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Abstract. Dense subgraph detection is a well-known problem in graph theory. The hierarchical organization of
graphs as dense subgraphs, however, goes beyond simple clustering, as it allows the analysis of the network at different
scales. Although there are several hierarchical decomposition methods for unipartite graphs, only a few approaches for
the bipartite case have been proposed. In this work, we explore the problem of hierarchical decomposition for bipartite
graphs. We propose an algorithm called Weighted Linking that identifies denser and more compact hierarchies than the
state of the art approach. We also propose a new score to help choose the best between two hierarchical decompositions
of the same graph. The proposed algorithm was evaluated experimentally using six real-world datasets and identified
smaller and denser hierarchies on most of them.
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1. INTRODUCTION

Dense subgraphs identification is a well-studied subject in graph theory [Lee et al. 2010]. However,

organizing a graph as a hierarchy of dense subgraphs goes beyond simple clustering, as it allows for

network analysis at various scales. Hierarchical decomposition of graphs applies to various scenarios,

such as data visualization [Abello and Korn 2002], [Alvarez-hamelin et al. 2006], anomaly detection

[Shin et al. 2016], dense subgraphs discovery [Andersen and Chellapilla 2009], community detection

[Giatsidis et al. 2011], and influential spreaders identification [Kitsak et al. 2010], [Al-garadi et al.

2017], among others. Let us consider, for instance, the author-paper bipartite graph, where authors

who work together more consistently, representing research groups, are located at the hierarchy’s

deepest levels. As we move up to ancestor levels, we find authors who bridge different groups or

collaborate less frequently.

Given a plain graph G � (V, E), with node set V and edge set E, and a subgraph G′ � (V′, E′),
where G′ ⊆ G, there are two popular density measurements in the literature, namely mean degree
density and edge density. Mean degree density (dde g) is the number of edges divided by the number of

nodes. Edge density (dedge ), on the other hand, is the number of existing edges divided by the number

of the edges of a clique 1 in the same node set. Since a trivial subgraph with two nodes and one edge

presents the maximum density by dedge , and it is known to find the maximum clique in a graph is

an NP problem [Tsourakakis et al. 2013], the authors work with approximated algorithms for this

problem [Lee et al. 2010]. When considering density as dde g , however, there exists a polynomial-time

1
In graph theory, a clique is a graph where there is an edge connecting every two nodes
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Fig. 1. A possible hierarchical decomposition of a complete bipartite graph. The hatched areas represent subgraphs. Each

subgraph in the hierarchy adds a single node from the partition U.

solution for the problem [Goldberg 1984].

In order to illustrate the challenge associated with the hierarchical decomposition of a bipartite

graph, let us consider such decomposition of a complete bipartite graph Hc � (U,V, E), shown in Fig.

1, with node set U ∪ V and edge set E, |U | � m, |V | � n in m subgraphs such that the outermost

subgraph contains all nodes in U ∪V , the subgraph one level down contains m − 1 nodes from U and

all nodes from V , and so forth. Since all subgraphs have dedge � 1, the sum of all subgraphs densities

will be large, as well as the height of the hierarchy, which is not desirable.

In thiswork, we address the problemof decomposing a plain, undirected, and unweighted bipartite

graph as a hierarchy of dense subgraphs. Our objective is to determine a hierarchical decomposition

that generates denser subgraphs with less hierarchical levels when compared against the state of the

art approach [Sariyüce and Pinar 2018]. Furthermore, we need to assess the quality of the generated

hierarchies. Since, as far as we know, there is no work dedicated to this problem, we also propose

a score to identify the best hierarchical decomposition of a bipartite graph. We use the terms graph

and network throughout the text with the same meaning, as well as edge and link.

Our contributions in this work may be summarized as follows:

—Algorithm for the hierarchical decomposition of bipartite graphs: we propose the algorithm

Weighted Linking for the hierarchical decomposition of bipartite graphs that allows the definition of

the desired trade-off between hierarchy height and subgraph density.

—Score to evaluate hierarchical decompositions: we propose a new score to help choose the best

between two hierarchical decompositions for the same bipartite graph.

We extend in this paper a preliminary conference publication [Moreira et al. 2019], in particular,

with respect to:

—We improve the discussion in the related work section, covering a broader scope of studies.

—We add the pseudocode of our approach and discuss it.

—We propose a new score to compare the quality of two hierarchical decompositions.

—We include, in the experiments, one small and one large dataset in terms of both the number of

nodes and the number of edges.

—We improve the qualitative analysis of the DBLP case study.

—We perform a qualitative analysis of the recently added datasets.

—We improve the discussion in the conclusion and future work sections.

This paper is organized as follows. In Section 2, we present related work to dense subgraph

detection and hierarchical decomposition of graphs. In Section 3, we define the problem. In Section

4, we provide the intuition about our algorithm and the decomposition algorithm itself. In Section 5,

we present both quantitative and qualitative analyses obtained experimentally. Finally, in Section 6,

we present our conclusions and future work.
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2. RELATEDWORK

This section discusses the most relevant related work, particularly on graph core decomposition and

dense subgraphs detection.

2.1 Core decomposition

[Seidman 1983] proposes an approach to determine the network cohesion based on aminimumdegree

that also produces a hierarchy of increasing cohesion. The author introduces the k-core of a plain

unipartite graph G � (V, E), |V | � n, which is the maximal subgraph G′ ⊆ G, G′ � (VG′ , EG′) | ∀v ∈
VG′ : de gG′(v) ≥ k, where de gG′(v) is the degree of node v in G′. The core number of a node is the

largest value k of a k-core containing v. The k-tip [Sariyüce and Pinar 2018] concept used in our work

is similar to the k-core definition.

