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Abstract. Many applications rely on spatial information retrieval, which involves costly computational geometric
algorithms to process spatial queries. Spatial approximations simplify the geometric shape of complex spatial objects,
allowing faster spatial queries at the expense of result accuracy. In this sense, spatial approximations have been employed
to efficiently reduce the number of objects under consideration, followed by a refinement step to restore accuracy. For
instance, spatial index structures employ spatial approximations to organize spatial objects in hierarchical structures
(e.g., the R-tree). It leads to the interest in studying how spatial approximations can be efficiently employed to
improve spatial query processing. This article presents a systematic review on this topic. We gather relevant studies by
performing a search string on several digital libraries. We further expand the studies under consideration by employing a
single iteration of the snowballing approach, where we track the reference list of selected papers. As a result, we provide
an overview and comparison of existing approaches that propose, evaluate, or make use of spatial approximations
to optimize the performance of spatial queries. The spatial approximations mentioned by the approaches are also
summarized. Further, we characterize the approaches and discuss some future trends.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval; H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

Keywords: GIS, spatial approximation, spatial database systems, spatial information retrieval, spatial query processing

1. INTRODUCTION

Modern and advanced applications have increasingly required the representation, storage, and man-
agement of spatial information. These applications enrich data handling and analysis by modeling
geographical and spatial phenomena as instances of spatial data types (e.g., points, lines, and regions)
typically provided by spatial database systems and Geographical Information Systems (GIS) [Güting
1994]. Examples of applications handling spatial objects include agricultural applications for moni-
toring land use and land cover changes [Esquerdo et al. 2020], location-based services for delivering
information based on the location of users [Jensen et al. 2004; Huang et al. 2018], and spatial data
science applications for revealing useful information from spatial data [Anselin 2020; Carniel and
Schneider 2021].

Spatial information retrieval is a common task of these applications and consists of capturing spatial
objects through spatial queries. The conditions of a spatial query are often expressed as spatial
relationships, such as topological relationships (e.g., overlaps, contains) [Egenhofer and Herring 1994;
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Schneider and Behr 2006; Shen et al. 2018]. Hence, several types of spatial queries have been defined
in the literature, such as the window query, containment query, and point query (see [Carniel 2020]
for a survey).

Spatial approximations play an important role in the challenging task of reducing the elapsed time
required to process a spatial query. Due to the high complexity of the geometric format of spatial
objects (e.g., the number of points of a region or line object), spatial objects are approximated
to a simpler geometric shape to reduce the complexity of the computation of spatial relationships.
For instance, the Minimum Bounding Rectangle (MBR) [Papadias et al. 1995] is a very popular
approximation employed in the literature.

On the other hand, the use of spatial approximations introduces at least another needed step to
process spatial queries. This is because the result of a spatial query answered by spatial approximations
is not fully accurate. In this case, the needed step called refinement has to evaluate the spatial
relationship by accessing the original spatial object. This ensures the correct result of the spatial
query; but it consists of computing costly geometric algorithms. A common goal is to reduce the
number of objects to be checked in the refinement step by using spatial index structures built on
a specific approximation. A typical index is the R-tree [Guttman 1984] and its variants like the
R*-tree [Beckmann et al. 1990], which are based on MBRs.

Due to the importance of spatial information retrieval, several studies in the literature have been
focused on optimizing the indexing of spatial objects (e.g., see [Gaede and Günther 1998] for a survey).
However, for many types of queries (e.g., window queries), the step processed by the spatial index
requires a small elapsed time if compared to the total elapsed time to deliver the final result of the
spatial query (as pointed out in Section 3.2). This motivates the development of a multi-step spatial
query processing that combines different types of approximations to reduce the cost of executing the
refinement step. However, there is a lack of recent studies in the literature that compare, understand,
and show the applicability of spatial approximations.

This article fulfills this gap by presenting a comprehensive study on the existing spatial approxima-
tions in the literature. Our contributions include the following topics:

—A systematic review of the literature by employing a reproducible methodology that can serve as a
foundation for future trends on spatial approximations.

—An overview and comparison of existing approaches. We classify them as approaches that propose,
evaluate, or make use of spatial approximations. Further, we summarize the main characteristic of
the spatial approximations employed by the approaches.

—A characterization of existing approaches that allows us to understand how they use a spatial
approximation to optimize spatial queries. Further, we present future trends in the area of spatial
query processing.

This article is organized as follows. Section 2 discusses related work. Section 3 summarizes needed
basic concepts. Section 4 introduces our systematic review and describes how existing approaches em-
ploy spatial approximations to spatial query processing. Section 5 analyzes existing implementations
of spatial approximations and discusses open challenges and future trends. Section 6 concludes the
article and presents future work.

