde.cs.uni-kassel.de/bibsonomy/dumps.
Shttp://wuw.grouplens.org/taxonomy/term/14

TVisit http://vod.dcc.ufmg.br/recc/ for information on data availability.
Shttp://tartarus.org/ martin/PorterStemmer/
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was adopted because the manual evaluation of tag relevance is a very expensive process that may
be affected by the subjectivity of human judgments. We note that the results obtained according to
the proposed methodology represent lower bounds, as some of the recommended tags, although not
in the gold standard, might still be considered relevant for the given object or user. Following this
methodology, for each tuple (I, F,,Y,) in the test and validation sets, we randomly select half of its
tags to be included in I,. The other half is included in Y, the gold standard for o. We also use title
and description as textual features in F,, for each object o.

We sampled N tuples from each dataset, with N being 150,000 for YouTube, LastFM and Bibson-
omy, 120,000 for YahooVideo, and 6,500 for MovieLens. Each sample was divided into five equal-sized
portions, which were used in a five-fold cross validation. That is, three portions were treated as train-
ing set (D) and used for extracting association rules and computing all metrics. A fourth portion was
used as validation set V, which, in turn, was considered a part of the training set, being used to “learn"
the solutions and to tune parameters of all recommendation methods. The last portion was used for
testing. Note that our use of the 5-fold cross-validation process for the L2R based strategies is slightly
different from the traditional use: we learn the ranking function and select parameter values in the
validation set V. We do so to avoid overfitting, which could occur if the solutions were learned in
the same set from which association rules and metrics were extracted (i.e., training set D), as metrics
derived from the rules could be over-inflated®.

We argue that our experimental design is fair because: 1) we do not use any privileged information
from the test set in which results of all methods are reported; 2) all parameters are discovered in
the same validation set; 3) our collections are large enough for effective learning; and 4) the very
tight confidence intervals reported in our results are evidence of low variation and thus learning
convergence. Moreover, having a large amount of training data to generate the tag co-occurrence
rules can help increasing the coverage of the rules (i.e., more co-occurrences can be potentially found),
thus generating more candidates and more precise metric values. This benefits all methods.

Our primary metric to evaluate the effectiveness of each method is the Normalized Cumulative
Discounted Gain (NDCG) [Baeza-Yates and Ribeiro-Neto 1999], computed over the ranked list of
candidate tags produced for each object in the test set. We also measure the precision, i.e., the
fraction of recommended tags that are relevant, and the recall, i.e., the fraction of the relevant tags
for an object that are indeed recommended. All three metrics are computed over the top k positions
of the ranking, with £=5.

In order to evaluate the efficiency of the methods, we measured their online recommendation time,
which is an important performance measure since tag recommendation is an interactive task. Thus,
the user may abandon the system if the waiting time is unacceptable. Model training, i.e., learning
the recommendation functions and best parameters, can be performed completely offline, being thus
less concerning. All experiments were performed on a 16-core 2.40GHz Intel(R) Xeon processor, with
50GB RAM. We measured CPU time (user and system time) for the batch of executions consisting
of all objects in the test set. Reported results are averages per object, computed over all 5 test sets.

For all methods, recommendation time is divided into four stages: (1) lazy association rule gener-
ation, (2) metric computation, (3) application of the (learned) model to score candidate tags, which
depends on the complexity of the generated model (e.g., number of nodes of decision trees), and (4)
sorting of the candidate tags according to the scores. All stages can be somehow benefited by data
storage in cache (e.g., pre-computed attribute values and association rules [Menezes et al. 2010], or
even the final ranking of tags for a given object). However, we here focus on the worst case (an
upper-limit of execution time), assuming that the cache will be always empty. Thus, all metrics and
necessary association rules are computed at recommendation time. As such, the ranking (application
of the recommendation function and sorting of candidate tags) will also be always performed. We

9The overfitting problem was observed in initial tests, with the learned solutions having lower generalization capabilities.
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leave the evaluation of the benefits from alternative caching strategies for future work.

