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Abstract. A diversified similarity search retrieves elements that are simultaneously similar to a query object and akin
to the different collections within the explored data. While several methods in information retrieval, data clustering,
and similarity searching have tackled the problem of adding diversity into result sets, the experimental comparison of
their performances is still an open issue mainly because the quality metrics are “borrowed” from those different research
areas, bringing their biases alongside. In this manuscript, we investigate a series of such metrics and experimentally
discuss their trends and limitations. We conclude diversity is better addressed by a set of measures rather than a single
quality index and introduce the concept of Diversity Features Model (DFM), which combines the viewpoints of biased
metrics into a multidimensional representation. Experimental evaluations indicate (i) DFM enables comparing different
result diversification algorithms by considering multiple criteria, and (ii) the most suitable searching methods for a
particular dataset are spotted by combining DFM with ranking aggregation and parallel coordinates maps.

Categories and Subject Descriptors: H.3.0 [Information Storage and Retrieval]: General; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

Keywords: Metric spaces, Diversified similarity searching, Result diversification, Similarity searching.

1. INTRODUCTION

Similarity searching is the information retrieval process in which the query includes an object, and the
answer is composed of a set of elements that are somewhat similar to the query object [Hetland 2020].
Those types of queries are particularly useful for searching large and multidimensional data, e.g., audio,
images, and videos, which arise from different application domains, such as social networks, biology,
and astronomy [Pouyanfar et al. 2018]. An efficient approach for handling similarity searches is the
Metric Spaces Model [Hetland 2009], in which data objects are mapped into a known domain where
they are compared by a distance function. While feature-learning enables mapping complex domains
into simpler spaces [Vincent et al. 2008], e.g., images to multidimensional vectors, similarity criteria
must be defined for the retrieval of elements according to their distances to the query object [Santos
et al. 2013; Zezula et al. 2010; Aggarwal 2015].

The most common criterion for similarity searches is that of Neighborhood (k-NN) queries, which
retrieves the k-nearest elements to a query object. Neighborhood queries are efficiently executed by
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index-and-search algorithms [Hjaltason and Samet 2003; Chen et al. 2017; Hetland 2020], but they
may present a semantic drawback for searching dense datasets. For instance, suppose a composer
runs a similarity search for the five most similar tunes to the “Beatles Hey Jude” in a social-network
repository and retrieves versions and parodies of the same song. Although correct from a k-NN point-
of-view, the answer is likely frustrating to musicians that already known the queried tune in detail.
A diversified similarity search, however, could consider not only the closest pieces of music but also
those of distinct styles, i.e., different collections within the data repository.

Result diversification methods fulfill that search criteria according to three main perspectives of
diversity, namely (i) distance-based, (ii) novelty-based, and (iii) coverage-based [Drosou et al. 2017].
The first group aim at maximizing a single objective function regarding the distances between the
elements within the result set [Zheng et al. 2017], whereas approaches of the second group rely on a
two-phase execution in which an enlarged subset of candidates is chosen and then filtered to ensure
diversification. Such a two-phase strategy is reduced to the problem of solving a bi-criteria objective
function in which similarity and diversity compete ruled by a user-defined linear parameter [Vieira
et al. 2011]. Lastly, coverage-based strategies separate objects on-the-fly by following a similarity
threshold, which creates dynamic clusters in the search space [Santos et al. 2013]. A plethora of
result diversification methods are found in the literature [Drosou et al. 2017], but quality metrics
for assessing their efficacy are rather scarce [Santos et al. 2013; Zheng et al. 2017]. In fact, most
studies borrow and adapt metrics and indexes originally designed for other information retrieval and
similarity searching processes [Drosou and Pitoura 2013; Vieira et al. 2011]. Examples of those metrics
include information retrieval measures NDCG-IA (Intent-Aware Normalized Discounted Cumulative
Gain) [Agrawal et al. 2009] and similarity-oriented approaches RB (Relative Benefit) and OEM
(Overlap Evaluation Method) [Smyth and McClave 2001; Santos et al. 2013].

This manuscript extends our previous study entitled “Quality metrics for diversified similarity
searching: What they stand for?” [Lopes et al. 2020] by (i) discussing the biases of existing quality
metrics for result diversification, (ii) adjusting a set of cluster-oriented metrics, and (iii) proposing a
new multidimensional model, coined Diversity Features Model (DFM), which combines previous relevant
metrics from data clustering and similarity-searching for assessing the quality of diversified similarity
searching. The intuition behind DFM is that result diversification is better addressed by a multidi-
mensional measure based on the distance distributions collected from both retrieved and data sets
rather than a single quality index. The model can also be interpreted as multiple lists of preferences
whose top performances are either (i) visualized through parallel coordinates maps or (ii) identified
by ranking aggregation methods, e.g., Median-Rank [Fagin et al. 2003]. As a final contribution, we
evaluated DFM by using five result diversification approaches to query real-world datasets, and results
indicated the model is capable of comparing diversity search methods by using multiple criteria.