2. RELATED WORK

In this article, we are interested in studying the role of spatial approximations in processing spatial
queries. Another important related strategy to improve spatial query processing is the use of spatial
index structures. Hence, in this section, we present an overview of such structures and discuss related
surveys.
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A spatial index, also called spatial access method, provides a specialized data structure and related
algorithms to improve the retrieval of spatial objects according to the constraints imposed by spatial
queries. Commonly, the underlying design of a spatial index is a hierarchy based on data partitioning
or space partitioning. The first partitioning strategy organizes tree structures by using the geometric
format of the spatial objects. The classical R-tree [Guttman 1984] and its variants like the R*-
tree [Beckmann et al. 1990] and the revised R*-tree [Beckmann and Seeger 2009] are examples of
indices that employ this strategy. The second strategy divides the space to accommodate the spatial
objects. Examples include Quadtrees and related structures [Samet 1984]. There are also spatial index
structures that combine both strategies, such as the Hilbert R-tree [Kamel and Faloutsos 1994]. There
is a strong relationship between several types of spatial index structures and spatial approximations.
Indexing spatial objects containing a different number of points (e.g., lines and regions) imposes the
challenge of manipulating index pages (i.e., nodes in a tree) with variable sizes. On the other hand,
spatial approximations allow the representation of complex objects by using a fixed-size data structure.
Hence, several index structures (e.g., the R-tree) actually handle approximations and keep pointers
that provide direct access to the original object.

Several surveys compare and summarize different types of spatial index structures. For instance,
the authors in [Gaede and Günther 1998] discuss a variety of these structures designed for main
memory and secondary memory. They also highlight the role of spatial index structures in a multi-
step query processing strategy to answer different types of queries (as discussed in Section 3.2).
Another related survey that compares other spatial index structures is presented in [Oosterom 2005].
Due to the importance of spatial joins in spatial database systems and GIS, other surveys [Jacox and
Samet 2007; Bouros and Mamoulis 2019] concentrate on describing specific algorithms that possibly
use spatial index structures to answer this type of spatial query. Other surveys are dedicated to
describing spatial index structures applied to modern storage devices [Fevgas et al. 2020], spatial
analytics systems based on Hadoop and Spark [Castro et al. 2020], and existing ecosystems for spatial
data handling [Alam et al. 2021].

This article differs from the aforementioned studies since we present a systematic review of spatial
approximations. The goal is to discuss how they have been used in the literature to improve spatial
query processing. To the best of our knowledge, this article is the first work in the literature with this
goal. This article extends our previous work [Bertella et al. 2021] as follows:

—We present additional descriptions of underlying concepts of the article, such as related studies,
types of spatial queries, and an overview of multi-step query processing.

—We conduct an extended version of our previous systematic review by using a snowballing ap-
proach [Wohlin 2014]. For this, we have updated the previous systematic review and, after iden-
tifying the selected studies, we have used the reference list of these studies as input for another
iteration of the systematic review.

—We identify more relevant studies in the context of spatial approximations that are compared and
discussed in the article. Further, we provide an overview of the approximations employed by studies
identified in our systematic review.

—We extend the discussion of the challenges and future trends.

3. NEEDED CONCEPTS FROM SPATIAL DATABASE SYSTEMS AND GIS

In this section, we sketch definitions related to spatial queries (Section 3.1) and discuss how they are
processed by using two steps (Section 3.2).
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(a) Search object and MBRs (b) Window Query (c) Containment Query

(d) Point Query (e) Spatial Join (f) k-Nearest Neighbors (k = 3)

Fig. 1. The role of MBRs and examples of spatial queries. The final answer of each spatial query is shown in dark gray.
In (b), the false candidate is depicted in light gray. In (e), the result indicates the intersecting pairs between the set of
spatial objects and the set of rectangles. In (d) and (f), the point object represents the search object.

3.1 Spatial Data Types and Spatial Query Processing

Spatial database systems and GIS store, query, and handle spatial or geographic information repre-
sented by homogeneous geometries in the Euclidean space. For modeling them, formal definitions
of spatial data types for points, lines, and regions have been provided in the literature [Schneider
and Behr 2006]. Instances of these data types can be simple or complex where complex objects may
contain finitely many components.

Commonly, spatial objects are handled by spatial operations, such as spatial relationships (e.g.,
topological relationships), geometric set operations (e.g., union, intersection), and metric operations
(e.g., distance, area). Topological relationships (e.g., intersect, overlap, inside) are widely studied
in the literature and determine how two or more spatial objects are related or connected in space.
The evaluation of topological relationships can be performed by employing the 9-intersection model
and variants [Egenhofer and Herring 1994; Schneider and Behr 2006]. They leverage point sets and
point set topology to create a matrix from the nine possible intersections of the boundary, interior,
and exterior of two spatial objects, considering the invariant criteria of emptiness and non-emptiness.
However, this processing is costly since it involves the computation of complex geometric algorithms,
especially for line and region objects that may vary in the number of points and format.

In this sense, spatial approximations play an important role. A spatial approximation represents a
spatial object by using a simpler geometric format, such as rectangles or circles (more approximations
are introduced in Section 4.2). For instance, a complex region containing several points can be
approximated to a rectangle that minimally encompasses its boundary (i.e., an MBR) by storing only
four numbers in the two-dimensional case. The computation of topological relationships on the simple
geometric format provided by spatial approximations is a quick operation [Papadias et al. 1995].
Hence, spatial approximations are widely employed as a first step when processing spatial queries, as
shown in Section 3.2.

