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Abstract. The increase in satellite launches into Earth’s orbit in recent years has generated a huge amount of remote
sensing data. These data, in the form of time series, have been used in automated classification approaches, generating
land-use and land-cover (LULC) products for different landscapes around the world. Dynamic Time Warping (DTW)
is a well-known computational method used to measure the similarity between time series. It has been used in many
algorithms for remote sensing time series analysis. These DTW-based algorithms are capable of generating similarity
measures between time series and patterns. These measures can be used as meta-features to increase the accuracy
results of classification models. However, DTW-based algorithms require a lot of computational resources and have a
high execution time, which makes them difficult to use in large volumes of data. This article presents a parallel and fully
scalable solution to optimize the construction of meta-features through remote sensing time series (RSTS). In addition,
results of the application of the generated meta-features in the training and evaluation of classification models using
Random Forest are presented. The results show that the proposed approaches have led to improvements in execution
time and accuracy when compared to traditional strategies.

Categories and Subject Descriptors: I. [Computing Methodologies]: Miscellaneous; D.1 [Programming Tech-
niques]: Miscellaneous; H.2 [Applied computing]: Miscellaneous

Keywords: Classification, Land-Use and Land-Cover, Parallel Processing, Remote Sensing, Time Series

1. INTRODUCTION

The Land-Use and Land-Cover (LULC) present dynamics of changes that can be monitored through
the analysis of Remote Sensing Time Series (RSTS) [Foody 2002]. Due to a large number of satellites
orbiting the planet and the technological advancement of space sensors, monitoring initiatives are
producing large volumes of Earth observation data. These data are used to generate products for
mapping LULC, which assist in decisions related to food security, environmental conservation, sus-
tainability, greenhouse gas emissions, and combating deforestation [Nepstad et al. 2014; Bonan 2008;
Bala et al. 2007; Dewan and Yamaguchi 2009].

Dynamic Time Warping (DTW) is a classic method of computer science, introduced in the 1970s
that makes use of dynamic programming to measure the similarity between time series [Sakoe and
Chiba 1978; Rabiner et al. 1978]. These similarity measures built from time series can be used as
meta-features. Some algorithms based on DTW were developed to use similarity measures between
time series in the mapping of LULC changes [Guan et al. 2016; Romani et al. 2010; Maus 2016].
Among these algorithms, Time-Weighted Dynamic Time Warping (TWDTW) [Maus et al. 2016]
stands out for creating the Time-Weighted function, which makes the method sensitive to seasonal
climate changes in natural and cultivated vegetation. The TWDTW is used in conjunction with
the k-Nearest Neighborhood (k-NN) algorithm in LULC classifications based on the similarities of
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RSTS [Dadi 2019; Oliveira et al. 2019; Manabe et al. 2018].

Although TWDTW is a DTW-based algorithm that is effective in analyzing time series, it faces
problems that affect its performance, such as the high cost of computational resources and high
execution time, factors that increase according to the size of the data entry. This is due to the
quadratic complexity of the DTW method, that makes it difficult to use this solution with large
volumes of data, RSTS products with large temporal and spatial resolutions, or even in large areas.
In addition, in some regions, the integration between TWDTW and k-NN has low accuracy in the
classification of LULC [Dadi 2019].

Recent works have explored the parallel processing of RSTS, looking for more efficient ways to
generate meta-features based on similarity. Some works also seek to carry out the classification of
LULC through meta-features in conjunction with more sophisticated machine learning algorithms,
to obtain improvements in the accuracy of the classification [Oliveira et al. 2018; Oliveira et al.
2019]. However, these solutions have deficiencies with processing idleness and scalability limitations.
Considering technological advances for new space sensors and the emergence of satellites with high
temporal and spatial resolutions (e.g., PlanetScope1), these limitations tend to hamper the use of
these solutions in a near future.

This article presents the Rapid-DTW algorithm, a new parallel solution to the problem of processing
large volumes of RSTS data. The Rapid-DTW is a DTW-based solution designed specifically to
work with remote sensing data, using the Time-Weighted function. The proposal was developed for
processing in GPUs, using the CUDA architecture, due to the massive parallelism capacity of these
types of processors, and the efficient energy consumption with low investment costs. The Rapid-DTW
was able to significantly reduce processing idleness and eliminate scalability problems when compared
to previous solutions. The experiments carried out showed that Rapid-DTW obtained better results
in terms of performance than the bests current solutions.

The work also presents the application of the generated meta-features, for samples from the region
of Mato Grosso - Brazil, in models of classification of LULC using the Random Forest algorithm.
The meta-features were used in some scenarios, in order to assess the impact of their use on the
accuracy of these models. The results of this experiment showed that in all the proposed scenarios,
the use of meta-features based on similarity of RSTS was able to improve the accuracy results in the
classification of LULC.

This article is an extended version of [Paiva et al. 2020], presented in XXI Brazilian Symposium
on GeoInformatics (GEOINFO 2020). This new version better describes the proposed Rapid-DTW
algorithm and brings the following new contributions: a thread utilization analysis for the proposed
parallel algorithm, a methodology for evaluating the use of meta-features in LULC classification
models, a feature importance study, and experimentation with three scenarios and different feature
spaces. The results show that the meta-features can be incorporated in models already consolidated,
with a positive impact on the accuracy of classification, mainly in complex classes. The article is
organized as follows. Section 2 presents a brief presentation of related works. Section 3 presents the
Rapid-DTW algorithm. Section 4 presents the results of the tests and experiments carried out to
evaluate the performance of Rapid-DTW and the application of meta-features in LULC classification
models. Finally, in section 5 we present the conclusions and future work.

