An Approach for Schema Extraction of NoSQL Columnar
Databases: the HBase Case Study

Angelo Augusto Frozza':?, Eduardo Dias Defreyn? and Ronaldo dos Santos Mello?

L Instituto Federal Catarinense - IFC, Brazil
angelo.frozza@ifc.edu.br
2 Programa de Pés-graduacio em Ciéncia da Computacio - PPGCC
Universidade Federal de Santa Catarina - UFSC, Brazil
eduardo_dududex@hotmail.com,r.mello@ufsc.br

Abstract. Although NoSQL databases do not require a schema a priori, being aware of the database schema is
essential for activities like data integration, data validation, or data interoperability. This paper presents a process for
the extraction of columnar NoSQL database schemas. We adopt JSON as a canonical format for data representation,
and we validate the proposed process through a prototype tool that is able to extract schemas from the HBase columnar
NoSQL database system. HBase was chosen as a case study because it is one of the most popular columnar NoSQL
solutions. When compared to related work, we innovate by proposing a simple solution for the inference of column data
types for columnar NoSQL databases that store only byte arrays as column values, and a resulting schema that follows
the JSON Schema format.

Categories and Subject Descriptors: H.2.1 [Database Management|: Logical Design; E.1 [Data Structures|: Mis-
cellaneous; H.2 [Database Management|: Miscellaneous

Keywords: Columnar, HBase, JSON Schema, NoSQL, Schema extraction

1. INTRODUCTION

In the current scenario of computer systems development, new applications have as a requirement the
need for greater flexibility over the data representation, which may comprise complex nested structures
and data structures in memory. In order to meet these needs, NoSQL databases (NoSQL DBs) have
been proposed. They are classified into four data models: key-value, document, columnar, and graph
[Sadalage and Fowler 2013].

Unlike traditional relational DBs, NoSQL DBs are usually schemaless, i.e., they do not require a
previous schema or support a flexible schema, which facilitates data storage and data integrity checking
[Han et al. 2011; Sadalage and Fowler 2013]. Nevertheless, to be aware of the data schema is essential
for processes, such as data integration, data interoperability, or data analysis. Although NoSQL DBs
do not require an explicit schema, there is usually an implicit schema on each DB instance that is
ruled by the application that accesses it [Ruiz et al. 2015]. However, to infer the data schema from
the source code of the application is a complicated process. Another alternative is to analyse and get
information from the DB management system (DBMS) catalog, which may also be a hard task.

Relational databases have a pre-defined and rigid schema, usually represented by the SQL/DDL
standard [Elmasri and Navathe 2016]. In theory, all relational DBMSs follow the same schema rep-
resentation pattern. On the other hand, columnar NoSQL databases may have pre-defined schemas

This research was partially financed by the Instituto Federal Catarinense (IFC) and by Coordenagdo de Aperfeicoamento
de Pessoal de Nivel Superior (CAPES) - Brazil - Finance Code 001.

Copyright(©)2021 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021, Pages 384-395.

An Approach for Schema Extraction of NoSQL Columnar Databases: the HBase Case Study . 385

with less rigid structures that can change at runtime [Sadalage and Fowler 2013]. Each DBMS has
its own DML language, and there is no standard in the form of representation and retrieval of the
schemas.

Thus, this paper presents a process for columnar NoSQL DB schema extraction. Although we focus
on the HBase DBMS, the process can be adapted to other columnar NoSQL DBMS. It also generates
schemas in JSON Schema format'. HBase particularly stores data as byte arrays. It makes the
column data types known only by the application that generated the data. So, a challenge is how to
infer the correct data types from a byte array. Our proposed process is materialized as a prototype
tool called HBase Schema Inference (HBaSI).

The literature presents few studies related to schema extraction from NoSQL DBs. Our contribu-
tion focuses on the extraction of schemas from columnar NoSQL DBs through a recursive and more
straightforward approach than the ones available in related work [Kiran and Vijayakumar 2014; Ruiz
et al. 2015]. We deal with the problem of data type inference from HBase data instances, and we
justify the usage of JSON format as a canonical data model for NoSQL DBs. From that, we adopt
JSON Schema as a schema representation format for the schema of NoSQL DBs.