As a basic feature, spatial database systems and GIS allow users to pose different types of spatial
queries [Gaede and Günther 1998; Carniel 2020]. Examples are depicted in Figure 1. Given a search
object, a spatial query has the goal of retrieving all objects that satisfy a set of conditions, usually
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Fig. 2. The steps for processing spatial queries.

expressed by using topological relationships or distance functions. Figure 1a shows a rectangular-
shaped search object (also known as window) and a set of spatial objects with their corresponding
MBRs. By using the topological relationship intersect, we define a window query (WQ), which finds
all spatial objects intersecting the search object (Figure 1b). A variant of this query is the containment
query (CQ), which finds all objects that are inside the window (Figure 1c). If we consider that the
search object is a point object, we design a point query. It returns all objects that have this particular
simple point object (Figure 1d). In addition, two spatial datasets can be associated according to a
particular topological relationship, leading to spatial joins (Figure 1e). Other typical spatial queries
use the distance notion. For instance, the k-nearest neighbor query (kNN) finds a set of spatial objects
that are the k-nearest neighbors of the search object (Figure 1f). Other types of spatial queries can
be derived, as discussed in [Gaede and Günther 1998; Carniel 2020].

Some types of spatial queries can be directly answered by using spatial approximations only, such
as the CQ (Figure 1c). However, this is not the case for other types of spatial queries, such as the
WQ (Figure 1b). This is due to the introduction of an area that does not belong to the original
spatial object, called dead space. When checking the intersection on approximations only, the result
may contain spatial objects that do not belong to the final answer, as shown in Figure 1b. On the
other hand, approximations avoid the computation of those objects that certainly do not belong to
the result. Due to this and the fixed size to store an approximation, spatial index structures [Gaede
and Günther 1998] often employ approximations to reduce the search space of spatial queries.

3.2 Filter and Refinement Steps

Figure 2 shows the two steps often employed to process a spatial query [Gaede and Günther 1998].
The first step called filter uses approximations (commonly in a spatial index structure) to get a set
of candidates of spatial objects that answer the query. The next step called refinement gets these
candidates as input and accesses their original geometric format to evaluate the spatial relationship
(e.g., topological relationship) of the query and return the final answer of the query. This step usually
requires more processing time than the filter step. Hence, there is an interest in reducing the number
of objects that are evaluated by the refinement step.

Several approaches focus on improving the elapsed time of spatial index structures (i.e., filter step)
(e.g., [Gaede and Günther 1998; Carniel et al. 2020]). However, the use of a spatial index is not
sufficient to answer many types of spatial queries. In such cases, the refinement step requires more
processing time than the filter step because of the number of objects evaluated by costly computational
geometric algorithms. This is also supported by our experiments, as follows.
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(a) R-trees (b) R*-trees

Fig. 3. Results of our motivating experiments using two different spatial index structures. Since these structures are
not sufficient to accurately answer WQs, the refinement step is required. The stacked bars show the elapsed times of
the filter (in light gray) and refinement (in dark gray) steps. Note the different scales in the plots.

We used two real spatial datasets described in [Carniel et al. 2017]1: (i) brazil_buildings2017_v2,
containing 1,485,866 region objects, and (ii) brazil_highways2017, containing 2,644,432 line objects.
We evaluated the execution of 200 WQs. Two different sets of 100 windows were used in the WQs.
The first set had 0.01% of the area of the total extent of Brazil. The second set had 0.1%, increasing
the number of objects returned in the WQs. In the filter step, we used two distinct spatial indices that
make use of MBRs: (i) the R-tree with the linear split algorithm, and (ii) the R*-tree with 30% of
reinsertion by using the close reinsert policy. They were built under different page sizes, from 2KB to
32KB, employing an LRU buffer of 512KB. The refinement step used the GEOS library, an open-source
geometry engine implemented in C/C++ that is employed by PostGIS. We employed a local computer
equipped with an Intel Core i3-4170 with a frequency of 3.70GHz, 8GB of main memory, and a Lexar
NS100 128GB SSD. We used the FESTIval [Carniel et al. 2020] installed in the Ubuntu Desktop
18.04.5 64 bits. FESTIval is a PostgreSQL/PostGIS extension to conduct experimental evaluations of
spatial indices. It provides several types of spatial queries and allows users to define workloads to be
executed with spatial indices. We executed sequentially the WQs 5 times, flushing the system cache
after the execution of each time. Then, we calculated the average elapsed time to execute the WQs
with the two different sets of windows. We did not report the results of index construction (used by
the filter step) because this kind of analysis goes beyond the scope of this article.

Figure 3 depicts the obtained results. The refinement step was the most costly part of the queries,
independently of the employed filter step. The refinement step corresponded from 50.24% to 87% of
the total elapsed time. Further, the experiments show that the cost of the refinement step is worst
when manipulating spatial datasets containing region objects only. This motivates us to understand
how to improve spatial query processing. However, the focus should be beyond the spatial indexing,
which corresponds to less than 50% of the total elapsed time according to our experiments.

In this sense, our focus is to provide a comprehensive study on how the spatial approximations have
been adopted in the literature to mitigate the effects of the refinement step. We also discuss how
spatial approximations are imposing challenges and future trends when processing spatial queries, as
discussed in Section 5.2.