Core decomposition has been extended to scenarios beyond unipartite graphs, such as uncertain

graphs [Bonchi et al. 2014], temporal graphs [Wu et al. 2015], directed graphs [Giatsidis et al. 2013],

bipartite graphs [Batagelj and Zaversnik 2002], graph streams [Sarıyüce et al. 2016], and multilayer

graphs [Galimberti et al. 2017], among others [Malliaros et al. 2019]. Applications of hierarchical

decomposition of graphs include data visualization [Abello and Korn 2002], [Alvarez-hamelin et al.

2006], anomaly detection [Shin et al. 2016], dense subgraphs discovery [Andersen and Chellapilla

2009], community detection [Giatsidis et al. 2011], and influential spreaders identification [Kitsak

et al. 2010], [Al-garadi et al. 2017], among others [Malliaros et al. 2019]. The core decomposition

principle is also applied in this work.

[Brown and Feng 2011] propose a k-core decomposition on Twitter using a logarithmic evaluation

of node degrees. Thus, the number of shells is reduced as well as the execution time. The shells

interpretability is also improved. In [Wu et al. 2015], the authors define the k,h-core for temporal

graphs, as well as an efficient distributed algorithm to compute it. The idea is to consider the number

of times the edges appear over time. The k-core definition is enforced so that the neighbors in the

subgraph of the same k-core are connected by at least h temporal edges. However, these algorithms

are not directly applicable to the bipartite case since they are designed to work in one mode graph. In

ourwork, we also propose to reduce the number of subgraphs, besides improving the interpretability.

[Ban 2018] proposes a linear complexity algorithm to find a maximal half isolated biclique, a

maximal biclique such that at most one partition allows edges to outside nodes. The approach is

motivated by the fraud detection task. The key observation is that it is easy for fraudsters to create

edges from their account to other nodes, including legitimate nodes, but it is difficult for fraud

nodes to gain edges from legitimate users. Despite being the densest subgraphs in a bipartite graph,

bicliques are very restrictive since all possible edges between the two partitions have to be present.

In our work, we allow for dense subgraphs to be detected even if possible edges are absent.

Influential spreaders in social networks are the research focus of [Al-garadi et al. 2017]. Aweighted

degree is assigned to each node using the node degree itself and the interaction with neighbors given

by the propagation strength and engaging strength. The peeling is made based on the node weighted

degree, which is updated as nodes are removed. In this work, we also apply the weighted peeling

strategy, although the weight is computed differently.

2.2 Dense subgraphs detection in static graphs

Several methods deal with finding the densest subgraphs taking the density as the mean degree of

the subgraph nodes. [Goldberg 1984] proposes an algorithm to compute the exact solution for this

problem by computing O(lo gn) min-cut. [Charikar 2000] proposes a greedy strategy to approximate

the densest subgraph in O(n). [Khuller and Saha 2009] extend the algorithm min-cut to find the

densest subgraphs in directed graphs. They also propose a greedy strategy similar to [Charikar
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2000]. The authors also prove that the algorithm is a 2-approximation for the densest subgraph

problem in directed graphs. In this work, we apply a similar greedy strategy to decompose the

bipartite graph.

[Tsourakakis et al. 2013] claim that dense subgraphs found by taking density as the mean degree

tends to be larger and sparser (low edge density). To overcome this issue, they define an objective

function to find the best α-quasi-clique, that is, the best node set maximizing the function. They

propose a greedy algorithm that extends the one described by [Asahiro et al. 2000]. They also

provide a local search heuristic, which is proved to be locally optimal - if any node is added or

removed from the subgraph, the value for the objective function is decreased. Although applying

the mean degree density at an intermediate step, we propose to find dense hierarchies for bipartite

graphs by taking the edge density as a measure. We also focus on balancing the subgraphs densities

and sizes, besides dealing with the bipartite case.

The algorithm proposed by [Sariyüce and Pinar 2016] is designed for building the dense subgraphs

hierarchy by traversing the graph only once. The algorithm FastNucleusDecomposition first sorts the

nodes according to their r-clique (Kr) 2. The nodes are then inspected one by one in increasing order

of Kr . Let v be the current node and λ(v) the maximum r-clique value associated to v. The inspection
process starts by assigning the current Kr(v) as λ(v). The Kr(u) for all v’s neighbors u that have not

been processed yet (that means λ(u) is undefined) are decremented by one unless Kr(u) � Kr(v).
Up to this point, this is a generalization of the k-core decomposition. The interesting strategy the

authors propose is to use the already computed λ(u) to build the subgraphs and their parent-child

relationship. If λ(v) � λ(u), they are marked as belonging to the same subgraph. Otherwise, the

only possibility is λ(v) > λ(u), so the subgraph containing u is marked as the parent of the subgraph

containing v. The algorithm uses the union-find data structure [Cormen et al. 2001] to facilitate the

subgraphs merging operation. At the end of the peeling process, an extra step over the structure

is made to build the final hierarchy. Despite building dense subgraphs, the strategy used to join

nodes in the same subgraph while building the hierarchy does not consider the connection strength

between them.

[Sariyüce and Pinar 2018] describe two algorithms to find dense subgraphs, as well as for building

the hierarchy, for the bipartite case, namedTipDecomposition andWingDecomposition. For the bipartite
graph H � (U,V, E), Tip Decomposition starts by computing the butterflies connecting nodes in the

partition U. A butterfly is a biclique having exactly two nodes in each partition. For each u ∈ U, the

butterflies count for u, β(u), is computed. The peeling process is done based on β(u). For each u with

smaller β(u), the tip number, θ(u), is assigned to u with the same value of β(u). For all v participating

in u’s butterflies and for which θ(v) has not been computed yet, β(v) is decremented by the number of

butterflies containing both u and v, bounded by θ(u). The process for Wing Decomposition is similar.