This paper is an extended version of the work of [Frozza et al. 2020], presented as a short paper
in the XXXV Brazilian Symposium on Databases (SBBD 2020). In this new version, we add formal
definitions to the concepts of the columnar NoSQL data model, as well as the canonical representation
of that data model in JSON format. We also extend the discussion of related works, and detail the
schema extraction process as well as experimental evaluation. The remaining text is organized as
follows. Section 2 introduces columnar NoSQL DBs and HBase. Section 3 presents our proposal to
use JSON as a canonical format for NoSQL data. Section 4 details the proposed process and Section
5 shows the evaluation. Section 6 comments the related work and Section 7 presents the conclusion.

2. COLUMNAR NOSQL DATABASES AND HBASE

A NoSQL DB can be defined as a distributed and scalable DB that normally does not have a fixed
schema, avoids join operations, does not always have an SQL access interface and tends to be open
source [Tudorica and Bucur 2011]. NoSQL DBs can be categorized by the adopted data model:
key-value, document-oriented, columnar, and graph-oriented. The first three are known as key-based
NoSQL models, as they share the principle of retrieving data from an input key while differing in
terms of access to the internal components of the data [Atzeni et al. 2014].

The columnar data model organizes data based on a model distributed in columns, similar to the
relational model, but with a flexible scheme. Figure 1 shows the structure of a columnar NoSQL
DB. Each column is associated with a key-value pair. A set of columns defines a row, which is
accessed by an identifier (Row-Key). Different rows can hold different columns, being suitable for the
representation of heterogeneous data [Hewitt 2010]. Some columnar NoSQL DBMSs also support the
supercolumn concept, i.e., columns composed of other columns. The most popular columnar DBMSs
are HBase?, Cassandra?, and Hypertable?.

As a contribution of this article, we formally define the concepts of a NoSQL columnar data model
in the following.

DEFINITION 1. (Keyspace). A keyspace ks is a tuple ks = (ngs, CF), where nys is the name of
the ks, CF is a set of column families, and ks is identified by nys.

1JSON Schema, https://json-schema.org [Accessed 03-June-2021]
2HBase, https://hbase.apache.org/ [Accessed 03-June-2021]
3Cassandra, https://cassandra.apache.org/ [Accessed 03-June-2021]
4Hypertable, https://hypertable.org/ [Accessed 03-June-2021]

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

386 . Angelo Augusto Frozza, Eduardo Dias Defreyn and Ronaldo dos Santos Mello

gae

/ Row Columnl Column2 ColumnN
(\ KeyX Cnamel:valuel (ame2:value2 < ameN: valueN)

/Row Columnl Column9 ColumnN \
&KeyY Cnamel valuel) Gameg value9> CnameN valueN) /)

Fig. 1. Example of a columnar NoSQL DB structure
[Sadalage and Fowler 2013]

DEFINITION 2. (Column Family). A column family cf € ks.C'F is a tuple cf = (nes,CS), where
ney 1s the name of the cf, CS is a set of column sets so that each cs € CS is a tuple cs = (keyes, C),
being cs.keycs the key to access a column set and C' a column set, and cf is identified by ncy.

DEFINITION 3. (Column). A column col € ¢s.C is a tuple col = (Neol, Veol), Where Ny is the
column name and holds an atomic content, V.o is the column value and holds an atomic content or a
nested column set C, as defined in Definition 2, and col is identified by neo; -

In this paper, we consider HBase as a case study, as this is a widely used columnar NoSQL DBMS.
It was developed by Apache Foundation and runs on the Hadoop distributed system®. It is a high
performance and open-source DBMS with a flexible schema [Shriparv 2010]. Its data model can
accommodate diverse semistructured data, which are converted into a byte array to facilitate data
distribution. This physical representation makes hard to determine the data types of the columns
without prior knowledge when accessing data.