The remainder of the manuscript is divided as follows. Section 2 introduces preliminary concepts on
diversity searching and result diversification, Section 3 presents the DFM model, and Section 4 provides
the experimental comparisons of metrics and algorithms. Finally, Section 5 concludes our study.

2. BACKGROUND AND RELATED WORK

2.1 Similarity searching

Similarity searches are usually modeled after the Metric Spaces Model [Hetland 2009; Chen et al.
2017] due to its (i) distance-based semantics [Zezula et al. 2010] and (ii) computational-bounded
complexity [Hetland 2020]. Formally, a metric space is a pair 〈O, δ〉 of a data domain O and a
distance function δ, which complies with the following properties for any objects oq, oi, oj ∈ O.

(1) Symmetry : δ(oi, oj) = δ(oj , oi),
(2) Non-negativity : δ(oi, oj) ≥ 0,
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(3) Identity : δ(oi, oj) = 0⇔ oi = oj , and
(4) Triangle inequality : δ(oi, oj) ≤ δ(oi, og) + δ(og, oj)

Examples of such functions include the Minkowski family Lp and the Cosine distance for d-dimensional
data, i.e., O = Rd. Given two objects oi, oj ∈ Rd and a value p ∈ N∗, an Lp function measures their
distance as in Eq. (1), while the Cosine function expresses their closeness as in Eq. (2).

Lp(oi, oj) =

(
d∑

v=1

(oiv − ojv)p

) 1
p

(1)

Cosine(oi, oj) =

(
d∑

v=1

oiv · ojv

)
/

(
(

d∑
v=1

o2iv)
1
2 · (

d∑
v=1

o2jv)
1
2

)
(2)

For a particular dataset O ⊆ O and a query object oq ∈ O, the distances from oq to the elements
oi ∈ O can be used as filters for the retrieval of objects related to oq according to distance-based
query criteria. Two of those common criteria are the (i) Range and (ii) Neighborhood queries.

Range Query. A Range Query (Rq) retrieves the elements in O that are near to a query object
oq ∈ O up to a given distance threshold ξ ∈ R+. Accordingly, the result set for a Range query is
defined as follows R = Rq(oq, ξ,O, δ) = {oi | oi ∈ O, δ(oi, oq) ≤ ξ}.

Neighborhood query. A Neighborhood query (k-NN) retrieves k ∈ N∗ elements in O whose distances
to query object oq ∈ O are the smallest. Formally, the result set of a Neighborhood query R =
k-NN(oq, k, δ,O) = {o1, o2, . . . , ok} is incrementally constructed as follows.

o1 = {oi ∈ O | ∀ oj ∈ O, δ(oi, oq) ≤ δ(oj , oq)};
o2 = {oi ∈ O \ {o1} | ∀ oj ∈ O \ {o1}, δ(oi, oq) ≤ δ(oj , oq)},

· · ·
ok = {oi ∈ O \ {o1, o2, . . . , ok−1} | ∀ oj ∈ O \ {o1, o2, . . . , ok−1}, δ(oi, oq) ≤ δ(oj , oq)}.

Neighborhood can be reduced to Range queries by assuming (i) the query radius is set to ξ =
δ(oq, ok) and (ii) the constraint |Rq| = k is ensured2 [Hjaltason and Samet 2003; Hetland 2009].
Therefore, both Range and k-NN queries may struggle to search high-density datasets, where small
variations of radius ξ tend to generate large variations in the result set cardinality because most ele-
ments are virtually equidistant to each other [Pestov 2013]. As a consequence, the utility of similarity
searches for the exploration of high-density datasets is reduced, and k-NN queries may become unsta-
ble because the result sets are likely non-unique2 for such browsing scenarios. An alternative to soften
those problems (without derailing the behavior of the search) is the adding of a diversity degree into
similarity queries [Drosou et al. 2017; Santos et al. 2018; Jasbick et al. 2020].

2.2 Diversified similarity searching

A generic formulation to include diversity into a result set R of a k-NN query can be stated as the
following optimization problem over a diversity metric div.

Result diversification problem. Given a diversity metric div and a value k ≤ |O|,O ⊆ O, k ∈ N∗,
a diversified result set R ⊆ O is the set of k elements in O so that R = argmaxR′⊆O,|R′|=kdiv(R′).

Approaches for solving such an optimization problem are categorized in a taxonomy of three groups,
namely (i) distance-based, (ii) novelty-based, and (iii) coverage-based [Drosou et al. 2017; Zheng

2Ties at the kth position are broken arbitrarily.
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Fig. 1. A timeline of representative diversity techniques according to the taxonomy proposed by Drosou et al. (2017).
We implemented the numbered approaches for the empirical comparisons reported in Section 4.

et al. 2017]. Figure 1 presents a timeline of representative result diversification techniques by high-
lighting their categories and identifying the approaches ( 1 , 2 , 3 , 4 , 5 , and 6 ) we implemented
for the empirical comparisons reported in this manuscript.