1They are extracted from the OpenStreetMaps (http://www.openstreetmap.org/ - accessed on November 11, 2021).
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4. THE APPLICATION OF SPATIAL APPROXIMATIONS TO SPATIAL QUERY PROCESSING

Approximations play a fundamental role in the optimization of spatial queries by reducing the number
of objects to be evaluated by the refinement step. In this section, we present a systematic review that
aims to select available and relevant literature on spatial approximation (Section 4.1). We employ
strict relevance criteria that strive for novelty (i.e., it goes beyond the incremental improvement in
well-known approximations) (Section 4.2). With this, we are able to gather a small and preeminent
group of studies that significantly advanced the state of the art in spatial approximations (Section 4.3).

4.1 Methodology

The research questions that guide the development of our systematic review are:

—Which spatial approximations are the most widely used and empirically evaluated?
—How have spatial approximations been employed in spatial query processing?
—Which spatial approximations provide the largest time reductions in spatial query processing?

To gather relevant studies on approximation-based spatial querying and thus answer these questions,
we developed the following search string:

("spatial index" OR "spatial indexing"OR "spatial access method" OR "spatial information
retrieval") AND ("spatial approximation" OR "spatial approximations"OR "bounding box"OR

"approximation-based spatial query") AND ("performance" OR "efficiency" OR "experiment" OR
"performance evaluation"OR "empirical evaluation" OR "empirical study")

On November 11, 2021, we employed the search string in the following digital libraries: IEEE2,
Science Direct3, Springer4, ACM DL5, and Google Scholar6, resulting in 1,497 studies. The inclusion
criteria included studies that provide implementations and comparisons of spatial approximations,
propose novel approximations, or use different spatial approximations when executing spatial queries.
It leads to the exclusion of studies that apply well-known approximations only (i.e., MBRs) or ap-
proaches that focus on spatial indexing without the use of spatial approximations. Another inclusion
criterion is the incorporation of studies written in English only. Further, we did not restrict the impact
factor of the publication venues of the studies since our criteria have returned a concise number of
studies, making it feasible to be analyzed in a full reading.

Aiming to expand our research reach, we have conducted one iteration of the backward snowballing
[Wohlin 2014; Mourao et al. 2017] as an additional stage. Snowballing is a valuable strategy to search
for relevant literature in systematic literature reviews. This strategy uses the reference list of a set
of papers as input for another iteration of the systematic review. The combination of the traditional
search in digital libraries with a snowballing approach leads to a (hybrid) search strategy that is
considered the most complete in terms of efficiency in finding studies on a given topic. Additionally,
snowballing has considerable value since it presents a temporal advance in a research field.

Figure 4 depicts the results of our search strategy, which is based on two stages: (i) search in digital
libraries, and (ii) backward snowballing. Each stage has multiple steps where further steps are more
detailed but over a reduced number of studies. The steps, in order, consider the publications (i) title
and abstract, (ii) introduction and conclusion, and (iii) full text. Figure 4 also reveals the number

2https://ieeexplore.ieee.org/Xplore/home.jsp (accessed on November 11, 2021).
3https://www.sciencedirect.com (accessed on November 11, 2021).
4https://link.springer.com (accessed on November 11, 2021).
5https://dl.acm.org (accessed on November 11, 2021).
6https://scholar.google.com (accessed on November 11, 2021).
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Fig. 4. Steps employed in our systematic review by using one iteration of the snowballing approach.

of studies removed and kept in each step. The five selected studies in Step 3 of the first stage are
the initial set of papers for the backward snowballing. The backward snowballing returned 91 unique
results (104 in total where 13 were repeated instances). These studies were submitted to the same
multi-step inclusion criteria of the previous stage. From those 91 studies, some of them may have
been already considered in the first stage of our search. Hence, we have removed such studies based
on their title in Snowballing Step 1.

As a result, we have selected 14 studies and classified them according to the categories: (C1) novel
spatial approximations or implementations, (C2) performance evaluations of spatial approximations,
and (C3) spatial approximations for collections of spatial objects (useful for representing nodes in
spatial index structures). It is important to emphasize that a study can belong to more than one
category.

4.2 General Characteristics of Existing Approaches

Table I presents the selected studies, a summary of their main features, and their categorization. In
addition to the category and reference of the study (first two columns), we provide the source from
that the study was retrieved by our selection (third column). Further, we list the approximations
that are conceptually discussed and empirically compared by a study (fourth and fifth columns). The
conceptual discussion is important to understand the intrinsic characteristics of a spatial approxima-
tion, whereas the empirical study highlights the performance behavior of the approximation. We also
check whether the study employed some spatial index structure in its experiments (sixth column).
Moreover, we list the types of spatial queries evaluated in the studies (last column).

According to the appearance order of the spatial approximations in Table I, the studies discuss
and/or empirically compare the following approximations: (i) Convex Hull (CH), (ii) Minimum
Bounding n-corner (n-corner), (iii) Minimum Bounding Rectangle (MBR), (iv) Minimum Bound-
ing Polybox (MBP), (v) Minimum Bounding Circle (MBC), (vi) Minimum Bounding Ellipse (MBE),

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.



232 · Bertella et al.