The HBase data model, as well as other columnar NoSQL DBMSs, defines a hierarchical structure
(see Figure 2)6. A DB instance is called namespace (that corresponds to the keyspace of definition
1), which contains a set of tables. Each table, in turn, holds a set of rows, where each row has an
identifier (RowKey) and at least one column that is always linked to a column family. A column
family holds a set of required or optional columns, and different column family instances may hold a
different number of columns (a so-called column-oriented data model).

Namespace
Table 1 | Table 2 | Table n
Rows
RowKey Column Family 1 | Column Family n

Column 1 | Column 2 | Column n |

Fig. 2. HBase hierarchical structure.

3. CANONICAL REPRESENTATION OF A COLUMNAR NOSQL DATABASE
This paper proposes the usage of the JSON format as a canonical representation of the columnar

NoSQL data model. It was chosen as a canonical representation because most NoSQL DBs, including
columnar DBs, support the JSON format. JSON is able to represent the concepts of all NoSQL

5 Apache HBase ™ Reference Guide, https://hbase.apache.org/book.html [Accessed 03-June-2021]
6adapted from http://www.informit.com/articles/article.aspx?p=2253412 [Accessed 03-June-2021]

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

An Approach for Schema Extraction of NoSQL Columnar Databases: the HBase Case Study . 387
data models (document-oriented, key-value, columnar, and graph-oriented), as shown in Table I7.

It is noteworthy that JSON elements of type array only exist in document-oriented NoSQL DB. In
contrast, the other NoSQL data models do not model ordered data.

Table I. Mapping NoSQL data models to JSON format.

Key-Value Columnar Graph-oriented JSON (document-
oriented)
key-value pair column family vertex document
key column family key vertex key element ID
non-serialized or serial- | atomic column vertex atomic attribute atomic element
ized atomic value
serialized nested value super column vertex nested attribute object type element
or vertex edges
N/A N/A N/A array element

Figure 3 shows data about the city of Paris instantiated in a columnar NoSQL DB, as well as its
conversion to a JSON instance in a document-oriented DB. The mapping of the columnar data model
to JSON is presented in Definition 4. In this case, each uniquely-identified column set from a column
family is mapped to a JSON document due to their conceptual similarity.

{
"id": "paris" ,
_ "Coordinates™: {
Coordinates "Latitude":48.859598,
Latitude Longitude | Altitude "Longitude™:2.351487,
Paris || 48.859598 | 2.351487 42 - "Altitude":42
- by
Population Country "Population™:2200000,
2200000 France "Country":"France"

}

Column Family (Columnar NoSQL DB)
JSON Document

Fig. 3. JSON as a canonical format for columnar NoSQL DBs.

DEFINITION 4. (Columnar-to-JSON Mapping)). Given a column family cf from a NoSQL
columnar DB, each column set cs € cf.CS generates a JSON document doc so that doc.idge.
cf ey + “7 4 es.keyes, and each column col € cs.C' generates an (atomic/object) element ey, € doc.A
$0 that eg.Ngit < col.Neyr and eg. Vg < col.Vey;.

Moreover, a column value can be converted to an atomic or object element in a JSON document if
its value is atomic or the column is a supercolumn, respectively. We also consider the document key
as the concatenation of the column family name and the column set key because we cannot guarantee
that column sets in different column families have distinct keys. In the example of Figure 3, the
document key holds only the column set key because the example does not present the column family
name.