However, instead of computing butterflies for nodes, butterflies are accounted for edges. The number

of butterflies, β(e), each edge participates in is computed first. The algorithm then processes each

edge e ∈ E in ascending order of β(e). The wing number, ψ(e), is assigned to e as the current value

of β(e). For each butterfly containing e, the three other edges are inspected, and β(.) is decremented

by one if ψ(.) has not been computed yet, bounded by ψ(e). In either case, the dense subgraphs

hierarchy is built using the disjoint-set data structure they propose [Sariyüce and Pinar 2016].

In this work, we propose an extension of [Sariyüce and Pinar 2018] to overcome some issues on

building denser subgraphs, as we discuss in Section 4.

2
An r-clique, or Kr , of a node is defined as the number of cliques of size r the node participates. A 2-clique of a node, for

instance, is equivalent to its degree.
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(a) h1 (b) h2

Fig. 2. Two hierarchical decompositions, h1 and h2, for the same bipartite graph. For the subgraphs of h1, A’, B’, and C’, we

have the levels 1, 2, and 2, respectively, and the densities 0.33, 1, and 0.59. The total height for h1 is 5, the total density is

1.92, the mean height is 1.67, and the mean density is 0.64. For the subgraphs of h2, A, B, and C, we have levels 1, 2, and 3,
respectively, and the densities 0.33, 0.4, and 0.5. The total height for h2 is 6, the total density is 1.23, the mean height is 2, and
the mean density is 0.41.

3. PROBLEM DEFINITION

Let H � (U,V, E) denote a bipartite graph, where U and V are sets of nodes, U ∩ V � ∅, and
{E | ∀ e ∈ E : e � (u , v) ∧ u ∈ U ∧ v ∈ V} is the edge set.
Let H′ � (UH′ ,VH′ , EH′) ⊆ H, denote a subgraph from H. A hierarchical decomposition h of

H is composed by k nested subgraphs, H′
1..k , which satisfy the restriction that H′i ⊂ H′j ∨ H′j ⊂

H′i ∨ H′i ∩ H′j � ∅ ∀ i , j ∈ 1..k.

The level of a subgraph H′i (H
′
1
� H) in the hierarchical decomposition of H is given by

l(H′i ) �
{

1, if i � 1

l(H′i−1
) + 1, if H′i ⊂ H′i−1

∧ � H′t | H′i ⊂ H′t ⊂ H′i−1
∀ t ∈ 1..k

We define the total height of hierarchy h as Ah �
∑k

i�1
l(H′i ) and the edge density of subgraph H′i

as dedge(H′i ) �
|EH′i
|

|UH′i
| × |VH′i

| . The total density of a hierarchy h is given by Dh �
∑k

i�1
dedge(H′i ). The

mean height of h is Ah �
Ah
k and its mean density is Dh �

Dh
k .

For a better understanding of the definitions, we show in Fig. 2 two hierarchical decompositions

for the same bipartite graph as well as the total height, total density, mean height, and mean density

for each. We recall that the density and the size of a subgraph are computed taking into account

all the nodes in the subgraph hierarchy. For instance, for the subgraph B in Fig. 2b, the density is

computed taking the ratio between the sum of the internal edges to B, the internal edges to C, and
the edges that connect C to B, which are 3, 20, and 3, respectively, over the total possible edges for the

bipartite subgraph, considering all the nodes from C and B. The density is, thus,
3+20+3

5×13
� 0.4, and the

size is the sum of the number of nodes of the subgraphs B and C, 5 + 13 � 18. Since A is the first and

comprises the whole graph, l(A) � 1. For subgraph B, which is an immediate subgraph from A, its
level is given by l(B) � l(A) + 1 � 2.

In this work, we aim to find the hierarchical decomposition h of H such that the mean height,

Ah , is minimized, and the mean density, Dh , is maximized. It is worth mentioning that hierarchical

decomposition differs from hierarchical clustering since the union of the subgraphs at the leaf of the

hierarchy does not necessarily reconstruct H, as in the latter case.

4. DENSE HIERARCHY DECOMPOSITION BY WEIGHTED LINKING

In this section we present our algorithm, Weighted Linking, which extends Tip Decomposition. As

mentioned in Section 2, Tip Decomposition andWing Decomposition decompose the graph based on the
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(a) Author-paper graph (b) Unipartite projection

Fig. 3. Author-paper graph and its unipartite projection considering shared butterflies.

(a) Unipartite projection (b) Original graph

Fig. 4. Hierarchical decomposition of the graph shown in Fig. 3a by Tip Decomposition for the projected and original graphs

.

butterflies (2,2-biclique) shared by the nodes, in the former case, or by the edges, in the latter case.

Both methods apply the heuristic proposed by [Sariyüce and Pinar 2016] to define the subgraphs

and the hierarchy. Although this heuristic is useful for building the hierarchy, it does not consider

the connection strength between dense subgraphs, and a less dense subgraph may result of the

merge of denser ones. Because we aim to build a hierarchy of graph nodes, we consider only the Tip
Decomposition algorithm in this work.

We can think of Tip Decomposition as a decomposition of the bipartite graph projection. The

unipartite projection of the bipartite graph is constructed by taking the nodes from one partition

and connecting them if they share butterflies. A weight is assigned to each edge as the number of

butterflies shared by the end nodes. The node’s weighted degree is computed by adding the weights

of its associated edges. The decomposition process removes from the graph the nodewith the smallest

weighted degree at each step, assigning the tip number as the current value of its weighted degree.