Table III. Best parameterization for each approach.

Approach Parameter

LATRE+wTS | a = 0.95 for LastFM and MovieLens, a = 0.9 for Bibsonomy, YahooVideo and YouTube

RankSV M linear kernel, 7 = 100

GP n=200,k=2,d=7, pc=0.6 and pm = 0.1

RankBoost i = 500 for Bibsonomy, i = 700 for LastF'M, i=300 for MovieLens, YahooVideo and YouTube

RF T =300, m =4, l = 1000 for Bibsonomy and LastFM, [ = 300 for the remaining datasets

MART l=5,1lr=0.1 and 7 = 1500

AMART I =5,1lr=0.1 and ¢ = 1500

AdaRank 1 = 300 for Bibsonomy, LastFM, MovieLens and YahooVideo, ¢ = 100 for YouTube

ListNet Ir = 0.00001, i = 160 for MovieLens, ¢ = 10 for YahooVideo, ¢ = 40 for Bibsonomy, LastFM
and YouTube.

5.3 Parameterization

We ran a series of experiments with the validation set V to find the best parameters of each method.
We found our RF-based tag recommender to be very insensitive to parameterization. The results
obtained in our cross-validation experiments using different number of trees (7=300, 500, 1000) are
statistically tied (with 95% confidence) for all datasets. We thus set T=300, due to the lower cost. We
also fixed the number m of all attributes selected in each split of the tree according to the default value
originally suggested by Breiman [2001], i.e m = [loga(M + 1) 4+ 0,5], where M is the total number
of attributes. Despite the fact that this default value has been reported to work well in practice,
we verified that other values ranging from 0.25M to 0.75M do not significantly impact our results.
The only parameter that (slightly) impacts results is the number of terminal nodes I. We used cross
validation to determine the best [ among values from 10? to 103, finding that the best choice is [=1000
for Bibsonomy and LastFM, and [ = 300 for MovieLens, YahooVideo and YouTube.

The number of leaves [ also impacts M ART and A-M ART, the other tree-based approaches. We
experimented with [ between 2 and 20, finding [=5 as the best choice for all datasets. Since the
results obtained with different number of iterations (i = 1500, 3000, 6000) are statistically tied in all
MART and \-M ART experiments, we set i=1500 in all experiments due the lower cost. We also
varied learning rate Ir between 0.0001 and 0.2, finding that the best choice was 0.1 for all datasets.
Greater values for both [ and Ir do not improve effectiveness, and make these methods very inefficient.

For ListNet, our results were not very sensitive to the lr parameter. We tested values ranging
from 10~7 to 107!, finding that Ir = 1075 always led to the best results. We also varied the number
of iterations i between 10 and 103, finding, as best choices, i = 160 for MovieLens, i = 10 for
YahooVideo, and i = 40 for the other datasets. Similarly, we tested ten values of i between 10? and
103 for RankBoost and AdaRank. For AdaRank, i = 300 was the best choice in most datasets, except
for YouTube, where i = 100 was the best value. For RankBoost, the best values varied according to
the dataset: it was set to 500 in Bibsonomy, 700 in LastFM and 300 in the other datasets.

Regarding LATRE+wTS, RankSV M and GP, we adopted the same best parameter values re-
ported by Belém et al. [2011] for LastFM, YouTube and YahooVideo, since the datasets are the same.
For MovieLens and Bibsonomy, which were not included in that work, we follow the same methodol-
ogy. Using cross-validation in V', we found j=100 as the best cost for RankSV M, and we used the
linear kernel. For GP, we set n=200 and g = 200 (as in the work by Belém et al. [2011]), k = 2,
d =7, p. = 0.6 and p,, = 0.1, as usually done in the literature [Banzhaf et al. 1998]. Finally, for
LATRE+wTS, the best parameter values are a=0.9 for Bibsonomy and o = 0.95 for MovieLens. We
set =3 for the metric Sum (for all methods), as in Belém et al. [2011].