7N/A means not applicable.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

388 . Angelo Augusto Frozza, Eduardo Dias Defreyn and Ronaldo dos Santos Mello
4. THE SCHEMA EXTRACTION PROCESS

As stated before, we consider HBase as our case study as it is a widely used columnar NoSQL DBMS.
Our schema extraction process receives as input a namespace (see Section 2) and outputs a schema
specification for the DB in JSON Schema, which is a common recommendation for data representation
and exchange®. The basis of the schema extraction process is the analysis of the DB hierarchical
structure. So, a new namespace is created, containing a copy of the input without the data, i.e., only
the nested structure table/column family/column is maintained. The process goes through each table
and, for each one, it analyses its columns, making the inference of the data type (see Figure 4). It is
necessary to scroll all the column values to check for variations in the values of the data types stored
into a column. Algorithm 1 summarizes this process. The worst-case computational complexity of
the approach is defined by O(#T+#C+#R), where #T is the number of tables, and #C and #R
are the number of columns and records of all tables, respectively.

Input: | 1. Structure .| 2.Selecta .| 3.Selecta .| 4.Selecta
Cdd . - Cdd Cdd C e
HBase namespace duplication table column value
N N
v
5. infers data
type
NO NO | NO
6. Compare
with previous
data types
\ 4
Output: 10. Translation VES 9. Have VES 8. Have VES 7. Have
S 3 to JSON < evaluated all [€ evaluated all [€ evaluated all —
JSON Schema
Schema tables? columns? values?

Fig. 4. Organization of the JSON Schema document generated by the process.

As mentioned earlier, HBase stores data in terms of byte arrays. This particularity represents the
most difficult task of our process, i.e., to infer a data type from a byte array, as the data type is only
known by the application that uses the data [Shriparv 2010].

Column(1) Column(2) JSSAME Column(n-1) Column(n)
¥R . byten byte[] byte[] byte]
2 | byte[] byte[]

LER . byten byte[]
B .. byten

Fig. 5. HBase table example.
8JSON Schema, https://json-schema.org [Accessed 03-June-2021]

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

An Approach for Schema Extraction of NoSQL Columnar Databases: the HBase Case Study . 389

Algorithm 1: Schema extraction process

Input: HBase namespace
Output: JSON Schema document

1 begin
2 rawSchema +— structure Duplicate(namespace)
3 foreach table € namespace do
4 foreach column € table do
5 datatypeList <— {}
6 foreach value € column do
7 ‘ datatypeList «— datatypeList + datatypeln ference(value,len)
8 end
9 rawSchema.table.column +— datatypeComparison(datatypeList)
10 end
11 end
12 JSONSChema <— schemaM apping(rawSchema)
13 return JSONSchema

14 end

Figure 5 represents a table of an HBase namespace. It shows several instances of data (Rows), each
one with a variable number of columns. Each column may have a different data type, and a byte
array represents each value in a column.

Figure 6 shows the structure of a data item (key-value pair) stored by HBase as a byte array.
The first eight bytes correspond to the key (4 bytes) and the value (4 bytes) size of the data. The
next part, with variable length, presents metadata that identifies the column (column family, column,
timestamp, and others). The last part corresponds to the value itself. Thus, on considering only the
part of the array corresponding to the wvalue, our strategy here was to develop a set of rules for the
inference of the most common data types from the binary content of the data item as follows:

—byte: a byte array of size one, accepting any value;

—boolean: a byte array of size one, only with the values 0xFF or 0x00;

—string: a variable size byte array that follows the UTF8 binary standard;

—short: a byte array of size two, accepting any value;

—char: a byte array of size four, having its two least significant bytes represented in UNICODE;

—float: a byte array of size four, being limited by the values indicated in the IEEE 7541 standard
(representation of binary numbers in floating-point);

—integer: a byte array of size four that can use up to 32 bits to represent a value;
—double: a byte array of size eight, being limited by the values indicated in the IEEE 7541 standard;
—Ilong: a byte array of size eight that can use up to 64 bits to represent a value;

—blob: any entry that does not fit any of the previous rules.

After analyzing all the values in a column (Algorithm 2), the inferred data types are compared to
each other to define a consensual data type (Algorithm 1, line 9), i.e., the more general data type
that best represents all the values in the column. Once analyzed the DB structure and the columns
of all tables, a JSON Schema document is created.