The removal of a node forces the update of the neighboring nodes weighted degree by discounting

the weight of the removed edges. The process stops when all nodes are processed. Connected nodes

having the same tip number (or tipness), regardless of the edge weight connecting them, are added to

the subgraph. Nodes having distinct tip numbers, regardless of the edge weight connecting them, are

placed in different hierarchy levels.

Consider the author-paper graph of Fig. 3a, where {a, b, c, d, e, f} represent authors and {1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15} denote publications. The unipartite projection is shown in Fig. 3b. The

edge weight shown in the projection means the number of butterflies shared between two authors.

For instance, nodes a and b share nodes {1, 2, 3, 4}. Hence, the number of butterflies shared by a and
bmay be computed as

(
4

2

)
, which is equals to 6.

By running the Tip Decomposition algorithm, we obtain the hierarchy shown in Fig. 4a in the

unipartite graph. The tip value of nodes a , b , c , d , e, and f are 6, 6, 1, 6, 6, and 3, respectively. The

hierarchy in the original graph is shown in Fig. 4b. The subgraph levels and densities are shown in

Table I. The total height is 6, and the total density is 1.23. Thus, the mean height is
6

3
� 2, and the

mean density is
1.23

3
� 0.41.

There are, however, two well defined dense subgraphs that have been merged, induced by {a , b}
and {d , e}. Notice also the extra level induced by { f } (Fig. 4a), even f being strongly linked to e.
To overcome this issue, we propose an algorithm called Weighted Linking. Weighted Linking considers

both the tip number of the end nodes and the link weight to build the subgraphs. Given two adjacent
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(a) Unipartite projection (b) Original graph

Fig. 5. Hierarchical decomposition of the graph shown in Fig. 3a by Weighted Linking for the projected and original graphs

.

Subgraph Density Level
A

30

6×15
� 0.33 1

B
26

5×13
� 0.4 2

C
20

4×10
� 0.5 3

Table I. Subgraph levels and densities by Tip Decomposition for each subgraph shown in Fig. 5

nodes, u and v, linked by an edgeweighting p,Weighted Linkingmerges u and v in the same subgraph

if p > α θ(u)+θ(v)
2

, where α regulates the minimum weight required for merging. We say an edge is

weak if its weight does not satisfy the merging condition. Otherwise, we say the edge is strong.

The pseudocode for the Weighted Linking algorithm is shown in Algorithm 1. It extends the

algorithm proposed by [Sariyüce and Pinar 2016]. We also use the same subnucleus structure to track

nodes in the subgraph as in the original work. We now give a general view of the algorithm and focus

on our contribution, more specifically lines 16-21 and 25-30. The unipartite projection is computed

at line 2, keeping partition U nodes in the projected graph. The main loop (6-41) inspects each node,

in ascending order of butterfly count (the number of butterflies the node participates in). At line

8, the current butterfly count of each node is assigned as its tip number. A new subnucleus used

if the inspected node is not assigned to any existing one (36-39) is created at line 9. The neighbors

inspection is performed at the code block from line 10 to 35. Nodes that have not been processed yet

have their butterflies count decremented by the number of butterflies shared with the current node,

bounded by the tip number of the current node (11-14). Nodes with the same tip number are inspected
at lines 15-23.

As mentioned, our first contribution is at lines 16-21, as detailed next. In the original algorithm,

the nodes are joined regardless of the edge weight. Our algorithm, on the other hand, places the

nodes in the same subgraph only if they share enough butterflies (that is, they are connected by a

strong edge), avoiding, thus, joining nodes that may decrease the subgraph density. The neighbors

presenting the largest tip number are handled in lines 24-34. Our second contribution then comes in

lines 25-30. In contrast with the original algorithm, where nodes having the largest tip number among

all neighbors are set as direct children in the hierarchy, despite the edges’ weights, we allow nodes in

the same subgraph to be joined, even if they have different tip numbers , but only if they are strongly

connected. We then avoid creating unnecessary hierarchy levels. If the edge is weak, the neighboring

node is taken as a direct child in the hierarchy (line 32).

The complete parent-child relationship for the subnuclei is built at line 42. The subgraphs may

be reconstructed by traversing both the hierarchy (hrc) and the subnucleus for each node (comp).
Algorithms Union-r and BuildHierarchy are the same presented by [Sariyüce and Pinar 2016]. We

remark that our modifications do not change the complexity of the original algorithm.

Fig. 5 shows the hierarchy for the graph of Fig. 3a built by theWeighted Linking algorithm by setting

α � 0.6. Since a weak edge links subgraphs induced by {a , b} and {d , e}, they are placed in distinct

subgraphs. Furthermore, the node f is added to the same subgraph induced by {d , e}, since it is

related to e by an edge weighting above the threshold.
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1 function WeightedLinkingDecomposition
input : H � (U,V, E), α
output: Hierarchy root node

2 K ← ButterflyCounts(HU);
3 comp(u) ← unde f ined ∀ u ∈ U;

4 hrc ← ∅;
5 AD J ← ∅;
6 foreach unprocessed u ∈ U with minimum butterfly count do
7 t ← ButterflyCount(u);
8 θ(u) ← t;
9 sn← subnucleus(t);

10 foreach n ∈ Neighbors(u) do
11 foreach unprocessed n do
12 w ← K[n , u];
13 ButterflyCount(n) ← max(ButterflyCount(n) − w , t);
14 end
15 foreach n : θ(n) � θ(u) do
16 if K[n , u] > α θ(n)+θ(u)