2. RELATED WORKS

This section presents the works that served as a basis for the development of this research. Section
2.1 presents the TWDTW algorithm, highlighting the development of the Time-Weighted function.
Section 2.2 presents the parallel solution SP-TWDTW [Oliveira et al. 2018; Oliveira et al. 2019], with

1https://www.planet.com/
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a critical analysis addressing positive points and problems. The section 2.3 introduces some at the
works related to the use of RSTS and meta-features for the classification of LULC.

2.1 Time-Weighted Dynamic Time Warping (TWDTW)

DTW-based algorithms can measure the similarity between a time series and a pattern (even if they
have different sizes or are displaced in time), calculating meta-features that indicate how far a time
series is from a pattern.A pattern represents the expected behavior of a time series over a given pe-
riod. The TWDTW is a DTW-based algorithm designed to work with remote sensing time series.
The TWDTW presents a logistical function capable of dealing with different seasonality in data, for
example, the seasonality during a crop cultivation. This function, called Time-Weighted, is respon-
sible for creating a penalty score in similarities between time series and recognized patterns that are
displaced in time.

The TWDTW algorithm computes a cost matrix Ψn,m given the pattern U = (u1, ..., un) and time
series V = (v1, ..., vm). The elements ψi,j of Ψn,m are computed by adding the temporal cost ω,
becoming ψi,j = |ui − vj | + ωi,j . To calculate the temporal cost ω, the Time-Weighted function is
used, presented in the Equation 1. The logistic weight has midpoint β = 100 days and steepness
α = 0.1.

ωi,j =
1

1 + e−α(g(tx,ty)−β)
, (1)

The Time-Weighted technique is a a logistic function based on the difference in days g(tx, ty)
between the date of the pattern and time series observations. From the result of the weight matrix
Ψ, the algorithm calculates an accumulated cost matrix D (Equation 2), using a recursive sum of the
minimum dynamics. Then the algorithm uses the D matrix to find the path with the lowest cost,
thus generating the measure of similarity between the pattern and the time series.

di,j = ψi,j +min{di−1,j , di−1,j−1, di,j−1}, (2)

The TWDTW is generally used in conjunction with the k-NN algorithm in LULC classifications.
However, with time and space complexity O(n2) (i.e., the bigger the series and patterns, the bigger the
matrix to be computed), high demand for computational resources, and high execution time, due to
the increase in the volume of RSTS data, the use of the TWDTW algorithm has become challenging,
especially in large areas, given the large volume of data to be processed.

2.2 Spatial Parallel TWDTW

The ST-TWDTW algorithm is the result of the first attempt in exploring GPU-based parallelism to
optimize parallel processing of RSTS. This solution is based on the traditional strategy of computing
elements in diagonals in parallel wavefront (Figure 1a) [Oliveira et al. 2018]. Each diagonal is processed
in parallel, given the dependency on previous elements, this approach is used in the D matrix. In this
matrix, the computation of each (i, j) element depends on the (i − 1, j), (i, j − 1) and (i − 1, j − 1)
elements previously calculated, as illustrated in Figure 1b.

SP-TWDTW target a highly multi-threaded GPU, and calculates one element per thread at each
step when computing the D matrix. To ensure correctness, the number of threads in each block
is determined as the size of the main diagonal, which is equal to the minimum value of the size of
the pattern and the size of the time series. Since this operation is very simple and presents a very
low workload for each thread (i.e., each thread computes only one element of the matrix per step of
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(a) Diagonal strategy (b) Data depence

Fig. 1. SP-TWDTW strategy to compute D matrix.

the algorithm), it causes a large amount of processing idleness during its execution, thus decreasing
performance. Also, the GPU/CUDA programming architecture is currently limited to 1024 threads
for each block [NVIDIA 2020]. Given this limitation, the SP-TWDTW is not able to work when
patterns and time series are both greater than 1024.

2.3 LULC classification based on meta-features

The use of machine learning algorithms for the classification of LULC is essential to create models
that enable automated and recurrent mapping. The DTW-based algorithms can generate similarity
measures that can be used as meta-features to carry out the classification of LULC. These meta-
features are agnostic to the classification model and have been used with some well-known classification
algorithms. The work of [Maus 2016] proposes the TWDTW algorithm in conjunction with k-NN, in
an approach to classify LULC based on RSTS similarity measures. The work of [Oliveira et al. 2019]
uses meta-features as a complement to the classification methodology based on the SVM classifier
proposed in [Picoli et al. 2018].

To evaluate the meta-features generated by Rapid-DTW, this article used as a basis the methodology
of classification of LULC presented in [Picoli et al. 2018]. The authors have proposed the use of time
series as input vectors for the SVM classifier. Originally, the method does not transform the time series
data to generate new features. This article expands this approach, adding the meta-features to train
classifiers based on the Random Forest algorithm. Also, a new Random Forest model classification is
presented using the meta-features generated by the Rapid-DTW to improve accuracy when compared
to the TWDTW with k-NN approach presented in [Oliveira et al. 2019].