Since most of the inferred data types are not the same as the native data types of JSON Schema
(integer, numeric, string, boolean), the definitions section of the JSON Schema document is used to
describe these data types, concerning extended data type definitions specified by [Frozza et al. 2018].

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

390 . Angelo Augusto Frozza, Eduardo Dias Defreyn and Ronaldo dos Santos Mello

Column z
Key Value Row B Column Column Time
Length Length Length Famil ualifier stam)|
B B gt Length Yy Qi P
Data
Type Integer Integer Short byte[] Byte byte[] byte[] long Byte byte[]
> > - —————» - —»
Size 4 4 2 Row Bytes 1 CF Bytes CQ Bytes 8 1 Value Bytes

(Bytes)

Fig. 6. Byte array structure of a key-value pair in HBase.
(http://prafull-blog.blogspot.com/2012/06/how-to-calculate-record-size-of-hbase.html [Accessed
03-June-2021])

In turn, the properties section of the JSON Schema describes the DB hierarchical structure. Each
column is a property of an object that represents a column family, each column family is a property
of an object that represents a table, and so on.

5. EXPERIMENTAL EVALUATION

A prototype tool called HBaSI (HBase Schema Inference Tool) was developed to validate our schema
extraction process over HBase. The Java language was used for the implementation, and we adopt
the MVC (Model, View, Controller) pattern with the aid of the Apache Maven (version 1.2.1), HBase
API (version 1.4.6), and Gson (version 2.2.4) libraries. Figure 7 presents the HBaSI user interface
(in Portuguese). As shown in Figure 7 (a), it is able to connect to HBase and list the available
namespaces (left window), as well as the different schema versions generated for the selected namespace
(right window). If the user decides to create or update a namespace schema, the tool generates a
corresponding JSON Schema document that can be copied to the clipboard or exported as a JSON
file (Figure 7 (b)).

Namespaces disponiveis: Esguemas:
Namespace: NameSpace A

JSON Schema
Esquema: NameSpace A - Sun May 11 21:03:54 BRT 2019
NameSpace A Sun May 12 20:59:28 BRT 2019, 3
Namespace B Sun May 11 21:03:54 BRT 2019 ":‘ﬁld"' “namespace-test’,
“description™ “Representation of a hbase namespace”,
“type™ "object”,
“properties™ {
“testTable™ {
“description™ "Representation of a table”,
“type™ "object”,
“properties™ {
174
“description™ "Representation of a family”,
“type™ "object”,

“properties™ {
Atualizar I Atualizar I| Excluir | ‘ Gerar Novo ‘ “string 1™ {
Status: I| Copiar JSON Schema I I Exportar JSON Schema I

() (b)

Fig. 7. User interface of the prototype tool

| »

4]

Figure 8 shows a JSON Schema fragment generated by the tool from a test DB. We highlight the
definition of the float data type (lines 7-12) in the definitions section, the representation of a table
(line 15), a column family as an embedded object in the table properties (line 19), and a column as
an embedded object in the column family properties (line 23).

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

An Approach for Schema Extraction of NoSQL Columnar Databases: the HBase Case Study . 391

Algorithm 2: datatypelnference(value,len)

Input: value (byte array), len (array length)
Output: byte/2] with inferred data types

1 begin
2 switch len do
3 case 1 do
4 if isUTF8V alid(value) then
5 ‘ output < string + byte
6 else if value is 0zFF or 0x00 then
7 ‘ output < boolean + byte
8 else
9 ‘ output < byte
10 case 2 do
11 if isUTF8V alid(value) then
12 ‘ output < string + short
13 else
14 ‘ output < short
15 case 4 do
16 if isUTF8V alid(value) then
17 output < string
18 else if isChar(value) then
19 ‘ output < short
20 if isFloat(value) then
21 ‘ output < float
22 output < integer
23 case 8 do
24 if isUTF8V alid(value) then
25 ‘ output < string
26 if isDouble(value) then
27 ‘ output < double
28 output < long
29 case outro do
30 if isUTF8V alid(value) then
31 ‘ output < string
32 else
33 | output < blob
34 end
35 return output
36 end

For the experimental evaluation, we also implemented a data generator that creates random DB
tables with different amounts of rows (10, 100, and 1000). The data types supported by the data
generator are the same mentioned in Section 4. In order to assess the quality of the schema extraction,
three possible results were considered: a) the data type does not match as expected (incorrect); b)
the data type is as expected (correct); ¢) more than one possible (equivalent) data type is returned
and the expected type is one of them (partial). The partial option deals with cases where more than
one data type is inferred to the same column value, which usually occurs for numeric types.