Distance-based methods. Those approaches rely on the straightforward definition of the argmax
function for the optimization problem. For instance, methods MaxMin and MaxSum aim at maximiz-
ing argmax as the minimal and maximal sum of div values, respectively [Polinsky et al. 1996]. Such
methods fit poorly into Range and Neighborhood queries because they examine the entire dataset
O regardless of the query object [Zheng et al. 2017], i.e., the result set is the same for any query
element, which expressively reduces the search semantics.

Novelty-based methods. Those approaches model the optimization problem as a dual-criteria func-
tion in which similarity and diversity compete against each other ruled by a linear λ parameter defined
in the [0, 1] interval. Setting parameter λ to 0 (i.e., marking diversity as irrelevant) turns the opti-
mization problem into a Neighborhood query, whereas the increasing of λ parameter will force the
retrieved elements to be apart from the query object. The finding of the optimal λ value is an NP-
hard problem [Drosou et al. 2017], and, therefore, practical solutions rely on either heuristics or
meta-heuristics for producing suitable outputs [Vieira et al. 2011].

The Maximal Marginal Relevance (MMR – 1 ) method [Carbonell and Goldstein 1998] models the
optimization problem for Neighborhood queries by considering the query object oq ∈ O and by
assigning a score for each element oi in the dataset O ⊆ O according to the objective function
argmax = MMR(oi, oq) = (1 − λ) · δsim(oi, oq) + 2 · λ ·

∑
oj∈R δdiv(oi, oj), where similarity and

diversity are calculated by two distance functions δsim and δdiv, respectively. The result set R is con-
structed in k greedy and incremental steps, in which the element oi ∈ O\R with highestMMR(oi, oq)
value is selected as the next nearest and diversified neighbor.

Analogously, the approach Greedy with Marginal Contribution (GMC – 2 ) [Vieira et al. 2011]
models the objective function as argmax = MMC(oi, oq) = (1−λ)·δsim(oi, oq)+2·λ·

∑
oj∈R δdiv(oi, oj)+

2 ·λ ·
∑R′⊆O\R,|R′|=h−|R|

oh∈R′ δdiv2(oi, oh) for calculating the weighted contribution of elements oh outside
the result set R by using the distance functions δdiv and δdiv2 . Figures 2(b) and (e) show an example
of a GMC-oriented query in comparison to that of a k-NN query without result diversification.
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(c)

(e)

(b)

(d)

(a)

Fig. 2. Result sets for the query “Find the 04 nearest and diversified cities to Rio de Janeiro” (a) Query set O′. (b) k-NN.
(c) Motley. (d) BRID. (e) GMC. Search parameters are δsim = δdiv = δdiv2 = L2, λ = 0.5, and r = 0.5.

The Swap (Swap – 3 ) method [Yu et al. 2009] relies on distance-based permutations to avoid
being stuck with local maxima result sets. Initially, Swap builds a baseline result set R with the
k closest elements to the query object, i.e., a standard k-NN query. The elements oi ∈ O \ R are
then sorted by distance δsim values, and individually swapped with R objects according to a given
objective function, e.g., MaxSum, MMR, or MMC. Whenever the swap produces a better function
score, the changes in R are made permanent in a greedy procedure. The method stops if every object
in O is swapped at least once.

Since heuristic-driven methods such as GMC and Swap are designed to generate approximate an-
swers, data sampling is commonly used for speeding-up their execution in practice. Accordingly, those
methods execute two-stage processing whose first phase is choosing a query set O′ from the original
dataset O, |O′| � |O| to be used as the input for the optimization problem.

Coverage-based methods. This approach differs from the others as its main premise is creating a
distance-separation between elements in the search space. Accordingly, the model considers as diverse
the objects which are set apart by a threshold that complies with pre-defined criteria.

Method Motley (Motley – 4 ) [Jain et al. 2004] relies on using a user-provided separation distance
r ∈ R+ for retrieving nearest neighbors set apart from each other. Given a query object oq ∈ O, Motley
sorts the elements oi ∈ O regarding their distances to oq and includes the first nearest neighbor into
a partial result set R′. Then, it incrementally examines the sorted list of nearest candidates oi ∈ O.
Element oi is added to the partial result set only if it is far from any object in R′ by at least r, i.e.,
δ(oi, oj) > r,∀ oj ∈ R′. The procedure continues until (i) the remaining k − 1 diverse neighbors are
found or (ii) the list of candidates is empty.

Better Results with Influence Diversification (BRID – 5 ) [Santos et al. 2013] extends the Motley
strategy to handle dynamic thresholds by benefiting from properties of the Metric Space Model. As
a result, BRID creates dynamic distance-separation limits and eliminates the need for extra user-
provided parameters. BRID main concept is using the inverse of the distance between two objects to
counter-balance similarity and diversity. This concept is known as the Influence function – I(oi, oj),
and measures the mutual impact of the distance between two objects oi, oj ∈ O, as in Eq. (3).

I(oi, oj) = 1/δ(oi, oj) (3)
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The method extensively uses the Influence function to create a ternary relationship between a tuple
of three objects oh, oi, oj ∈ O, in which oh is said to be more influenced by oi than by oj whenever
I(oh, oi) ≥ I(oh, oj). Therefore, given a query object oq ∈ O and a data element oi ∈ O ⊆ O, BRID
creates a region of exclusion, coined strong influence set – Ïoq,oi , which leverages the distance between
the pair 〈oq, oi〉 and delimits their influence coverage set as in Eq. (4).