Random Forest is one of the most widely used machine learning algorithms for LULC classifica-
tion [Pal 2005; Belgiu and Drăguţ 2016; Gislason et al. 2006]. It is possible to observe several current
works that use Random Forest for mapping large areas, showing this ability to deal with large volumes
of data [Parente and Ferreira 2018; Tsai et al. 2018; Parente et al. 2019; Ayala-Izurieta et al. 2017].
According to [Pal 2005] Random Forest’s popularity occurs due to its capacity to achieve an accuracy
similar to SVM, together with ease of use, with few parameters to be configured by the user and
adaptation to remote sensing data.

3. RAPID-DTW: AN EFFICIENT SOLUTION TO GENERATE META-FEATURES

The Rapid-DTW2 is a new DTW-based algorithm that calculates the elements of the dynamic pro-
gramming matrixD using windows of variable size. At each step of the algorithm, windows of elements

2https://github.com/urzedabr/RAPID-DTW
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Fig. 2. Wavefront of the "D" matrix with Rapid-DTW.

are computed in parallel. The sizes of these windows can be defined according to the hardware archi-
tecture and the size of the data entry. The main idea is to determine the workload performed by each
processing unit in each step. This approach allows the method to experiment with different window
sizes to obtain an ideal configuration for specific instances of the problem. In this way, it is possible
to reduce processing idleness, which improves the use of GPU resources, enabling better performance
at runtime.

The Rapid-DTW changes the wavefront in which theD matrix is computed. Rather than performing
the computation of the elements in a diagonal wavefront, as the SP-TWDTW does, the window
strategy performs the computation in elements within a given window. This results in the computation
wavefront to be carried out vertically, allowing the dependence of data internally in each window in
a sequential manner while guaranteeing the dependence of data between the windows of elements in
parallel. Figure 2 illustrates the computation wavefront given the new strategy.

As illustrated in Figure 3, within each window the processing unit performs its work in a sequential
manner, ensuring data dependency, while windows with the same color can be processed in parallel.
The larger the defined window, the greater the workload of each processing unit, which implies less
processing idleness. The capacity to choose the size of the window allows the diversification of the
processing load, aiming at optimizing the use of resources, according to the size of the input data.
This characteristic makes Rapid-DTW able to compute measures of similarity between patterns and
time series without worrying about scalability limitations.

Designed to work specifically with RSTS, the Rapid-DTW performs 4 steps to generate meta-
features. First, the algorithm concatenates patterns and time series in queues in a coordinated way,
avoiding exceeding the CPU and GPU memory sizes. Then the global weight matrix Ψ is computed
with an embarrassingly parallel approach (i.e., requires no effort to separate the problem into parallel
tasks, as there exists no data dependency), using the Time-Weighted technique. From the Ψ weight
matrix, the dynamic programming matrix D is computed according to the number of threads and

Fig. 3. Behavior of processing units inside the window.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.



366 · Roberto. U. Paiva et. al.

window size defined, and finally, the lowest cost path for each pair of pattern and time series is
calculated.

The computation of the D matrix is described in detail in the Algorithm 1. Between the second
and fourth lines, constant variables are defined, this is done to prevent loop operations from occurring
several times, optimizing the execution of the algorithm. In line 2, the window size is calculated
according to the number of threads. The aux and auxj variables assist in locating the elements
of each window, while the base variable is responsible for keeping each thread within the specified
window size.

Algorithm 1: Rapid-DTW - Computation of D matrix

Data: Ψ Weight matrix
y: number of lines
x: number of columns
num_threads: number of threads
Result: D Matrix

1 tid← thread id
2 windowSize← x/num_threads
3 tidWindow ← tid ∗ windowSize

4 tidWindowaux← tid ∗ (windowSize− 1)

5 for (si = 0; si < y; si++) do
6 base← tidWindow + (si− tid) ∗ x
7 auxj ← tidWindowaux

8 if (tid ≤ min(si, x− 1)) then
9 All threads in paralalel do:

10 for (index = base; index < base+ windowSize; index++) do
11 i← si− tid
12 j ← tid+ auxj

13 update_element(i, j)
14 auxj ← auxj + 1

15 end
16 end
17 sync_barrier

18 end
19 si← (y − 1− tid) ∗ x
20 auxj ← 0
21 for sj ← ((x/windowSize)− 2; sj ≥ 0; sj −−) do
22 base← tidWindow + si+ windowSize+ auxj

23 aux← 0

24 auxj ← auxj + windowSize
25 if (tid ≤ min(sj, y − 1)) then
26 All threads in paralalel do:
27 for (index = base; index < base+ windowSize; index++) do
28 i← y − tid− 1
29 j ← x− (windowSize ∗ sj)− windowSize+ aux+ tidWindow
30 update_element(i, j)
31 aux← aux+ 1

32 end
33 end
34 sync_barrier

35 end

The loop between lines 5 and 18 computes the top of the matrix, indexed according to the number
of lines. Within this loop, in lines 6 and 7 we have the variables base and auxj. It is necessary to
ensure that each thread works, in each iteration, only within the defined window. The base variable is
responsible for keeping the thread within the specified window size. Meanwhile, within each iteration,
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the variable j can take on different values according to the size of the window. For this, we use the
variable auxj, which will update the value of j according to the size of the window.
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Line 8 defines a condition that controls the number of threads working simultaneously in each
iteration, as it is necessary to ensure that each thread only starts its computation after the previous
threads have finished computing its window. At the end of the condition, in line 17, a synchronization
call is made using the sync_barrier function. This barrier synchronization ensures that all threads
end their operations together, respecting the data dependency. In line 10 we have the loop to perform
the calculations of the matrix elements, using the variable base to define where the window starts
according to the thread id. In this loop, the elements i and j are defined to be updated by the
function update_element(i, j), which updates each element according to the equation 2 presented in
section 2.1.