The extracted schemas from the generated HBase DBs always got a 100% accuracy for the structural
hierarchy, as expected, since this information can be obtained in a straightforward way from the DB

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

392 . Angelo Augusto Frozza, Eduardo Dias Defreyn and Ronaldo dos Santos Mello

11

2 "Sschema": "http://json-schema.org/draft-07/schema#",
3 "$id": "namespace-ExempleNamespace",

4 "description”: "Representation of a hbase namespace.",
5 "type": "object",

6 "definitions": ({

7 "float": {

a "description": "Representation of a float number",
9 "type": "number",
10 "minimum": 3.4e-38,
11 "maximum": 3.4e+38
12 }
13 b,
14 "properties": {
15 "ExempleTable": {
16 "description": "Representation of a table",
17 "type": "object",
18 "properties”: {
19 "ExempleFamily": {
20 "description": "Representation of a family",
21 "type": "object”,

22 "properties": {

23 "ExempleColumn": {

24 "Sref": "#/definitions/float"
25 }

26 }

27 }

28 1

29 }

30 }

311

Fig. 8. Fragment of a JSON Schema generated by HBaSI.

namespace. This is not the case for column data type inference, as shown in Table II. We see that
string, boolean, byte, short, and blob types were correctly identified. It happens because the set of
rules that defines them (see Section 4) is restricted and does not contain many ranges in common
with other data types.

Table II. Result of the data type inference experiment.

Data type | Incorrect | Correct | Partial
string 0% 100% 0%
boolean 0% 100% 0%
byte 0% 99% 1%
short 0% 99% 1%
blob 0% 100% 0%
char 0% 0% 100%
integer 0% 17% 83%
Float 0% 0% 100%
long 0% 11% 89%
double 0% 0% 100%

On the other hand, char, integer, float, long, and double data types, although it was possible to
obtain the expected type, it was not possible to always define it accurately. It happens because of the
limitations of the four bytes data types (char, integer, and float) which are not exclusive, as well as
the eight bytes ones (long and double), which are also not. In fact, when we analyse data in binary
format, the representation of one data type may be contained in the representation of another one.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

An Approach for Schema Extraction of NoSQL Columnar Databases: the HBase Case Study . 393

For example, a char content always has a binary encoding similar to an integer or float content.
Additionally, some integer contents do not have a binary encoding that also represents a char or a
float content. Therefore, in some cases, it is possible to correctly infer an integer data type. The same
holds for some long contents. For these cases, our schema extraction process considers the set of all
possible data types.

We also analyse the spent time to generate the schemas. Although HBase can be used as a dis-
tributed DB, this experiment was limited to a monolithic DB instance, running on an Intel (R) Core
(TM) i5-3337U CPU @ 1.80GHz machine, with 6 GB RAM. Table III shows the execution times for
each input size. The last column shows how many Key-Value (K-V) pairs were analysed per second.
It is possible to see that, with a small number of rows and K-V pairs, the time required to generate
the schema (third column in Table IIT) impacts the final performance. When the number of K-V pairs
increases, a more linear relationship between processing time versus K-V pairs number is maintained.

Table III. Result of schema extraction processing time experiment.