We summarize our parameterization of all methods in Table III. Unless otherwise noted, the same
parameter value was used for all datasets.
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6. REPRESENTATIVE RESULTS

Now we report the results of experiments with objects in the test sets, comparing the results of
all analyzed methods, i.e., the state-of-the-art unsupervised LAT RE+wTS heuristic and the eight
L2R-based strategies RF, MART, -M ART, AdaRank, ListNet, RankSV M, GP and RankBoost.
Our comparison comprises both effectiveness (Section 6.1) and efficiency (Section 6.2) of the analyzed
methods. Results are averages of all 5 folds, along with 95% confidence intervals.

6.1 Recommendation Effectiveness

Tables IV-VI show results for NDCG, precision and recall, respectively, considering the top k=5
ranked tags. We start by noting that the best L2R-based strategies (i.e., RF and A-M ART') outper-
form the state-of-the-art unsupervised LAT RE+wT'S by up to 29%, 23% and 22% in NDCG, precision
and recall, respectively. These gains are even more expressive than the gains achieved by previously
evaluated L2R methods [Belém et al. 2011]. They confirm the benefits of exploiting supervised L2R
methods for tag recommendation, allowing an automatic search for a solution that combines a larger
number of attributes when compared to unsupervised heuristics such as LAT RE+wT'S.

We now turn our attention to the comparison of the eight L2R-based strategies. Unlike existing
comparisons of different L2R techniques in other domains (e.g., document ranking) [Gomes et al. 2013],
there is a clear winning group of methods (RF, M ART and A-M ART) in all 5 datasets, with a slight
advantage of two of them (RF and A-M ART). The gains in NDCG of the winner methods over the
best of the remaining L2R techniques considered (i.e., either GP, RankSV M or RankBoost) range
from 4% to 12%. The corresponding gains in precision and recall reach 10% and 11%, respectively.
These results confirm the effectiveness of methods based on an ensemble of decision trees, which
are non-linear L2R strategies that have been shown to be effective and competitive in other studies
[Mohan et al. 2011; Breiman 2001].

The second group of methods is formed by the L2R strategies previously exploited in tag recommen-
dation: GP, RankSV M and RankBoost. GP is the most flexible strategy, allowing a wider range of
types of recommendation functions (any function formed by the considered operators and attributes).
However, this can be also a disadvantage because the search space is larger when compared to the
search space of other methods, making it more difficult to find the best function. On the other hand,
the shape of functions produced by RankSV M is pre-defined by the kernel function, which was set
linear here (as this led to the best results), and thus all RankSV M-produced functions consist of
linear combinations of the attributes. Although RankBoost is composed by simpler weak rankers
(defined by single attribute), it achieved results similar to RankSV M, since its ensemble strategy
also produces a linear combination of the attributes.

Comparing the general results across different datasets, we note that the best results are for Ya-
hooVideo, while MovieLens (which is considerably smaller than the other datasets) and Bibsonomy
present the worst results. The observed differences are possibly due to the number of tags per object,
which tends to be smaller in MovieLens and Bibsonomy than in YahooVideo objects. For example,
48% and 73% of our YahooVideo and YouTube objects have fewer than 10 tags, against 94%, 88% and
76% of the objects in Bibsonomy, LastFM, and MovieLens, respectively. Moreover, these results may
also be due to differences in tagging behavior: on YahooVideo and YouTube, tags tend to appear in
other textual features of the same object more often than on LastFM [Belém et al. 2011; Figueiredo
et al. 2013] and the other datasets, which facilitate the recommendation of relevant tags exploiting
some of the considered tag relevance metrics (e.g., wT'S).