Ïoq,oi = {oj ∈ O | (I(oi, oj) ≥ I(oi, oq)) ∧ (I(oj , oi) ≥ I(oj , oq))} (4)

BRID applies those regions of exclusion for binding a query object oq, a dataset O and a result
set R, and enables the retrieval of the k closest elements to oq in O that are also outside the strong
influence sets of the objects in R. As a result, Neighborhood queries are seamlessly extended into
Diversified Neighborhood queries by the BRID approach as follows.

Diversified Neighborhood query.ADiversified Neighborhood query retrieves k ∈ N∗ non-influenced
elements in O whose distances to query object oq ∈ O are the smallest so that R = {ri ∈ O | ∀ oj ∈
R : ri /∈ Ïoj ,oq ∧ ∀ oi ∈ O \ R :

(
δ(ri, oq) ≤ δ(oi, oq) ∨ ∃ oj ∈ R : oi ∈ Ïoj ,oq

)
∧ |R| ≤ k}.

Method Diversity Browsing (DivBrow – 6 ) [Jasbick et al. 2020] provides an incremental imple-
mentation of BRID by taking full advantage of metric indexing. Although faster than BRID for the
execution of diversified similarity searches, DivBrow and BRID produce the same outputs3 because
they are both based on Influence and strong influence set concepts. Figures 2(c) and (d) show a
comparison between the result sets retrieved by BRID/DivBrow and that of Motley.

2.3 Quality metrics for diversified similarity searching

Although a plethora of strategies have been proposed to address result diversification, the design of
a proper evaluation metric for measuring their intrinsic quality was mostly overlooked [Zheng et al.
2017; Drosou et al. 2017]. In fact, metrics for quantifying results from diversified similarity searching
are mainly “borrowed” from information retrieval, similarity searching, and data clustering [Vieira
et al. 2011; Drosou and Pitoura 2013; Santos et al. 2014; Aggarwal 2015].

Information Retrieval Metrics. A common quality measure borrowed from information retrieval is
the Intent-Aware Normalized Discounted Cumulative Gain (NDCG-IA) metric [Agrawal et al. 2009].
It extends the Normalized Discounted Cumulative Gain by considering the labels of the recovered
objects for assigning scores regarding a baseline set of classes. While both NDCG-IA and NDGC
provide a good quantification regarding the label-oriented quality of recovered sets, they are unsuitable
for handling unsupervised datasets, i.e., non-labeled data objects, which is usually the condition of
information stored into real-world datasets.

Similarity Searching Metrics. On the other hand, similarity searching metrics disregard labels and
examine the distances between the result set elements.

The Relative Benefit (RB) [Smyth and McClave 2001] metric quantifies the trade-off between sim-
ilarity and diversity by using k-NN queries as a baseline, i.e., RB assumes the results of a k-NN query
represent similarity only so that the diversity brought by another algorithm can be calculated by
counting the differences between its result and that of a k-NN. However, while RB is able to spot how
much a method diverges from k-NN, it does not quantify the quality of diversity itself, which renders
the straight comparison of two result diversification methods harder.

Another approach is the proposal of the Overlap Evaluation Method (OEM) [Santos et al. 2013]
that relies on calculating the distances between the elements in the dataset and the search object for

3In the absence of k-th distance ties.
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reconstructing their strong influence sets and regions of exclusions. Accordingly, OEM compares the
obtained sets against the ideal strong influence sets found at a Diversified Neighborhood query by
calculating the overlap among the reconstructed and ideal sets. Such a comparison is carried out as
the counting of objects lying at the intersection of both regions, as in Eq. (5).

OEM(R, oq) = 1/2 ·
∑
oi∈R

∑
oj∈R

(
1− (|Ïoi,oq ∩ Ïoj ,oq |/|Ïoi,oq ∪ Ïoj ,oq |)

)
, oi 6= oj (5)

where the higher value of Eq. 5, the better the diversity algorithm. Notice, however, OEM has a clear
bias for favoring strategies that produce result sets whose objects do not influence themselves.

A yet similarity-oriented metric is the Dissimilarity Feature Method (DisFM) [Santos et al. 2013]
that introduces the idea of using multiple quality measures rather than a single index for addressing
diversity. As the first step, the quality metric calculates simple statistics calculated from the distance
distribution within result sets, namely minimum, maximum, mean, and standard deviation. Next,
it aggregates those measures for consolidating the values as a single index through a user-calibrated
weighted sum of the normalized statistics.

Cluster Metrics. Relative measures from data clusters provide an alternative for measuring the
quality of diversity methods since real-world data are not always labeled. In particular, Silhoutte,
Dunn, and Davies-Boudin indexes bring another cohesion/separation bias to complement the analysis
of result diversification. Although several methods employ such a rationale for taking advantage of
cluster-oriented metrics and their biases [Jain et al. 2004; Drosou and Pitoura 2013; Santos et al.
2014], a formal adjusting of those methods for a fair examination of both novelty-based and coverage-
based diversity searching algorithms is still lacking.