Rows | K-V pairs | HBaSI processing time (seconds) | K-V pairs per second
10 550 4 137

100 50500 203 248

1000 5005000 23037 229

As this is a preliminary assessment over a monolithic instance, it is not always possible to guarantee a
good performance of our solution, as the processing time can be degraded in a distributed environment.
However, this tendency for a linear complexity of our process w.r.t. the number of K-V pairs shows
that it is a promising proposal. A possible optimization would be to define filters to limit the number
of records loaded in the data entry, which are needed to define the data types. These filters could
significantly decrease processing time in a Big Data context.

6. RELATED WORK

When migrating from a relational DB to a NoSQL DB, the biggest concern is how to represent the
relationship data in the adopted NoSQL data model [Zhao et al. 2014; Schreiner et al. 2015; Lee and
Zheng 2015]. This work, instead, aims to extract the most possible detailed schema from an HBase
DB, respecting its columnar data model.

There are few papers in the literature related to schema extraction from NoSQL databases. Most
of them refer to schema extraction from JSON documents or document-oriented NoSQL databases.
Previous papers of our research group had presented proposals for schema extraction from NoSQL
DBs that follow the document-oriented [Frozza et al. 2018], key-value [Frozza et al. 2019], and graph-
oriented models [Frozza et al. 2020]. With respect to schema extraction from columnar NoSQL DBs,
two approaches were found, as described in the following.

The work of [Ruiz et al. 2015] applies MDE (Model-Driven Engineering) techniques to create NoSQL
DB schemas based on the aggregate-oriented data model [Sadalage and Fowler 2013], as is the case
of the columnar NoSQL data model. They propose a generic NoSQL data model based on the JSON
document hierarchical structure. This generic data model requires that the extracted data items have
a unique identifier and a type property, and the considered data types must be the same as those
available for the JSON format. The inference process is composed of three steps and implements
model-to-model transformations: (i) to extract a collection of relevant objects used in the inference;
() to inject this collection into a model that conforms to a JSON metamodel. This is accomplished
through the mapping of the elements of the JSON grammar to the elements of the metamodel; (%)

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

394 . Angelo Augusto Frozza, Eduardo Dias Defreyn and Ronaldo dos Santos Mello

to transform the JSON model obtained in the previous step into a model that conforms to a NoSQL-
Schema metamodel, which represents an aggregate-oriented NoSQL database. The proposed approach
was evaluated for the MongoDB, CouchDB, and HBase DBMSs.

Another work introduces an approach for data integration in HBase, in which schemas are extracted
and later converted to ontologies in the OWL (Ontology Web Language) format [Kiran and Vijayaku-
mar 2014]. Genetic algorithms are used to identify which record best represents the column families
of a table, i.e., a schema that best represents all the data in the table. This schema is then converted
into suitable OWL primitives that give rise to a local OWL ontology. Finally, the COMA+-+ 3.0 CE
tool (Community Edition)? is used to align local ontologies and find out semantic similarities, thus
creating a global ontology.

Different from the aforementioned works, our schema extraction proposal is less complex. It neither
imposes constraints on the data items to be analysed nor requires the mapping to high-level abstraction
models, like an ontology, and respects the concepts and structure defined in the NoSQL columnar data
model. Additionally, our extracted schema follows the JSON Schema recommendation.

7. CONCLUSION

This paper presents a process for extracting column-oriented NoSQL database schemas that deals with
the problem of determining data types for columns that are represented in a low level of abstraction
as byte arrays. Our proposal differs from related work by introducing a simple extraction process that
outputs an extracted schema in JSON Schema format.

We also developed a prototype tool that is able to generate DB schemas from the columnar NoSQL
HBase DBMS. Preliminary experimental evaluation shows that our proposal is promising in terms
of quality of the generated schemas as well as processing time. Although the developed tool does
not present 100% accuracy for all inferred data types, it generates a JSON Schema that can be used
as a reference in integration, interoperability, or data search processes. Besides, it allows a better
understanding of the data stored into an HBase DB. The tool source code is available at UFSC
Database Group repository'®.

Future work includes the improvement of the data type inference rules, the inference of optional
and mandatory columns, performance analysis with large data volumes, and tool internationalization.