In sum, we found that (1) L2R based strategies can significantly outperform state-of-the-art unsu-
pervised heuristics, and (2) RF, A-MART and M ART are the best L2R strategies out of the eight
analyzed techniques, providing further gains over previously evaluated L2R-based strategies.
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Table IV. Average NDCG@5 values and 95% confidence intervals. Best results (and statistical ties) in bold.
Bibsonomy LastFM MovieLens YahooVideo YouTube
LATRE+wTS 0.397+ 0.001 0.388 £ 0.003 0.321 £ 0.009 0.744 £+ 0.002 0.489 £ 0.001
RankSV M 0.412 £ 0.002 0.407 £ 0.002 0.354 £ 0.007 0.765 £ 0.001 0.515 £ 0.003
GP 0.406 + 0.006 0.440 £ 0.008 0.388 £ 0.002 0.770 £ 0.0044 0.530 £ 0.002
RankBoost 0.444 £ 0.002 0.402 £ 0.002 0.307 £ 0.005 0.696 £ 0.003 0.488 £ 0.002
RF 0.495 + 0.003 0.469 + 0.002 0.413 £+ 0.004 0.803 £+ 0.002 0.549 + 0.002
MART 0.489 £ 0.002 0.463 £ 0.001 0.411 +£ 0.006 0.794 £ 0.002 0.547 £ 0.001
A-MART 0.493 + 0.002 0.468 + 0.002 0.409 £+ 0.010 0.802 + 0.003 0.551 + 0.002
AdaRank 0.446 £ 0.004 0.160 £ 0.128 0.206 £ 0.110 0.653 £ 0.010 0.419 £ 0.032
ListNet 0.431 &+ 0.006 0.380 £ 0.007 0.273 £+ 0.012 0.607 & 0.003 0.472 £ 0.003

Table V. Average Precision@5 values and 95% confidence intervals. Best results (and statistical ties) in bold.

Bibsonomy LastFM MovieLens YahooVideo YouTube
LATRE+wTS 0.438 £ 0.002 0.401 £ 0.002 0.314 £ 0.008 0.733 £ 0.003 0.489 £ 0.002
RankSV M 0.456 + 0.003 0.419 £ 0.002 0.346 £ 0.006 0.754 £+ 0.002 0.517 £ 0.003
GP 0.441 £ 0.009 0.450 £ 0.006 0.363 £ 0.004 0.755 £ 0.005 0.520 £ 0.002
RankBoost 0.451 £ 0.003 0.424 + 0.002 0.366 £ 0.002 0.763 £ 0.003 0.517 £ 0.002
RF 0.502 £+ 0.003 0.494 + 0.001 0.386 + 0.006 0.797 £+ 0.002 0.543 £+ 0.002
MART 0.496 + 0.002 0.489 + 0.001 0.385 £ 0.002 0.792 £+ 0.002 0.541 £+ 0.001
A-MART 0.501 + 0.002 0.493 + 0.002 0.385 £+ 0.003 0.797 £+ 0.002 0.546 £+ 0.001
AdaRank 0.454 £+ 0.003 0.134 &+ 0.063 0.180 £ 0.149 0.712 £+ 0.010 0.440 £ 0.038
ListNet 0.437 £ 0.006 0.398 £ 0.008 0.316 £ 0.010 0.661 £ 0.003 0.499 £ 0.003
Table VI. Average Recall@5 values and 95% confidence intervals. Best results (and statistical ties) in bold.
Bibsonomy LastFM MovieLens YahooVideo YouTube
LATRE+wTS 0.430 £ 0.002 0.377+ 0.002 0.250 £+ 0.012 0.637+ 0.002 0.451 £+ 0.001
RankSV M 0.446 £ 0.003 0.390 £ 0.003 0.275 £ 0.008 0.651 £ 0.001 0.474 £ 0.003
GP 0.431 &+ 0.009 0.415 £+ 0.010 0.280 £ 0.005 0.654 £ 0.004 0.478 £ 0.002
RankBoost 0.441 £ 0.002 0.394 £ 0.002 0.287 £ 0.007 0.657 £ 0.003 0.474 £ 0.002
RF 0.491 + 0.003 0.460 + 0.002 0.301 + 0.011 0.689 + 0.001 0.498 + 0.002
MART 0.485 £ 0.002 0.455 £ 0.002 0.300 £ 0.007 0.685 £ 0.002 0.496 £ 0.001
A-MART 0.490 + 0.002 0.459 + 0.002 0.298 + 0.011 0.690 + 0.002 0.502 + 0.001
AdaRank 0.443 £+ 0.004 0.152 £ 0.120 0.194 £ 0.105 0.618 £ 0.009 0.408 £ 0.030
ListNet 0.428 £+ 0.006 0.374 £+ 0.006 0.259 £ 0.012 0.575 £ 0.003 0.459 £ 0.003