3. MATERIAL AND METHODS

3.1 An extension of cluster indexes for diversified similarity searching

Relative measures for cluster validation quantify the differences of cohesion and separation between
two data partitions constructed following a group criterion. Formally, let the dataset O be divided
into k clusters C = {C1, C2, . . . , Ck},∪ki=1Ci = O, and each subgroup Ci be represented by an el-
ement oci ∈ O, relative metrics target a dual optimization problem in which (i) inner cluster dis-
tances must be minimal, and (ii) distances between clusters’ representatives must be maximal4. The
Silhouette index (Sil(C)) [Rousseeuw 1987] models that optimization problem by using the average
distances within clusters as a normalization factor – Eq. (6).

Sil(C) =
1

|C|
∑
Ck∈C

S̄(Ck); S̄(Ck) =
1

|Ck|
∑

oi∈Ck

Ŝ(oi); Ŝoi∈Ck
(oi) =

minoi∈Ck
(oi)− µoi∈Ck

(oi)

max{minoi∈Ck
(oi), µoi∈Ck

(oi)}

min
oi∈Ck

(oi) = min
Cj∈C\Ck

 1

|Cj |
∑

oh∈Cj

δ(oi, oh)

 ;µoi∈Ck
(oi) =

1

|Ck| − 1

∑
oj∈Ck

δ(oi, oj)

(6)

Such a rationale can also be used for comparing how representative the retrieved elements R of a
diversity search is with regards to the dataset O. Accordingly, we extend Sil(C) into Sil∗(R,O′, C)
for measuring the quality of a result set R regarding a query set O′ ⊆ O, as in Eq. (7).

4The representative object oci of a cluster Ci is commonly chosen as the group average medoid, i.e., the object whose
mean distance to other elements in the cluster is minimal.
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Sil∗(R,O′, C) =
Ψ(C)
|C|

; Ψ(C) =

∑
oj∈Ci,Ci∈C δdiv(oj , oh)

ψ(Ci)
;ψ(Ci) =

∑
oj∈Ci

δdiv(oj , oci)

|Ci|
(7)

where oh ∈ O′ is the representative element of cluster Ch that is the closest to Ci, i.e., δ(oci , oh) ≤
δ(oci , ocj ) for any cluster Cj ∈ C. Another relative-based cluster measure is theDunn index (Dunn(C)),
which models inner and outer cluster separation according to their diameters – Eq. (8).

Dunn(C) =
minCk,Ch∈C

(
minoi∈Ck,oj∈Ch,oi 6=oj δ(oi, oj)

)
maxCk∈C

(
maxoi,oj∈Ck,oi 6=oj δ(oi, oj)

) (8)

We extend the Dunn index into Dunn∗(R,O′, C) by using result set entries oi ∈ O′ and their
distances to the query object oq ∈ O. Accordingly, the largest inner cluster distance is normalized by
the diversity to the query element, as in Eq. (9).

Dunn∗(R,O′, C) = min
Ci,Cj∈C,Ci 6=Cj

(
δdiv(oi, oj)/ max

Cm∈C

(
max

oh∈Cm

δdiv(oh, oq)

))
(9)

Finally, the Davies-Bouldin index (DB(C)) models the quality of the clusters by using the mean
distance among them for normalization – Eq. (10).

DB(C) =
1

|C|
∑

Ci,Cj∈C,Ci 6=Cj

max

(
µ(Ci) + µ(Cj)

δ(oci , ocj )

)
;µ(Ck) =

1

|Ck| − 1

∑
oi∈Ck

δ(oi, ock) (10)

Accordingly, we extend the Davies-Bouldin index into DB∗(R,O′, C), as in Eq. (11).

DB∗(R,O′, C) =
1

|C|
·

∑
Ci,Cj∈C,Ci 6=Cj

max

(
diam(Ci) + diam(Cj)

δdiv(oci , ocj )

)
; diam(Ck) = max

oi,oj∈Ck

δdiv(oi, oj)

(11)

3.2 Uncovering clusters from result sets

Another challenge in adopting cluster-oriented metrics is that diversified similarity searching does not
directly produce groups on the query set. As an adaptation, retrieved objects can be employed as
cluster representatives found by the searching algorithm. Accordingly, we adopt the objects of the
result set R as “medoids” for the definition of clusters over the query set O′. Such a rationale coupled
to novelty-based diversity algorithms generates partitions similar to those of the k-Medoids clustering
method [Aggarwal 2015], in which O′ elements are assigned to the closest object in R rather than a
de facto medoid. Figures 3(c–d) illustrate the approach where O′ delimits a search region in O, and
query objects are clustered around R entries.