Between lines 21 and 35, the bottom part of the matrix is computed, similarly to the top part. In
lines 19 and 20, the variables si and auxj are reset. The si variable is necessary so that base can
control the size of the window, as previously done. The aux variable will assist in defining the initial
computation index for each thread, considering that when computing the lower diagonal elements,
the initial value of the variable j is different for the thread. Unlike computation at the top, where
the variable j could assume a fixed amount of different values at each interaction equal to the size of
the window, at the bottom, the number of different values becomes the subtraction of the number of
columns by the size of the window.

Line 21 has the same function as line 5 previously presented, however, now the control is done based
on the number of columns. Lines 22, 23, and 24 initialize the base, aux and auxj variables that will,
at each interaction, control the amount of work for each thread according to the size of the window,
and the values (i, j) to be computed. Between lines 25 and 33, the algorithm works exactly as in
the computation of the top part presented above, with only changes in the indexing equations of the
elements.

4. EXPERIMENTATION AND EVALUATION

This section presents the experiments and results obtained. In this article, we defined two types of
experiments. Firstly the performance of Rapid-DTW in the generation of meta-features is compared to
the SP-TWDTW and the sequential version of TWDTW in C++ language. In a second experimentat,
meta-features generated by Rapid-DTW are applied to LULC classification models based on the
Random Forest algorithm. All experiments were performed on a computer with an Intel Core i7-
9700 processor (3.2 GHz and 8 MB Cache), 16GB DDR4 RAM, and NVIDIA GeForce GTX 1660 Ti
video card with 6 GB GDDR6 of memory with Turing architecture, 1536 CUDA cores, 1770 MHz of
frequency.

4.1 Performance Analysis of Rapid-DTW

In this section, experiments are presented that aim to evaluate the performance of Rapid-DTW in
relation to other solutions of the literature. The algorithms were executed 10 times in each experiment
performed. The results presented are the arithmetic average of the 10 runs. A statistical analysis
of the results was also performed, showing standard deviations and confidence intervals with 95%
confidence, normal, and t-student. Having in mind that the final result of the algorithms is the same
(exact solution), and the impact on the execution time of the D matrix computation is related to the
number of observations of the time series, to carry out experiments with time series of different sizes,
synthetic input databases were generated from the MOD13Q1 database presented in [Oliveira et al.
2019].

The Rapid-DTW computes the D matrix in element windows that can be sized according to the
size of the data entries. Thus, during the experiments, the window sizes were varied between 2 and
384. A standard window size configuration pattern was used in all tests, always seeking to have blocks
with 32 threads. In the CUDA architecture, when a large number of synchronizations is necessary, it
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Fig. 4. Execution time of the D matrix with Rapid-DTW and SP-TWDTW. Patterns size 24 and time series size 50.

is recommended to work with blocks that have a smaller number of threads. Multiple-sized blocks of
32 also perform better, due to the warp instructions defined by the architecture [NVIDIA 2020]. In
this way, the experiments evaluate both the performance and the adaptability of the algorithms to
the data set.

Initially, tests were performed to evaluate the performance of Rapid-DTW on data sets with sizes
commonly used in the literature for classification using MOD13Q1 data [Picoli et al. 2018; Maus et al.
2016]. Thus, 50 patterns and 1000 time series were generated, with 24 observations for the patterns and
50 observations for the time series. For this type of experiments, the syntactically generated patterns
represent time series in a given period of time, and not necessarily real world LULC classes behaviors.
In this experiment, only the execution time of the D matrix was evaluated. Figure 4 presents a graph
with the execution time results of this step, with the comparison between the execution time of the
D matrix by the SP-TWDTW and Rapid-DTW algorithms, the latter with different sizes of element
windows.

It can be observed that the Rapid-DTW algorithm had a response time of 2.4 times less than the
SP-TWDTW with the window of size 2, which is the smallest multiple of 24. As the size of the
window increases, the difference between execution times decreases. This was due to the number of
threads per block in this experiment being less than 32. As CUDA architecture makes use of warps,
minimum sets of 32 threads that share instructions and memory, decrease the number de threads in
this scenario has a greater weight than the gain with the decrease of processing idleness. With few
threads working inside the block, the degree of parallelism decreases, causing a loss of performance
in the algorithm. So the best result was obtained with a window size equal to 2, implying 16 threads
per block. Still, it is possible to observe that Rapid-DTW performed better in all cases.