6.2 Recommendation Efficiency

Now we show results for the efficiency of all analyzed methods in terms of their online recommen-
dation time. Table VII shows the average recommendation time per object, in milliseconds, broken
down into each of the 4 recommendation stages (see Section 5.2). In particular, we distinguish the
metric computation (MC) stage for the L2R techniques, which involve the computation of all metrics
used!'®, and the MC stage for LATRE-+wT'S, which consists of the computation of only wT'S. Table
VIII shows the total recommendation time (sum of all stages) per object, on average, in seconds.

As expected, the simplest unsupervised method (LATRE+wTS) takes less time than the others,
since it requires only the computation and sum of two metrics — Sum and wT'S — besides the on-
demand association rule generation and candidate sorting, which are common steps to all methods.
Note however that, in terms of total recommendation time, the use of several of the analyzed L2R
strategies only incur in a small additional cost (under 3%) in comparison to LATRE+wTS.

Comparing the recommendation time of the L2R strategies, we found that, despite some variation,
the most efficient models are those generated by RankBoost-based strategies, followed by RankSV M,
ListNet and GP. The three winner methods in terms of effectiveness come next. In any case, the
average recommendation time of all methods, in a worst case scenario (without any pre-computed
metric or association rule), is under 1.3 seconds per object.

10The exception is Sum(f = 3), whose computation time is included in the lazy rule generation (LRG) step, for all
(supervised and unsupervised) methods analyzed.
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Table VII. Average recommendation time (milliseconds) per object, divided in stages: Lazy Rule Generation (LRG),
Metric Computation (MC), Model Application (MA) and Candidate Sorting (CS)