2
then

17 if comp (u) is undefined then
18 comp(u) ← comp(n);
19 else
20 Union-r(comp(u), comp(n));
21 end
22 end
23 end
24 foreach n : θ(n) , θ(u) ∧ θ(n) � MaxTipness(Neighbors(u)) do
25 if K[n , u] > α θ(n)+θ(u)

2
then

26 if comp (u) is undefined then
27 comp(u) ← comp(n);
28 else
29 Union-r(comp(u), comp(n));
30 end
31 else
32 AD J.add(comp(u), comp(n));
33 end
34 end
35 end
36 if comp (u) is not set then
37 comp(u) ← sn;
38 hrc.add(sn);
39 end
40 Update all (unde f ined , .) ∈ AD J with (comp(u), .);
41 end
42 BuildHierarchy(AD J, hrc);
43 root← subnucleus(0);
44 hrc.add(root);
45 Report all the nuclei by hrc, comp;
46 end

Algorithm 1: Weighted linking decomposition.
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Subgraph Density Level
A′ 30

6×15
� 0.33 1

B′ 8

2×4
� 1 2

C′ 16

3×9
� 0.59 2

Table II. Subgraph levels and densities byWeighted Linking for each subgraph shown in Fig. 5

.

Graph Nodes in partition 1 Nodes in partition 2 Total edges Edges density
Condmat 16726 22015 58595 0.0001591292

Marvel 6486 12942 96662 0.001151536

DBLP 95580 93700 290365 0.00003242184

Github 56519 120867 440237 0.00006444427

DG-AssocMiner 7294 519 21357 0.005641663

Actor movies 511463 127823 1470404 0.000022491

Table III. Main characteristics of the databases used in the experiments

.

For the decomposition of Fig. 5, the subgraph levels and densities are shown in Table II. The total

height is 5, and the total density is 1.92. The mean height is
5

3
� 1.67, and the mean density is

1.92

3
� 0.64. Therefore, we have a more compact and denser decomposition than that of Fig. 4.

5. EXPERIMENTAL RESULTS

5.1 Data sets

We evaluate Weighted Linking on six real-world datasets that are described next. Table III shows the

main characteristics of the datasets used in the experiments, such as the number of nodes in each

partition, the total number of edges, and the edge density.

DBLP3 is a large bibliographic database on Computer Science with publications metadata from

the leading conferences and journals on this topic. We build the bipartite graph author-publication

by considering a subset with publications at 23 conferences, namely AAAI, IAAI, CIKM, CVPR,

ECIR, ECML, PKDD, EDBT, ICDT, ICDE, ICDM, ICML, ĲCAI, KDD, PAKDD, PODS, SDM, SIGIR,

SIGMOD, SSDBM, VLDB, WSDM, and WWW. We consider the dataset of all publications up to

August 2019. Condmat4 [Kunegis 2013] is a bipartite graph modeling relations between authors and

publications of the Condensed Matter section from arXiv5. One partition represents authors, and the

other represents papers. An edge indicates the author collaborates in the paper authoring. Github6

[Kunegis 2013] is a platform for source code-hosting that allows developers to collaborate on public

and private projects. The bipartite network is modeled by joining developers, in one partition, to

projects in the other. Marvel7 [Alberich et al. 2002] models the occurrence of Marvel characters

in comics. One partition represents characters, and the other represents comics. There is an edge

connecting nodes in the two partitions whenever a character appears in a comic. DG-AssocMiner8,

which is part of the BioSNAP Dataset [Zitnik et al. 2018], is a disease-gene association network that

contains information on genes associated with diseases. The partitions are genes and diseases; an

edge connects a gene associated with a disease. Actor movies9[Kunegis 2013] is a bipartite network

3http://dblp.uni-trier.de/db/ (Date accessed October 06, 2020).

4https://arxiv.org/archive/cond-mat (Date accessed October 06, 2020)

5https://arxiv.org/ (Date accessed October 06, 2020)

6https://github.com/ (Date accessed October 06, 2020)

7http://bioinfo.uib.es/~joemiro/marvel/porgat.txt (Date accessed October 06, 2020)

8https://snap.stanford.edu/biodata/datasets/10012/10012-DG-AssocMiner.html (Date accessed October 06, 2020)

9http://konect.uni-koblenz.de/networks/actor-movie (Date accessed October 06, 2020)
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of movies and actors. An edge exists between the two partitions if an actor portrays a character in a

movie.

5.2 Analysis Methodology

One challenge in analyzing the effectiveness of different algorithms or algorithms’ parameters is that

there may be significantly different decompositions of the same graph.

The basic question for our analysis is how to determine the best decomposition for a given bipartite

graph H. In particular, considering two different decompositions, h1 and h2, we need to rank them

regarding the decomposition quality, which, in our case, meansmore compact decompositions. Thus,

the desired subgraphs should be larger and denser, as well as located at lower levels.

As far as we know, no work in the literature measures the quality of the hierarchical decomposition

of a graph. Then, to answer this question, we propose a Pairwise Hierarchical Decomposition Quality
Score (PHDscore) between h1 and h2.

Our quality score is calculated at the node level, and the node comparison criteria may vary

among decomposition tasks, but they always take into account features that characterize the nodes

individually. In practice, for each node from H, we evaluate a set of criteria for both h1 and h2, and

the decomposition that outperforms the other more frequently across all nodes is considered the best

between them, as we detail next.