Coverage-based algorithms retrieve diversified objects by using distance-separation thresholds. Ac-
cordingly, the query set O′ can be seen as the union of the regions in the search space delimited by the
center objects in R and coverage radii equal to r distance thresholds. Figures 3(e–f) show an example
of clusters constructed after Motley for a neighborhood value of k = 3. Likewise, BRID result set
R can be used for the definition of clusters over O′ according to the dynamic thresholds that define
their influences to the query object oq. The difference is the separation distance r for every cluster
in BRID is defined by the strong influence sets according to the distance between the non-influenced
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elements in R and oq. Therefore, the clusters are the regions in the search space centered at result set
entries with coverage radii as large as their influences over the query object. Figures 3(g–h) illustrate
a cluster formation generated after BRID.

Oq

Oq

(a) 

q

Oq

Oq Oq

r
r

r
Oq Oq

(c) (g)

(b) (d) (f) (h)

r

r
r

Oq

(e)

Query object Dataset objects Discarded objects Diversified result objects Individual clusters 

Fig. 3. Clusters for diversified result sets. (a) Dataset O, (b) Query set O′ ⊆ O, (c) O′ defined for novelty-based
methods, (d) k = 3 clusters constructed after novelty-based methods, (e) O′ defined for Motley, (f) k = 3 clusters
formed after Motley, (g) O′ defined for BRID, and (h) k = 3 clusters defined following BRID influences.

3.3 The Diversity Features Model – DFM

Cluster-oriented indexes quantify the cohesion and separation produced by diversity searching on top
of query sets, but they may favor approaches that produce cluster-like partitions in the search space,
i.e., coverage-based algorithms. This argument is reinforced by the empirical observations reported in
Section 4.1, in which cluster indexes spotted Motley or BRID as the most suitable searching routine
for result diversification in 9 out of 12 comparisons.

Accordingly, a more global evaluation of diversity can be achieved by means of a set of quality mea-
sures rather than a single index value, which softens the weight of individual biases. Here, we intro-
duce the Diversity Features Model (DFM), a multidimensional approach that combines the viewpoints
of both cluster and similarity-oriented quality metrics. DFM (R,O′, C) produces a seven-dimensional
output as the quality measure for each data-oriented evaluation of a result diversification algorithm.
Such output is calculated by using the distance distributions within both retrieved and query sets
according to the cluster-oriented and statistic measures of Eq. (12).

The consolidation of DFM values into a single score depends on the subject domain and can be
conducted following two ranking strategies, namely parallel coordinate maps [Inselberg and Dimsdale
1990] and ranking aggregation [Fagin et al. 2003; Ciaccia and Martinenghi 2017].

(1) Parallel coordinate maps: Enables labeling the competing algorithms by assuming every normal-
ized DFM dimension is as equally as relevant. The classification requires the ordering of the plot
areas for finding the most suitable competitor.
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(2) Ranking aggregation: Enables the sorting and ranking of algorithms according to their multidi-
mensional DFM representations, which must comply with previously ranking criteria. The Median-
Rank [Fagin et al. 2003] is a ranking criterion example that enables finding the competitor with
the most frequently high DFM values.

DFM(R,O′, C) = 〈Sil∗, Dunn∗, RB∗, µdiv, σdiv, µsim, σsim〉

µdiv =
1

2 · (k2 − k)
·
∑
oi∈R

∑
oj∈R,oj 6=oi

δdiv(oi, oj)

σdiv =

√√√√ 1

2 · (k2 − k)
·
∑
oi∈R

∑
oj∈R,oj 6=oi

(δdiv(oi, oj)− µdiv)
2

µsim = 1/k ·
∑
oi∈R

δsim(oi, oq)

σsim =

√
1

k − 1
·
∑
oi∈R

(δsim(oi, oq)− µsim)
2

(12)

4. EXPERIMENTS

This section reports an empirical evaluation of the reviewed quality metrics for diversified similar-
ity searching. Table I describes the seven real-world datasets5,6,7,8,9 that we used in our trials by
detailing their cardinality |O|, dimensionality Rd, intrinsic dimensionality dDe, and distance func-
tion10. Data intrinsic dimensionality was calculated as the rounded value of D = µ2(δ(oi, oj))/2 ·
σ2(δ(oi, oj)); oi, oj ∈ O ∧ oi 6= oj) according to the formulae in [Chávez et al. 2001; Pestov 2013].
Every experiment was conducted by a holdout split in which 100 random elements were selected to be
used as query objects, and the remaining data elements were employed as the dataset O. The query
set O′ within dataset O was restricted because we needed to bound the factorial-based number of
combinations required by novelty-based algorithms so the evaluations could finish within a reasonable
time (weeks). We defined |O′| by using the average radii that cover 10× the maximum number of
neighbors required in a k-NN query with result diversification. Accordingly, |O′| was limited to 300,
300, 300, 200, 300, and 500 in datasets WINE, US_CITIES, SPAM, PHOTO_F, NASA, and FACES respec-
tively. The Motley distance r threshold was empirically determined for each query set O′ to ensure
that exactly k neighbors were returned. Every algorithm was implemented in Python version 3.6.8 in
a local machine Linux Mint 19.2 with an i7 processor, 16GB RAM, and a 1TB SATA disk.