To experiment with larger time series, aiming to demonstrate the Rapid-DTW’s ability to process
time series of the next generations of satellites, another data set was generated, with 50 patterns and
1000 time series of sizes varying from 48 to 768 observations for patterns and 100 to 1600 observations
for time series. In this experiment, the complete execution times of the TWDTW in C ++, SP-
TWDTW, and Rapid-DTW in the generation of meta-features were evaluated. The results of these
tests are illustrated in the graph shown in Figure 5a. Given these results, it is important to note that
as we increase the size of the problem entry, the performance of Rapid-DTW concerning improves.
This is due to the possibility of adapting the size of the window to the size of the entries, because
by increasing the size of the window, we decrease the number of idleness threads during execution,
allowing achieve better results in larger data sets. As all versions are evaluated in this experiment,
the statistical analysis, containing the time of all 10 runs, the standard deviation, and the confidence
intervals is shown in the Table I. According to the statistical results, the standard deviation and
confidence intervals are small, indicating a low variability of the measurements and consequently a
small margin of error.
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Table I. Statistical analysis. Ex1 to Ex10 informs the execution time of each test. All information in the table are
presented in milliseconds.

Rapid-DTW Results
Data
input Ex1 Ex1 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Average Standard

deviation
Normal confidence

interval
T-student confidence

interval
48x100 154 159 160 158 161 152 161 158 158 159 158 2.91 1.80 2.08
96x200 496 499 492 501 502 498 499 495 499 500 498.1 3.00 1.86 2.14
192x400 988 991 985 987 986 988 985 988 990 985 987.3 2.11 1.31 1.51
384x800 1788 1784 1780 1788 1780 1781 1782 1777 1781 1782 1782.3 3.50 2.17 2.50
768x1600 3025 3025 3027 3030 3033 3029 3024 3040 3028 3022 3028.3 5.21 3.23 3.73

P-TWDTW Results
Data
input Ex1 Ex1 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Average Standard

deviation
Normal confidence

interval
T-student confidence

interval
48x100 185 185 185 189 191 192 190 189 188 188 188.2 2.53 1.57 1.81
96x200 682 685 684 686 689 690 694 690 690 690 688 3.62 2.24 2.59
192x400 1594 1597 1597 1597 1596 1599 1600 1602 1597 1599 1597.8 2.25 1.40 1.61
384x800 4385 4385 4386 4386 4387 4390 4392 4393 4393 4395 4389.2 3.82 2.37 2.74
768x1600 8910 8910 8910 8911 8911 8912 8912 8915 8914 8915 8912 2.00 1.24 1.43

TWDTW Results
Data
input Ex1 Ex1 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Average Standard

deviation
Normal confidence

interval
T-student confidence

interval
48x100 210 212 210 213 215 214 214 213 215 213 212.9 1.79 1.11 1.28
96x200 959 961 964 963 963 963 963 964 965 964 962.9 1.73 1.07 1.24
192x400 5536 5538 5538 5538 5538 5538 5539 5538 5538 5539 5538 0.82 0.51 0.58
384x800 16736 16736 16738 16738 16738 16737 16739 16741 16738 16739 16738 1.49 0.92 1.07
768x1600 43516 43518 43517 43519 43519 43519 43521 43522 43524 43526 43520.1 3.14 1.95 2.25

To better understand the optimization of the use of threads, it is possible to abstract from these
tests the percentage of iterations in which all threads work simultaneously during the computation
of the D matrix. This data is obtained through the ratio between the number of iterations with
all threads running in parallel and the total iterations for computing the entire matrix. This data
is illustrated in the graph of Figure 5b. It is observed that SP-TWDTW always has approximately
35.5% iterations with all threads working simultaneously in any data sets, while Rapid-DTW reaches
96.1% of iterations with all threads working in the 768× 1600 entry set and size window 24.

The quadratic time and space complexity of DTW-based algorithms, when combined with large
input values for n, implies high execution times and memory storage usage. Faced with this challenge,
a final set of data was created to test patterns and time series simulating spatial sensors with extremely
high temporal resolution. For this experiment, only 5 patterns and 10 time series were generated, with
sizes ranging from 1536 to 12288 observations for patterns and 3200 to 24800 observations for the time
series. The SP-TWDTW was not used in this last data set, due to its scalability limitation. Figure 6a
shows the graph of this experiment. As the speedup calculation of a parallel solution is obtained by
comparing it with the best sequential solution, the graph in Figure 6b presents Rapid-DTW speedup
to the TWDTW implemented in the C ++ language.
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Rapid-DTW results correspond to the size of the window used in the experiment.
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Fig. 6. Execution time comparison between TWDTW and Rapid-DTW. The blue numbers next to the Rapid-DTW
results correspond to the size of the window used for Rapid-DTW.

The results of this experiment behave in the same way as the results of the previous experiment.
The greater the volume of input data, the better the performance of the algorithm concerning the
other solutions. In tests where it was possible to compare Rapid-DTW with SP-TWDTW, the greatest
performance gain was obtained in the largest set of tests, reaching a run time of 2.9 times less than
SP-TWDTW. Compared to the sequential version, Rapid-DTW achieved a speedup of up to 28.8
times on the largest data set evaluated. This happens due to the increase in the execution time of the
D matrix inherent to the increase in the size of the data of patterns and time series. In this case, the
computation time of the D matrix is significantly longer than the rest of the steps, reaching 87% of
the execution time in the largest data set evaluated.