Table I. Characterization of the studies selected by our systematic review. The studies are sorted by their category and
publication year.

Category Reference Source
Conceptually
Discussed
Approx.

Empirically
Compared
Approx.

Spatial Index
Structures

Spatial
Queries

C1
[Graham

1972]

Snow-
balling

approach
CH - - -

C1
[Aggarwal
et al. 1985]

Snow-
balling

approach
n-corner - - -

C1
[Jagadish

1990]

Snow-
balling

approach
MBR, MBP MBR, MBP - -

C1 [Welzl 1991]
Snow-
balling

approach
MBC, MBE MBC, MBE - -

C2

[Brinkhoff
et al.
1993b]

Springer CH, MBE, MBR,
n-corner MBR, n-corner R*-Tree WQ

C2
[Bandi

et al. 2007]
Science
Direct

CH, IA, MBR,
MER, n-corner IA, MBR R-tree,

Quadtrees

WQ,
Spatial
Join

C1 and C2
[Brodsky

et al. 1995]

Snow-
balling

approach
MBP, MBR MBP, MBR - -

C1 and C2

[Esperança
and Samet

1997]
Springer MBR, OP MBR, OP Quadtrees WQ

C1 and C2

[Zimbrao
and Souza

1998]

Snow-
balling

approach

4CRS, ELG,
MBR, MER,
n-corner

4CRS, ELG,
MBR, MER,
n-corner

R*-tree Spatial
Join

C1 and C2

[Kothuri
and Ravada

2001]

Snow-
balling

approach
CH, IA, MBR IA, MBR R-Tree WQ, CQ,

kNN

C1 and C2
[Su et al.

2017] IEEE n-sided RP n-sided RP - -

C2 and C3

[Brinkhoff
et al.
1993a]

Snow-
balling

approach

CH, MBC, MBE,
MBR, n-corner,
RMBR

CH, MBC, MBE,
MBR, n-corner,
RMBR

R*-Tree Point
Query

C2 and C3
[Brinkhoff
et al. 1994]

Snow-
balling

approach

CH, MBC, MBE,
MBR, MEC,
MER, n-corner,
RMBR

CH, MBC, MBE,
MBR, MEC,
MER, n-corner,
RMBR

R*-Tree Spatial
Join

C1, C2,
and C3

[Sidlauskas
et al. 2018] IEEE

CBB, CH, MBC,
MBR, n-corner,
RMBR

CBB, CH, MBC,
MBR, n-corner,
RMBR

R-Tree, Hilbert
R-Tree, R*-Tree,
revised R*-Tree

WQ,
Spatial
Join

(vii) Interior Approximation (IA), (ix) Maximum Enclosed Rectangle (MER), (x) Orthogonal Polygons
(OP), (xi) Four-colors Raster Signature (4CRS), (xii) Enclosed Line Segments (ELG), (xiii) n-sided
Regular Polygon (n-sided RP), (xiv) Rotated Minimum Bounding Rectangle (RMBR), (xv) Maximum
Enclosed Circle (MEC), and (xvi) Clipped Bounding Box (CBB). Table II provides a short description
of these approximations.

The MBR is widely employed for testing or validation in all studies, indicating that this particular
spatial approximation is a standard benchmark. This is due to its popularity and the low cost of
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Table II. An overview of the spatial approximations identified in our systematic review of the literature.

Approximation Short Description

Convex Hull (CH) The smallest convex region object that contains a given spatial object.
Minimum Bounding n-corner
(n-corner)

The smallest region object with less than or equal to n corners that encloses a given
spatial object.

Minimum Bounding Rectangle
(MBR)

The smallest axis-aligned rectangle that encloses a given spatial object. That is, the
edges of the rectangle are parallel to the coordinate axes.

Minimum Bounding Polybox
(MBP)

The smallest convex region object that encloses a given spatial object and whose
edges are perpendicular to preselected axes (not necessarily the standard coordinate
axes).

Minimum Bounding Circle
(MBC) The smallest circle that encloses a given spatial object.

Minimum Bounding Ellipse
(MBE) The smallest ellipse that encloses a given spatial object.

Interior Approximation (IA)
Based on the MER. It can also build a regular grid of rectangles (called quadrants)
covering the MBR of a given spatial object to identify interior tiles (i.e., quadrants
that belong to the interior of the spatial object).

Maximum Enclosed Rectangle
(MER) The largest axis-aligned rectangle inside a given spatial object.

Orthogonal Polygon (OP) An orthogonal (i.e., rectilinear) region object that encompasses a given spatial
object. That is, the sides of this region is parallel to the coordinate axes.

Four-colors Raster Signature
(4CRS)

A raster approximation containing n×m cells, where each cell stores two bits of
information to indicate the degree to which a cell belongs to a given spatial object
(e.g., empty, weak intersection, strong intersection, and full).

Enclosed Line Segments
(ELG) The longest axis-aligned line segments inside a given spatial object.

n-sided Regular Polygon
(n-sided RP)

An equilateral region object of n sides. If it minimally encompasses a given spatial
object, then it is an outer-type RP. If it is the largest equilateral polygon inside a
given spatial object, then it is an inner-type RP.