In the case of our hierarchical decomposition task, we assign features to the nodes according to the

subgraph that contains them. In particular, we employ three features: (i) fu ,size , (ii) fu ,densit y , and (iii)

fu ,level :

(i) fu ,size is the number of nodes of the innermost subgraph containing node u. The larger the

subgraph, the greater the fu ,size .

(ii) fu ,densit y is the density of the innermost subgraph containing node u. The denser the subgraph,
the greater the fu ,densit y .

(iii) fu ,level is the opposite of the level of the innermost subgraph containing node u. The lower the

level, the greater the fu ,level .

Formally, given two hierarchical decompositions, h1 and h2, and a set F � { fi} of features that are
relevant to the decomposition task and are instantiated at the node level, we define the PHDScore
of h1 w.r.t. h2, as:

PHDscore(h1 , h2 ,H) �
∑

∀u∈U I(label(u) � h1)∑
∀u∈U I(label(u) � h1) +

∑
∀u∈U I(label(u) � h2)

where

label(u) �


h1 , i f

∑|F |
i�1

I( fu ,i(h1 ,H) > fu ,i(h2 ,H)) >
∑|F |

i�1
I( fu ,i(h2 ,H) > fu ,i(h1 ,H)),

h2 , i f
∑|F |

i�1
I( fu ,i(h2 ,H) > fu ,i(h1 ,H)) >

∑|F |
i�1

I( fu ,i(h1 ,H) > fu ,i(h2 ,H)),
None , otherwise

I(x) �
{

1, i f x is true ,
0, otherwise

We define PHDscore(h1 , h2 ,H) � 0 if fu ,i(h2 ,H) � fu ,i(h1 ,H) ∀ u ∈ U, fi ∈ F. We state

that h1 produces better results than h2 for nodes features F for a given node if, for most features,

h1 performs better than h2. The best decomposition for a graph is the one that produces the best
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h1 h2

Node Subgraph f.,size f.,densit y f.,level Subgraph f.,size f.,densit y f.,level Label
a B’ 6 1 -2 C 14 0.5 -3 h1

b B’ 6 1 -2 C 14 0.5 -3 h1

c A’ 21 0.33 -1 A 21 0.33 -1 -

d C’ 12 0.59 -2 C 14 0.5 -3 h1

e C’ 12 0.59 -2 C 14 0.5 -3 h1

f C’ 12 0.59 -2 B 18 0.4 -2 -

1 B’ 6 1 -2 C 14 0.5 -3 h1

2 B’ 6 1 -2 C 14 0.5 -3 h1

3 B’ 6 1 -2 C 14 0.5 -3 h1

4 B’ 6 1 -2 C 14 0.5 -3 h1

5 A’ 21 0.33 -1 A 21 0.33 -1 -

6 A’ 21 0.33 -1 A 21 0.33 -1 -

7 C’ 12 0.59 -2 C 14 0.5 -3 h1

8 C’ 12 0.59 -2 C 14 0.5 -3 h1

9 C’ 12 0.59 -2 C 14 0.5 -3 h1

10 C’ 12 0.59 -2 C 14 0.5 -3 h1

11 C’ 12 0.59 -2 C 14 0.5 -3 h1

12 C’ 12 0.59 -2 C 14 0.5 -3 h1

13 C’ 12 0.59 -2 B 18 0.4 -2 -

14 C’ 12 0.59 -2 B 18 0.4 -2 -

15 C’ 12 0.59 -2 B 18 0.4 -2 -

Table IV. Size, density, and opposite of the level of the inner most subgraph where each node of Fig. 2 appears, for hierarchies

h1 and h2. Bold values indicate the features where each hierarchy outperforms the other for each node. The last column shows

the label for each node. In case no hierarchy performs better than the other for the node, no label is assigned to it (denoted by

’-’ in the table).

result on most of its nodes. Thus, if PHDscore(h1 , h2 ,H) > 0.5, h1 should be ranked better than h2.

Otherwise, h2 should come first. Notice that PHDscore(h2 , h1 ,H) � 1 − PHDscore(h1 , h2 ,H), since
the denominator is the same for both scores and just the decomposition used as reference changes.

The rationale of the PHDScore is that it prioritizes the decomposition where the nodes perform

better individually, considering the chosen feature set (F).

For the sake of clarity, we show, in Table IV, the label for each node of the graph of Fig. 2,

when comparing hierarchies h1 and h2, considering the feature defined previously. For the node

a, for instance, we have fa ,densit y(h1 ,H) > fa ,densit y(h2 ,H), fa ,level(h1 ,H) > fa ,level(h2 ,H), and
fa ,size(h1 ,H) < fa ,size(h2 ,H). The label for the node a is, thus, h1, since h1 wins in more features (2)

than h2 (1). The score for h1 in respect to h2, score(h1 , h2 ,H), is 14

14+0
, that equals to 1. Then, h1 must

be chosen instead of h2.

5.3 Experimental Results

To evaluate our algorithm, we compare it with the state of the art approach, Tip Decomposition. We

search for the best parameter α for Weighted Linking that outperforms Tip Decomposition on most

nodes. Then, we discuss the semantics of some subgraphs found by Tip Decomposition and Weighted
Linking for the best parameter configuration.