4.2 Effectiveness of Meta-features in LULC Classification

The meta-features generated by Rapid-DTW can be used in various analyzes, including the LULC
classification. To evaluate the meta-features generated by Rapid-DTW, this research used as a basis
the LULC classification methodology presented in [Picoli et al. 2018]. For comparison purposes, the
same data set was used. The database presents MOD13Q1 data extracted from the region of Mato
Grosso - Brazil (Figure 7a), to classify nine different classes of LULC. The annual patterns of the
classes are represented in Figure 7b.

The samples are distributed as follows: Cerrado (400), Cotton-fallow (34), Forest (138), Pasture
(370), Soy-corn (398), Soy-cotton (399), Soy-fallow (88), Soy-millet (235), and Soy-sunflower (53),
totaling 2115 samples with 23 observations of near-infrared (NIR), mid-infrared (MIR), Enhanced
Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) bands each sample. The
complexity of classifying this data set is high, due to the similar behavior of the time series associated
with agriculture [Picoli et al. 2018; Oliveira et al. 2019].

The meta-features were generated for each point of the samples using Rapid-DTW. These similarity
measures represent how close the behavior of each time series is to each of the nine patterns analyzed.
Therefore, for each pixel analyzed, there are 92 characteristics (i.e., two bands and two indices of 23
observations per pixel) and 9 meta-features, one for each class. Table II presents a summed up example
of a feature space having 3 samples with 2 observations for each band and index and 3 meta-features,
for the classes Cerrado, Cotton-fallow and Forest.

To analyze and evaluate the impact of using similarity-based meta-features generated from the
Rapid-DTW algorithm in LULC, a methodology was developed to carry out experiments using dif-
ferent feature spaces. With the first stage consolidated, training and validation of the classifiers are
carried out, ending with a stage of analysis and evaluation of the results. A flowchart of the method-
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(a) Mato Grosso, Brazil, location of
the samples database.

(b) Annual patterns of each class.

Fig. 7. Study area and annual behavior patterns of each class. Adapted from [Picoli et al. 2018].

Table II. Feature space example

Sample ndvi1 ndvi2 evi1 evi2 nir1 nir2 mir1 mir2 meta-feature
Cerrado

meta-feature
Cotton-fallow

meta-feature
Forest

1 0.39 0.49 0.25 0.28 0.32 0.27 0.31 0.17 3.53 4.03 4.00
2 0.50 0.49 0.26 0.33 0.23 0.36 0.14 0.16 2.62 4.27 2.91
3 0.35 0.34 0.19 0.16 0.23 0.20 0.20 0.15 1.70 4.08 3.34

ology used to carry out the tests and evaluation is presented in Figure 8. Through this methodology,
it was possible to compare the impact of meta-features in different scenarios (A, B, and C), described
in sections 4.2.1, 4.2.2 and 4.2.3.

To analyze and evaluate the impact of using similarity-based meta-features generated from the
Rapid-DTW algorithm in LULC, different feature spaces were created. A methodology was developed
that starts with the selection of different features spaces composed in different ways. With the first
stage consolidated, training and validation of the classifiers are carried out, ending with a stage of
analysis and evaluation of the results. A flowchart of the methodology used to carry out the tests and
evaluation is presented in Figure 8. Through this methodology, it was possible to compare the impact
of meta-features in different scenarios (A, B, and C), described in sections 4.2.1, 4.2.2 and 4.2.3.

The Random Forest’s models were trained using 500 trees, as there was no improvement in the
results with the increase in the number of trees. To estimate accuracy, all experiments were performed
using the K-Fold cross-validation technique, with K = 5. Finally, confusion matrices were generated
with the producer accuracy (PA), the user accuracy (UA), and overall accuracy (OA) from the results
obtained. The Kappa coefficient was also calculated to present a baseline classification results.

4.2.1 Scenario A. This scenario aims to analyze the approach presented by [Picoli et al. 2018]
applied to the Random Forest classifier in conjunction with the meta-features. In a first experiment,
the classifier is trained with a feature space that contains all 23 annual observations of the NIR and
MIR bands and the NDVI and EVI indices, totaling a feature space of size 92. Then, a second
experiment is performed, adding to this feature space the 9 meta-features generated by Rapid-DTW,
totaling 101 features per pixel. Given the results, the confusion matrices of the 2 experiments are
analyzed, to observe points in which the addition of the meta-features had a positive or negative
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Fig. 8. Methodology used to evaluate the application of meta-features in LULC models

impact. In this scenario, an analysis of the feature importance was also carried out, to identify the
relevance of meta-features in the LULC classification with Random Forest.

The results of the first experiment in this scenario can be seen in Table III. In this experiment, the
Random Forest classifier was trained with 23 observations of the bands (NIR, MIR) and indices (EVI,
NDVI), totaling 92 characteristics per pixel. Among the results, the experiment got an overall accuracy
of 92.48% (Kappa 0.91). In this experiment, the classifier achieved good accuracy (i.e., greater than
90% for PA) for the Cerrado, Forest, Pasture, Soy-corn, Soy-cotton, and Soy-fallow classes. There
was a lot of confusion between the classes Soy-sunflower and Soy-corn due to the similar behavior
of the time series of these classes. The classifier was not able to differentiate between them, causing
many samples of Soy-Sunflower to be classified as Soy-Corn. The same occurred between the Soy-corn
and Soy-millet classes, making the Soy-millet class also does not have a PA above 90%. The similar
behavior of classes Cotton-fallow and Soy-cotton hindered the performance of the classification of class
Cotton-fallow, causing it to obtain only a PA of 73.53%.