Rotated Minimum Bounding
Rectangle (RMBR)

The smallest rectangle that encloses a given spatial object. It may not be an
axis-aligned rectangle since it can be arbitrarily rotated.

Maximum Enclosed Circle
(MEC) The largest circle inside a given spatial object.

Clipped Bounding Box (CBB) Given a collection of MBRs, the CBB is a non-convex region object built after
rectangularly clipping off the corners of the MBRs.

computing topological relationships. In terms of validation usage, besides MBR, four other spatial
approximations are typically used in experimental evaluations: RMBR, MBC, CH, and n-corner (with
n ∈ {4, 5}). They are compared in terms of elapsed time to process topological relationships or the
area of its dead space. Figure 5 depicts examples of some spatial approximations employed by the
existing approaches.

Recall that spatial approximations are widely employed when indexing spatial data. The majority
of the studies employ an R-tree variant in their performance evaluation. This is strongly related to
the use of MBR as a baseline and popular spatial approximation. Further, we highlight that some
other spatial index structures based on Quadtrees are also employed in experiments. This is due to
the characteristic of the data being manipulated (e.g., point datasets) or to compare the spatial query
processing by using other techniques.

With respect to spatial queries employed in the experiments, WQ is a popular type of query used
by the studies. The main reason is that this type of query requires the refinement step. Hence, the
spatial approximation is fundamental to reducing the overhead of such a step. We also note that
spatial join is treated by approaches since it is a costly operation in spatial database systems.
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(a) RMBR (b) MBC (c) MBE (d) CH (e) 5-corner (f) MER (g) MBR (h) CBB

Fig. 5. Examples of spatial approximations. In (g-h), the MBR and CBB are applied over a set of objects (i.e., a node
of an R-tree), while the other methods (a-e) are applied to a single spatial object.

4.3 Describing Key Ideas of Existing Approaches

In this section, we describe the main characteristics of existing approaches. They are sorted by their
publication year. The studies in [Graham 1972; Aggarwal et al. 1985; Welzl 1991] relate to geometric
computational algorithms employed by other approaches. In [Graham 1972], the well-known algorithm
to compute the convex hull on a set of points is given. This algorithm is widely employed by current
spatial libraries, such as those discussed in Section 5.1. While the authors in [Aggarwal et al. 1985]
provide an algorithm to compute the n-corner, the work in [Welzl 1991] supplies algorithms to obtain
the MBC and MBE of a region object.

The approaches in [Jagadish 1990; Brodsky et al. 1995] make use of MBPs to improve the per-
formance of spatial query processing. They discuss that the edges of an MBR are parallel to the
standard axes (i.e., x and y in the two-dimensional case), leading to large areas of dead space. Hence,
the underlying idea is to define additional axes in space and then identify their parallel lines that allow
us to create a minimum convex polygon containing a spatial object being approximated. These addi-
tional axes can have different orientations. The optimal selection of the additional axes is discussed
in [Brodsky et al. 1995], which relates to the storage overhead and runtime of spatial queries.

The authors in [Brinkhoff et al. 1993a] provide a performance evaluation that shows the impor-
tance of spatial approximations and introduce the term approximation-based query processing, which
consists of the filter and refinement steps. In fact, many spatial query processing techniques are based
on these steps, including the experiments conducted in Section 3.2. Three classes of approximations
are identified: (i) conservative approximations, (ii) progressive approximations, and (iii) generalizing
approximations. A conservative approximation preserves all points of the original spatial object; how-
ever, it may include points that do not belong to the spatial object. Examples include MBR, RMBR,
MBC, MBE, CH, and n-corner (Figures 5a-e). Possible implementations and storage requirements
of these approximations are discussed by the authors. A progressive approximation is inside of the
spatial object; thus, it may not include all the points of the spatial object. This type of approximation
can be used to identify objects that actually belong to the final answer of the query. A generalizing ap-
proximation is a simplification of the contour of the object that does not belong to the aforementioned
approximations. The authors focus on empirically evaluating conservative approximations, which are
analyzed by considering the approximation quality (i.e., a measure based on the dead space area).
Further, the approximations are used on single elements stored in the leaf nodes of R*-trees. Finally,
the authors conclude that the 5-corner delivered good performance results.

The authors in [Brinkhoff et al. 1993b] detail a geo-architecture that comprises concepts and
techniques for efficiently processing spatial queries. The authors claim that an efficient architecture
consists of combining spatial index structures, spatial approximations, decomposition techniques, and
secondary indices for thematic attributes. Concerning spatial approximations, the authors show their
importance as geometric pretest and conceptually describe some of them. The experiments conducted
by the authors were focused on validating the proposed architecture and used previous results to
justify the use of the 5-corner in the architecture.

The aforementioned studies are extended in [Brinkhoff et al. 1994] to deal with spatial joins. The
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authors consider that the filter step is processed by R*-trees. Then, according to empirical evaluations,
the 5-corner provides good performance when employing it as an additional step. After executing
performance evaluations, the authors propose to use a combination of progressive approximations to
identify positive hits of the query without accessing the original geometry of the object. The proposed
combination consists of the MER (Figure 5f) and the MEC.