Bibsonomy LastFM MovieLens YahooVideo YouTube
LRG 116.06 £ 2.46  1198.11 + 72.97  238.00 £ 12.10  968.18 4+ 84.77  592.13 £ 100.71
MC (L2R methods) 0.53 £ 0.01 0.96 £ 0.04 0.49 + 0.02 0.58 + 0.01 0.97 £ 0.02
MC (LATRE+wT'S) 0.04 £ 0.01 0.10 £ 0.01 0.03 £ 0.02 0.04 £ 0.00 0.03 £+ 0.01
LATRE+wTS 0.02 £ 0.01 0.04 £ 0.01 0.02 £ 0.01 0.02 £ 0.01 0.03 £ 0.01
RankSV M 0.72 £ 0.04 1.52 £+ 0.07 0.46 £ 0.00 0.65 £ 0.08 1.35 £ 0.06
GP 2.12 £ 0.13 5.35 £ 0.53 2.23 £ 0.23 1.95 + 0.12 4.99 £ 0.56
RankBoost 0.59 £ 0.02 1.30 £+ 0.02 1.38 £ 0.08 0.53 £ 0.02 1.17 £ 0.09
MA RF 47.20 £ 1.66 54.43 £ 0.31 799.23 £ 45.00 55.63 £ 1.73 57.18 £ 1.41
MART 10.24 + 0.12 19.11 + 0.19 82.38 £ 0.62 10.23 £+ 0.18 16.01 £+ 0.69
A-MART 50.76 £ 9.83 60.69 £+ 32.13 472.00 + 119.92 52.29 £ 9.66 90.02 £ 35.64
AdaRank 1.48 £+ 0.23 4.53 £ 0.69 3.92 £ 0.85 1.33 £ 0.09 4.11 £ 1.27
ListNet 1.43 + 0.24 2.79 £ 1.17 2.38 £ 1.08 1.05 + 0.19 2.91 £ 0.34
CS 0.04 £ 0.01 0.08 £ 0.01 0.05 £ 0.01 0.03 £ 0.01 0.07 £ 0.01
Table VIII. Average recommendation time (seconds) per object
Bibsonomy LastFM MovieLens YahooVideo YouTube
LATRE+wTS | 0.116 &£ 0.002 1.198 £ 0.073  0.238 4+ 0.012  0.968 £ 0.085 0.592 £ 0.101
RankSV M 0.117 £ 0.003  1.201 &£ 0.073  0.239 £ 0.012  0.969 £+ 0.085 0.595 + 0.101
GP 0.119 £ 0.003  1.205 + 0.074  0.241 £ 0.012 0.971 + 0.085 0.598 + 0.101
RankBoost 0.117 £ 0.002  1.200 & 0.073  0.240 £ 0.012  0.969 £+ 0.085 0.594 + 0.101
RF 0.164 £ 0.004 1.254 + 0.073  1.038 £ 0.057 1.024 4+ 0.087  0.650 £ 0.102
MART 0.127 £ 0.003 1.218 + 0.073  0.321 £ 0.013  0.979 + 0.085 0.609 + 0.101
A-MART 0.167 £ 0.012 1.260 + 0.105 0.711 £ 0.132  1.021 + 0.094 0.683 £ 0.136
AdaRank 0.118 £ 0.003  1.204 + 0.074  0.242 £ 0.013  0.970 = 0.085 0.597 £ 0.102
ListNet 0.118 £ 0.003  1.202 + 0.074 0.241 £ 0.013  0.970 &£ 0.085 0.596 £ 0.101

In conclusion, the most cost-effective solution is the M ART-based method, as it produces results
very close to RF and A-MART (e.g., the difference is under 1.3% in NDCG), with a much shorter
recommendation time (differences range from 185% to 473%). Thus, despite some variation across
different methods, the L2R approach is feasible for the tag recommendation task. Moreover, L2R
methods are flexible, allowing the inclusion of new attributes and addressing other problem aspects.

7. CONCLUSIONS AND FUTURE WORK

We have presented a comparative study of nine tag recommendation strategies: one state-of-the-art
unsupervised heuristic (LATRE+wTS) and eight supervised learning-to-rank (L2R) based meth-
ods, with respect to both effectiveness (i.e., precision, recall and NDCG) and efficiency (i.e., time
complexity). Our experiments showed that the best analyzed L2R-based strategy outperforms the
state-of-the-art heuristic, producing gains of up to 29% in NDCG. Among the L2R based strategies,
there is a clear winner group of methods: Random Forests (RF'), M ART and A-M ART, which pro-
duces gains ranging from 4% to 12% in NDCG over the best of the remaining L2R methods (i.e.,
the previously proposed methods GP, RankSV M and RankBoost). In terms of efficiency (in recom-
mendation time) the use of L2R does not incur in an expressive additional cost with relation to the
unsupervised alternative. Despite some variation across the L2R methods, we found that they are
feasible for the tag recommendation task: in a worst-case scenario, the average recommendation time
per object is under 1.3 seconds. Moreover, L2R represent a flexible approach, allowing the inclusion
of new attributes and other aspects of the problem (e.g., personalization) which we plan to address in
the future, besides performing a user study to evaluate the recommendation effectiveness.
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