When adding the 9 meta-features per pixel, generating a feature space of size 101, the accuracy
results were improved. These results can be seen in Table IV. In this experiment, the overall accuracy
obtained was 93.05% (Kappa 0.92). In this scenario, the contribution of the meta-features was more
significant in the hard classes (i.e., classes that, because they have similar behavior in the time series,
end up confusing the classifier). Tracing a comparison between the experiments carried out, we had
an increase in the accuracy of the producer of 8.82% in the Cotton-fallow class, 2.13% in Soy-millet,
and 3.78% in Soy-sunflower. This result shows that meta-features can contribute to the classification
of complex classes, being able to increase the accuracy in different classes of agriculture.
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Table III. [Picoli et al. 2018] approach confusion matrix
1 2 3 4 5 6 7 8 9 UA (%)

1 - Cerrado 398 0 1 8 1 0 0 0 0 97.50%
2 - Cotton-fallow 0 25 0 0 0 2 0 0 0 94.12%
3 - Forest 2 0 136 1 0 0 0 0 0 97.83%
4 - Pasture 0 3 1 359 5 1 0 9 0 94.86%
5 - Soy-corn 0 0 0 0 360 26 0 27 16 82.66%
6 - Soy-cotton 0 6 0 1 8 366 0 3 0 95.49%
7 - Soy-fallow 0 0 0 0 0 0 87 1 0 98.86%
8 - Soy-millet 0 0 0 1 23 4 1 195 7 84.68%
9 - Soy-sunflower 0 0 0 0 1 0 0 0 30 98.11%

PA (%) 99.50% 73.53% 98.55% 97.03% 90.45% 91.73% 98.86% 82.98% 56.60% OA = 92.48%

Table IV. [Picoli et al. 2018] approach + meta-features confusion matrix
1 2 3 4 5 6 7 8 9 UA(%)

1 - Cerrado 396 0 1 6 0 0 0 0 0 98.25%
2 - Cotton-fallow 0 28 0 0 0 1 0 0 0 97.06%
3 - Forest 2 0 136 1 0 0 0 0 0 97.83%
4 - Pasture 2 1 1 361 5 1 0 6 0 95.68%
5 - Soy-corn 0 0 0 0 360 23 0 26 14 84.17%
6 - Soy-cotton 0 4 0 1 8 369 0 2 0 96.24%
7 - Soy-fallow 0 0 0 1 0 1 86 1 0 96.59%
8 - Soy-millet 0 1 0 0 24 4 2 200 7 83.83%
9 - Soy-sunflower 0 0 0 0 1 0 0 0 32 98.11%

PA (%) 99.00% 82.35% 98.55% 97.57% 90.45% 92.48% 97.73% 85.11% 60.38% OA = 93.05%

To assess the impact of meta-features during this classification experiment, an importance function
(Gini Importance) was used to rank the importance of each feature during the classification carried
out by Random Forest. This function uses the gini impurity metric to rank the features that are
most capable of decreasing the degree of impurity during classification [Belgiu and Drăguţ 2016]. The
analysis allows to identify that the importance of these 9 meta-features per pixel is significantly greater
when compared to the pure data of bands and indices. Figure 9 presents the feature importance graph.
It is assessed that the meta-features have a high representation of the samples, making them more
important during the classification. In this scenario, meta-features were able to increase the accuracy
result of a methodology that already had high accuracy values.
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Table V. Comparison between experiments Indivual bands and Individual bands + meta-features
Individual bands Individual bands + meta-features

1 NIR OA = 86.8%
Kappa = 0.84

OA = 90.35%
Kappa = 0.88

2 MIR OA = 83.26%
Kappa = 0.80

OA = 89.17%
Kappa = 0.87

3 EVI OA = 87.47%
Kappa = 0.85

OA = 90.3%
Kappa = 0.88

4 NDVI OA = 86.43%
Kappa = 0.84

OA = 90.4%
Kappa = 0.88

4.2.2 Scenario B. In this scenario, situations are analyzed in which the feature space is smaller,
with low accuracy values. For this, experiments were carried out with the bands and indices indi-
vidually, training 4 classifiers, with features spaces composed only by 23 observations per pixel, one
classifier for each available data (NDVI, EVI, NIR, and MIR). Then, the training is performed again,
with the addition of 9 meta-features for each pixel, now with feature spaces size 32. For these exper-
iments, only the global accuracy in the classification of the samples for each classifier was compared,
the results can be observed in Table V.

With the reduced feature space (i.e., using only the 23 observations of a Band or Index, added to 9
meta-features generated by Rapid-DTW), it was possible to observe an improvement of up to 3.97%
in the overall accuracy in the NDVI model, reaching the highest global accuracy of this test scenario,
with 90.40%. The experiment that benefited the most from the addition of meta-features was the one
with the lowest overall accuracy, the MIR model, achieving an improvement of up to 5.91%. These
results demonstrate that these meta-features can be applied in several classification models, which
can lead to overall accuracy improvements.

4.2.3 Scenario C. All previous scenarios used [Picoli et al. 2018] strategy as a basis for the classifi-
cation, using time series observation data without any transformation as features and then evaluating
the same experiments with the addition of the meta-features generated by Rapid-DTW. In this com-
parison scenario, a different approach is proposed. Only the 9 similarity-based meta-features generated
by Rapid-DTW are used as input for the Random Forest algorithm. This strategy aims to compare
the LULC classification methodology using the TWDTW algorithm in conjunction with k-NN [Maus
2016; Oliveira et al. 2019].