The authors in [Esperança and Samet 1997] deal with orthogonal (i.e., axis-aligned) bounding struc-
tures for spatial objects, proposing a novel strategy of approximating spatial objects while achieving a
balance between complexity and accuracy. The approach is based on an OP with a varying number of
vertices, in contrast with the fixed number of four vertices of MBRs. To obtain the approximation, a
coarsening algorithm is given by using a combination of two distinct approaches. The authors present
the results of experiments based on the filter and refinement steps that highlight the benefits of using
OPs in some types of queries, such as large WQs.

In [Zimbrao and Souza 1998], the authors propose the 4CRS, which is based on a raster “signature” of
the spatial objects. It combines both conservative and progressive traits in a single approximation. It
is composed of cells dividing the region object and small parts of its surrounding area, where each cell
stores one of four “colors”. The colors indicate the degree to which the cells intersect the approximated
region object. It can be empty, weak, strong, or full to respectively represent the following situations:
(i) the cell does not intersect the region object, (ii) the cell shares at most 50% of its area with
the region object, (iii) the cell shares at least 50% of its area with the region object, and (iv) the
cell is completely inside the region object. Given its raster nature, the approximation can also be
compressed, grouping amounts of repeating data to reduce storage size. Experiments conducted by
the authors demonstrated a significant decrease of up to 60% in the number of intersection tests, the
number of disk access, and total query execution time when compared to a combination of n-corner,
MER, and ELG approximations in spatial joins.

In [Kothuri and Ravada 2001], the authors also describe an intermediate step between the filter and
refinement steps. The input of this intermediate step is the set of candidates returned by the filter
step. The intermediate step is able to identify the objects that either (i) need to be computed by the
refinement step, or (ii) can be included in the final result of the query. This is possible due to the use
of progressive approximations called IA, which are based on the MER (Figure 5f). The authors extend
the area of the MER by dividing the spatial object into several quadrants. Such quadrants are built
on the MBR of the spatial object by using the decomposition technique of Quadtrees. Then, their
algorithm selects the cells that are inside the original object. Experiments conducted by the authors
show that subdividing the space four times delivers good performance results when computing the
approximation and maximizing the IA area.

In [Bandi et al. 2007], the authors introduce the use of GPUs to process topological relations in
spatial queries. They propose an intermediate step, between the filter and refinement steps, where
additional filters are employed. For intersection queries an interior filter is used, while for within-
distance joins the intermediate step uses 0-Object and 1-Object filters. The former consists of IAs
and the latter are filters that calculate an upper bound of the distance between a pair of objects. This
strategy reduces the number of objects sent to the refinement step. The GPU is accessed through
OpenGL’s graphical API. The authors integrated their implementation with Oracle Spatial, based on
an architecture known as dual-thread. This architecture utilizes a primary and a graphics thread. The
primary thread runs the initial MBR filter step and a Point in the Polygon test, whilst the graphics
thread performs the hardware filter (i.e., by using IAs) by using the GPU. They report a reduction
of 5.9 times in the query processing time due to the dual thread system and synchronization.

In [Su et al. 2017], the authors evaluate approximations that consist of n-sided RPs. The idea is
to build outer-type and inner-type n-sided RPs. It is important to emphasize that a regular polygon
is an equilateral polygon. Hence, an outer-type (inner-type) 4-sided RP is not necessarily equivalent
to the MBR (MER) of an object. The authors discuss that the search precision can be improved by
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increasing the number of sides of the regular polygon. In this sense, the authors compare the search
precision of outer-type and inner-type 4-sided regular polygons. The number of sides in the polygon
can be adjusted, trading search precision and storage usage.

The authors in [Sidlauskas et al. 2018] propose the CBB to reduce the dead space of groups of spatial
objects. Given an MBR that minimally encompasses a group of spatial objects (or MBRs), a CBB
consists of this MBR and a set of clip points. A clip point is formed by a point in the d-dimensional
space and an array of d bits. Each position of this array refers to a dimension in the space. The bit
0 represents the minimum extent of the object, whereas the bit 1 indicates the maximum extent. For
instance, in the 2-dimensional case, bitmask 00 refers to the bottom-left corner of an MBR. Hence,
the bitmask supplies the direction in which the clipping should be performed. The CBB is useful
for indexing techniques that group MBRs of spatial objects into nodes, which in turn are organized
hierarchically (e.g., the R-tree and its variants). In addition to the tree structure, the CBB requires
a mapping between the nodes and their clip points, which is employed when traversing the tree in
index operations (e.g., insertions and queries). Hence, the CBB is not directly stored in the tree but
is calculated as needed. The authors experimentally show that the CBB reduces the dead space of
nodes if compared to other spatial approximations. The CBB was also applied to the R-tree and other
three variants, as shown in Table I. The main benefit of using the CBB is that it reduces the number
of paths to be traversed in index operations.

5. DISCUSSIONS

In this section, we analyze existing implementations of spatial approximations (Section 5.1) and discuss
open challenges and future trends (Section 5.2).