We show in Fig. 6 the PHDscores for our approach (WL α) compared to Tip Decomposition for all

data sets and several α values. We runWeighted Linking and vary α as percentages {1, 2, 3, 4, 5, 10, 15,

20, 40, 60, 80, 100}. A score greater than 0.5 indicates that our method outperforms Tip Decomposition
for the associated α. We chose theWL αwith the highest score as the best decomposition byWeighted
Linking. In case all configurations score below 0.5, Tip Decomposition is chosen. According to our

score, Weighted Linking generates the best hierarchy for the data sets Condmat, Marvel, DBLP, Github,
and Actor movies; Tip Decomposition, on the other hand, performs better than Weighted Linking for

DG-AssocMiner. We show in Table V a summary of the best α value forWeighted Linking compared to

Tip Decomposition and the associated PHDscore.
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Fig. 6. PHDscore for Weighted Linking (WL) concerning Tip Decomposition. Each cell represents the score for Weighted Linking
relative to Tip Decomposition for each dataset. The columns represent Weighted Linking decomposition with different α. The

rows indicate the datasets. The greater the score, the better the Weighted Linking decomposition.

Graph α (%) PHDscore

Condmat 15 0.86

Marvel 4 0.607

DBLP 5 0.976

Github 4 0.677

DG-AssocMiner 5 0.253

Actor movies 2 0.828

Table V. Best α value forWeighted Linking and the corresponding PHDscore concerning Tip Decomposition.

In Fig 6, we can also observe the concave behavior of the score value as the α value grows. For

smaller α values,Weighted Linking ismore permissive in joining nodes in the same subgraph, inducing

larger and more sparse subgraphs and a smaller hierarchy as a consequence. On the other hand, for

higher α values, Weighted Linking inhibits the union of the nodes in the same subgraph, leading to

smaller and denser subgraphs. For intermediate α values, however, we have a better balance between

the density and size of the subgraphs, as well as the height of the hierarchy. We can also observe for

each data set that, despite the same general behavior of the score as a function of α, the optimal score

is reached for different α values. This behavior is due to the particular topological structure of each

graph.

We show in Fig. 7 the mean density and mean size of the subgraphs for the hierarchical decompo-

sition of Condmat,Marvel,DBLP, Github, Actor movies, andDC-AssocMiner byWeighted Linking, with α
values in percentages {1, 2, 3, 4, 5, 10, 15, 20, 40, 60, 80, 100}, and also by Tip Decomposition. The best

Weighted Linking decomposition is marked with a circle, and Tip Decomposition is highlighted with a

square. Smaller α values tend to generate more compact hierarchies with sparser subgraphs, while

higher values generate higher hierarchy trees and denser subgraphs. The reason for this behavior is

that, for smaller α values, the count of butterflies (or edge weights in the projected graph) needed

to push nodes to the same subgraph is smaller, favoring the appearance of sparser subgraphs. On

the other hand, higher α values require stronger links to put nodes together, producing smaller and

denser subgraphs while promoting more splits and increasing the hierarchy levels. The higher mean

density for smaller α values is justified by dense and isolated subgraphs that cannot be merged with

any other. For the Condmat, Marvel, DBLP, and Actor movies, we can observe that the best decomposi-

tion has both smaller mean density and smaller mean hierarchy height than Tip Decomposition.

Weighted Linking also performs better than Tip Decomposition for Github. However, when α is set to

100%, we can observe that the mean height is smaller than for α at 1%. Since there are many weakly

connected subgraphs at lower levels of the hierarchy, the increase in α produces more subgraphs

at the same lower levels. The mean height computation is then dominated by the increase in the

denominator (number of subgraphs).
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(a) Condmat (b)Marvel

(c) DBLP (d) DG-AssocMiner

(e) Actor movies (f) Github

Fig. 7. Mean height versus mean density of the subgraphs for the hierarchical decomposition by Weighted Linking (WL), with

different α values, and Tip Decomposition (TD). The square marker is for TD, and the circle highlights the result for the best WL

execution.

For DG-AssocMiner, however, Tip Decomposition gives a better result than Weighted Linking. The

reason is that there aremany genes associated almost exclusivelywith a few diseases. Then, the edges

connecting such genes in the projected graph become weak since the number of shared butterflies

between nodes is small, even when the nodes’ tip number is high. In this case, Weighted Linking
would only place the nodes in the same subgraph if we set α to a very small value. The side effect

of reducing the threshold is that nodes with smaller tip numbers would also be merged, leading to
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Fig. 8. Rejected edges rate for each tip number on DG-AssocMiner data set.

(a) Tip decomposition (b)Weighted linking

Fig. 9. First subgraph extracted fromDBLPwhere node 6 appears. Nodes represent authors, and links represent co-authorship

on at least two publications (at least one butterfly). Link thickness represents the number of shared butterflies between two

authors.

sparser subgraphs. We show in Fig. 8 the rejected edges rate, that is, the rate of the edges weight

that are smaller than the threshold, for each tip number on the DG-AssocMiner data set when running

Weighted Linking with α set to 5%. The rejected rate around 1 for higher tip numbers suggests that we

are missing many large bicliques.

We show in Fig. 9 twomost internal subgraphs fromDBLP, one generated by Tip Decomposition and

the other by Weighted Linking. The numbered nodes on the left represent authors, and the nodes on

the right represent publications. We show the innermost subgraph containing the author represented

by node 6. The subgraph produced by Tip Decomposition (Fig. 9a) has 8 authors, 137 publications and,

214 author-publication relationships, so the density is 0.195. The subgraph produced by Weighted
Linking (WL 5) (Fig. 9b) comprises 6 authors, 89 publications, and 146 author-publication relations,

giving a density of 0.273. We also show in Fig. 10 the subgraphs hierarchy for both decompositions

in the projected unipartite graph. Nodes represent authors, and edges represent the co-authorships.