4.1 Diversity searching quality metrics

We executed 100 neighborhood queries with result diversification by using (i) the 100 random query
objects separated from the original datasets, and (ii) a query parameterization of k = {5, 7, . . . , 17}.
In the experiments, Motley’s parameter was set to r = 10, 0.3, 10, 1.104, 0.3, and 25 in datasets WINE,
US_CITIES, SPAM, PHOTO_F, NASA, and FACES, respectively. The quality metric Objective function was
set to the MMR scoring function – See Section 2. We also normalized the outputs so that the higher
the individual metric value, the better the algorithm in the adding of diversification. As a result, the
following plots present the average measures calculated after the execution of the 100 searches.

5WINE dataset is available at https://archive.ics.uci.edu/ml/datasets/wine
6US_CITIES dataset is available at https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
7SPAM dataset is available at https://archive.ics.uci.edu/ml/datasets/spambase
8FACES and NASA datasets are available at http://www.sisap.org/dbs.html
9PHOTO_F dataset is available at http://www.informedia.cs.cmu.edu/
10Distance function δsim and δdiv were set to δ.
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Table I. List of evaluated datasets.
Name |O| Rd dDe δ Description
WINE 5 178 13 2 L2 Chemical features extracted from wines.

US_CITIES 6 25,375 2 2 L2 Geographic entries of U.S. cities.
SPAM 7 4,601 57 3 L2 Fingerprints within email spams.

PHOTO_F 8 300 256 5 L2 Features from photos of human faces.
NASA 9 40,150 20 6 L2 Features from NASA/SISAP images.
FACES 8 1,016 761 52 L1 Characteristics from face images.

In the parameter exploration stage, we examined the impact of λ parameter over novelty-based
algorithms. Due to space limitations, we report only the representative case analysis for a varying
range of λ values (λ = {0.0, 0.3, 0.5, 0.7, 1}) and a fixed number of neighbors (k = 9) for the dataset
US_CITIES, which summarizes the dominant behavior we found by querying other datasets with the
same setup. Figure 4 shows the output of quality metrics for novelty-based methods Swap, MMR,
and GMC. Cluster-oriented measures Sil∗, Dunn∗, and DB∗ increased with λ, but similarity-driven
metrics peaked with distinct and intermediate λ values. The best average performance was reached
with value λ = 0.5, which we use as the querying setup for the following experiments.

Next, we executed 100 queries over each query set with the competing result diversification algo-
rithms. Figures 5 and 6 present the average values reached by novelty and coverage-based methods
by query set. Results show cluster-oriented metrics Sil∗, Dunn∗ and DB∗ have separated those two
groups of approaches by assigning better scores to coverage-based algorithms. Silhouette endorsed
BRID as the most suitable choice, Davies-Bouldin spotted Motley, and Dunn best behavior was either
BRID or Motley depending on the k value. Notice, while different cluster-oriented metrics produced
different outputs, they all indicate coverage-based methods. Moreover, experimental results pinpoint
that cluster-oriented metrics may struggle in the measuring of diversity in high-dimensional result sets,
which is observed by the ratio between similarity-only k-NN and coverage-based diversity methods.
In the experiments, this ratio reduces (or inverts) for increasing values k regarding high-dimensional
query sets PHOTO_F, and FACES, which indicates cluster-oriented measures may be correlated with the
intrinsic dimensionality – See Table I.

The highest scores of metric Objective function were achieved by algorithm MMR (which aims at
maximizing the scoring function itself), but no other significant differences were found between the
quality of MMR and either novelty-based (e.g., Swap) or coverage-based approaches (e.g., Motley).
Likewise, while the higher scores of influence-based metric OEM were drawn by BRID (which also

(a) (b) (c)

(d)

(e) (f)

Swap

kNN

GMC

MMR

Fig. 4. Quality scores for different λ values.
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Fig. 5. Quality of searching methods according to the six compared metrics. Part 1/2 – ↑ Better.

uses influences for identifying diversity), the metric was unable to spot other coverage-based methods.
Altogether, OEM-oriented results indicate influences were also found by novelty-based approaches as
in the MMR and Swap performances over US_CITIES. Finally, similarity-based RB metric was also
unable to separate novelty and coverage-based methods, as no consistent differences were observed
between novelty-based methods over competitors BRID and Motley. Those findings indicate:
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(1) cluster-oriented metrics favor coverage-based diversity approaches, which is explained by the sep-
aration principle found within clustered data,

(2) cluster-oriented metrics may correlate with data intrinsic dimensionality,
(3) similarity-driven metrics were unable to assert fair and global winners because they promoted

algorithms that share their own rule of quality, e.g., OEM and BRID.
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(p)

(q)

(r)

FACES SPAM WINE

Swap kNN Motley BRIDGMC MMR

Fig. 6. Quality of searching methods according to the six compared metrics. Part 2/2 – ↑ Better.
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4.2 DFM and diversity searching

This final experiment aims at examining (i) how those biases can be softened through the DFM multi-
dimensional metric, and (ii) the behavior of DFM as a single and consolidated index. Accordingly, we
compare the quality of distinct diversity searching algorithms through the seven-dimensional metrics
of the DFM model. The quality model metrics were extracted from the same experiments of Section 4.1,
i.e., a holdout search setup with fixed values for parameters lambda (regarding novelty-based methods)
and r (for coverage-based Motley algorithm). Finally, DFM outputs were consolidated and evaluated
by means of two different strategies:

(1) a visual quality assessment, through parallel coordinates maps, and
(2) a numeric comparison, by using the Median-Rank ranking aggregation algorithm.