Table VI presents the confusion matrix with the results of this experiment. The Random Forest
model reached an overall accuracy of 84.02% (Kappa 0.81) using only the 9 meta-features generated by
Rapid-DTW. The same experiment, using the same data set, was performed in the work of [Oliveira
et al. 2019], in which a combination of the meta-features generated by SP-TWDTW with k-NN was
proposed, obtaining an overall accuracy of 78%. In this case, Random Forest managed to obtain a
better result, in terms of accuracy, of 6.2% compared to k-NN, without adding new features.

Table VI. Classification confusion matrix using only the 9 meta-features generated by Rapid-DTW
1 2 3 4 5 6 7 8 9 UA(%)

1 - Cerrado 375 0 7 16 0 0 0 0 0 94.25%
2 - Cotton-fallow 0 13 0 0 0 5 0 0 0 85.29%
3 - Forest 11 0 126 4 0 0 0 0 0 89.13%
4 - Pasture 14 0 5 343 2 0 0 7 0 92.43%
5 - Soy-corn 0 2 0 1 326 48 0 44 35 67.34%
6 - Soy-cotton 0 17 0 1 22 333 0 6 2 87.97%
7 - Soy-fallow 0 1 0 0 0 1 81 7 0 89.77%
8 - Soy-millet 0 1 0 5 46 12 7 171 7 66.81%
9 - Soy-sunflower 0 0 0 0 2 0 0 0 9 96.23%

PA(%) 93.75% 38.24% 91.30% 92.70% 81.91% 83.46% 92.05% 72.77% 16.98% OA = 84.02%
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Table VII. Classification confusion matrix using only the 9 meta-characteristics simplifying the agricultural classes
1 2 3 4 UA (%)

1 - Cerrado 375 7 16 0 94.25%
2 - Forest 11 127 3 0 89.86%
3 - Pasture 14 4 337 5 93.78%
4 - Agriculture 0 0 14 1202 98.84%

PA(%) 93.75% 92.03% 91.08% 99.59% OA = 96.50%

It can be observed that the accuracy values of the producer remained above 90% for the Cerrado,
Forest, Pasture, and Soy-Fallow classes. In opposition, the rest of the classes, related to agricultural
cultivation, had worse results. This is because these classes exhibit similar behaviors in their time
series, making it difficult for the classifier to differentiate, and consequently obtaining good accuracy
results [Picoli et al. 2018].

Finally, given the similarities between the classes of agriculture, a new approach of the experiment
was carried out unifying the classes Cotton-Fallow, Soy-corn, Soy-cotton, Soy-fallow, Soy-cotton,
Soy-millet and Soy-Sunflower in a single class called Agriculture. In this approach, it was possible
to observe better results of accuracy. The classifier managed to obtain 96.50% of global accuracy
(Kappa 0.94). For the new class of Agriculture, a producer accuracy of 99.59% was obtained. With
these results, in scenarios where there is no need to typify the classification of agriculture, the use of
meta-features can become a competitive approach. Table VII presents the confusion matrix of this
experiment.

5. CONCLUSIONS AND FUTURE WORK

Given a large number of satellites being constantly launched into Earth’s orbit, and their increasingly
powerful sensors, it is expected that the temporal and spatial resolutions of the RSTS will continue
to increase in the future. Therefore, the computational cost to process this large volume of data must
also increase proportionately. It is possible to state that the future of Remote Sensing may depend
on the exploitation of high-performance computing tools [Houborg and McCabe 2018; Hansen and
Loveland 2012; Plaza 2008; Camara et al. 2016].

In this research, a parallel algorithm for the generation of meta-features based on RSTS similarity
was presented. These meta-features can be used mainly in the composition of characteristic spaces
for automated LULC classification. A feature space that represents well the elements to be classified
is crucial for good accuracy of the classifier [Belgiu and Drăguţ 2016]. The meta-features generated
by Rapid-DTW are a compilation of information from the entire time series of bands and indices. For
this reason, these meta-features provide an excellent representation of the classes, causing a positive
impact on the accuracy of the classification.

The Rapid-DTW exploits parallelism to handle the large volume of remote sensing data, demon-
strating the potential of parallel processing strategies. The experiments carried out showed that
Rapid-DTW presents significant improvements in performance in comparison with the traditional
methods present in the literature. Also, this work proposes the application of meta-features in clas-
sification models based on the Random Forest classifier. This approach showed that it is possible to
obtain improved accuracy in several models with the addition of meta-features in their feature spaces.
Through these results, it was possible to develop strategies that use only the meta-features as input
for the classifier, maintaining good accuracy indexes. Despite the high computational cost for the
generation of meta-features, once they are generated by Rapid-DTW, they can be used in several
classification models.

However, there are some limitations to this work. This methodology does not deal directly with the
satellite images. Therefore, all inputted data must be pre-processed in order to create a table with
the time series data and their patterns. In future work, we plan to apply of our method in different
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regions in order to verify its performance in runtime and accuracy. For that, we intend to create
a method to directly process the satellite images and input its results to Rapid-DTW into a more
complete methodology.
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