The link weight represents the co-authorship strength, computed as the butterfly count involving the

two authors. Fig. 10a shows the Tip Decomposition hierarchy, where the nodes in each subgraph A,
B, C, and D share the same tip number. The only criterion employed to build the hierarchy is the

tip number. Notice that node 7 is placed in the same subgraph as nodes 5 and 6 because it has the

same tip number, despite the edges connecting it to nodes 5 and 6 being weaker than between these

two nodes. The inclusion of node 7 also brings node 8 to the subgraph, which is not connected to
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(a) Tip decomposition (b)Weighted linking (α=3%)

Fig. 10. Hierarchies by Tip Decomposition andWeighted Linking of the first subgraph extracted fromDBLPwhere node 6 appears.

Nodes represent authors and links represent co-authorship of, at least, two publications. Link thickness represents the number

of butterflies shared between two authors. Weighted Linking improves the interpretability by producing denser subgraphs with

fewer hierarchical levels.

(a) Tip decomposition (b) Weighted linking (4%)

Fig. 11. Hierarchies of a subgraph extracted fromMarvel. Nodes represent characters, and links represent co-occurrence in at

least two comics (one butterfly). Link thickness represents the number of shared butterflies between two characters. Nodes

1 and 2 represent Wolverine and Wonder Man, respectively. Weighted linking adds Wolverine to the third level of the hierarchy,

while Tip Decomposition adds it to the fourth. Wonder man is left out ofWolverine’s subgraph byWeighted Linking.

any other node in that context. The hierarchy built by Weighted Linking with α set to 5% is shown in

Fig. 10b. Authors 7 and 8 are excluded because their main collaborators are outside this subgraph.

Besides improving the density, we also have fewer hierarchy levels. Authors 1 and 2, at the deepest

level of this hierarchy, represent authors who collaborate the most (subgraph A′). At the next level,

we can find authors 3 and 4. They have written many papers together and collaborated, to some

extent, with authors 1 and 2 (subgraph B′). Author 6, the focus of our analysis, together with author

5, is located at the outermost hierarchy level since they have co-authored fewer papers than the others

(subgraph C′).

Fig. 11 shows the subgraph hierarchy containing the character Wolverine (node 1) from the Marvel
database. Both hierarchies agree on the subgraphs A and A′, which represent The Fantastic Four;
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subgraphs B and B′ are also compatible as they add characters from the Avengers. Subgraph C′,
however, can be better interpreted as The X-Men, in contrast with subgraph C, which does not give

a direct mapping to a well known Marvel group. Subgraph C′ puts together all characters from

The X-Men found in C along with Professor X, Wolverine, and Storm, which are known to be part of

the group10. Note that node 2, which represents Wonder Man11, is not present in the subgraph C′.
One possible explanation for the absence is that Wonder Man first appeared in The X-Men comics but

disappeared for several years. This fact justifies the placement of this character in the upper levels

of the hierarchy since it has fewer co-occurrences with the other X-Men members. Notice also the

extra level added in the subgraph of Fig. 11a without aggregating any new information. Indeed, the

X-Men group is divided into subgraphs C and D by Tip Decomposition. Thus, Tip decomposition adds

an unnecessary extra level and extra nodes, making the interpretation less obvious.

Hence, the subgraph generated by Weighted Linking is able to explain real-world scenarios better,

demonstrating the effectiveness of our algorithm in generating more interpretable hierarchies.

6. CONCLUSION

Organizing a graph as a hierarchy of dense subgraphs is a challenging task, especially considering the

edge density, since even a pair of connected vertices has amaximumdensity of 1. Besides, hierarchies

with several levels lose the semantics of the subgraphs because they force the splitting of nodes that,

together, explain real-world scenarios better. In thiswork, we show empirically that there is a trade-off

between the number of hierarchical levels of decomposition and its overall density. We propose the

Weighted Linking method to handle this problem, which allows controlling the compromise between

larger densities and shorter hierarchies. We also provide a score to compare whether a hierarchical

decomposition is better than another. We show, empirically, that our algorithm outperforms the state

of the art approach in most of the presented real-world scenarios.

However, we need to investigate some aspects of the algorithm further. An interesting behavior

that we were able to observe is that Tip Decomposition is able to detect a particular case of bicliques

whereWeighted Linking fails unless we set a very small value to α. Consider the case of many authors

who are co-authors of a few papers, let us say two, and do not collaborate with other authors, in

the author-paper graph. This subset of authors and papers produces a biclique subgraph with many

nodes at the authors’ partition and only two in the papers’ partition. Hence, when we compute the

unipartite projection, the projected subgraph will present a clique for the authors’ nodes where all

the links are weighted as one since all the authors share only one butterfly. Therefore, the nodes’

weighted degrees will be large, even with each link having a small weight, and all the nodes will be

assigned the same high tip number. Since all nodes have exactly the same tip number, and the weight

of the link is not taken into account when building the subgraphs, Tip Decomposition joins all nodes in

the same subgraph. On the other hand, since the edge weight is small, unless we set lower values to

α in Weighted Linking, the nodes tend to be divided into different subgraphs. An improvement that

we plan to make in the future is the ability to handle such situations.

We also intend to explore the parametric space to estimate the optimal value for α that produces a

result closer to the optimal decomposition. In particular, we plan to compare several decompositions

by Weighted Linking with different parameter settings to identify the decomposition that balance the

best the subgraphs density and hierarchy height, according to the PHDscore.

We believe that the score we propose can also be applied to other configurations besides the

hierarchical decomposition of bipartite graphs. We intend to extend it to unipartite, as well as to

attributed graphs, as future work.

10
https://en.wikipedia.org/wiki/X-Men (Date accessed October 06, 2020)

11
https://en.wikipedia.org/wiki/Wonder_Man (Date accessed October 06, 2020)
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