REFERENCES

Arzeni, P., BucrorTi, F.; AND Rossi, L. Uniform access to NoSQL systems. Information Systems vol. 43, pp.
117-133, 07, 2014.

ELMmasrI, R. AND NavaTHE, S. B. Fundamentals of Database Systems. Pearson, Boston, 2016.

Frozza, A. A., DErFrReYN, E. D., aAND MELLO, R. D. S. A Process for Inference of Columnar NoSQL Database
Schemas. In Anais Principais do Simpdsio Brasileiro de Banco de Dados (SBBD). SBC, Porto Alegre, pp. 175-180,
2020.

Frozza, A. A., Jacinto, S. R., AND MELLO, R. D. S. An Approach for Schema Extraction of NoSQL Graph
Databases. In Proceedings - 2020 IEEE 21st International Conference on Information Reuse and Integration for
Data Science, IRI 2020. IEEE, Las Vegas, NV (USA), 2020.

Frozza, A. A., MeELLo, R. pD. S., AND DA Costa, F. D. S. An Approach for Schema Extraction of JSON and
Extended JSON Document Collections. In XIX Int. Conf. on Information Reuse and Integration. IEEE, Salt Lake
City, Utah (USA), pp. 356-363, 2018.

Frozza, A. A., ScHREINER, G. A., MacHapo, B. R. L., aAnpD MELLO, R. D. S. REx - NoSQL Redis Schema
Extraction Module. In Anais da Escola Regional de Banco de Dados (ERBD). Sociedade Brasileira de Computacao
- SB, Chapeco (SC), pp. 81-90, 2019.

9COMA 3.0 Community Edition, https://dbs.uni-leipzig.de/en/research/projects/schema_and_ontology_
matching/coma_3_0/coma_3_0_community_edition [Accessed 04-June-2021

10HBaSI, https://github.com/gbd-ufsc/HBaSI [Accessed 03-June-2021]

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

An Approach for Schema Extraction of NoSQL Columnar Databases: the HBase Case Study . 395

Han, J., HamHong, E., LE, G., anD Du, J. Survey on NoSQL database. In VI International Conference on Pervasive
Computing and Applications. IEEE, Port Elizabeth, South Africa, pp. 363-366, 2011.

Hewrirt, E. Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol, CA, 2010.

Kiran, V. K. aAND ViavakuMAaR, R. Ontology-based data integration of NoSQL datastores. In IX Int. Conf. on
Industrial and Information Systems. IEEE, Gwalior, India, pp. 1-6, 2014.

Leg, C.-H. AND ZHENG, Y.-L. SQL-To-NoSQL Schema Denormalization and Migration: A Study on Content Man-
agement Systems. In Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC
2015. IEEE, Hong Kong, pp. 2022-2026, 2015.

Ruiz, D. S., MoraLEs, S. F., aAND MoriNa, J. G. Inferring Versioned Schemas from NoSQL Databases and its
Applications. LNCS vol. 9381, pp. 467-480, 2015.

SADALAGE, P. J. AND FowLER, M. NoSQL Distilled : A Brief Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley, New Jersey, USA, 2013.

ScHREINER, G., DUARTE, D., AND Dos SanTos MEeLLo, R. SQLtoKeyNoSQL: A layer for relational to key-based
NoSQL database mapping. In 17th International Conference on Information Integration and Web-Based Applications
and Services, iWAS 2015 - Proceedings. ACM, Brussels, Belgium, 2015.

SHRIPARV, S. Learning HBase. Packt Publishing, Birmigham, UK, 2010.

Tuporica, B. G. anDp Bucur, C. A. A Comparison between Several NoSQL Databases with Comments and Notes.
In Proc. RoEduNet IEEE Intern. Conference. IEEE, lasi, Romania, 2011.

Zuao, G., LiN, Q., L1, L., anD L1, Z. Schema conversion model of SQL database to NoSQL. In Proc. 9th Intern.
Conference SPGCIC. IEEE, Washington, DC (USA), pp. 355-362, 2014.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