We also juxtaposed the DFM values corresponding to the compared algorithms and those produced
by a k-NN query in both evaluations, i.e., k-NN values were employed as a baseline comparison factor.

Parallel coordinates maps. Figures 7(a–f) present the parallel coordinates maps for DFM outputs
regarding the five compared result diversification methods. The plots were generated for the inflexion
value k = 9 (see Figures 5 and 6) and DFM multidimensional outputs were normalized in the [0, 1] inter-
val. Each entry in the plots represents the average and normalized value of DFM calculated for a given
result diversification method after the execution of 100 queries. DFM outputs for baseline k-NN queries
form the innermost and smallest polygon inside the parallel coordinates so that distortions towards
the map borders indicate better diversification.

Results indicate statistic-driven measures attracted novelty-based methods, whereas cluster-oriented
metrics emphasized coverage-based methods. Accordingly, individual winners were found for each
examined set. For instance, the area for GMC and Swap methods were the largest regarding query
sets SPAM, FACES and PHOTO_F, whereas methods BRID and Motley showed the largest differences in
comparison to k-NN in the query sets US_CITIES and NASA. Both approaches presented close areas
for the WINE query set, with a slight edge of Swap over BRID. Overall, those findings indicate:

(a) US_CITIES (b) NASA (c) PHOTO_F

(d) FACES

Swap kNN Motley BRIDGMC MMR

(e) SPAM (f) WINE

Fig. 7. Visualization of DFM outputs by parallel coordinates maps.
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Table II. Top-3 diversity methods according to DFM entries and Median-Rank.
Top-k US_CITIES NASA PHOTO_F FACES SPAM WINE

#1 GMC GMC MMR MMR MMR MMR
#2 Swap Motley Swap Swap Swap Swap
#3 MMR BRID GMC Motley GMC GMC

#4 Motley MMR Motley GMC Motley Motley
#5 BRID Swap BRID BRID BRID BRID
#6 k-NN k-NN k-NN k-NN k-NN k-NN

(1) different datasets may be more efficiently queried by distinct searching algorithms, and
(2) novelty-based methods achieved the best DFM scores in 04 out of 06 comparisons.

Ranking aggregation with Median-Rank. Another flexible consolidation of DFM metrics into a
discrete index value can be achieved by ranking aggregation. In particular, the Median-Rank strat-
egy [Fagin et al. 2003] provides the fastest method to combine the multidimensional DFM entries into a
single index by assuming each dimension as equally as relevant. Accordingly, we used Median-Rank for
browsing through individual DFM dimensions to spot the most frequent high-ranked result diversifica-
tion methods. We also model each DFM dimension as one single and weightless ranking whose positions
are determined by the normalized scores achieved by the median of every individual quality metric.
Table II shows the consolidated rankings for the competing algorithms according to Median-Rank
applied on DFM measures.

The ranking aggregation approach also indicates distinct algorithms may be more efficient in the
searching of particular datasets. For instance, the top-3 ranking highlights both GMC and Swap
algorithms were suitable for searching query sets US_CITIES WINE, and SPAM, while Motley and BRID
were appropriate for querying sets NASA. Those findings are slightly different from those observed in the
parallel coordinates maps because the Median-Rank fetches the most frequent high-ranked algorithms
rather than those with the largest area differences. Accordingly, such results pinpoint that consolidated
DFM values enable the softening of individual biases by following ranking aggregation methods, which
can be set towards frequency or area. A final observation is that the result diversification measured by
DFM and consolidated with ranking aggregation can also be paired with k-NN queries, whose contrast
provides a comparison baseline – See Table II. In summary, the DFM outputs consolidated by the
Median-Rank approach indicate:

(1) a set of candidates (top-k) may be used to spot suitable algorithms rather than using a single
outcome as the best and isolated result diversification method, and

(2) ranking-oriented approaches can be parameterized to balance DFM dimensions, which renders rank-
ing aggregation methods more flexible than using only parallel coordinates maps.

5. CONCLUSIONS AND FUTURE WORK

This manuscript has discussed diversity searching algorithms regarding the perspective of quality
metrics for result diversification. We observed individual indexes tend to favor particular groups of
algorithms, which can be softened through the use of multiple metrics. Accordingly, we discussed
the implementation of a multidimensional metric model, coined DFM, and its consolidation by means
of parallel coordinates maps and ranking aggregation. Experimental findings indicated DFM enable
spotting (a set of) suitable result diversification methods according to the characteristics of each
dataset. As future work, we will pursue the extension of DFM for measuring the quality of diversified
similarity searching in deployment environments of content-based image retrieval applications.
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