5.1 Existing Implementations

Spatial libraries implement spatial type systems that include data structures for spatial data types,
geometric operations, and spatial index structures. They serve as an underlying basis of the operations
executed by spatial database systems and GIS. An example is the PostGIS7, a PostgreSQL extension
that employs the spatial libraries GEOS and GDAL. Few studies compare existing spatial libraries.
For instance, the work in [Pandey et al. 2021] conducts experiments to analyze the performance of
spatial libraries when executing spatial queries by using spatial index structures. However, a study
that compares the support for spatial approximations is still missing.

By using the conducted systematic review and considering eight popular open-source spatial li-
braries, Table III compares the support for spatial approximations provided by these libraries. A
popular programming language of these libraries is the C++. In addition, common approximations
provided by them are MBR, MBC, and CH. JTS, GEOS, and CGAL provide additional support for
the RMBR as a more complex and higher-quality alternative to MBR. CGAL has more variety of
spatial approximations. Compared to other libraries, CGAL is the only one to enable the use of MBE
and Rotated Minimum Bounding Parallelogram (RMBP). Note that the RMBP is not considered or
evaluated by the approaches identified in our systematic review.

5.2 Challenges and Future Trends

As a result of our systematic review of the literature, we identify some topics that can serve as a
foundation for advances in spatial information retrieval by using spatial approximations. These topics
are: (i) the incorporation of distinct spatial approximations within spatial index structures, (ii) the

7https://postgis.net/ (accessed on November 11, 2021).
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Table III. Spatial libraries and their support for spatial approximations.

Name Homepage8 Language Approximations

JTS https://locationtech.github.io/jts/ Java CH, MBC, MBR, RMBR
GEOS https://trac.osgeo.org/geos C/C++ CH, MBC, MBR, RMBR
CGAL https://www.cgal.org/ C++ CH, MBC, MBE, MBR, RMBP, RMBR
Geometric Tools https://www.geometrictools.com/ C++ CH, MBC, MBR
Boost.geometry https://www.boost.org C++ CH, MBR
Wykobi https://www.wykobi.com/ C++ CH, MBC, MBR
ESRI Geom. API https://github.com/Esri Java CH
JSI https://github.com/aled/jsi Java MBR

use of spatial approximations in modern hardware environments, (iii) the conduction of empirical
studies by using multi-step query processing with spatial approximations.

The first topic relates to the use of novel spatial approximations in the nodes of spatial index
structures aiming to reduce the number of paths traversed by index operations. In the era of big
data, trends in this topic include the use of distributed and parallel frameworks, such as Hadoop and
Spark, to efficiently deal with a large volume of spatial data (see [Pandey et al. 2018; Castro et al.
2020] for a survey). In this sense, many spatial index structures are adapted to such environments.
This has led to the need of rethinking how spatial indexing should be performed. Unfortunately, the
power of spatial approximations is not well exploited and needs more comprehension, as discussed
in [Sidlauskas et al. 2018]. Following the underlying idea of the CBB, a future research topic is the
proposal and identification of spatial approximations applied to sets of objects.

The second topic corresponds to understanding the performance behavior of different spatial approx-
imations in modern hardware environments. In addition to the parallel and distributed environment,
the use of GPUs and modern storage devices may change how spatial approximations are employed
in spatial query processing. The approach discussed in [Bandi et al. 2007] shows the importance of
GPUs. However, more efforts are needed when considering modern storage devices like flash-based
Solid State Drives (SSDs). Many spatial index structures have been redefined or improved to deal with
the intrinsic characteristics of SSDs [Fevgas et al. 2020; Carniel et al. 2022], such as asymmetric read
and write costs. Hence, spatial approximations can play an important role in a multi-step processing
strategy that employs different modern technologies.

Finally, the last topic refers to the application of approximations as intermediate steps. This
trend is identified by many studies discussed in this article. This is a potential strategy that can be
applied to different contexts, such as SSDs and parallel and distributed systems. By combining the
aforementioned topics, an open research task is how the multi-step processing can be fitted into the
development of novel hardware environments. For instance, spatial approximations can be stored in
SSDs, while refinement steps can access spatial objects stored in conventional Hard Disk Drives. Both
steps can also process calculations by using GPUs.

6. CONCLUSIONS AND FUTURE WORK

In this article, we have provided a systematic review of the literature on the use of spatial approx-
imation in spatial query processing. By using a reproducible methodology based on a snowballing
approach, we have compared and described 14 approaches that employ different types of spatial
approximations. We have identified that the spatial approximations are mainly used either as in-
termediate steps of the filter and refinement steps or within spatial index structures. We have also

8The homepages were accessed on November 11, 2021.
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analyzed which spatial approximations are available in eight popular spatial libraries. This aspect
helps us to understand the existing support for spatial approximations in core components of spatial
database systems and GIS. Further, we discovered that there is at least one spatial approximation
(i.e., the RMBP) that was not considered by the studies discussed in this article. Moreover, we
have identified challenging topics and future trends with respect to the application of spatial approx-
imations to spatial query processing. We highlight that the most challenging tasks include the use
of approximations within spatial index structures and the strategy of employing approximations in
multi-step query processing.

By considering the future trends introduced in this article, our main future work topic is the con-
duction of an empirical analysis of spatial approximations as intermediate steps. Given n intermediate
steps, we plan to discover the most efficient order of execution of the spatial approximations in different
types of spatial queries in distinct hardware environments.
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